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Preface

The 20th Symposium on the Interface: Computing Science and Statistics was held on April
20th through 23rd, 1988. The 20th Symposium on the Interface was in a number of senses a watershed
event for the Interface series. Begun in 1967 in Southern California as a one-day workshop meeting
under the guidance of Arnie Goodman and Nancy Mann, it had matured over the years to a rather
large scale event. The Board of Governors of the 18th Interface appointed an ad hoc committee to
investigate incorporation of the Interface to preserve its financial and intellectual independence. At the
19th Interface a plan was presented by one of us (EJW) which included bylaws and a plan for
incorporation. This plan was approved and in August of 1987, the Interface Foundation of North
America, Inc. was formed as a non-profit, education corporation as the legal underpinning for the
Interface Symposium series. The 20th Symposium was the first sponsored under the Interface
Foundation banner. It was an auspicious start with a 50% increase in attendance, with the number of
contributed papers nearly doubled, and with a healthy support from the federal funding agencies.

At the 18th Interface, much of the discussion in executive session focused on the direction of
the meetings. The vision for the Interface Symposia obviously drew its focus from the interplay of
computer science and statistics. While this was a largely unexplored area in 1967, the interface, in
fact, has matured substantially and many of us thought that the interface was simply too broad and
unfocused to remain the general theme of the Symposium. The 19th Interface Symposium, already
well underway at that stage, was developed around the theme of Large Scale Statistical Computing.
The 20th Interface Symposium was, in fact, developed from first blush with the theme of
Computationally Intensive Statistical Methods. Much of factual detail about the 20th Symposium is
contained in the front pages immediately following this Preface, e.g. lists of people involved, the past
Interface Symposia, exhibitors, cooperating societies, the program schedule and the listing of papers in
the technical program. We hope that these will be of interest.

We have, however, broken with past tradition which has organized the Proceedings around the
format of the technical program. As with any Symposium, speakers often exhibit variances with the
formal session titles in which they are scheduled to speak. In addition, when a theme is announced, it
is often the case that contributed papers closely related to the themes of invited paper sessions are also
submitted. We felt that, the Symposium now being history, it would be better to organize the
Proceedings around the logical themes of the papers actually submitted for the Proceedings and making
comparatively little distinction between what were invited papers and contributed papers. The clusters
of papers are our choice and others may quibble with the classifications we made. Nonetheless, we
hope that the organization of this volume makes logical sense to the reader and, more importantly,
that the reader finds it to be useful.

Our major remaining task is to thank those people and organizations responsible for the success
of the meeting. A major contributor to the success was our secretary, Jan P. Guenther. Many of the
organization details that are attributed to the Program Chairman were in fact her ideas and we wish to
publicly acknowledge our debt to her. A number of our gradainte students, notably Masood
Bolorforoush, Hung T. Le, Celesta Ball and Dale Penner spent long days in preparation and execution
of many of the details. We also would like to acknowledge the patience of our families, notably the
Wegman and the Guenther families, during the perparatory phases of the Symposium. The co-
operating societies and organizations should be acknowledged as well. They are listed later in the
program. SptciA note should be made of the Institute of Mathematical Statistics, the National
Computer Graphics Association, the American Mathematical Society and the Society for lndustrial and
Applied Mathematics, Lach of which provided the Symposium organizcrb with iree access to their
membership lists. The National Bureau of Standards, now the National Institute of Standards and
Engineering, printed the original announcement and mailed both the first and second sets of
announcements.

The 20th Interface Symposium, as ha. been already mentioned, was the beneficiary of funding
from several government agencies including the Air Force Office of Scientific Research under grant

iii



number AFOSR-88-0154, the Army Research Office under grant number DAAL03-88-G-0020, the
National Science Foundation under grant number DMS-8722898 and the Office of Naval Research
under grant number N00014-88-J-1049. The editorial work of EJW on this volume was supported by
the Air Force Office of Scientific Research under grant number AFOSR-87-0179, the Army Research
Office under contract number DAAL03-87-K-0087, the National Science Foundation under grant
number DMS-8701931 and the Virginia Center for Innovative Technology under contract number
CIT/SPC-87-005. The latter contract also supported a portion of Jan Guenther's work.

Edward J. Wegman
Donald T. Gantz
John J. Miller
Fairfax, Virginia
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Bradley Efron, Department of Statistics, Stanford University

Invited Papers: - There are 60 invited papers including several with invited discussion organized into

23 sessions. In addition to the plenary session with the keynote address by Brad Efron, there are three

special invited lectures featuring Jerome Friedman, George E. P. Box and Thomas Banchoff.

Contributed Papers: - There are 128 contributed papers scheduled in 26 sessions.

Exhibitors

Ametek Computer Corporation North Holland/Elsevier Publishers
606 East Huntington Drive P. 0. Box 1991
Monrovia, CA 91016 1000 BZ Amsterdam

(714) 599-4662 The Netherlands

Automatic Forecasting Systems, Inc. Numerical Algorithms Group
P. 0. Box 563 1101 31st Street, Suite 100
Hatboro, PA 19040 Downers Grove, IL 60515
(215) 675-0652 (312) 971-2337
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BBN Software Springer-Verlag, Inc.
10 Fawcett Street 175 Fifth Avenue
Cambridge, MA 02238 New York, NY 10010
(617) 873-8116 (212) 460-1600

BMDP Statistical Software, Inc. SYSTAT, Inc.
1440 Sepulveda Boulevard, Suite 316 1800 Sherman Avenue
Los Angeles, CA 90025 Evanston, IL 60201
(213) 479-7799 (312) 864-5670

Intel Scientific Computers TCI Software
15201 NW Greenbrier Parkway 1190 Foster Road
Beaverton, OR 97006 Las Cruces, NM 88001
(503) 629-7631 (505) 522-4600

Marcel-Dekker, Inc. Tektronix, Inc.
270 Madison Avenue M.S. 48-300, Industrial Park
New York, NY 10016 Beaverton, OR 97077
(212) 696-9000 (503) 627-7111

IMSL, Inc. Wadsworth & Brooks/Cole
2500 ParkWest Tower One Advanced Books and Software
2500 CityWest Boulevard 10 Davis Drive
Houston, TX 77042-3020 Belmont, CA 94002
(713) 782-6060 (415) 595-2350

Short Course

Forecasting on the IBM-PC - A Survey, Wednesday, April 20, 9:00 a.m. to 4:30 p.m., David P. Reilly,
Automatic Forecasting Systems, Inc., P. 0. Box 563, Hatboro, PA 19040, (215) 675-0652

Cooperating Societies

American Mathematical Society Operations Research Society of America
P. 0. Box 6248 Mount Royal and Guilford Avenues
Providence, RI 02940 Baltimore, MD 21202

American Statistical Association Society for Industrial and Applied Mathematics
1429 Duke Street 1400 Architects Building
Alexandria, VA 22314 117 South 17th Street

Philadelphia, PA 19103
International Association for Statistical Computing
NTDH Virginia Academy of Science Chapter of ASA
P. 0. Box 145 c/o Golde I. Holtzman
N-7701 Steinkjer Department of Statistics
Norway Virginia Tech

Blacksburg, VA 24061
Institute of Mathematical Statistics
3401 Investment Boulevard, Suite 7 Washington Statistical Society
Hayward, CA 94545 P. 0. Box 70843

Washington, DC 20024-0843
National Computer Graphics Association
2722 Merilee, Suite 200
Fairfax, VA 22031
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Program Schedule

Date and Time Session Title

Thursday, April 21
8:45 a.m. - 9:45 a.m. Keynote Address: Computationally Intensive Statistical

Inference

10:00 a.m. - 12:00 noon Computational Aspects of Time Series Analysis
Inference and Artificial Intelligence
Computational Discrete Mathematics
Contributed: Software Tools
Contributed: Image Processing I
Contributed: Bootstapping and Related Computational

Methods

1:30 p.m. - 3:30 p.m. Special Invited Lecture I
Image Processing and Spatial Processes
Parallel Computing Architectures
Contributed: Statistical Methods I
Contributed: Hardware and Software Reliability
Contributed: Applications I

3:45 p.m. - 5:45 p.m. Special Invited Session for Recent Ph.D.'s
Simulation
Symbolic Computation and Statistics

Contributed: Statistical Graphics
Contributed: Models of Imprecision in Expert Systems
Contributed: Time Series Methods

Friday, April 22
8:00 a.m. - 10:00 p.m. Computer-Communication Networks

Supercomputing, Design of Experiments and Bayesian
Analysis, Part I

Numerical Methods in Statistics
Contributed: Probability and Stochastic Processes
Contributed: Statistical Methods II
Contributed: Nonparametric and Robust Techniques

10:15 a.m. - 12:15 p.m. Special Invited Lecture II
Supercomputing, Design of Experiments and Bayesian

Analysis, Part 2
Neural Networks
Contributed: Applications II
Contributed: Image Processing II
Contributed: Simulation I
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2:00 p.m. - 4:00 p.m. Tales of the Unexpected: Successful
Interdisciplinary Research

Density Estimation and Smoothing

Object Oriented Programming
Contributed: Numerical Methods
Contributed: Bayesian Methods
Contributed: Expert Systems in Statistics

Saturday, April 23
8:30 a.m. - 10:30 a.m. Computational Aspects of Simulated Annealing

Dynamical High Interaction Graphics
Contributed: Statistical Methods III
Contributed: Simulation II
Contributed: Biostatistics Applications
Contributed: Discrete Mathematical Methods

10:45 a.m. - 12:45 p.m. Special Invited Lecture III
Entropy Methods

Contributed: Information Systems, Databases and Statistics
Contributed: Parallel Computing
Contributed: Density and Function Estimation

Contributed: Statistical Methods IV

Technical Program

WEDNESDAY, APRIL 20, 1988

9:00 a.m. - 4:30 p.m.
Short Course - Forecasting on the IBM-PC, David Reilly, Automatic Forecasting Systems,
Inc.

THURSDAY, APRIL 21, 1988

8:45 a.m. - 9:45 a.m.
Plenary Session, Chaired by: Edward J. Wegman, George Mason University

"Computationally intensive statistical inference," Bradley Efron, Stanford University

10:00 a.m. - 12:00 noon
Computational Aspects of Time Series Analysis, Chaired by: Emanuel Parzen,
Texas A & M University

"Recent progress in algorithms and architectures for time series analysis," George Cybenko,
Tufts University

"Numerical approach to non-gaussian smoothing and its application," Gcenshiro Kitagawa,
The Institute of Statistical Mathematics

Discussants - Will Gersch, University of llawaii and H. Joseph Newton, Texas A & M
University

XX
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10:00 a.m. - 12:00 noon
Inference and Artificial Intelligence, Chaired by: N. Singpurwalla, George Washington
University

"Spectral Analysis on a LISP machine," Don Percival, University of Washington

"DeFinetti's approach to group decision making," Richard Barlow, University of California,
Berkeley

"Meta-analysis," Ingram Olkin, Stanford University

10:00 a.m. - 12:00 noon
Computational Discrete Mathematics, Chaired by: Rich Ringeisen, Clemson University

"Discrete structures and reliability computations," James P. Jarvis, Clemson University
and Douglas R. Shier, College of William and Mary

"Random graphs," Edward R. Scheinerman, The Johns Hopkins University

"Structure and finiteness conditions on graphs," Neil Robertson, Ohio State University

10:00 a.m. - 12:00 noon
Contributed Papers: Software Tools, Chaired by: Leonard Hearne, George Mason
University

"An introduction to CARTtm: classification and regression trees," Gerard T. LaVarnway,
Norwich University

"Noise appreciation: analyzing residuals using RS/Explore," David A. Burn and Fanny
O'Brien, BBN Software Products Corporation

"COSTAR: an environment for computer-guided data analysis," David A. Whitney and
Ilya Schiller, TASC

"A closer look at symbolic computation," William M. Makuch, General Electric Corporation
and John W. Wilkinson, Rensselaer Polytechnic Institute

10:00 a.m. - 12:00 noon
Contributed Papers: Image Processing I, Chaired by: A. K. Sood, George Mason University

"Image analysis of a turbulent object using fractal parameters," Amar Ait-Kheddache,
North Carolina State University

"Identification of closed figures," Jeff Banfield, Montana State University and Adrian
Raftery, University of Washington

"Compression of image data using arithmetic coding," Ahmed H. Desoky and Thomas
Klein, University of Louisville
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"Image analysis of the microvascular system in the rat cremaster muscle," C. O'Connor,
P. D. Harris, A. Desoky and G. Ighodaro, University of Louisville

"Automatic detection of the optic nerve in color images of the retina," Norman Katz,
Subhasis Chaudhuri, and Michael Goldbaum, University of California, San Diego and
Mark Nelson, Radford Company

10:00 a.m. - 12:00 noon
Contributed Papers: Bootstrapping and Related Computational Methods, Chaired by:
Richard Bolstein, George Mason University

"A Monte Carlo study of cross-validation and the Cp criterion for model selection in
multiple linear regression," Robert M. Boudreau, Virginia Commonwealth University

"Bootstrapping regression strategies," David Brownstone, University of California, Irvine

"Bootstrapping the missed regression model with reference to the capital and energy
complementarity debate," Baldev Raj, Wilfred Laurier University

"Efficient data sensitivity computation for maximum likelihood estimation," Daniel Chin
and James C. Spall, The Johns Hopkins University

"Bootstrap procedures in random elfect models for comparing response rates in multi-center
clinical trials," Michael F. Miller, Hoechst-Roussel Pharmaceuticals, Inc.

1:30 p.m. - 2:45 p.m.
Special Invited Lecture I, Chaired by: Jim Filliben, National Bureau of Standards

"Fitting functions to scattered noisy data in high dimensions," Jerome Friedman,
Stanford University

1:30 p.m. - 3:30 p.m.
Image Processing and Spatial Processes, Chaired by: Don McClure, Brown University

Introduction, Don McClure, Brown University

"A multilevel-multiresolution technique for image analysis and robot vision via
renormalization group ideas," Basilis Gidas, Brown University

"A mathematical approach to expert system construction," Alan Lippman, Brown
University

Xxii



THURSDAY, APRIL 21, 1988

1:30 p.m. - 3:30 p.m.
Parallel Computing Architectures, Chaired by: Chris Brown, University of Rochester

"Experiences with the BBN Butterflygm parallel processor," John Mellor-Crummy,
University of Rochester

"Statistical computing on a hypercube," George Ostrouchov, Oak Ridge National Lab

"Asychronous iteration," William F. Eddy and Mark Schervish, Carnegie-Mellon University

1:30 p.m. - 3:30 p.m.
Contributed Papers: Statistical Methods I, Chaired by: Walter Liggett, National Bureau of
Standards

"An example of the use of a Bayesian interpretation of multiple discriminant analysis
results," James R. Nolan, Siena College

"Real-time classification and discrimination among components of a mixture distribution,"
Douglas A. Samuelson, International Telesystems Corporation

"Comparison of three 'local model' classification methods," Daniel Normolle, University of
Michigan

"Application of posterior approximation techniques for the ordered Dirichlet distribution,"
Thomas A. Mazzuchi and Refik Soyer, George Washington University

"Unbiased estimates of multivariate general moment functions of the population and
application to sampling without replacement for a finite population," Nabih N. Mikhail,
Liberty University

1:30 p.m. - 3:30 p.m.
Contributed Papers: Hardware and Software Reliability, Chaired by: Asit Basu, University
of Missouri

"Linear prediction of failure times oi a repairable system," M. Ahsanullah, Rider College

"The simulation of life tests with random censoring," Joseph C. ludson, GMI Engineering
and Management Institute

"The use of general modified exponential curves in software reliability modeling,"
Taghi M. Khoshgoftaar, Florida Atlantic University

"A model for information censoring," William A. Link, Patuxent Wildlife Research Center

"Increasing reliability of multiversion fault-tolerant software design by modulation," Junryo
Miyashita, California State University. San Bernardino
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1:30 p.m. - 3:30 p.m.
Contributed Papers: Applications I, Chaired by: Su3annah Schiller, National Bureau of
Standards

"Classifying linear mixtures with an application to high resolution gas chromatography,"
William 9. Rayens, University of Kentucky

"Bias of animal trend estimates," Paul H. Geissler and William A. Link, Patuxent Wildlife
Research Center

"A non-random walk through futures prices of the British pound," William S. Mallios,
California State University, Fresno

"A stochastic extension of Petri net graph theory," L. M. Anneberg, Wayne State University

"Neural Petri nets," N. H. Chamas, Wayne State University

3:4.9 p.m. - 5:45 p.m.
Special Invited Session for Recent Ph.D.'s, Chaired by: Johr, J. Miller, George Mason
University

"Additive principal components: a method for estimating equations with small variance
from multivariate data," Deborah Donnell, Bellcore

"Gamma processes, paired comparisons and ranking," Hal Stern, Harvard University

"Smoothing data with correlated errors," Naomi Altman, Cornell University

"The data viewer: program for graphical data analysis," Catherine Hurley, University of
Waterloo

3:45 p.m. - 5:45 p.m.
Simulation, Chaired by: Donald T. Gantz, George Mason University

"Random var'ables for supercomputers," George Marsaglia, Florida State University

"Computational statistics in experimental design for studies of variability," John Ramberg,
University of Arizona

"Linear combinations of estimators of the variance of the sample mean," Bruce W.
Schmeiser, Purdue University
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3:45 p.m. - 5:45 p.m.
Symbolic Computation and Statistics, Chaired by: William S. Rayens, University of
Kentucky

"Some applications of symbol manipulation in statistical analysis," Kathryn M. Chaloner,
University of Minnesota

"Symbolic computation in statistical decision theory," Marietta Tretter, Texas A & M
University

"Partial differentiation by computer with applications to statistics," John W. Sawyer, Jr.,
Texas Tech University

3:45 p.m. - 5:45 p.m.
Contributed Papers: Statistical Graphics, Chaired by: Robert Launer, Army Research
Office

"Visual multidimensional geometry with applications," Alfred Inselberg, IBM Scientific
Center, Los Angeles and Bernard Dimsdale, University of California

"Some graphical representations of multivariate data," Masood Bolorforoush and
Edward J. Wegman, George Mason University

"Graphical representations of main effects and interaction effects in a polynomial regression
on several predictors," William DuMouchel, BBN Software Products Corporation

"Chernoff faces: a PC implementation," Mohammad Dadashzadeh, University of Detroit

3:45 p.m. - 5:45 p.m.
Contributed Papers: Models of Imprecision in Expert Systems, Chaired by:
Mark Youngren, George Washington University

"Fusion and propagation of giphical bilief models," Russell Almond, Harvard University

"Belief function computations for paired comparisons," David Tritchler and Gina Lockwood,
Ontario Cancer Institute

"Variants of Tierney-Kadane," Guenter Weiss and H. A. Howlader, University of Winnepeg

"Dynamically updating relevance judgements in probabilistic information systems via users'
feedback," Peter Lenk and Barry D. Floyd, New York University

"Computational requirements for inference methods in expert systems: a comparative
study," Ambrose Goicoechea, George Mason University
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3:45 p.m. - 5:45 p.m.
Contributed Papers: Time Series Methods, Chaired by: Neil Gerr, Office of Naval
Research

"Inference techniques for a class of exponential time series," V. Chandrasekar and
Peter Brockwell, Colorado State University

"Some recursive methods in time series analysis," Q. P. Duong, Bell Canada

"Time series in a microcomputer environment," John Henstridge, Numerical Algorithms
Group

"Smoothing irregular time series," Keith W. Hipel, University of Waterloo, A. I. McLeod,
The University of Western Ontario and Byron Bodo, Ministry of the Environment

"Computation of the theoretical autocovariance function of multivariate ARMA processes,"
Stefan Mittnik, SUNY at Stony Brook

FRIDAY, APRIL 22, 1988

8:00 a.m. - 10:00 a.m.
Computer-Communication Networks, Chaired by: Martin Fischer, Defense Communication
Engineering Center

"Introduction to packet switching networks," Jeffrey Mayersohn, BBN Communication
Corporation

"Electronic mail - a valuable augmentation tool for scientists," Elizabeth Feinler,
SRI International

"Networks to support science," Stephen Wolff, National Science Foundation
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8:00 a.m. - 10:00 a.m.
Supercomputing, Design of Experiments and Bayesian Analysis, Part I, Chaired by:
Jerry Sacks, University of Illinois

"Acceleration methods for Monte Carlo integration by Bayesian inference," John Geweke,
Duke University

"Software for Bayesian analysis: current status and additional needs," Prem K. Goel,
Ohio State University

"Some numerical and graphical stategies for implementing Bayesian methods,"
Adrian Smith, University of Nottingham

8:00 a.m. - 10:00 a.m.
Numerical Methods for Statistics, Chaired by: Stephen Nash, George Mason University

"Interior point methods for linear programming," Paul Boggs, National Bureau of Standards

"Block iterative methods for parallel optimization," Stephen Nash and Ariela Sofer, George
Mason University

"New methods for B-differentiable functions: theory and applications," Jong-Shi Pang,
The Johns Hopkins University

8:00 a.m. - 10:00 a.m.
Contributed Papers: Probability and Stochastic Processes, Chaired by: Yash Mittal,
National Science Foundation

"Moving window detection for 0-1 Markov trials," Joseph Glaz, University of Connecticut,
Philip C. Hormel, CIBA-GEIGY Corporation and Bruce McK. Johnson, University of
Connecticut

"Maximum queue size and hashing with lazy deletion," Claire M. Mathieu, Laboratoire
d'Informatique de I'Ecole Normale Superieure and Jcffrey S. Vitter, Brown University

"On the probability integrals of the multivariate normal," Dror Rom and Sanat Sarkar,
Temple University

"Computational aspects of harmonic signal detection," Keh-Shin Lii and Tai-Houn Tsou,
University of California, Riverside

"Maximum likelihood estimation of discrete control processes: theory and application,"
John Rust, University of Wisconsin
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8:00 a.m. - 10:00 a.m.
Contributed Papers: Statistical Methods II, Chaired by: Cliff Sutton, George Mason
University

"Computing extended maximum likelihood estimates in generalized linear models,"
Douglas B. Clarkson, IMSL, Inc. and Robert I. Jennrich, University of California, Los
Angeles

"Assessment of prediction procedures in multiple regression analysis," Victor Kipnis,
University of Southern Florida

"Estimation of the variance matrix for maximum likelihood parameters by quasi-Newton
methods," Linda Pickle, National Cancer Institute and Garth P. McCormick, George
Washington University

"Variable selecti-in in multivariate multiresponse permutation procedures," Eric P. Smith,
Virginia Tech

"The effect of small covariate-criterion correlations on analysis of covariance,"
Michael J. Rovine, A. von Eye and P. Wood, Pennsylvania State University

8:00 a.m. - 10:00 a.m.
Contributed Papers: Nonparametric and Robust Techniques, Chaired by: Paul Speckman,
University of Missouri

"Robustness of weighted estimators of location: a small sample survey," Greg Campbell
and Richard I. Shrager, NIH

"A comparison of Spearman's footrule and rank correlation coefficient with exact tables and
approximations," LeRoy A. Franklin, Indiana State University

"Approximations of the Wilcoxon test in small samples with lots of ties,"
Arthur R. Silverberg, Food and Drug Administration

-Simulated power comparisons of MRPP rank tests and some standard score tests,"
Derrick S. Tracy and Khushnood A. Khan, University of Windsor

10:15 a.m. - 12:15 p.m.
Special Invited Lecture II, Chaired by: Mervin Muller, Ohio State University

"Some modern quality improvement techniques and their computing implications,"
George E. P. Box, University of Wisconsin

Special invited discussion, Gerald J. Ilahn, GE CRD and Gregory B. Iludak, Scientific
Computing Associates
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10:15 a.m. - 12:15 p.m.
Supercomputing, Design of Experiments and Bayesian Analysis, Part II, Chaired by:
Prem K. Goel, Ohio State Univers;ty

"Supercomputer-aided design," Jerry Sacks, University of Illinois

"A Bayesian approach to the design and analysis of computer experiments," Toby Mitchell,
Oak Ridge National Lab

10:15 a.m. - 12:15 p.m.
Neural Networks, Chaired by: Muhammed Habib, University of North Carolina

"Statistical learning networks: a unifying view," Andrew R. Barron, University of Illinois
and Roger L. Barron, Barron Associates, Inc.

"Stochastic models of neuronal behavior," Gopinath Kallianpur, University of North
Carolina

"Inference for stochastic models for neural networks," Muhammed Habib, University of
North Carolina and A. Thavaneswaran, Temple University

10:15 a.m. - 12:15 p.m.
Contributed Papers: Applications II, Chaired by: Brian Woodruff, Air Force Office of
Scientific Research

"Space Balls! or estimating diameter distributions of polystyrene microspheres,"
Susannah Schiller and Charles Hagwood, National Bureau of Standards

"Comparing sample reuse methods at FHA - an empirical approach," Thomas N. Herzog,
U. S. Department of Housing and Urban Development

"Maximum entropy and its application to linguistic diversity," R. K. Jain, Memorial
University of Newfoundland

"Encoding and processing of Chinese language - a statistical structural approach,"

Chaiho C. Wang, George Washington University

"The elimination of quantization bias using dither," Martin J. Garbo and
Douglas M. Dreher, Hughes Aircraft Company

10:15 a.m. - 12:15 p.m.
Contributed Papers: Image Processing II, Chaired by: Refik Soyer, George Washington
University

"Maximum entropy and the nearly black image," lain Johnstone, Stanford University and
David Donoho, University of California, Berkeley

"A probabilistic approach to range image description," Arun Sood, George Mason University
and E. AI-Hujazi, Wayne State University
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"An empirical Bayes decision rule of two-class pattern recognition for one-dimensional
parametric distributions," Tze Fen Li, Rutgers University

"Statistical modeling of a priori information for image processing problems." Z. Liang. Duke
University Medical Center

"Advanced statistical computations improve image processing applications, Bobby Saffari,
Generex Corporation

10:15 a.m. - 12:15 p.m.
Contributed Papers: Simulation I, Chaired by: Bill DuMouchel, BBN

"On comparz ive accuracy of multivariate nonnormal random number generators,"
Lynne K. Edwards, University of Minnesota

"Bayesian analysis using Monte Carlo integration: an effective methodology for handling
some difficult problems in statistical analysis," Leland Stewart, Lockheed Research
Laboratory

"A squeeze method for generating exponential power variates," Dean M. Young, Baylor
University

"Mixture experiments and fractional factorials used to tailor large-scale computer
simulation," T.K. Gardenier, TKG Consultants, Ltd.

"Simulating stationary Gaussian ARMA time series," Terry J. Woodfield, SAS Institute,
Inc.

2:00 p.m. - 4:00 p.m.
Tales of the Unexpected: Successful Interdisciplinary Research, Chaired by: Sallie McNulty,
Kansas State University

"Some statistical problems in meteorology," Grace Wahba, University of Wisconsin

"Modeling parallelism, an interdisciplinary approach," Elizabeth Unger, Kansas State
University

"Mice, rain forests and finches: experiences collaborating with biologists," Douglas Nychka,
North Carolina State University

Discussion: Jerome Sacks, University of Illinois
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2:00 p.m. - 4:00 p.m.
Density Estimation and Smoothing, Chaired by: David Scott, Rice University

"XploRe: computing environment for exploratory regression and density estimation
methods," Wolfgang Hirdle, University of Bonn

"Curve estimation with applications to mapping and risk decomposition," Michael Tarter,
University of California, Berkeley

"Interactive multivariate density estimation in the S package," David Scott, Rice
University

2:00 p.m. - 4:00 p.m.
Object Oriented Programming, Chaired by: Werner Stuetzle, University of Washington

"Object oriented programming: a tutorial," Wayne Oldford, University of Waterloo

"An object oriented toolkit for plotting and interface construction," Robert Young,
Schlumburger, Palo Alto Research Center

"An outline of Arizona," John MacDonald, University of Washington

2:00 p.m. - 4:00 p.m.
Contributed Papers: Numerical Methods, Chaired by: Ariela Sofer, George Mason
University

"A theorgy of quadrature in applied probability: a fast algorithmic approach," Allen Don,
Long Island University

"Higher order functions in numerical programming," David Gladstein, ICAD

"A numerical comparison of EM and quasi-Newton type algorithms for finding MLE's for a
mixture of normal distributions," Richard J. Hathaway, John W. Davenport and Margaret
Anne Pierce, Georgia Southern College

"Numerical algorithms for exact calculations of early stopping probabilities in one-sample
clinical trials with censored exponential responses," Brenda MacGibbon, Concordia
University, Susan Groshen, University of Southern California and Jean-Guy Levreault,
University of Montreal

"An application of quasi-Newton methods in parametric empirical Bayes calculations,"
David Scott, Concordia University
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2:00 p.m. - 4:00 p.m.
Contributed Papers: Bayesian Methods, Chaired by: William F. Eddy, Carnegie-Mellon
University

"Approaches for empirical Bayes confidence intervals with application to exponential scale
parameters," Alan E. Gelfand and Bradley P. Carlin, University of Connecticut

"A data analysis and Bayesian framework for errors-in-variables," John H. Herbert,
Department of Energy

"Bayesian diagnostics for almost any model," Robert E. Weiss, University of Minnesota

"An iterative Bayes method for classifying multivariate observations," Duane E. Wolting,
Acrojet Tech Systems Company

"A Bayesian model of information conbination from noisy sensors," G. Anandalingam,
University of Pennsylvania

2:00 p.m. - 4:00 p.m.

Contributed Papers: Expert Systems in Statistics: Chaired by Khalid Abouri, George
Washington University

"Inside a statistical expert system: implementation of the ESTES expert system,"
Paula Hietala, University of Tampere, Finland

"Knowledge-based project management: work effort estimation," Vijay Kanabar,
University of Winnipeg

"Combining knowledge acquisition and classical statistical techniques in the development of
a veterinary medical expert system," Mary McLeish, University of Guelph

"The effect of measurement error in a machine learning system," David L. Rumpf and
Mieczyslaw M. Kokar, Northeastern University

"An expert system for prescribing statistical tests of non-parametric and simple parametric
designs," Gary Tubb, University of South Florida
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8:30 a..m. - 10:30 a.m.
Computational Aspects of Simulated Annealing, Chaired by: Mark E. Johnson, Los Alamos
National Lab

"Computational experience with simulated annealing," Daniel G. Brooks and
William A. Verdini, Arizona State University

"Simulated annealing in optimal design construction," Ruth K. Meyer, St. Cloud State
University and Christopher J. Nachtsheim, University of Minnesota

"A simulated annealing approach to mapping DNA," Larry Goldstein and
Michael J. Waterman, University of Southern California

8:30 a.m. - 10:30 am.
Dynamical High Interaction Graphics, Chaired by: Paul Tukey, Bellcore

"Determining properties of minimal spanning trees by local sampling," Allen McIntosh,
Bellcore and William Eddy, Carnegie-Mellon University

"Data animation," Rick Becker, AT&T Bell Labs and Paul Tukey, Bellcore

"Dimensionality constraints on projection and section views of higher dimensional loci,"
George Furnas, Bellcore

8:30a.m. - 10:30 a.m
Contributed Papers: Statistical Methods II1, Chaired by: Thomas Mazzuchi,
George Washington University

"Simultaneous confidence intervals in the general linear model," Jason C. Hsu,
Ohio State University

"Empirical likelihood ratio confidence regions," Art Owen, Stanford University

"An approximate confidence interval for the optimal number of mammography x-ray units
in the Dallas-Fort Worth metropolitan area," Roger W. Peck, University of Rhode Island

"Optimizing linear functions of random variables having a joint multinomial or multivariate
normal distribution," Josephina P. de los Reyes, University of Akron

"On covariances of marginally adjusted data," James S. Weber, Roosevelt University

8:30 a.m. - 10:30 a.m.
Contributed Papers: Simulation II, Chaired by : Robert Jernigan, American University

"SIMDAT and SIMEST: differences and convergences," James R. Thompson, Rice
University

"Simulation and stochastic modeling for the spatial allocation of multi-categorical
resources," Richard S. Segall, University of Lowell
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"Robustness study of some random variate generators," Lih-Yuan Deng, Memphis State
University

"Testing multiprocessing random number generators," Mark J. Durst, Lawrence Livermore
National Laboratory

"An approach for generations of two variable sets with a specified correlation and first and
second sample moments," Mark Eakin and Henry D. Crockett, University of Texas at
Arlington

8:30 a.m. - 10:30 a.m.

Contributed Papers: Biostatistics Applications, Chaired by: Nancy Flournoy, National
Science Foundation

"An algorithm to identify changes in hormone patterns," Morton B. Brown, Fred J. Karsch
and Benoit Malpaux, University of Michigan

"Applying microcomputer techniques to multiple cause of death data: from magnetic tape
to artificial intelligence," Giles Crane, New Jersey State Department of Health

"Spline estimation of death density using census and vital statistics data," John J. Hsieh,
University of Toronto

"Optimum experimental design for sequential clinical trials," Richard Simon, National
Cancer Institute

"Bayes estimation of cerebral metabolic rate of glucose in stroke patients," P. David Wilson,
University of South Florida, S. C. Huang and R. A. Hawkins, UCLA School of Medicine

8:30 a.m. - 10:30 a.m.

Contributed Papers: Discrete Mathematical Methods, Chaired by: Donald Gantz, George
Mason University

"Minimum cost path planning in the random traversability space," A. Meystel, Drexel
University

"Algorithms to reconstruct a convex set from sample points," Marc Moore, Ecole
Polytechnique Montreal and McGill University, Y. Lemay, Bell Canada, and
S. Archambault, Ecole Polytechnique Montreal

"On the geometric probability of discrete lines and circular arcs approximating arbitrary
object boundaries," Chang Y. Choo, Worchester Polytechnic Institute

"Application of orthogonalization procedures to fitting tree-structured models,"
Cynthia 0. Siu, The Johns Hopkins University

"Evaluation of functions over lattices," Michael Conlon, University of Florida
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Robert Teitel, Teitel Data Services

"Information systems and statistics," Nancy Flournoy, National Science Foundation
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Computer Intensive Statistical Inference

Bradley Efron
Department of Statistics

Stanford University

Abstract: We discuss three recent data * Of these 126 exceeded Difference = 30.6, for an
analyses which illustrate making statistical attained significance level (asl) = .126.
inferences (finding significance levels, confidence
intervals and standard errors) with the critical
assistance of the computer. The first example
concerns a permutation test for a linear model 1000 p~r .. eata

situation with several covariates. We provide a XW

computer-based compromise between complete
randomization and optimum design, partially
answering the question "how much randomization
is enough?" A problem in particle physics provides I
the second example. We use the bootstrap to find "
a good estimator for an interesting decay -

probability and then to obtain a believable H 1
confidence interval. The third problem involves a ,1
long-running cancer trial in which the z-value in
favor of the more rigorous treatment wandered
extensively during the course of the experiment. A
dubious theory, which suggests that the wandering
is just due to random noise, is rendered more ______

believable by a bootstrap analysis. All three . 0
examples illustrate the tendancy for computer-
based inference to raise new points in statistical Diff

theory. [ Editors note: Professor Efron provided The 14 Scoliosis Patients
this abstract together with the following examples
which were his handout to summarize his Keynote Usual Linear Model
Address.]

y= T3 + X Cr +
14xl 14xl 14x6 6xl 14xl

Mouse Data: Ordinary Permutation Test

where c is distributed as n(0, oi2 l). Usual ANOVA
• Two groups of mice, "A=Treatment miceice) test for Ho: /3=0 rejects 110 for large values of
and "B"=Control (9 mice).1,

• For each mouse, measured survival time in days Y p

after surgery where T and y are projections orthogonal to L(X)

A: 94 197 16 38 99 141 23 Mean= 86.9 (equivalent to t-test for 3 = 0).

B: 52 104 146 10 50 31 40 27 46 Mean=56.2
Difference=30.6 Data was actually generated from

* 1000 random divisions of the 16 numbers into y = age + .667xT +
groups of 7 and 9 gave 1000 corresponding values
of Difference = Mean A - Mean B. {In other where c =-0.16 0.31 2.22 -1.49 -0.66 3.71 2.49
words we permute labels "A" and "B."} -0.87 -1.37 2.57 -3.47 0.09 -5.23 1.95.
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The 14 Scoliosis Patients

PATIDEr y T age ht Vt sex health constant

....... .............. . .................... .............................

1 1.1 14.64 1 14.33 17S.25 54.35 1 2 1
2.3 15.65 1 14.67 169 45 53.67 2 0 1

3.] 19.47 1 16.58 179.35 59.25 1 1 1

C 4.1 11.59 -1 13.75 169.85 50.95 1 2 1

( 5.] 12.25 -1 13.58 154.75 34.28 1 2 1

[ 6.1 18.55 1 14.17 173.05 46.45 1 1 1
7.] 20.33 1 17.17 177.35 54.25 1 2 1

0.1 13.86 -1 14.42 173.65 59.57 1 0 1

[ 9.1 10.54 -1 12.5 16S.06 39.27 2 0 1

(10.] 17.S7 -1 1S.67 192.25 64.25 2 1 1

(11.] 16.03 -1 20.17 183.75 62.7S 2 2 1

(12.1 18.7S -1 19.33 107.95 56.S1 3 1 1

[13.] 9.19 1 13.75 169.05 42.73 1 2 1

C14.] 17.37 1 14.7S 177. 1S 54.3S 2 2 1

..........................................................................

DATA MATRIX

* Gave S - 0.557. Reject H?

* Usual t-test gave asl = P{ t 7 >.77 = .060.

* Compare S with values of S obtained by Cos 6% / I
permuting T to T* (i.e., permuting -Is and Is).

* Choose 400 T* vectors randomly from (14) =

3432 posibilities.

* Would like T to be uniformly distributed in .,

IYz(x).

*For v1, V2, . v8 an orthonormal basis for

looked at projections of T vectors along each vi;

counted # projections in deciles of "perfectly
uniform" distribution.

counts for 400 Tvecs actuallv used

dacle v 2 v 3 v4 vs v6 v v7  V ' V2 v3 v4 v v6 v7 vI

4, +4

1 33 33 43 31 42 51 45 43 47 40 32 44 41 34 49 33

2 37 39 51 66 40 36 33 39 45 36 39 61 40 49 35 32

3 31 45 33 57 40 40 43 46 43 52 45 57 52 44 37 35

4 30 49 37 29 46 46 36 43 27 36 49 31 41 18 32 44

5 39 45 34 12 40 25 46 45 37 37 37 15 34 36 41 43

6 45 36 39 11 49 33 36 30 44 31 40 11 36 43 32 53

7 47 27 45 23 43 39 4S 42 34 42 35 31 36 50 45 32

3 42 38 44 67 34 43 37 36 37 45 51 49 35 35 46 49

9 34 40 36 67 31 46 34 38 44 43 34 56 43 33 38 32

10 54 43 33 32 35 41 45 38 42 3$ 30 45 40 31 43 42

t -
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*Projection along V4 very non-uniform, so choose "to 40* porn ValUe.

another 400 T* vectors.2

* Not much better, but these are the ones I
decided to use. *

Eac T*givs * =I* / I T J yI)wt

fixed as shown. Of the 400 S* values, 25.5
exceeded S = 0.557 giving asl =25.5/400 =.064.

*Ideal Tvector would have r(T)=1T 2  14,
that is, TIL(X)-

*Var{I T) er/r(T) in usual model. L
" If T chosen randomly from 400, mean {r(T)} =-1.0 -0.5 0.0 0.$ 1.0

8.43.V

400 perautation values Maybe top 40 T* vectors all point in the same

direction! No, their direction counts are reasonably

uniform in L(X), except near V4 . Here the cosines

I of angle (y', v1 ):

1 2 3 4 5 6 7 8
.31 .19 .01 -.02 .30 .26 -.56 .63

C. 11 C. 21 (.31 (.41 (.51 (.61 (.] (.4

-1. 4. 4o as5 0 2 3

3. 3 3 12 3 4 4

~gj S S 4 0 4 $ 7 0
(10:1 7 4 5 0 4 1 3 S

*I chose T randomly from "top 40," i.e. those 40 The Tau Data
T vectors having greatest T(T) values.
Mean {T(T)ITop 401 = 12.53. *Occurrence rates of five different tau decay

ActullygotT3 7 2 wih 1 28events estimated, BI, B2, B3, B4, B5. (Also the
Actullygot 372 wibr37=1228."estimated" SD for each.

*1.5 of the 40 S* values for the "top 40" reference *Should have D = B1-(B2+B3+B4+B5) = 0.
set exceeded S=0.557, asl = .038.

permutation asl, all 400 = .064 {=25/4001 I at 82 o 69)

permutation as], top 40 = .038 1=1.5/40} *Wanted: a central 98% confidence interval for D.
NOTE: Binomial SD for asI is .041

anova asl = .060 -1rob [ t_ > 1.77 1 }*Normal theory: D E (15.41, 21.09).

5



All T events * Tried different trimmed means: 0, .1, .2, .25, .3,
.5.

.t * For each trim, evalaated bootstrap SD estimate.

A
* ".3" gives lowest SD estimate for D, but ".25"
easier to explain.

4 ) * Choose ".25" for remainder of analysis.

Bootstrap SD estimates based on 200 bootstrap

A A A

replications for each BI, B2 ... , B5.

11 ESTZN WS (13 LAOS)

2. (-[ z 31 €. 4) [. s] E 61 [, 73 E, -3 01C 91 €.0o
ES? T 4 68o 5.2 6s.2 s.1 67.6 a 4.7 86.7 6.9 ".I
sD 2 2.2 1.7 2.9 3.1 4.1 1.9 0.7 0.4 1.0

(,11] (.12] (.13]
M5? 67.9 67.2 64.7

SD 1.3 0.9 1.0

52 ZSTDU2I S 6 LAS)

(.11 (.2] C3] .4] (.5] (.8
En5 14 30.5 22.1 22.3 22.3 22.6
9D 9 4.1 2.5 1.S 2.1 1.s

53 ESTDVB1S (7 LAW)

.11 E-23 [.31 E.41 C.s [.8 C-1 .71
gSn 9.0 6.0 11.7 9.9 11.6 10.7 10.0
SD 3.8 3.5 1.8 2.1 1.3 0.9 1.9

54 STDATKS (14 LAM)
(.I .33 C. 3] [. 4) C. 51 [. 63 [ 71 C. 81 [ 91 (.101

EST 18.1 23.4 16.0 16.2 19 17.6 16.3 20.4 13.0 12.2
SD 3.0 S.5 1.3 3.1 1 1.3 3.1 3.3 3-S 0.9

(. 11) (.121 (.131 (.141
157 17.4 17.0 16.4 19.1
SD 0.9 1.1 1.6 1.4

AS WZDWO (30 LAW)
E. 13 G. 31 (. 31 (. 41 C. s1 C. 61 (. 71 C. 4) C. 91 (.101

EST 16.3 17.5 22 22.4 15 21 22 16.2 35 17.8
SD 3.0 4.0 10 s.5 3 6 7 3.1 14 2.7

(.11) (.12] (.131 (.14] (.IS] (.16] (.17] (.18] (.19] (.201
WT? 17.1 17.6 12.9 19.4 18.0 17.7 17.4 18.6 37.7 16.3
SD 1.3 3.3 1.8 3.3 1.2 0.9 1.0 1.1 1.4 1.2

POINT u, sTIK , O Il.l2.53.14.1AS AI D-B1-(l2*1J3.4*1S)

0 51 33 33 34 as
wi.ghted man: 18.2s 66.72 22.31 10.76 x7. " 17.70
23SZtrlmd mean: 16.10 e. 32.12 10.23 16.3 1.16

6



t2~ A A B4~ BS*
0 1.39 0,3S 0 43 0 *A 0.5" 0 .941 1 16 0 41 0 41 0534 0.54 0469a 1~ 04 60~ 40 06 0.37 05S4

as 1 04 0 43 0 39 0).64 0.3,S 0 543 1 01 0 4A 030 0 f1 0.34 0 49S 1 11 06" 0 3 0 73 041 0 3

MS11 big =al

trimmned

r-Observted data ~ me an A A AI AA
id* Then SD(D) = SD(B1 2  +SD(B5)2 2

so-~ (B1 1 9B1 2, B1 ,813)- B1 
A A

iid *A * Repeat *Here are histograms of B1,.., B5* and also of
F (B1 1 ,B1 2 , .,811 3 ) - B1 200 A* A A *l+ ... +B) 50Aosrp ah

Lbootstrap data] 25% imsA
trimmed *Percentiles of D* were 14.20 (.01) and 19.34

mean (.99).

*Approximate confidence intervals for D:

A A.01 .99
D iBC 14.29 19.53

BC a 14.25 19.49
Boot-T 14.73 18.99

Boot-T 14.22 19.20
(smooth)

II Noma 1.41 21.09

Bootstrap T
A
D-D, r A

B2* 3**Let T = A wher is tbe jackknife estimate

of SD(D).

* Use bootstrap to estimate T~0 ~ T~9 ~
A A

* 2000 bootstraps of T*=~ AOgveetiae

01'r~~~i ~~prcentilesA gvesiad
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booctT for taudate

T. 2.63 and T .99  273 with
A A A A

[D-x2.73, D+ox2.631 [14.73, 18.991
"Boot-T"

, Smoothed bootstrap: Draw from
A (dr)A(0=

F,=FION(0I, etc. Gave T 0. ) -2.97 and
A ,(.99)_ = . 1 8T 3.31so

[D- x3.31, D+ox2.97] = [14.22, 19.20]

"Boot-T smooth"
Reference: Efron, B. and Tibshirani, R. (1986).
"Bootstrap methods for standard errors, confidence
intervals and other measures of statistical - - --- --4 -1 0 •

accuracy," Statistical Science, 1, 54-77.

Cancer Treatment Data

NCO7hl1 SEPMAATE AM Ma=

0600600400groWj A *********QG SsO s00S~.. 000000

Y 4 ane td y k It Id

1 7 1 0.9SM 1131.166 24 37 1 0.976 160.1 W 54
2 34 1 0.961 1795.3W0 4A 04 1 0.956 0*S 733 43 1 0.941 20%4.7S4 4 92 1 0.933 1745.942
4 63 1 0.922 61.252 14 94 1 0.912 979.004 72
S 64 1 0.902 1210.064 7 ISO 1 0.01 1if.752 as
* 74 0 0.902 1117.750 as I1a 1 0.067 005.314 41
7 63 1 0.662 1529.46 34 119 1 0.444 2314.252 96
a S4 1 0.662 849.614 is 137 1 0.822 631.814 71
9 91 1 0.642 472.364 6 130 1 0.800 439.126 so
10 106 1 0.022 9172.56 1 133 1 0.776 164 6 67
ffIl T 1 0.802 19.58M 11 140 1 0.75 7M 12"0 642
12 12 1 0.762 1612.01: 42 146 1 0.733 1333.016 70
13 133 1 0.762 1"83. 06 39 155 1 0.711 1244.940 77
14 133 1 0.742 SM0.252 17 159 1 0. 69 1034.441 76
is 139 1 0.722 1431.5S6 34 169 0 0.09" 472.564 0
14 140 1 0.702 690.630 10 173 1 0.644 1370.692 79
17 140 1 0."1 908.56 30 179 1 0.443 "91. %2 52
1t 146 1 0."41 714.066 i1 194 1 0.620 610.376 70
1t 149 1 0.641 139.692 35 195 1 0.597 2314.252 95
21 157 1 M2 t. ?4-- 2091 41 0.7 1O1.R 911 .5 

1 64522 100 1 0.361 349.610 2 20i 1 0.523 4.7%4 63
23 too 1 0.541 797.376 13 319 1 0.,0 730.0
24 145 1 0.541 1719.304 41 339 1 0.46 16477.04
25 173 1 0.521 2104.192 44 432 1 0.459 W6.442 74
24 176 1 0.501 1694.04 40 449 1 0.434 1301.492 f1
27 16S 0 0.501 1392.692 32 1i9 1 0.413 3105.192 92
0 18 1 0.480 692.490 1o 526 0 0.413 49.1264 57

29 125 1 0.459 2150.630 50 547 0 0.413 2153.630 94
1 41 1 0.43 S940 613 0 .43

i, 240 1 5.41 714.W6 it 03 1 a0. Q M 0

32 273 1 @.M 902.376 14 725 1 0.356 17.4660 69
33 27 1 0.376 321.380 4 79 0 0.354 19.002 0
34 279 0 0.376 2340.128 51 617 1 0.320 410.6$ 5O
35 397 1 0.354 149. 130 33 1092 0 0.328576 6)
3, 319 0 0.354 102.459 3 1245 0 0.320 1357.234 s
37 405 1 0.330 61. 90 19 1331 0 0.326 138.692 62
36 417 1 0.307 2201.300 49 1557 1 0.37 105.316 42
39 430 1 0.263 1I1t.430 37 144 0 0.287 1104.316 75
40 440 1 0.259 349.618 M4 0 S3
4T 32 0 U. ST 11537M3 47 1776 T~20 4766 5
42 523 1 0.33 1041.40 21 197 0 0.230 104.938 9
43 W3 1 0.200 1460.000 36 2033 0 0.230 621.754 6
44 53 1 0.162 56.440 a 2144 0 0.230 3M0.628 S
4S 1101 1 0.15, 1037.6 23 2297 0 0.0 432.12# 54
4 111& 0 0.56 1259.90 26
47 1144 1 0.125 1330.6 30 ydaye 0..rved
44 224 0 .125 104.680 22 a641 0o or not
49 349 0 0.12S 121.376 31 ,,pan-41m
W412 0 0.15 1141.110 a203 t- date (fr 1/1/76

SSM46 1 0. 3.0 30 26ny Ljy Mor a IgInal oats
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* Randomized clinical -trial for head and neck * "r" = proportion of total experience (E y for all
cancer. patients at that date compared to Ej y on June 30,

* Dataas of une 3081985
* Daa asof une 0, 185.* Question: Was treatment B relatively more

* 51 patients in "A," radiation. effective early in the experiment?

* 46 patients in "B," radiation plus chemotherapy. Some dubious theory: Let "Zr" be the z-value

* y = time to relapse (days). when the proportion r of the total data is
available (so z, = final z-value). Then

* d = 1if relapse cbesrved(aE{r/zi

* kmn = Kaplan-Meier survival curve. ()z Z (r f,,1

* Log-rank (Mantel-Haenszel) test for equality of
survival was z = 2.29 for an attained level of (c) Zr I zi A- N(.41r Ejz1 }, 1 - r)

significance 1--t(2.29) = .011. (d) zrland zr2 are approximately bivariate normal

with corr = r

K~aplan-Meier estimated

survival curves for
rethe two treatments 200 WN bootstrap &-values, 6/30/62 r .494

30~

*m A't A., 
2

6 6 16 30 '0 so so 78 so

&-value of log-rank test at various calendarI
times. 

-Z T Z

-2 -1 0 1 2 3 4 6
*z =2.31 on 6/30/81. Experiment nearly halted. Bootstrap investigation of -- value on June 30, 198:: r .494.

z-wmaiues from IIcoGTh6l

2.0 Consider as fixed the 72 entry dates (38 for A,
/ 34 for B3) occurrifig before June 30, 1982.

1.5 For entry date ej compute ci # of days from
AS Sig ej until June 30, 1982.

1.0

0.5 /*Let Y~j, Y;, ., Y38 be i.i.d. draws from kmA,

0.0 Lthe final Kaplan-Meier curve as of June 30, 1985.

*For each Y*, let y* = min ( Y!, ci ) and d* = 1
-0.5 ~or 0 as y! = Y!or ci.

1//9 '80 181 '82 '83 '84 8

r '10% 25% 40% 60% 78% 96%
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Z3VOU4 at 1/1/81 we a-Tal at 6/30/82
*Likewise draw Yj, Y2, . 3 ,Y 4 from kmB,, the ______________

final Kaplan-Meier curve as of June 30, 1985.

*Then compute z;, the log-rank z-value for the4
bootstrap data.

* 200 z;fs A N(1.56, 1.042), r Ejz1 ) 1.61 2

* Compare with N(1.61, 1) from (b) !* *

* Did correspomnding zr s for r = .246 (January 1, a *

1981)? 
S

" Corr ( Zr1 , Zr 2 ) .727. -

" Compare with (d), corr = r .706.
z-v12 at 6/30/02

" Jagged line: zr versus r. Zr

3

" Smooth curves:

-Fr z I+c fi __r I c=.2, -1, 0,1, 2.2

" Middle curve is E {Zr I z,}. 95

" Others show 1 and 2 conditional deviation
excursions.

0
*Nothing unusual happened! Maximum excursion

-is less than 1.3 conditional standard deviations.

-Ir

0.0 0.2 0.4 0.6 0.8 1.0
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FITTING FUNCTIONS TO NOISY DATA
IN HIGH DIMENSIONS

Jerome H. Friedman*
Department of Statistics

Stanford Linear Accelerator Center

Stanford University

Abstract

Consider an arbitrary domain of interest in n-dimensional Euclidean space and an unknown
function of n arguments defined on that domain. Suppose we are given the value of the function
(perhaps perturbed with additive noise) at some set of points. The problem is to find a function
that provides a reasonable approximation to the unknown one over the domain of interest. This
paper presents a brief review of current methodology aimed at dealing with this problem, and
presents a new technique - multivariate adaptive regression splines - that has the potential to
overcome some of the limitations of previous approaches.

1.0. Introduction
Suppose a system under study can be described (over some domain D E R') by

y -- fAXI, 'X.) + f(1)

where y is a response or dependent variable of interest, x,..., x, are a set of explanatory or inde-
pendent variables, and f is a (deterministic) single valued function of its n-dimensional argument.
The quantity c is an additive random or stochastic component that (if nonzero) reflects the fact
that y depends on quantities other than x, ... x, that are also varying. We are given a set of
values {yj, i, ",Xni} , (x1 i,'-',xni) E D, (training sample) and the purpose of the exercise
is to obtain a function (xi,. .. ,Xn) that provides a reasonable approximation to f(xl,'. .,X)

Here reasonable usually means accurate since one often wants to use f to approximate f at other
points not part of the training sample. If in addition one wants to use f to try to understand the
properties of f (and thereby the system that provided the data) then the interpretability of the
representation of f is important. It is also sometimes important that f be rapidly computable. In
addition, for some applications it is important that f be a smooth function of its argument; that
is, at least its low order derivatives exist everywhere in D.

* Research supported in part by National Security Agency Grant MDA904-88-H-2029
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In low dimensional settings (n < 2) successful developments have occurred in two general
directions: piecewise polynomials and local averaging. The basic idea of piecewise polynomials is
to approximate f by several generally low order polynomials each defined over a different subregion
of the domain D. The approximation is required to be continuous, and sometimes have continuous
low order derivatives. The tradeoff between smoothness and flexibility of the approximation f is
controlled by the number of subregions (knots) and the order of the lowest derivative allowed to be
discontinuous at region boundaries. The most popular piecewise polynomial fitting procedures are
based on splines. [See deBoor (1978) for a general review of splines and Schumacker (1976), (1984)
for reviews of some two-dimensional extensions.]

Local averaging approximations take the form

N

f(x) = K(x, xi) y, (2)
ti1

where K(x,x') (called the kernel function) usually has its maximum value at x' = x with its
absolute value decreasing as Ix - x'I increases. Thus, f(x) is taken to be a weighted average of the
yi where the weights are larger for those observations that are close or local to x. For n > 1 the
kernel is usually taken to be a function of the Euclidean distance between the points

K(xX') = K [ I 1 (3)

Local averaging procedures have received considerable attention in the statistical literature begin-
ning with their introduction by Parzen (1962). Stone (1977) has shown that this approach has de-
sirable asymptotic properties. They have als9) seen interest from the mathematical approximation
literature [Shepard (1964), Bozzini and Lenarduzzi (1985)]. Roughness penalty methods [smooth-
ing (n = 1) and thin plate (n = 2) splines] are closely related to kernel methods based on Euclidean
distance [see Silverman (1985) and Schumaker (1976)].

The direct extension of piecewise polynomials (splines) or local averaging methods to higher
dimensions (n > 2) is straightforward in principle but difficult in practice. These difficulties are
related to the so-called "curse-of-dimensionality", a phrase coined by Bellman (1961) to express
the fact that exponentially increasing numbers of points are needed to densely populate Euclidean
spaces of increasing dimension. In the case of spline approximations, extension to higher dimen-
sions is accomplished through tensor products of univariate spline functions. These functions are
associated with a grid of points defined by the outer product of knot positions on each independent
variable. For a given number of knots K on each variable, the size of the grid, and thus the number
of approximating basis functions, grows as K n . For example, in six dimensions a (tensor product)
cubic spline with only one interior knot in each variable has 15,625 coefficients to be estimated.
That number in ten dimensions is approximately 107. Even though only one interior knot per vari-
able might be considered a very coarse grid, it still requires a very large number of data points to
estimate the corresponding spline approximation. Finer grids require many more points.

Local averaging methods suffer a similar fate as the dimension of the function argument space
increases. For example, let D be the unit hypercube in R n and consider a uniform kernel with
hypercubical support and bandwidth (edge length) covering 10 percent of the range of each co-
ordinate. Then, if the data are roughly uniformly distributed in R ' , the kernel will (on average)
contain only (0.1) n of the sample, thereby nearly always being empty for moderate to large n. If,
on the other hand, one adjusts the size of the neighborhood (bandwidth) to contain 10 percent of
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the sample, it will cover (on average) (0.1)1/ ' x 100 percent of the range of each variable, resulting
in a very crude approximation.

This problem of the inherent sparsity of practical sampling in high dimensions basically limits
the straightforward application of both piecewise polynomials and local averaging methods in these
settings. It does not, however, limit theoretical investigation. It is straightforward to imagine
arbitrarily densely sampling of high dimensional spaces. Asymptotic theoretical calculations can
then be done. [See Stone (1977) for pioneering work in this area.] The (practical) difficulty lies
only in obtaining the corresponding large samples required for accurate approximations. It should
be noted in addition, that local averaging approximations (and to a lesser extent tensor product
splines) are slow to compute and difficult to interpret.

The curse-of-dimensionality is fundamental and cannot be directly overcome. If the true un-
derlying function f(x, - - -,x,) (1) exhibits strong variation of no special structure on all of the
variables in every part of the domain D, then accurate approximation with feasible sample sizes
is not possible. Fortunately, very few functions of interest exhibit behavior quite this dramatic.
Generally there is some (sometimes known, more often unknown) special structure associated with
the function that can be exploited by a sufficiently clever algorithm to reduce the complexity and
thereby achieve more accurate approximation.

Function approximation in high dimensional settings has been pursued mainly in statistics.
The principal approach taken there has been to fit an especially simple parametric form to the
training sample. The most common parameterization is the linear function

n
(X,.,Xn) = o + ixi. (4)

This is not likely to produce a very accurate approximation to very many functions in R', but
it has the virtue of requiring relatively few data points, it is easy to interpret, and it is rapidly
computable. Also, if the stochastic component c (1) is large compared to f, then the variability of
the estimate dominates, and the systematic error associated with this simple approximation is not
the most serious problem.

Recently, the linear model has been generalized nonparametrically to the so-called additive
model

n
(XI,' ",Xn) = fi(xi) (5)

i=1

[Friedman and Stuetzle (1981), Breiman and Friedman (1985), Hastie and Tibshirani (1986), Fried-
man and Silverman (1987)]. Hlere the {fi(xi)}' are each (different) smooth but otherwise arbitrary
functions of a single variable. Although additive models are still not able to accurately approxi-
mate very general functions in R', they do constitute a much richer class than the simple linear
approximation (4). They share the high interpretability of the linear model (one can view the uni-
variate functions fi) and they are not overly difficult to compute.

Linear and additive approximations lack generality in that they have limited ability to adapt
to a wide variety of multivariate functions f. Also, as the sample size increases there is a limit
to the accuracy of the approximation (unless the true underlying function happens to be exactly
linear or additive over D).

Strategies that attempt to approximate general functions in high dimensionality are based on
adaptive computation. An adaptive computation is one that dynamically adjusts its strategy to
take into account the behavior of the particular problem to be solved, e.g. the behavior of the
function to be approximated. Adaptive algoritlms have been in long use in numerical quadrature
[see Lyness (1970); Friedman and Wright (1987.] In statistics, adaptive algorithms for function

'5



approximation have been developed based on two paradigms, recursive partitioning [Morgan and
Sonquist (1963), Breiman, Friedman, Olshen, and Stone (1984)], and projection pursuit [Friedman
and Stuetzle (1981), Friedman, Grosse, and Stuetzle (1983), Friedman, (1985)].

Projection pursuit uses an approximation of the form

m=l

that is, additive functions of linear combinations of the variables. The univariate functions, fin,

are required to be smooth but are otherwise arbitrary. These functions, and the corresponding co-
efficients of the linear combinations appearing in their arguments, are jointly optimized to produce
a good fit to the data based on some distance (between functions) criterion - usually squared-error
loss. It can be shown [see Diaconis and Shahshahani (1984)] that any smooth function of n variables
can be represented by (6) for large enough M. The effectiveness of the approach lies in the fact that
even for small to moderate M, many classes of functions can be closely fit by approximations of this
form[see Donoho and Johnstone (1985).] Another advantage of projection pursuit approximations
is affine equivariance. That is, the solution is invariant under any nonsingular affine transformation
(rotation and scaling) of the original explanatory variables. It is the only general method suggested
for practical use that seems to possess this property. Projection pursuit solutions have some inter-
prative value (for small M) in that one can inspect the functions fm and the corresponding linear
combination vectors. Evaluation of the resulting approximation is computationally fast. Disadvan-
tages of the projection pursuit approach are that there exist some simple functions that require
large M for good approximation [see Huber (1985)], it is difficult to separate the additive from the
interaction effects associated with the variable dependencies, interpretation is difficult for large M,
and the approximation is computationally time consuming to construct.

Recursive partitioning approximations take the form

M
i(x 1 ,' ",x,) = 1 fm(Xi," ,xn)I[(Xl,' ,xn) E Rn]. (7)

in=1

Here I(.) is 0/1 valued function that indicates the truth of its argument z nd {Rm} M are disjoint
subregions representing a partition of D. The functions fm are generally taken to be of quite simple
parametric form. The most common is a constant function

fm(x,'"- , x, ) = a n (8)

[Morgan and Sunquist (1963) and Breiman, et al. (1984)]. Linear functions (4) have also been
proposed [Breiman and Meisel (1976) and Friedman (1979)], but they have not seen much use. The
partitioning is developed in a recursive manner. At each step, M, all existing subregions {Rm}i
are optimally split into two subregions along one of the variables. The particular split that yields
the best improvement in the fit is taken to define two new regions and the parent region (that was
split) is deleted. (The starting region is the entire domain D.) The number of subregions in the
partition is thereby increased by one at each step. A backwards stepwise strategy for determining
the final number of regions is detailed in Breiman, et al. (1984).

The recursive partitioning approach has the potential to provide acceptable approximations
in high dimensionalities provided the underlying function has low "local" dimensionality. That is,
even though the function f (1) may strongly depend on all of the variables, in any local region of
the domain the dependence is strong on only a few of them. These few variables may be different
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in different regions. Another assumption inherent in the recursive partitioning strategy is that
interaction effects have marginal consequences. That is, a local intrinsic dependence on several
variables, when best approximated by an additive function, does not lead to a constant model.
This is nearly always the case.

Recursive partitioning using piecewise constant approximations (8) are fairly interpretable
owing to the fact that they are very simple and can be ,epresented by a binary tree. [See Breiman
et al. (1984)]. They are also fairly rapid to construct and especially rapid to evaluate.

Although recursive partitioning is the most adaptive of the methods for multivariate function
approximation it suffers from some fairly severe restrictions that limit its effecti.-eness. Foremost
among these is that the approximating function is discontinuous at the subregion boundaries. This
is more than a cosmetic problem. It severely limits the accuracy of the approximation, especially
when the true underlying function is continuous. Even imposing continuity only of the function
(as opposed to derivatives of low order) is usually enough to dramatically increaseapproximation
accur,cy.

Another problem with recursive partitioning is that certain types of simple functions are diffi-
cult to approximate. These include linear functions with more than a few nonzero coefficients [with
the piecewise constant approximation (8)] and additive functions (5) in more than a few variables
(piecewise constant or piecewise linear approximation). In addition, one cannot discern from the
representation of the model whether the approximating function is close to a simple one, such as
linear or additive, or whether it involves complex interactions among the variables.

2.0. Multivariate Adaptive Regression Splines.
This section describes a new method of adaptive computation for approximating functions in

high dimensionalities. Although it is an extension of the additive modeling (5) procedure devel-
oped by Friedman and Silverman (1987), it appears closest in spirit to the adaptive nature of the
recursive patitioning approach. Unlike recursive partitioning, however, it produces strictly con-
tinuous approximations (with continuous derivatives if desired), it easily approximates linear and
additive functions, and it can be represented in a form that permits separate identification of the
additive and (multiple) interaction effects associated with the variables that enter into the iaodel.

The approximation takes the form of an expansion in multivariate spline basis functions,

M
i(xI,'",X,,) E amBmn(xj,' .. ) (9a)

m=0

with
Bo(xi,.. ,x,,) = 1, (9b)

K_

Bm(xi, ,x.) = 1J b(Xv(km) Itkm), M > 1. (9c)
k=1

'Ihe {am }' are the coefficients of the expansion. Each multivariate spline basis function Bin, m > 0,
is a product of univariate spline basis functions b, each of a single variable X,(km), characterized
by a knot at tkm. The subscripts v(k, in) label the explanatory variables, thereby taking values
in the range 1 < v(k, r) < n; Km takes values in the same range 1 < Km < n and determines
the number of factors (univariate spline basis functions) comprising the corresponding Bin. The
multivariate spline basis functions Bm are adaptive in that the number of factors Km, the variable
set V(m) = {v(k,m)jK - and the knot set K}- are all determined by the data.

The approximation is developed in a forward/backwards stepwise recursive manner in analogy
with the recursive partitioning approach. Given {BI}&'- ' the Mth term takes the form

B f(XI,...,Xn) = Bf(xl,. .. ,x )b(x,,t) (10)
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with 0 < f < M - 1. That is, the next term BM is taken to be the product of a univariate
spline basis function with one of the previously defined multivariate spline basis functions Bt
(0 < I < M - 1). The values for v, t, and t are chosen so as to jointly maximize the goodness-
of-fit of the resulting approximation (see Section 2.2). The defining variable x, for the new basis
function b(xvlt) is restricted to be one that does not appear in the selected B1 , so that the same
variable does not appear more than once in any Bm (0 < m < M). The resulting optimal values
v*, t*, and 1* are then used to form the new multivariate spline basis function

KM

BM = 1- b(xv(k,M)ItkM)
k=1

with KM = Ke. + 1, v(KM, M) = v, tKMM -- t*, and the rest of the factors taken from Bt..
One of the requirements for this strategy to be computationally feasible is that each univariate

basis function be defined by the location of a single knot tkm. We therefore use the truncated power
basis representation for the (univariate) splines

b(q)(XlIt) = (X _ (11)

where q is the order of the spline which controls the degree-of-continuity of the approximation.
The subscript denotes the non-negative part. (This basis is known to produce numerical problems,
especially for q > 1, so a great deal of care must be taken in the implementation.)

This forward stepwise construction of the multivariate spline basis (9) (10) is continued until
M = Mmax terms have been entered into the approximation. This process yields a sequence of
Mmax models, each with one more term than the previous one in the sequence. Each model in
the sequence has an associated badness-of-fit score (see Section 2.2). That model with the lowest
badness-of-fit score is then subjected to a backwards stepwise deletion strategy [see Friedman and
Silverman (1987), Section 2.11, to obtain the final model. The upper limit Mmax should be taken to
be large enough so that the minimizing model is not too close to the end of the sequence. Due to
the forward stepwise nature of the procedure it is possible for the badness-of-fit to locally increase
a bit as the sequence proceeds, and then start to decrease again.

If one makes the restriction Km = 1 (9c) for all m (that is, always setting t = 0 rather than
including it in the optimization) the approximation becomes a sum of functions, each of a single
variable. This is, of course, an additive model (5) and this strategy reduces to the smoothing and
additive modeling technique introduced by Friedman and Silverman (1987). The key ingredient
that advances this approach to general settings is the ability to fit (possibly complex) interactions
among the variables through the product terms that are permitted to enter the approximation (9),
if required by the fit.

Although originally motivated by the work of Friedman and Silverman (1987) this approxima-
tion strategy (9)-(11) has more in common with the recursive partitioning approach (see Section
1.0) to function approximation (7). There is a correspondence between the terms in (9) and the
regions in (7). Choosing a previous term for multiplication (10) is analogous to choosing a (pre-
vious) region to split in (7). The optimization over v and t in (10) is quite similar to finding the
optimal splitting variable and split point for partitioning a region.

The correspondence between this basic approach and recursive partitioning is most easily seen
by contrasting the piecewise constant approximation (8) of the latter with the use of q = 0 splines
(11) in the former

b(°)(xlt) = I(x - t). (12)

Both methods then produce piecewise-constant approximations in this case, and multiplying (some-
times with constraints) is strictly equivalent to splitting. The two methods, even though being most
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similar in this setting, do not however produce equivalent approximations. This is basically because
unlike recursive partitioning, the subregions induced by (9), (10), (12) are not constrained to be
disjoint. At any stage during recursive partitioning, only terminal regions are eligible for splitting,
i.e. only those regions defined by the intersections of previous splits (terminal nodes on the current
binary tree). With the MARS strategy all previously defined regions - not just terminal ones - are
eligible for splitting at any stage of the model building process. The previously defined regions are
those represented by the internal nodes of the tree and are unions of subsets of current terminal
regions.

The strategy associated with the MARS approach has several important advantages. Foremost
among them is that it allows close approximations to many of the common functions that present
difficulty to recursive partitioning (e.g. nearly linear or additive functions). Another advantage is its
interpretability through its ANOVA representation (see below). The most important advantage of
this approach, however, is that by choosing q > 0 (11) continuous approximations can be achieved.
This has been one of the most serious limitations of recursive partitioning. Choosing a value for
q > 1 causes the approximation to be continuous and to possess continuous derivatives to order
q- 1.

As with recursive partitioning, this method attempts to use to advantage the fact that inter-
action effects involving several variables will give rise to non-constant dependencies on at least one
of those variables individually. This is because in the forward part of the model building strategy,
additive terms and lower order interactions must enter before the corresponding higher order in-
teractions. These lower order terms provide information as to where to place knots to capture the
corresponding higher order ones, and they may in fact be removed (through the backwards deletion
process) after the higher order interaction terms are entered.
2.1. ANOVA Decomposition.

The representation of the approximation given by (9), (10), (11) resulting from construction
of the model

M K,,
fAxi,'"Xn) = ao + E_ a. 11 b(Xv,(k,,m) - tkn)+ (13)

m=1 k=1

does not provide much insight into the nature of the approximation. By simply rearranging the
terms, however, it is able to provide considerable insight into the predictive relationship between y
and X, XI

K=1 Km=2 (14a)

+ E fik(x,xj,xk) + .

K_=3

Here the first sum is over all terms involving only a single variable and represents the purely additive
component of the model. Each additive function fi(x1 ) can be computed by collecting together all
single variable terms involving xi,

fi(xi) = amBm(xi). (14b)

,EV(')

Here V(m) represents the variable set {v(k, m)} K m associated with the mth term. The second sum
in (14a) is over all terms involving exactly two variables and represents the pure first order (two
variable) interaction part of the model with

f ij (xi,Xj) = 3 amBm(xi,xj). (14c)

0'I)E V (rn)
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Similarly, the third sum represents second order (three variable) interactions with

fijk(Xi, Xj, Xk) = I amBm(xi, xj,xk), (14d)

(i.,.k)E V (-)

and so on. The additive terms can be viewed by plotting fi(xi) against xi as one does with additive
modeling. The two variable interaction terms fij(xi, xj) can be plotted using either contour or
perspective mesh plots. Higher order interactions (if present) are of course more difficult to view.
The corresponding (multivariate) knot locations can, however, provide some insight. We refer to
(14) as the ANOVA decomposition or representation of the MARS model because of its similarity
to decompositions provided by the analysis of variance of contingency tables.

The ANOVA representation identifies the particular variables that enter into the model,
whether they enter purely additively or are involved in interactions with other variables, the order
of the interactions, and the other variables that participate in them.
2.2. Model Selection.

As in Friedman and Silverman (1987) we use the generalized cross-validation criterion (Craven
and Wahba, 1979)

GCV(M) = 1[y N f(x,. , jI [ - C(Mi)]2 (15a)N D~yi - M(Xii,.. Xi)] /  N- 1a
GCV(M = - i=1

for model selection where M is the number of terms in (9a) and

C(M) =- (d + 1)M + 1. (15b)

Minimization of this criterion is used to select the knot variable and its location at each forward
step, the terms to delete in the backwards steps, and the size of the final model. The use of (15b)
results in a change of (d + 1) "degrees-of-freedom" for each term in the model, one for fitting
the least-squares coefficient am, and d for the optimization associated with the knot placement.
Friedman and Silverman (1987) used d = 2. This was motivated somewhat on theoretical grounds
but mostly on an empirical basis. This value is too small for generalized MARS modeling since we
are, in addition, optimizing over the term index 0 < t < M - 1 at each step as well as the knot
location. This produces increased variance that must be accounted for in the model selection. A
direct approach would be to estimate an optimal d value for the problem at hand through a sample
reuse technique such as the 632 bootstrap (Efron, 1983) or cross-validation Store (1974).

Another approach is to study the variance directly through a modified bootstrapping technique
(tIastie and Tibshirani, 1985). Each bootstrap replication consists of replacing each response value
by a standard normal deviate. By construction the true underlying function f is the constant zero,
and the mean-squared-prediction error is completely dominated by the variance

E(f - fm)' = = Var fA,

or equivalently
E(y - f) 2 = Efk, + 1. (16)

Since the GCV score (15a) is intended to be an estimate for (16) one can obtain an estimate for

C((M) through

E(ASRAI)/ I- OM)] = E& +I
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or
o (M) = N 1- _, (E 'MSR,- 1" (17).

Here the average-squared-residual, ASRM, is the numerator in (15a). The expected values in (17)
are estimated through repeated bootstrap replications.

A wide variety of simulation studies (not detailed here) using this approach indicate the fol-
lowing.
(1) C(M) is a monotonically increasing function with decreasing slope as M increases.
(2) Using the linear approximation (15b), with d = 2.5, is fairly effective, if somewhat crude.
(3) The "best" value for d depends (weakly) on M, N, and the distribution of the covariate vectors.
(4) Over a wide variety of situations, the best value of d lies in the range 2.0 < d < 3.0.
(5) The actual accuracy of the approximation, in terms of integrated squared error

ISE = J[f(x) - f(x)] 2 dF(x),

depends very little on the value chosen for d in the range 2.0 < d < 3.0.
(6) The estimated accuracy

E[ISE- GCV(M*)] 2 ,

with M* being the minimizer of (15), does show a moderate dependence on the choice of d.
The consequence of (5) and (6) is that, although how well one is doing with this approach is fairly
independent of d, how well one thinks he is doing (based on the optimizing GCV score) does
depend somewhat on the values chosen for d. Therefore, a sample reuse technique should be used
to estimate the predictive capability of the final model, if it needs to be known fairly precisely.
2.3. Degree-of-Continuity.

Another important choice is the degree of continuity to be imposed on the approximating
function, i.e. the value for q in (11). This choice affects the accuracy of the approximation, and
the speed and numerical stability of the computation. Friedman and Silverman (1987) used q = 1
in conjunction with the knot placement and model selection strategy. This produces a continuous
piecewise linear approximation with discontinuous derivatives. Advantages of this approach are
much more rapid and numerically stable computation compared to higher values of q. Also, it can
provide more accurate approximations in some situations. The main disadvantage is discontinuous
first derivatives.

Friedman and Silverman (1987) provide for derivative smoothing by replacing the basis func-
tions b(1)(xlt) (11) by closely related ones with continuous first derivatives:

0 X<tt.
C(xJt_I,t,t+)= P(x- t_)2 + r(x - t _ )3 t_ < X < t+ (18a)

X -t X >t+

with t- < t < t+. Setting
p = (2t+ + t- - 3t)/(t+ - t_) 2  (18b)

r = (2t - t+ - t)/(t+ - t_) 3

causes these basis functions to be continuous and have continuous first derivatives. This approx-
imation has discontinuous second derivatives at the side knot locations, t_ and t+. The central
knot t, is placed at the corresponding knot location of b()(xlt). The two side knots, t- and t+, are
placed at the midpoints between adjacent central knots on the same variable thereby minimizing
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the number of second derivative discontinuities. The (central) knots are placed using the b(1)(x t)
(11) basis, taking advantage of the corresponding speed and numerical stability. The approxima-
tion with continuous derivatives is accomplished through using the corresponding piecewise cubic
basis (18).

The analogue to this approach in the more general setting of MARS modeling is to perform
derivative smoothing in the ANOVA representation (14). Each distinct ANOVA function (14b),
(14c), (14d), etc. is smoothed separately. The side knots are placed at the midpoints between
the central knot locations as projected onto each variable defining the particular function. For
the additive ANOVA functions (14b) this of course reduces to the Friedman and Silverman (1987)
strategy. Replacing each b(1)(x t) (11) by its corresponding C(xlt_, t, t+) (18) in t he MARS model
(13) (14) results in a continuous approximation with everywhere continuous derivatives.
2.4. Knot Optimization.

A natural strategy would be to make each distinct observation abscissa value on each predictor
variable a potential location for knot placement. Friedman and Silverman (1987) argue that a
more effective strategy is to restrict the number of candidate knot locations to very Lth (distinct)
observation abscissa value, with L given by

L(p,N) = -log 2 [--In(1- a-)] /2.5 (19)

and 0.05 < a < 0.01. The considerations that lead to this result do not change when one considers
the more general MARS setting.
2.5. Computational Considerations.

In order for any method to be practical it must be computationally feasible. If implemented
in a straightforward manner the approximation strategy we propose would require prohibitive
computation. A full M + 1 parameter linear least squares fit for he coefficients {am}M must
be performed to evaluate the model selection criterion (15). This must be done at every potential
knot location on every variable for all M (previous) terms at each step M. The only way this can
be made to be computationally feasible is through updating formulae. That is, given the solution
fit at one potential knot location, the solution at the next one can be obtained through rapidly
computable simple updates of the previous solution. Friedman and Silverman (1987, Section 2.3)
derived updating formulae for the quantities that enter into the normal equations of the least squares
fit for the additive modeling case. Analogous updating formulae can be derived for the more
general case of MARS modeling. Use of these updating formulae reduce the computation from
being proportional to M 4pN 2/L to M 3pN/L. As a point of reference, the computation for the
three examples (Section 3) each required about two minutes on a SUN Microsystems model 3/260.

3.0. Examples.
This section provides four illustrations of MARS modeling. The data are simulated so that

the results can be compared with the known (generated) truth. The first and fourth examples are
purely contrived, whereas the middle two are taken form electrical engineering. In all examples
the smoothing parameter d (15b) was taken to be d = 2.5. (The software automatically reduces
it to da = 0.8d = 2.0 for additive modeling.) The minimum number of observations between knot
locations was determined by (19). In all examples the explanatory variables were standardized to
aid in numerical stability. (The MARS procedure is, except for numerics, invariant to the predictor
variable scales.) The response variable was also standardized so that the GCV score would be an
estimate for the fraction of unaccounted for variance (e2 = 1 - R 2 ).
3.1. Simple Function of Ten Variables.

22



For this example, N = 100 covariate vectors were uniformly generated in a n = 10 dimensional
unit hypercube. Associated with each such covariate vector is a response value generated as

Yi = 0.02e4x1j+ 3x2j + 5sin(7rx 3~j2)
+ 3X4i + 2x~i + 0O" X6i + 0 • X~i + 0 • X~i (20)

+0"x9i+0" 0 ,i+ E, 1 < i< 100,

with the -E generated from a standard normal distribution. The ratio of standard deviations of the
signal to the noise is 3.08 so that the true underlying function accounts for 91% of the variance of

y.
The underlying function (20) consists of an interaction in the first two variables, an additive

nonlinear dependence in the third, and linear dependencies in the fourth and fifth. The last five,
X6 - xlo, are pure noise variables independent of the response.

Table 1 displays the results of applying the MARS procedure to these data. Table la shows
the history of the forward stepwise knot placement. The second column gives the GCV score (15)
at each iteration M (first column). The third column shows the effective number of parameters in
the fit C(M) (15b). The fourth and fifth columns give the optimizing knot variable v* and location
t*, while the last column points to the optimizing previous term (multivariate spline basis function)
1* that multiplies the new univariate spline function. This term may in fact point to previous terms
for its definition. The value t* = 0 indicates that the previous multiplying term is B0 (9b) so that a
new purely additive term is being included in the model. The particular factors comprising the Mth
multivariate spline basis function are identified by starting with the Mth row, then preceeding to
its parent, then to its parent's parent and so on, until reaching a parent value of V = 0.

Table la shows that the first knot was placed on xj. The second knot was placed on X2,
multiplying the first term. At this point (M = 2) the model consists of an additive contribution
on x, and an interaction between x, and X2. The next three iterations include purely additive
contributions form X3, X4, and x,. The next iteration (M = 6) includes an additive term in X2.
This is multiplied by a factor involving x, on the subsequent iteration (M = 7), resulting in two
bivariate splines characberizing the interaction between x, and £2. Up to this point the GCV score
has been monotonically decreasing.

The eighth iteration places into the model a term involving an interaction between variables xg,
X2, and xj. Note, however, that the GCV score has increased slightly. As more terms are added,
the GCV score continues to increase until the present maximum number of terms Mmax = 17, is
reached.

Table lb shows the result of the backwards stepwise term deletion strategy. The first column
gives the term number, m, the second its least squares coefficient, am (9a), followed by the knot
variable, location, and parent as in Table la. A zero coefficient value, am = 0, means that the
term has been deleted. Note that in addition to the deletion of all terms beyond M = 7, the
purely additive contributions of variables x, and X2 (first and sixth terms) have also been deleted.
This leaves only the two terms (second and seventh) involving pure interactions between these two
variables.

Table ic summarizes the ANOVA decomposition of the final model. There are four ANOVA
functions. The first three are additive functions on variables X3, £4, and x5 respectively. The fourth

ANOVA function is bivariate and represents a (pure) interaction between x1 and £2. Table ic also
gives the GCV score for the fit with the corresponding piecewise cubic basis (18). It is seen to be
essentially the same as for the piecewise linear basis given in Table lb.

The second column in Table Ic gives the standard deviation of the corresponding ANOVA
function. This gives one indication of its (relative) importance to the model and is interpreted in a
manner similar to a (standardized) regression coefficient in a linear model. The third column gives
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Table la

History of the MARS forward stepwise knot placement strategy

for Example 3.1.

iter. gcv # efprms variable knot parent

1 0.8460 4.5 1. 0.5257 0.

2 0.5781 8.0 2. -0.6736 1.

3 0.3914 11.5 3. -1.626 0.

4 0.2885 15.0 4. -1.170 0.

5 0.2347 18.5 5. -1.601 0.

6 0.1911 22.0 2. -1.177 0.

7 0.1599 25.5 1. -1.164 6.

8 0.1603 29.0 9. -1.128 2.

9 0.1621 32.5 3. -0.9315 0.

10 0.1696 36.0 4. 1.015 1.
11 0.1802 39.5 3. 1.013 0.

12 0.1829 43.0 6. -0.2161 11.

13 0.1936 46.5 4. -1.675 5.

14 0.2062 50.0 4. 0.2366e-01 11.

15 0.2271 53.5 9. 1.583 3.

16 0.2519 57.0 9. -0.2349 5.

17 0.2837 60.5 2. -0.4146 5.
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Table lb
The result of the backwards stepwise term deletion strategy

for Example 3.1.
gcv = 0.1404 #efprms = 18.5

term coeff. variable knot parent

1 0. 1. 0.5257 0.
2 0.8746 2. -0.6736 1.
3 0.4525 3. -1.626 0.
4 0.3171 4. -1.170 0.
5 0.2232 5. -1.601 0.
6 0. 2. -1.177 0.

7 0.2373 1. -1.164 6.
8 0. 9. -1.128 2.
9 0. 3. -0.9315 0.

10 0. 4. 1.015 1.
11 0. 3. 1.013 0.
12 0. 6. -0.2161 11.

Table lc
ANOVA decomposition summary of the MARS model for Example 3.1

fun. std. dev. -gcv # terms # efprms variable(s)

1 0.4518 0.4109 1 3.5 3
2 0.2983 0.2520 1 3.5 4

3 0.2229 0.1974 1 3.5 5
4 0.7772 0.8867 2 7.0 1 2

piecewise cubic fit on 5 terms, gcv = 0.1457
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Figure 1a: Graphical representation of the ANOVA decomposition of the piecewise cubic

MARS model for Example 3.1.
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Figure ib: Enlargement of the fourth frame of Figure la; interaction contribution of (xI, x 2 )

to the MARS model for Example 3.1.
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Figure 1c: Graphical ANOVA decompositon of the MARS model for Example 3.1, with 200
observations.
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another indication of the importance of the corresponding ANOVA function, by providing the GCV
score for the model with all of the terms corresponding to that particular ANOVA function deleted.
This can be used to judge whether this ANOVA function is making an important contribution
to the model, or whether it just slightly improves the global GCV score. In this example all four
ANOVA functions appear to be important with the third one, involving x5 , being the weakest.

Figure la provides a pictorial representation of the ANOVA decomposition by plotting the
respective (piecewise-cubic) ANOVA functions. The first three frames plot the respective additive
functions involving x3, x4 , and x5 . The fourth frame provides a perspective mesh plot of the
bivariate ANOVA function involving x, and x2 . Figure lb is an enlargement of the fourth frame
of Figure la.

These figures show very nearly linear dependencies on x 3 , x4 , and X5 , and a strong nonlinear
interaction between x, and X 2. It is important to note that Figure lb does not represent a smooth of
the response y on variables x, and X2, but rather it shows the contribution of x, and x 2 to a smooth
of y on variables xi,.-. , x0. The accuracy of the resulting approximation is fairly remarkable
considering the high dimensionality, n = 10, and the small sample size, N = 100. Note also that
the prucedure (correctly) did not enter x6 ," . ,x 1 0 into the model.

The only shortcoming of the MARS model based on these data is that it did not capture the
nonlinearity in the additive contribution of x3 (20). Figure 1c shows the pictorial representation
of the ANOVA decomposition corresponding to Figure la when the sample size is increased to
N = 200. The model looks very similar to that for the smaller (N = 100) sample size (Figure la)
except that it now gives a better approximation to the contribution of x3.

Tables la - 1c and Figures la - lb illustrate the application of the MARS procedure to
a single data set (replication) from the particular setting under study (20). They do not give
information on the average performance of the procedure when applied to this situation. Table id
displays the results of a simulation study that addresses this issue. Each row summarizes the results
of 100 replications of the following procedure. A sample of N ten-dimensional covariate vectors
were randomly sampled from a uniform distribution in [0, 1]10. A sample of N random standard
normal deviates were then generated and the corresponding response values (20) were assigned to
the covariate vectors. The MARS procedure was then applied. A new data set of 5000 observations
was then generated and used to estimate the normalized integrated squared error

ISE =J[f(x) - f(x)]2d' 0x/Varxf(x), (21a)

and the normalized predictive squared error

PSE = (ISE . Varxf(x) + 1)/(Var~f(x) + 1) (21b)

(fraction of unaccounted for variance) for the piecewise cubic MARS model.
The second column of Table ld gives the optimizing GCV score averaged over the 100 repli-

cations, whereas the third and fourth columns give the corresponding average PSE and ISE (21)
respectively. The quantities in parentheses are the associated standard deviations over the 100
replications. (The standard deviations of the averages are one tenth these values.)

Table id shows results for three sample sizes (N = 50, 100,200) and for three sets of constraints
applied to the MARS model. These constraints involve the maximum number of factors mi that
are permitted to enter a single multivariate spline basis function. This controls the maximum
interaction order permitted in the model. Setting mi = 1 restricts the model to be additive in
the predictor variables, whereas mi = 2 limits the model to interactions involving at most two
variables, and so on. The value mi = n results in no restriction. Limiting the interaction level of
the MARS model can improve accuracy (reduce variance) if the true underlying function f is close
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Table ld
Summary of 100 replications of Example 3.1, piecewise cubic fit.

mi GCV PSE ISE

N = 50:

1 .46 (.12) .45 (.097) .40 (.11)

2 .28 (.13) .28 (.18) .22 (.20)

10 .27 (.11) .30 (.19) .24 (.21)

N = 100:

1 .36 (.072) .36 (.064) .30 (.070)
2 .15 (.043) .14 (.026) .059 (.029)
10 .15 (.047) .16 (.041) .077 (.044)

N = 200:
1 .32 (.037) .31 (.022) .25 (.023)
2 .12 (.029) .12 (.015) .033 (.015)
10 .12 (.029) .12 (.024) .041 (.025)

Table 2a

ANOVA decomposition summary of the MARS model
on alternating current series circuit impedence, Z.

gcv = 0.2311 #efprms = 46.5

fun, std. dev. -gcv # terms # efprms variable(s)

1 0.5096 0.6392 1 3.5 1
2 1.833 0.6854 3 10.5 2

3 1.417 0.6431 3 10.5 4
4 0.4195 0.4401 1 3.5 2 3

5 2.034 0.5704 4 14.0 2 4
6 0.1702 0.2577 1 3.5 3 4

piecewise cubic fit on 13 terms, gcv =0.2447
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to an f that involves at most low order interactions. If not, such a limitation will introduce some
bias in exchange for the corresponding variancc reduction. In terms of interpretability there is a
strong advantage to models with mi = 2, owing to their graphical representation by means of the
ANOVA decomposition.

In terms of ISE (21a) the accuracy of the MARS model for this problem is seen to increase
rapidly as the sample size increases from 50 to 200. The additive model (mi = 1) is seen to be
distinctly inferior to those involving interactions (mi = 2, 10) especially as the sample size increases.
The optimizing GCV score is seen very slightly to overestimate the true PSE on average.

The true underlying function (20) in this case happens to involve at most interactions in two
variables. Thus, setting mi = 2 results here in no increase in bias. Owing to the decrease in
variance, the ISE is seen to be somewhat better than for the unrestricted MARS model (mi = 10).
The size of the effect is seen, however, to be fairly small ( __ 25% in squared error loss) so that a
large penalty is not incurred by fitting the full nonparametric model.
3.2. Alternating Current Series Circuit.

Figure 2a shows a schematic diagram of a simple alternating current series circuit involving a
resistor R, inductor L, and capacitor C. Also in the circuit is a generator that places a voltage

Vab = V sinwt (21a)

across the terminals a and b. Here w is the angular frequency which is related to the cyclic frequency
f by

w = 27rf. (21b)

The electric current Iab that flows through the circu;t is also oinusoidal with the same frequency,

Iab = (V/Z) sin(wt - 0). (21c)

Its amplitude is governed by the impedance Z of the circuit and there is a phase shift 0, both
depending on the components in the circuit:

Z = Z(R,w,L,C),

0 = O(R,w, L,C).

From elementary physics one knows that

Z(R,w, L,C) = [R2 + (wL - 1/wC) 2]1 / 2 , (22a)

O(R,w,L,C) = tan 1 [wL- l/w (22b)

The purpose of this exercise is to see to what extent the MARS procedure can approximate these
functions and perhaps yield some insight into the variable relationships, in the range

xl: 0 < R < 100 ohms
x 2 : 20< f< 280 hertz (23)

X3: 0< L < 1 henries

X4: 1 < C < 1 1 micro farads.

Two hundred four-dimensional uniform covariate vectors were generated in the ranges (23). For
each one, two responses were generated by adding normal noise to (22a) and (22b). The variance
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Figure 2a: Schematic diagram of the alternating current series circuit of Example 3.2.
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of the noise was chosen to give a 3 to 1 signal to noise ratio for both Z (22a) and 0 (22b), thereby
causing the true underlying function to account for 90% of the variance in both cases.
3.2.1. Impedance, Z.

Applying the MARS procedure to the irpedance data with mi e= 1 (additive model) gave an
optimizing GCV score of 0.558. The GCV scores for mi = 2 and 4 were respectively 0.231 and
0.229. The additive model is seen (not surprisingly) to be inadequate. Perhaps more surprising is
the fact that even though the true u iderlying function (22a) contains interactions to all orders, an
approximation involving only two-variable interactions is seen to give nearly as good a fit to these
data. Owing to its increased interpretability we show the results of the mi = 2 inodel.

Table 2a shows the ANOVA decomposition in the same format as Table 1c. There is a purely
additive contribution from xl(R), additive contributions from x2(W) and x4 (C), and interactions
amongst X2, x3(L), and x 4. Of the six ANOVA functions, all but the last one (involving an
interaction between the capacitance C and the inductance L) seem important to the model. Figure
2b displays a graphical representation of the ANOVA decomposition. The first frame plots the
(additive) contribution from the resistance R. The next three frames display the contributions of
the remaining variables that participate in interactions. These perspective mesh plots show the
total (additive plus interaction) contributions of each such variable pair. For example, the frame
in the upper right corner plots the sum of the second and fourth ANOVA functions, whereas that
of the lower left plots the sunii of the second, third, and fifth.

The plots have been rotated so as to provide the best perspective view. The indicated zero
marks the lowest value and the axis label marks the direction of higher values.

The dependence of the impedance Z on R (first frame) is estimated to be approximately linear.
For low frequencies w, Z is seen to be high and independent of L (upper right frame). For high W, Z
has a mild monotonically increasing dependence on L. For low L, Z monotonically decreases with
increasing La, whereas for high L values, the impedance is seen to achieve a minimum for moderate w
values. The lower left frame shows that Z is very small and roughly independent of w and C except
when they jointly have very small values, in which case the impedance increases dramatically. The
lower right frame of Figure 2b shows that the C, L joint contribution is nearly additive, consistent
with the weak contribution of the sixth ANOVA function (Table 2a) to the MARS model.

These interpretations are based on visual examination of the graphic representation of the
ANOVA decomposition of the MARS approximation, based on a sample of size N = 200. Since the
data in this case are generated from known truth one can examine the generating equation (22a)
to verify their general correctness.

Table 2b summarizes the results of a simulation study based on 100 replications of data ran-
domly drawn according to the above prescription (22a), (23), in the same format as Table Id. The
MARS procedure applied to the smallest sample size, N = 100, is seen to provide a fairly poor
approximation on average in terms of ISE. The approximation accuracy improves substantially
with the larger samples, except for additive modeling (mi = 1). The approximation accuracy for
the constrained (mi = 2) models is (on average) nearly identical to the unconstrained (mi = 4)
ones. It appears that the bias-variance trade-off is exactly off-setting in this case.

The average GCV score is seen to underestimate the corresponding PSE at the smallest sample
size. This is due to the sharp joint dependence of Z on w and C [see (22a) and Figure 2, third frame].
For small sample sizes most replications will fail to sam)le covariate vectors with very small joint
values for w and C, thereby failing to capture the rapid variation of Z in that region. There is no
way that the GCV score (based on the A.SI?) can detect rapid function variation where there is no
data. Note that sample reuse techniques such as cross-validation or bootstrapping have the same
problem. As the sample size increases enough data is samlpled in this region and the GCV score
gives a m,)re accura. estimate of the true IS'E (on average).
3.22. Phase Angle, 0.
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Figure 2b: Graphical ANOVA decomposition for the alternating current series circuit

impedance, Z, Example 3.21.
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Table 2b
Summary of 100 replications of the alternating current series

circuit impedance, Z, piecewise cubic fit.

mi GCV PSE ISE

N = 100:

1 .65 (.12) .71 (.092) .68 (.10)

2 .46 (.15) .52 (.19) .46 (.21)

4 .45 (.15) .52 (.19) .47 (.21)

N = 200:

1 .60 (.082) .62 (.050) .58 (.056)

2 .27 (.064) .27 (.10) .20 (.11)
4 .28 (.066) .28 (.091) .20 (.11)

N = 400:
1 .57 (.049) .57 (.026) .52 (.029)
2 .20 (.057) .18 (.050) .095 (.056)
4 .20 (.035) .18 (.035) .092 (.038)

Table 3a

ANOVA decomposition of the MARS model
on the alternating current series circuit phase angle, €.

gcv = 0.2190 #efprms = 39.5

fun. std, dev. -gcv # terms # efprms variable(s)

1 0.6323 0.3257 1 3.5 2

2 0.7253 0.4180 2 7.0 4

3 0.9931 0.3041 1 3.5 1

4 0.6483 0.4015 2 7.0 2 3

5 0.1521 0.2254 1 3.5 2 4

6 0.7754 0.2662 2 7.0 1 4

7 0.2064 0.2248 1 3.5 1 3

8 0.3464 0.2458 1 3.5 1 2

piecewise cubic fit on 11 terms, gcv = 0.2393
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The MARS procedure applied to the phase angle data (22b) (23) with mi = 1, 2, and 4 gave
optimizing GCV scores of 0.295, 0.219, and 0.203, respectively. Here the additive model, while
still being less accurate, is more competitive with those involving interactions. The two variable
interaction model again fits the data almost as well as the unconstrained model.

Table 3a summarizes the ANOVA decomposition for the mi = 2 MARS model. It involves
additive contributions from all but x 3 (L) and interactions among all variable pairs except C and L.
Two of the ANOVA functions (fifth and seventh) however are seen to make very weak contributions
to the final model. Figure 2c is a graphical representation of the ANOVA decomposition in the
same format as Figure 2b. The dependence of the phase angle 0 on all of the variables is seen to be
more gentle and more nearly additive than the impedance Z (Figure 2b). The principal interaction
effect is to decrease the phase angle for simultaneously high values of the predictor variable pairs.

Table 3b gives the results of 100 replications of phase angle data generated according to (22b),
(23). At the smallest sample size (N = 100) the additive model produces fits that (on average) are
nearly as accurate as those involving interactions. For the larger samples the interaction models
are somewhat more accurate in terms of ISR. The average optimizing GCV score is seen to be
quite close to the true average PSE.

3.3. Additive Data.
In the preceding examples there were strong interaction effects and it was seen that allowing

such effects in the MARS model substantially improved approximation accuracy. This example,
taken from Friedman and Silverman (1987), examines what happens when the true underlying
function is exactly additive and interactions are allowed to enter the MARS model. One would
expect accuracy to deteriorate since allowing for interactions among the variables increases the
variance of f while, in this particular case, not decreasing the bias.

Table 4 summarizes (in the same format as Tables id, 2b, 3b) the results of 100 replications
of the following simulation experiment. N(= 50,100,200) 10-dimensional covariate vectors were
generated in the unit hypercube. A set of standard normal deviates Ei were then generated and
response values were assigned according to

-i = 0. 1e 4X1. + 4/[1 + -2o(x2,-1/2)

+ 3x 3 i + 2X4i + Xsi + 0 • X6i + 0 • X.i

+ 0 • X8i + 0 • X9i + 0 • X1 0 ,i + Ei.

Here the signal to noise ratio is 0.28 so that the true underlying function accounts for 92% of the
variance of the response.

The ratio of the average ISE values for the additive and mi = 2 interaction fits are seen (Table
4) to be about 0.67 at all sample sizes. The corresponding ratio for the mi = 10 unconstrained fit
is about 0.60. The corresponding square roots of the ratios are 0.81 and 0.77. Thus, the (average)
accuracy here is reduced by about 25% when the interactive models are fit to purely additive data.
This degradation is surprisingly small given the small sample sizes and the high dimensionality
(n = 10). Note that the average GCV scores for the interactive models are always slightly worse
than that for the corresponding additive fit, so that the interactive models are not (on average)
claiming to do better than the additive ones. This suggests a strategy of accepting the additive
model if those involving interactions fit no better in terms of the GCV score, especially owing to
the increased interpretability of the additive model.

4.0. Remarks.
This section covers various aspects (extensions, limitations, etc.) of the MARS procedure not

discussed in the previous sections.
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Figure 2c: Graphical ANOVA decomposition for the alternating current series circuit phase
angle, 0, Example 3.22.
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Table 3b

Summary of 100 replications of the alternating current series

circuit phase angle, 0, piecewise cubic fit.

mi GCV PSE ISE

N = 100:

1 .36 (.057) .35 (.036) .27 (.040)

2 .33 (.059) .32 (.047) .25 (.052)

4 .32 (.059) .33 (.12) .26 (.14)

N = 200:

1 .32 (.032) .31 (.016) .23 (.017)

2 .25 (.033) .24 (.022) .15 (.025)

4 .24 (.032) .24 (.022) .15 (.070)

N = 400:

1 .30 (.020) .29 (.007) .21 (.008)

2 .22 (.019) .20 (.011) .11 (.012)

4 .21 (.019) .19 (.012) .10 (.013)

Table 4

Summary of 100 replications of applying MARS

to purely additive data, Example 3.3.

mi GCV PSE ISE

N = 50:

1 .30 (.092) .25 (.053) .13 (.062)

2 .34 (.077) .30 (.074) .19 (.085)

10 .34 (.077) .29 (.080) .19 (.092)

N = 100:

1 .22 (.035) .18 (.020) .053 (.024)

2 .22 (.040) .21 (.035) .081 (.041)

10 .24 (.041) .21 (.035) .088 (.042)

N = 200:

1 .17 (.022) .16 (.008) .024 (.009)

2 .18 (.024) .17 (.014) .036 (.016)

10 .19 (.025) .17 (.012) .040 (.015)
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4.1. Constraints.
The MARS procedure is nonparametric in that it attempts to model arbitrary functions. It is

often appropriate, however, to place constraints on the final model, dictated by knowledge of the
system under study, outside the specific data at hand. Such constraints will reduce the variance of
the model estimates, and if the outside knowledge is fairly accurate, not substantially increase the
bias. One type of constraint has already been discussed in Section 3, namely limiting the maximum
interaction order of the model. One might in addition (or instead) limit the specific variables
that can participate in interactions. If it is known a priori that certain variables are not likely
to interact with others, then restricting their contributions to be at most additive can improve
accuracy. If one further suspects that specific variables can only enter linearly, then placing such
a restriction can improve accuracy. The incremental charge d (15b) for knots placed under these
restrictions should be less than that for the unrestricted knot optimization. (The implementing
software charges 0.8 • df and 0.4 • df, respectively, for the additive and linear constraints where df
is the charge for unrestricted knot optimization.)

These constraints, as well as far more sophisticated ones, are easily incorporated in the MARS
strategy. Before each prospective knot is considered, the parameters of the corresponding potential
new multivariate spline basis function (v, t, f, and BI) (10) can be examined for consistency with
the constraints. If it is inconsistent, it can simply be marked ineligible for inclusion in the model.
4.2. Semiparametric Modeling.

Another kind of a priori knowledge that is sometimes available has to do with the nature of
the dependence of the response on some (or all) the predictor variables. The user may be able to
provide a function g(xl,... , x,) that is thought to capture some aspects of the true underlying
function f(xl,' " -, x,). More generally, one may have a set of such functions {gj(xl,..., x.)},

each one of which might capture some aspect of the functional relationship. A semiparametric
model of the form

J
ip(xl,..., = Z_ cjgj(xl,..,xn) + f(xi,.,n), (24)

j=1

where (X1,..., x,n) takes the form of the MARS approximation (9), could then be fit to the data.
The coefficients cj in (24) are jointly fit along with the parameters of the MARS model. To the
extent that one or more of the gj successfully describe attributes of the true underlying function,
they will be included with relatively large (absolute) coefficients, and the accuracy of the resulting
(combined) model will be improved.

Semiparametric models of this type (24) are easily fit using the MARS strategy. One simply
includes {gj(x,... , x,)}l as J additional predictor variables (x,,+,. . . , x,+j) and constrains their
contributions to be linear. One could also, of course, not place this constraint, thereby fitting more
complex semiparametric models than (24).
4.3. Collinearity.

Extreme collinearity of the predictor variables is a fundamental problem in the modeling of
observational data. Solely in term of predictive modeling it represents an advantage in that it
effectively reduces the dimensionality of the predictor variable space. This is provided that the
observed collinearity is a property of the population distribution and not an artifact of the sample
at hand. Collinearity presents, on the other hand, severe problems for interpreting the resulting
model.

This problem is even more serious for (interactive) MARS modeling than for additive or linear
modeling. Not only is it difficult to isolate the separate contributions of highly collinear predictor
variables to the functional dependence, it is difficult to separate additive and interactive contribu-
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tions among them. A highly nonlinear dependence on one such variable can be well approximated
by a combination of functions of several of them, and/or by interactions among them.

In the context of MARS modeling one strategy to cope with this (added) problem is to fit a
sequence of models with increasing maximum interaction order (mi). One first fits an additive
model (mi = 1), then one that permits at most two variable interactions (mi = 2), and so on.
The models in this sequence can then be compared by means of their respective optimizing GCV
scores. The one with the lowest mi value that gives a (relatively) acceptable fit can then be chosen.
4.4. Robustness.

Since the MARS method as described here uses a model selection criterion based on squared
error loss it is not robust against outlying response values. Unlike linear regression, however, it
is not very sensitive to outliers in the predictor variable space, owing to the local nature of the
resulting fit; sample covariate vectors far from an evaluation point tend to have less rather than more
influence on the model estimate. Response outliers will tend to strongly effect model estimates only
close to their corresponding covariate values. They will also (slightly) increase the variance of model
estimates elsewhere by increasing the number of multivariate spline basis functions (required to
capture the apparent high curvature of the function near each outlier).

There is nothing fundamental about squared-error loss in the MARS approach. Any criterion
can be used to select the multivariate spline basis functions, and construct the final fit, by simply
replacing the internal linear least squares fitting routine by one that minimizes another loss criterion
(given the current set of multivariate spline basis functions). Using robust/resistant regression
methods would provide resistance to outliers.

The only advantage to squared-error loss in the MARS context is computational. It is difficult
to see how rapid updating formulae could be developed for other types of linear fitting. For those
with access to rich computing environments, this presents no problem. For others, a compromise
strategy can mitigate the robustness problem for isolated outliers. The multivariate spline basis
functions are selected using the standard MARS approach with least-squares fitting. Given this
basis, the expansion coefficients {am} M (9) are tht-n fit using a robust/resistant linear regression
method to form the final model. This reduces the influence of the response outliers on model
predictions close to their corresponding covariate vectors. It does not remove thc 'small) increased
variance associated with the additional (now redundant) basis functions.
4.5. Logistic Regression.

Linear logistic regression (Cox, 1970) is often used when the response variable assumes only
two values. The model takes the form

n

log[p/(1 - p)] = ,xi
i=1

where p is the probability that y assumes its larger value. The coefficients 1,I3} are estimated
by (numerically) maximizing the likelihood of the data. Recently, Hastie and Tibshirani (1986)
extended this approach to additive logistic regression

log[p/(1 - p)] = Zfi(xi).

The smooth covariate functions are estimated through their "local scoring" algorithm. The model
can be further generalized by log[p/(l -P)I = ]x,.,,

with f(xj,'" ,xp) taking the form of the MARS approximation (9). This is implemented in the
MARS algorithm by simply replacing the internal linear least-squares routine by one that does lin-
ear logistic regression (given the current set of multivariate spline basis functions). Unless rapid
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updating formulae can be derived this is likely to be quite computationally intensive. A compromise
strategy analogous to that described in Section 4.4, however, is likely to provide a good approxima-

tion; the multivariate spline basis functions are selected using the squared-error based loss criterion
and the coefficients {am}" for the final model are fit using a linear logistic regression on this basis
set. Note that in this setting the least-squares criterion is more robust than the likelihood based
criterion.
4.6. Reflection Invariance.

The MARS procedure as described here is not necessarily invariant to reflections of the indi-

vidual predictor variables. Replacing xi by -xi can (slightly) change the MARS model. This is due
to the fact that the pure linear term, associated with the piecewise-linear basis on each variable, is

not automatically included in the model; but rather it is subjected to the same forward/backward
stepwise selection strategy as all other potential basis functions. This gives the procedure the abil-

ity to model certain types of dependencies with fewer basis functions than would otherwise be the
case. Also, certain kinds of interaction effects require less terms to model than others.

In order to get an idea of the size of this effect a further simulation stitdy was performed on
the alternating current series circuit example (Section 3). Fifteen additional simulation studies
(N = 200, 100 replications each) were done analogous to those that led to Tables 2b and 3b.
For each of the (total) 16 studies, the predictor variables were each multiplied by one of the
16 combinations of (±1,+-,+i,+i). The variance of the ISE over these 16 experiments was
compared to its average variance over the 100 replications of different training sample sets. For the
impedance, this ratio was 0.156 whereas for the phase angle it was 0.036. The higher value for the
impedance is due to the very sharp structure for very low joint values of w and C (Figure 2, lower

left frame). In both cases, however, the variability in modeling accuracy due to reflections of the

predictor variables is seen to be very small compared to the variability associated with the random
nature of the training data.

Several modifications of the MARS procedure that render it invariant under variable reflection

are currently under study. It remains to be seen whether they can provide approximations that are
as accurate as the method described here.
4.7. Low Dimensional Modeling.

The main advantage of MARS modeling over existing methodology is clearly realized in high

dimensional settings. It can, however, be competitive in low dimensions (n < 2) as well. Friedman
and Silverman (1987) studied its properties for the smoothing problem (n = 1) and showed that it

can produce superior performance, especially in situations involving small samples and low signal
to noise. These properties should extend to surface modeling (n = 2) as well, although detailed

studies have not yet been performed. Friedman and Silverman (1987) also studied this approach

in the special case of additive modeling (mi = 1). The method was shown to be competitive with

existing methodology in this application, again exhibiting superior performance in situations with

small samples and low signal to noise.

5.0. Conclusion.
The examples and simulation studies indicate that the MARS approach has the potential to

become a useful tool for data modeling. It possesses to some degree the the desirable properties of

the recursive partitioning approach; these are its adaptability, automatic variable subset selection,

and ability to exploit low "local" dimensionality. Moreover, it is able to overcome some of recur-

sive partitioning's limitations; it produces continuous approximations with continuous derivatives

(if desired); it has additional adaptabilty to exploit functions with weak high order interactions,

thereby providing better approximations to functions that are nearly linear or additive; and it has

increased interpretability through its ANOVA decomposition that breaks up the approximation

into its additive and various interaction components.
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It is important to note that this is a new methodology for which there is, at present, very little
collective experience. Its results should be interpreted with some caution until their reliability is
tested over time in a wide variety of settings. No doubt as such experience is gained useful and
important modifications to this basic approach will become apparent.

A FORTRAN program implementing the MARS methodology described in ths report is avail-
able from the author.
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COMPUTATIONAL ASPECTS OF BAYESIAN METHODS

A. F. M. Smith, University of Nottinghan

Given a likelihood l(x; 0) and prior density p(O), where x and 0 where
(both typically vector-valued) denote data and unknown parame- mi = W, exp(t 2)12a, z, = p + 2ati  (6)
ters, respectively, tv:p starting point for Bayesian inferences about (

8 is the joint posterior density for 0 given by (see Naylor and Smith, 1982). We see, therefore, that, expressed
l(x; O)p(O) in informal terms, Gauss-Hermite rules are likely to prove very

p(Ix) = (1) efficient for functions which closely resemble 'polynomial x nor-f l(x; &)p(O) di mal' forms. In fact, this is a rather rich class which, even for

In fact, of course, we are usually interested in summaries of the moderate n (- 11. say), covers many of the likelihood x prior

full joint posterior distribution. For example, attention may be shapes we typically encounter for parameters defined on (-oo).
focussed on univariate marginal densities for some or all of the Moreover, the applicability of this approximatioa is vastlyfocussedponts unofivariate oit marginal densities for o ro s extended by working with suitable transformations of parameters
components 6, of 9; bivariate joint marginal densities for various dendonthragesuhs(Oo)r(ab.sigfrexm

pair (OOj ofcomonen paameers orevenon imper um- defined on other ranges, such as (0,o-) or (a,b), using, for exam-pairs (09,.9) of component parameters; or even on simpler sum- pe oQ rlgra-o~-) epciey fcust s

maries in the form of posterior first and second moments. Alter- ple, log(t) or log(t-a)- log(b-0, respectively. Of course, to use

natively, we may be interested in posterior summaries for func- (5) we must specify u and or in (6). It turns out that, given rea-

tions of one or more of the comp. .nents of 0: for example, margi- sonable starting values (from any convenient source; prior infor-

tdensities for 90 and , .mation, maximum likelihood estimates etc), we can successfully
In all these cases, the technical key to the implementation of iterate on (5), substituting into (6) estimates of the posterior meanIn al tesecass. he tchncalkeyto he ipleenttio of and variance obtained using (5) based on previous values of m-

the formal solution given by Bayes' theorem, for specified likeli- and v reoverne n tha it peio d e s well-

hood and prior, is .he ability to perform a number of integrations. and zi. Moreover, we note that if the posterior density is well-

First, we need to evaluate the denominator of (1) in order to approximated by the product of a normal and a polynomial of

obtain the normalizing constant of the posterior density; then we degree at most 2n-3, then an n-point Gauss-Hermite rule will
need to integrate over complementary c,-mponents of 0, or prove effective for simultaneously evaluating the normalizing con-
transformations of 0, in order to obtain marginal (univariate or stant and the first and second moments, using the same (iterated)
bivariate) densities, together with summary moments, highest pos- set of mi and zi. In practice, it is efficient to begin with a small
terior density intervals and regions, or whatever. Except in cer- grid size (n = 3 or n = 4) and then to gradually increase the grid
tain rather stylized problems (for example, exponential families size until stable answers are obtained both within and between the
together with conjugate priors), the required integrations will not last two grid sizes used.
be feasible analytically and so efficient numerical strategies will Our discussion so far has been for the one dimensional case.
be required. Finally, the finite sets of numerical values obtained Clearly, however, the need for an efficient strategy is most acute
after marginalization need to be reconstructed into a graphical in higher dimensions. The 'obvious' extension of the above ideas
representation of a univariate or bivariate marginal posterior dis- is to use a cartesian product rule giving the approximation
tribution- J ...Jf(ti..) dtl...dtk = , m(t1 g(z t

) 
.  (7)

We shall outline numerical integration strategies which have g, (7

proved efficient and reliable for problems of this kind. A brief
account will also be given of the techniques used to produce where the grid points, z(J), and the weights, m s,, are found from
univariate density curves and contour representations of ,ivariate (6), substituting the iterated estimates of p and o'2 corresponding
densities. Throughout, we shall provide diagramatic illustration to the marginal component t.
of the main ideas. The problem with this 'obvious' strategy is that the product

General accounts of approaches to implementing the Bayesian form is only efficient if we are able to make an (at least approxi-
paradigm are given in Smith et al. (1985) and Smith et al. mate) assumption of posterior independence among the individual
(1987). More specialized technical accounts can be found in Nay- components.
lor and Smith (1982) and Shaw (1985, 1986a, 1986b). Applica- To overcome this problem, we first apply individual parameter
tions of the kinds of techniques described here can be found in transformations of the type discussed above, then we attempt to
Naylor and Smith (1983), Skene (1983), Skene et al. (1986), transform the resulting parameters, via an appropriate linear
Racine et al. (1986) and Shaw (1987). transformation, to a new, approximately orthogonal, set of

We shall first describe an iterative quadrature strategy that has parameters. At the first step, this linear transformation derives
proved effective for problems involving up to six parameters. It from an initial guess or estimate of the posterior covariance
is well known that univariate integrals of the type matrix (for example, based on the observed information matrix

from a maximum likelihood analysis). Successive transformations
e'f(t) dt (2) are then based on the estimated covariance matrix from the previ-

J.. ous iteratin.
are often well-approximated by Garss-Hermite quadrature rules of We are led to the following general strategy.
the form I) Reparametrize individual parameters so that the resulting work-

ing parameters all take values on the real line.
I wf(t,), (3) 2) Using initial estimates of the joint posterior mean vector and
-I= covariance matrix for the working parameters, transform further

to a centred, scaled, more 'orthogonal' set of parameters.
where t, is the ith zero of the Hermite polynomial II, (t). In par- 3) Using the derived initial location and scale estimates for these
ticular, if f(t) is a polynomial of degree at most 2n- I, then (3) 'orthogonal' parameters, carry out, on suitably dimcnsioned
approximates (2) without error. It follows that, if h(t) is a suit- grids, cartesian product intgraion of functions of interest.ably, arwell-behavednegatin functions f itandt
ably well-bhaved function and I4) Iterate, successively updating the mean and covariance esti-

g(t) = h(t)(21tcr2 cn _ t-z _ (4) mates. until stable results are obtained both within and between
2 a grids of specified dimension.

then We now describe an iterative importance sampling strategy
which has proved effective in higher dimensions. The importancef g(t) dt - m,g(z,). (5) sampling approach to numerical integration is based on the obser-

,_t vation that, if f and g are density functions,

47



J f(x) f [f(x)/g(x)jg(x) dxt j = I..k; as well as revising estimates of the mean vector
and covariance matrix.

f [f(x)Ig(x) dG(x) = E0If(X)/g(X)]. 6) Iterate until the sample variance of replicate estimates of Lhe
which suggests the 'statistical' approach of generating a sample integral value is sufficiently small.
from the distribution G and using the average of the values of the In reconstructing either a univariate density or the contours of a
ratio f/g as an unbiased estimator of ff(x) dx. However, the bivariate density, we begin with a set of density values at some
variance of such an estimator clearly depends critically on the set of parameter values. In the context of the product rule quadra-
choice of G, it being desirable to choose g to be 'similar' to f ture approach, the parameter values will correspond to grid points

In the univariate case, if we choose g to bie heavier-tailed than selected by a quadrature rule. In the context of importance sam-
fand if we work with Y = G(X), the required integral is the pling, the resulting configuration of spot-heights would typically

expected value off[G- t (X)l/gfG-t (X)l with respect to a uniform be too irregular for efficient graphical reconstruction and so a
distribution on the interval (0. 1). Owing to the periodic nature of mixed strategy is adopted, using a quadrature approach for the
the ratio function over this interval, we are likely to get a reason- parameters of interest and sweeping out the others by importance
able approximation to the integral by simply taking some equally sampling.
spaced set of points on (0, 1), rather than actually generating 'uni- .In either case, the approach we adopt for the parameters of
formly distributed' random numbers. If f is a function of more interest is to fit splines to the logarithms of the density values.
ihan one argument (k, say), an exactly parallel argument suggests For univariate reconstruction we use 'not-a-knot' cubic splines;
that the choice of a suitable g followed by the use of a suitably for contouring, we use tensor product splines. See also Smith et
' uniform' configuration of points in the k-dimensional unit hyper- at. (1985) and, for a much more detailed account. Shaw (1985).
cube will prove an acceptable alternative to the 'costly' procedure The strategies outlined in this paper depend heaviiy on the
of generating 'random' uniformly distributed points in k- availability of interactive computing facilities with graphics capa-
dimensions. bilities. At the time of writing (and for the foreseeable future),

However, the effectiveness of all this depends on choosing a rapid changes are taking place in both technical and economic
suitable G. bearing in mind that we need to have available a flexi- aspects of the availability of appropriate computing environments.
ble set of possible distributional shapes, for which G'1 is avail- The direction of these changes will clearly influence the form in
able explicitly. In the univariate case, such a family defined on R which Software for Practical Payesian Statistics will be packaged
is provided by considering the random variable and marketed, and this applies, in particular, to the software relat-

ing to these strategies. For the present, anyone interested in
XA Ah(U) (I A)h(l - U), obtaining some form of this software should contact the author.
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A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF COMPUTATIONAL EXPERIMENTS

Toby J. Mitchell and Max D. Morris, Oak Ridge National Laboratory

0. Abstract in spatial settings is usually formulated as the problem of making
inferences about the realization of a spatial stochastic process Y(t),

In a computational experiment, the data are produced by a given the values of that process at a set of "sites" t ,.., t.. See
computer program that models a physical system. The experiment Ylvisaker (1987) for a discussion of problems of this general type and
consists of a set of model runs; the design of the experiment specifies of the associated design problems. Recently. Shewry and Wynn (1986)
the choice of program inputs for each run. This paper centers on the and Sacks and Schiller (1987) proposed and used design optimality
problem of prediction (interpolation), the goal of which is to devise a criteria based on spatial stochastic process models to compute optimal
design/analysis method which will provide predictions of model ouput designs for prediction in various settings. Kimeldorf and Wahba(1970)
for input values not run. We adopt a Bayesian approach as the basis were the first, as far as we know, to use a stochastic process in an
for the analysis. Uncertainty about the response function is quantified explicitly Bayesian sense, for the purpose of predicting a fixed but
by choosing a class of probability distributions over the function space. unknown function. Only recently has there emerged an interest in
This leads to design procedures based on maximizing the expected applying stochastic process models to the design and analysis of
reduction in "amount of uncertainty", where the latter can be defined computational experiments (Sacks, Schiller, and Welch, 1988).
formally in terms of properties of the posterior distribution. Here we In this paper, we shall focus on the problem of designing
use as a design optimality criterion the determinant of the posterior computational experiments for prediction. We present our approach to
covariance matrix of the responses at the input configurations at which prediction, given a design, briefly in Section 2. In Section 3, we
we want to make predictions. This requires maximization of the describe a design criterion and our algorithm for constructing designs
determinant of the prior covariance matrix of the responses at the that are optimal with respect to it.
design sites. We describe our computer algorithm for constructing
optimal designs, and give some examples of designs that it produces. 2. Prediction

1. Introduction We represent "knowledge" about the unknown function y(t) by a
stochastic process Y(t), where

1.1 Computer models and computational experiments.
(PI). Y(t) has a normal distribution with mean 4 and variance 0T2 (the

There is widespread and growing use of computer models as too)ls same for all t), and
in scientific research. As surrogates for physical or behavioral systems.
computer models can be subjected to experimentation, the goal being to (P2). For any pair of sites tE T, sE T, the correlation between Y(t ) and
predict how the corresponding real system would behave under certain Y(s) is a function only of the vector ofdifferences d -s, i.e.,
conditions. This paper is motivated by the goal of getting information
from computer models as efficiently as possible. p1., = Corr(Y(), Y(s)) = R (1-s) = R (d), (2.1)

Htere we regard a computer model as a computer program that maps
a vector of input variables (parameters) I into a vector of output where R (d) = R (-d) and R (0)= 1.
variables y. whcrc t and y are physically meaningful. We view y as a The posterior distribution of Y on any finite set in 1, given the set
function y (t) over some domain T in the space of the input variables, of served responses y(D) on the set of design sites D, is easily
This function is deterministic: if the program is run twice (on the same obt. ied as a conditional multivariate normal distribution.
computer) with the same value of t, the same value of y will result. l.ct

We consider a computational experiment to be a collection of -uns CD - Corr(Y (D ). Y (D
of the computer model, made for the purpose of investigating y (t) for
ic 1. For convenience, we shall consider T to be defined only by the bc the n x n matrix whose elements are the prior correlations between
design variables, i.e., those variables that are changed during the the responses at all pairs of design sites. Let
course of the experiment. In a typical experiment of n runs, the i'A ro (t) = Corr(Y(t ), Y(D))
computer run is made using inputs t, E, i = I, 2, .. ,n..; this collection he the n -vector of prior correlations betwe.n Y(t) and Y (D).
of input configurations is called the experimental design. Then the posterior distribution of Y(t) is normal with mean:

There are several important general classes of problem': that can be
approached through computational experiments, e.g., prediction, 4,o 

=
p + r(t)C l(y, - f.1) (2.2)

sensitivity analysis, uncertainty analysis, optimization, root finding,
and integration of output. Perhaps the most fundamental is the problem and variance
of prediction of y(t) at sites t that have not been directly observed.
Thc design of experiments for this purpose is the subject of this paper. o,,, = o"1I1 - rr(t )C lro (t), (2.3)

Wc consider a solution to the prediction problem to include a
prediction equation i(t), formulas for evaluating the uncertainty ot where .1 in (2.2) is an n-vector of I's, and Yo is the set of observed
presliction, and rules for choosing the design sites. Because of the
nature of our approach, which is described below, our met hd is quite rn se Y( ) ) is
similar to interpolation, in that the prediction of y will be identical to
the observed v ai values of I for which the moilel has been run. At F,,, = ("2 IPf. - rrT(t)Co 'rn(s ). (2.4)
other values of t, our prediction will take the form of a probability All knowledge about y (t) given the data and the prior process is
distriuion, the mean of which, expressed as the luncton (t ). can lx embodied in the posterior process defined by (2.2)-(2.4), which is
used as a predi tin equation. (aussian like thc prior process, but is no longer stationary. Since we

We approach the problem from a Ba)csian point of view, under ,hall use the posterior process for pr"diction, we shall often refer to it
which un(erta.il., aboiut the function y is expressed by mcans of a
prohbabilit distribution over all possible response functions. Ranom as the 'predictve proccss' The mean of ibis process (2.2). viewed as a
ftiil~n 

, ons .tih;isiic prixesses. random flif) have been'l use d ;ilinctio of h, can be Liken as s(t . this is an interpolating fiinctiioii.
, e it passe through the ovxcrved s. "1 he postcrior vaeianc i1'mixfcl, in kriving and oter spatial applii.lino for a long time. not (an be ised ; s a ieasuire of uncertainty of predittion At site I . ii Is

g'ncrallM ii an isert Itaesian sense. howe lb'r [e lrt'(it lion profileii no isstrill ) it tie observed sites
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3. Design The number of excursions made during each search ("try") is
determined by restricting the maximum allowed deviation from the

3.1 Design Criterion nominal number of runs (n), the maximum allowed number of
successive excursions that fail to improve I CD I, and the maximum

Suppose we want to design an experiment in n runs for prediction allowed number of "failure designs". (We generally set these
at a finite set of n sites T cT, where n*> n. After the experiment is restrictions to 4, 10, and 20, respectively.) When one of these
rur., knowledge of y at these sites will be embodied in the n' - constraints causes the search to end, a check for local optimality is
dimensional normal distribution of Y(T" ID) generated by the made by removing each design site in turn and attempting to replace it
predictive process there. The mean gT-1 w and the covariance matrix by another, using the "hikers" algorithm. If the latter succeeds in

YT ID of this distribution can be obtained using (2.2)-(2.4). finding the global maximum of the variance function in each case, then
We shall adopt as our design criterion the minimization of the D is locally optimal in the sense that it cannot be increased by moving

determinant of .T . ID" We refer to this criterion as D-optimality a single site. However, the success of the "hikers" algorithm is not

because, like the usual D-optimality criterion in the linear model guaranteed, and even if it were, the search would not necessarily

setting, its goal is to minimize the posterior generalized variance of the produce a global optimum.Table I gives an example of a design (on a 65 grid in the 5-
uiknowns that one is trying to estimate. Shewry and Wynn(1986) have Tal 1i an examplenofatdebg on agrid in the 5-shc'n tat hisis quialet t maxmizng he xpetedgai in dimensional unit hypercube) generated by our algorithm for the caseshewn that this is equivalent to maximizing the expected gain in n=6,k=5udea"poctler"orlanfnti:
information (Lindley, 1956), where information is measured by
Shannon's entropy. Shewry and Wynn also showed that this is
equivalent to maximizing the determinant of CD. Corr (Y (t), Y(s)) = R (d) = H(I - (I - p, ) I d I),

Given a correlation function, a D-optimal design can, in principle,
be found before any data on y are taken, since the optimality criterion where d, = ts -s, and p, = 0.99, j 1, k. (When generating
does not depend on y. Except in a few special cases, however, there "" it an pr d 0 , u .hen e edesigns in thc absence of previous data, we usually choose the
seem to be few theoretical results available fo finding such designs. correlation function to be a product of identical one-dimensional
The designs constructed for this paper were obtained from a computer correlation functions.)
algorithm adapted from DETMAX (Mitchell, 1974), which was first
developed for the purpose of constructing D-optimal designs for linear
regression. The optimization method is based on a series of Table I. Allegedly D-optimal
"excursions", which are sequences of designs in which each design design in 5 variables and 6 runs.
differs from its predecessor by the presence or absence of a single site.
The first and last designs in an excursion have n sites; the intermediate Site No. 1i 12  13 14 t 5
designs all have fewer sites. (This restriction to designs with R or fewer
sites was put in to avoid numerical problems associated with the nearly 1 0.0 0.0 0.0 0.0 0.0
singular C0 matrices that sometimes arose when the number of sites
became large. It ensures that C0 for any design D encountered during 2 0.6 0.0 1.0 1.0 0.0
the excursion is at least as well conditioned as the starting design.) 3 0.0 0.6 1.0 0.0 1.0

The first step of each excursion removes a site from the best current 4 .0 1.0 0.6 0.0 0.0
design. At subsequent steps, a site is added, unless the design at that
step has already been declared a "failure design", in which case a site is 5 1.0 0.0 0.0 0.6 1.0
removed. (All designs encountered since the most recent successful 6 0.0 1.0 0.0 1.0 0.6
excursion are designated as failure designs.) For the purpose of
checking a design for equivalence to a failure design, only the This design exhibits some interesting geometrical structure. Each
determinants of their correlation matrices are compared; thus false of the sites in set A = ( 2, 3, 4, 5, 6 ) is at distance 2.8 from its two
equivalence may occasionally be declared. All additions and deletions nearest neighbors in A and at distance 3.2 from its two most distant
are made with the goal of maximizing the determinant of the neighbors in A , and each site in A is at distance 2.6 from site I. (Here
correlation matrix for the resulting design. By this criterion, the best "distance" is measured along the grid.) Because of the high value of p.
site t to add to an existing design D is the one at which the variance there is a large region in the middle of T in which there are no design
function cr,2rn is greatest. It can also be shown that the largest sites; predictions here rely heavily on information from the surrounding
determinant after deletion of a site in P can be achieved by choosing design sites. This characteristic is even more pronounced for smoother
that site to be the one associated with the greatest element of the correlation functions. If we use the cubic correlation:
diagonal of Cot .

The search for the best site to add, i.e., the t at which the variance R (d) r Il - (at2)d2+ (b/6)ld, I]
function (2.3) is maximized, is conducted over a grid in T. Except
when I has few dimensions or the grid is very coarse, it is not practical
to make the search exhaustive. Instead we have incorporated a with a and b chosen so that, if s and t are at opposite comers of the
multiple search procedure that can best be envisioned by thinking of a 5-cube T , ('orr(Y(t), Y(s)) = Corr(Y'(t), Y'(s)) = 0.995, all six sites
wet of n hikers trying to climb a hill. Each hiker starts at one of the n in the optimal design are on corners of T. In fact, this design turns out
current design sites: at each of these, the variance function is zero. The to be equisalent to the D-optimal first order regression design in 5
algorithm proxceds by stages, where in each stage, each hiker takes one lta tloi, and 6 runs (ialid and Kiefer, 1990).
tc'p in the dircction that allows him to increase his altitude the most At the olher extreme, designs that infiltrate 7' to a treater extent can

We restrict him to consider only the 2k neighboring grid poinL be contiirtmtd by using correlation functions R(d) that decrease
assssiated with a change in exactly one of the k design variables, and rapidly Aih I d 1 For example, consider the correlation function:
of course we don't let him step outside of T. Under this procedure, the kd

variance function (2.3) is evaluated at (at most) 2nk sites in each stage R (d) -tp
Sometimes, two hikers will merge, in which case they Lontinue as one. -

-The search cnds when all hikers have sto(pd at (local) maxima the
site that (orreixcinis to the largest iif these is taken it be the het site ito , ih p 0 (XX)I1, hee best 16 run design (io a 212i grid in the unit
bring into the design at the current point in the excursion qtiarc) prixhut ed by o~ur algorithm in I) Iries is shown in Figire I All
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Figure 1. Best 16-run design found on a 20 x 20 grid.
using an exponential correlation function with p = 0.0001.
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Additive Principal Components: a Method for Estimating Additive Equations
with small Variance

Deborah J. Donnell*
Belcore.

ABSTRACT fold of co-dimension p - 1. Analogously, an ad-
ditive constraint defines an additive manifold of

Additive Principal Components are a generaliza- co-dimension 1, and data nearly satisfying this
tion of linear principal components, where the constraint lie near this additive manifold.
usual linear function, a.X,, defining the linear Estimation of constraints is an appropriate
principal component, - a1 Xi, is replaced by a analysis tool when the search for structure in the
possibly non-linear function, Oi(Xi), to form an data is undirected, that is, no variables are des-
additive principal component E- Oi(X,). We in- ignated a priori as predictors of a response of
vestigate the analogy to the smallest linear prin- interest. Hence it is a valuable exploratory tool

cipal component. We present two approaches to for investigating dependencies in multivariate ob-
estimation - a finite dimensional method, based servational data, where variables are usually in-
on a matrix eigen decomposition, and an iterative terdependent.
algorithm, based on a componentwise minimiza- Additive principal components were first con-
tion scheme. sidered in the context of detecting instability in

The smallest additive principal component the additive regression model. The importance
describes nonlinear structure irn a of recognizing nonlinear dependencies among the
high-dimensional space. Consequently it is diffi- predictor variables when fitting additive regres-
cult to interpret the estimated functions in terms sion models is analogous to the importance of
that are meaningful for the data analyst. For the detecting collinearity patterns when fitting hn-
additive principal component, the task of inter- ear models (Silvey 1969). Suppose we were to
pretation is almost intractable without tools for fit an additive model Y ;- EL 1 j(Xi) to the
real time graphical interaction. With these tools, data, when there is an exact concurvity between
a pleasingly direct method for interpretation of the predictors, that is, there are functions of the
the functions in terms of the original variables is variables such that E Oi(X,) = 0. In this situa-
possible. tion, the alternative fit

p
1 INTRODUCTION Y e j(O, + 4'))(X)),

In this paper we investigate the additive ana-
logue to the smallest principal component, that is indistinguishable from the initial one. While

is, we estimate additive functions from multivari- exact concurvity is unlikely, even if the data come

ate data which satisfy as nearly as possible the close to satisfying this constraint, some or all of

constraint: the estimated 0. are likely to be unstable. A
P method which enables us to examine how close

E 0) (Xj) = 0. the data come to satisfying an additive constraint
ji=1 would thus be a diagnostic check for global sta-

Such an additive constraint describes high- bility of the transforms in additive or ACE re-

dimensional structure in the data. Recall the gression.

linear structure implied by a linear constraint, Additive principal component analysis is

/(x) = a • x = 0. If the data nearly satisfy closely related to multiple correspondence anal-

this constraint, they lie close to a linear mani- ysis (Benzecri 1972, Gifi 1981), and to the non-
linear principal components of De Leeuw (1982a),

*Post-Doctoral Member of Technical Staff, Statistics both of which consider largest principal compo-
Research Group, Bellc- re, 445 South Street, Morristown, nents of a transformation of the variables. These
NJ 07960-1910. This work was partially supported by
the Department of Energy under Contract DE-FG06- techniques have been developed and used primar-
85ER25006 ily with psychometric data; their relationship to
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APC analysis is discussed in Section 4. * a is an eigenvector for the smallest eigen-

Following the formal definition of the APC, we value of F.
give a brief derivation of its characterization as
an eigenfunction of a compact operator in Section A natural approach for a generalization of prin-

3. In Section 5 we discuss methods of estimation. cipal components to additive functions is to ex-
The final sections are of a more practical na- tend one of these definitions of the smallest lin-

ture, concerned with using APC analysis as an 6ar principal component of X. The minimum

applied method : Section 6 discusses interpre- variance characterization suggests defining 4P =

tation techniques which we use to interpret the (i, .. , 0) as the vector of transformations of

smallest APC of a data set in Section 7. the variables minimizing var E qO (X) subject
to some normalizing constraint. Alternatively, a

2 THE POPULATION ADDITIVE PRIN. geometric characterization would determine the

CIPALCOP TONT Aadditive manifold described by the constraint
P Oi (X,) = 0, which minimizes the expected

2.1 Motivation squared distance from the observations to any
additive manifold of co-dimension 1. Unlike the

Strong additive dependence in a set of variables linear case, the additive functions determined by
exists if the data can be transformed so that the above two definitions will not be the same.
X, X 2 ,, ... , XP come close to satisfying an addi- In this paper we use the minimum variance
tive constraint E Oi (Xi) = 0. Our objective is to definition, which has two useful characteristics

characterize the set of unknown transformations not shared by the geometric approach. First, the

01, 02,..., Op. minimum variance criterion leads to a character-
When the transformations are restricted to be ization of the additive principal component as an

linear, we simply have the classical problem of eigenfunction, from which we gain a wealth of
the analysis of collinearity. The simple rationale theoretical insight into the behavior and prop-
that a linear combination of the variables with erties of our estimator. Second, finite sample

variance near zero implies the variables are nearly estimates are easy to compute, since the crite-
collinear, leads to the criterion rion involves estimation of variance rather than

estimation of the euclidean distance between a
rain var ( aiXt, subject to I = 1. manifold and the data.aE'RP

The variables are usually standardized, some- 2.2 Definition of the Smallest Additive Prin-
what arbitrarily, to have E (Xi) = 0 and cipal Component
var (X) = 1.

The minimum occurs for a an eigenvector for tr simpicity, we will assume each additive func-
the smallest eigenvalue of coy (X) = E, and the tion of an APC to be centered, and require the
random variable E aiXi is known as a smallest variance to be finite. Formally, the APC-function

principal component of X. A geometric char- of the i t h variable, 0, (X,) C H (X,), where :

acterization of the smallest principal component H (X,) C { , E 4, (X,) = 0, var 0, < oo}

comes from observing that the linear function,
11 (x) = a x, of the minimizing vector a, defines
a linear manifold of co-dimension I in p-space The vector of APC-functions, 4) (X)
through 11 (x) = 0. This linear manifold mini- (01 (XI),..., O(Xv)), belongs to the product

mizes the expected squared distance from the ob- space defited by the component spaces H (X,)
servations to any linear manifold of co-dimension

In short, there are three characterizations of (X) H(X 1 )xH(X 2 )x...H(X)

the vector a defining the principal component H L 2 (X).

* -'aiX, has minimal var: nce among all
linear combinations of the variables with Definition 2.1 The smallest additive princi-

a . pal component of X = (X 1 ,...,Xp) in

H(X) is the random variable O(X)
* a*x = 0 defines the manifold of co- F' ,t1 ,,(X,) ,,(X,) E H (X,), minimizing

dimension 1 minimizing expected squared var >JP , 4, (X,) subject to E' var e, (X,)

distance to the data.
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Note that the constraint, E var Oi = 1, is a Lemma 3.1 The operator P : H (X) H (X)
natural analogue to the linear constraint, E a? = defined by the relationship
1, under the usual assumption that all variables
have equal variance. For if 0i (Xi) = aX, var 04), = (4, P4p) H

E var 4, (x,) = E var aiX, = E a~var Xi =
E a? = 1. Restriction of H(X) to Linear func- is the mapping
tions reduces to a definition of linear principal
components for the correlation case. 1PPi E jIX

3 THE EIGEN CHARACTERIZATION

3.1 Introduction P is symmetric, non-negative definite and
bounded above by p

In the preceeding section the definition of the
APC was presented as a natural extension of the Proof

linear principal component to additive functions.
It is not unexpected, then, that the eigen char- (PP 4')H 0 (E [Z, 0i I Xj)
acterization of the additive principal component = coy r4) (E [rj 0i I xi] )I
can be derived by considering an extension of the [ ( )1
eigen characterization of the linear principal com- -2 coy €

ponent. coy z )) z ))
Linear algebra gives the well known equiva- var (2, 4,).

lence between the statements :

minimize var (E, a.X,) subject to -i a? 1 P is bounded by p:
and

minimize (a, Ea) subject to Ilall = 1 IIP'IIi a~ Z IIP Ej 0iIII

where (',") is the usual euclidean inner product Er 0A,
in 7R. From the latter statement, it follows = 2

that the vector of coefficients a, since it min- < P (Ij I1)l •
imizes the bounded, symmetric quadratic form
Q (a) = (a, Da), is an eigenvector of E. Thus, the The manimum of Ej 14)l II under the constraint
linear principal component solution can be solved E 1I%,112 = 1 is attained at 11, 1I = p . Hence,
using standard linear algebraic techniques.

Analogously, the smallest additive principal np'iiP < P (¢-' I 2€)II'l
component can be characterized by either of the H - (' 1111

following criteria: < p2.

(D minimizes var (E, 4, (X,)) The inequality is sharp, with equality occurring
subject to E, var O, (X,) 1 when X,= X, 4, = 03 Vi, j.

and Symmetry and non-negativity of P follow from

,D minimizes (t, P() H the properties of var (-). U

subject to 114112 = 1 The eigen characterization of the APC now fol-
lows almost trivially.

The inner product, (.,-), in the above, is the nat-

ural inner product on the product space of the Theorem 3.2 The smallest eigenfunction of the
vector of APC-functions, H (X) : operator P, if it ezists, is a vector of APC-

functions for the smallest additive principal corn-
, = ,co (€,, 4))) ponent ofX.Es cov (0,0,

Proof
The corresponding norm is S) vb e

Since (41,Pt) H = var E, 0 by Lemma 3. 1,

II4)II21 = ZI4 l 2 = Z vare, and E var 4, = 1'll11 by definition, a func-
tion vector 4) E H(X) minimizes (,t,P4t))t
subject to II4)II 1ff the set of transformations

P is the bounded, symmetric, linear operator of {0, 2,.... p,} minimizes var E , (X,) under
the following lemma, the constraint E var 4, (X,) = 1.
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From the theory of symmetric operators, Jor- although the spectrum of P is bounded, the ex-
gens (1970), Th 6.7 p.12 5 , it is well known that istence of the smallest eigenspace is complicated
4' E H (X) minimizing (', P4')H subject to by the possibility of P having a non-trivial con-

111IH = 1 is an eigenfunction for the smallest tinuous spectrum or spectral values that are not
eigenvalue of P ( where it exists ) . 0 eigenvalues. We can rule out these undesirable

An immediate corollary to Theorem 3.2 is: possibilities by adopting suitable compactness
assumptions, following Breiman and Friedman

Corollary 3.3 Suppose 4D = (01,02,..., IP) is (1985).
a smallest eigenfunction of P belonging to the Assumption The
smallest eigenvalue A, with II4'II = 1. Then restricted operators P/k : H (XA. ) F-, H (Xi), de-

1. A smallest APC of X is € = 0i, fined by Pi/k (h (Xk)) = E (h (Xk) I X,) are corn-

2. The variance of this smallest APC is A. pact for k 5 i, i = 1 p.
This assumption is only required for infinite di-

mensional H (Xi). A sufficient condition for com-
Proof The first is immediate; for the second, pactness to hold is given in Breiman and Fried-

man (1985). It is straightforward to show that
var = (4, P4') = (4, A4')11 H=the assumption of compactness implies the spec-

A further consequence of the eigenfunction trum of P is essentially discrete, since its con-

property of the smallest principal component, is tinuous spectrum consists of at most one point,

the following characterization as a solution of the namely one. A smallest eigenvalue of one corre-
APC stationary equations. sponds to the null situation of mutual indepen-

Corollary 3.4 A smallest additive principal
component with variance A satisfies the station- 4 RELATED LITERATURE
ary equation :

P4 = A( The idea of using a larger class of functions

Conversely, any 41, satisfying the stationarity con- in principal component analysis is not new: a

ditions for minimal A < 1 is a smallest APC of simple polynomial extension, for instance, ap-

X. pears in the statistical literature in Gnanadesikan
(1977). By far the most comprehensive treat-

The stationary equation implies a strong set of ment of extensions of principal components anal-
identities for every APC-function : for each i, ysis, however, are the optimal scaling techniques
the conditional expectation with respect to X, of developed by psychometricians. Multiple corre-
the APC is a multiple of the it h APC-fLlction, spondence analysis (Benzecri 1972,Lebart et al.
that is, 1984) and non-linear principal components anal-

ysis (De Leeuw 1982a, Gifi 1981) are techniques,
used almost exclusively with categorical data, for

E Oj I Xi Amitn Vi. determining optimal scalings of the categories -
which is equivalent to estimating step functions

Moreover, the multiple factor, A, is constant for of the variables - with low dimensional struc-

all of the APC-functions. ture.

Notice that if the smallest eigenvalue ;zzn In this paper we focus on the smallest APC,

0, the conditional expectations of the smallest corresponding to the smallest eigenvalue. In psy-

APC with respect to all variables are almost zero. chometrics, the intended application is an ex-

In this sense we recall our initial motivation: to tension of the use of the largest linear principal

find functions that come close to satisfying the components for dimension reduction. The largest

constraint E, o, = 0. APCs are clearly interesting in their own right,
however their interpretation and potential appli-
cations are very different to those of the small-
est APC. Nonetheless, we acknowledge that these

We now address the issue of existence of the methods from psychometry use essentially the
smallest eigenspace. If H (X) is finite dimen- same notions as additive principal components.
sional, the spectrum of the operator P is discrete, The optimal scalings of multiple correspon-
and the smallest eigenspace exists and is dis- dence analysis are equivalent to the largest APCs
tinct. However, for infinite dimensional II (X), defined over the finite dimensional function space
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di X
spanned by normalised indicator functions of Since 0 E H(Xi) 0i = - aikfk(X,), the
the variable categories. Multiple correspondence APC criterion can be written :
analysis examines the largest eigenfunctions of
the corresponding finite dimensional operator. var (Zi 05j) = var (Ei~ Z-' a1kfik(X 1 ))

The non-linear principal components or PRIN- = var (Z1 F(Xj)ai)

CALS (Principal Components by Alternating = atvar (F(X))a

Least Squares) analysis allows only one set of where Fi(Xi) (fil(Xi) ... fid,(Xi)),a (ail aid,,),
transformations of the variables, rather than the aI . ... a,

multiple transformations of multiple correspon- F(X) = (FI(Xp), ... ,Fp(Xp))

dence analysis. The transformations are defined at = (a,..., at).

to be optimal for some fixed dimensional repre- The normalising constraint is simply
sentation, d, hence for d = 1, they are equiv-
alent to multiple correspondence analysis, but E var Oi = i 1 var aik fik
for d 0 1, PRINCALS gives a different solu- - ata = 1.

tion. De Leeuw (1982b) has extended PRIN-

CALS to continuous variables. The functions are Estimating the smallest APC simplifies to cal-
estimated using a finite dimensional B-spline ba- culating the smallest linear principal compo-
sis, hence the problem can be recast as a finite di- nent of the basis vectors, F(X). The small-
mensional eigenproblem, solvable by linear tech- est APC is the smallest linear principal compo-
niques. nent of F(X): for the eigenvector a, the APC

is Ej Oi(Xi) = F(X)a; the i
t h APC-function,

5 ESTIMATION OF THE ADDITIVE Oi(Xi) = F(Xi)a.
PRINCIPAL COMPONENT Finite sample estimation is straightforward:

express each basis vector as a functional
5.1 Introduction of its distribution function, Y, fik(Xi) =
The smallest additive principal component cor- Oik(Yi). Replacing Yj with the empirical dis-
responds to the smallest eigenvalue of the sym- tribution function, $'F'7, yields finite sample es-

metric non-negative definite operator P. Thus, timates : fik(i) = 0,k(Frfl). An APC esti-
for estimation of the additive principal compo- mate can be obtained from the eigen decom-
nent we turn to known methods for calculating position of the correlation matrix of F(x) =

eigenfunctions. (fYI(X1), f 1 2 (X 2 ) ... fpd,(Xp)).

If all the function spaces, H(X,), of the APC-
transforms are finite dimensional, estimation can 5.3 The iterative method
be simplified to finding the smallest eigenvector Iterative calculation of the smallest eigenfunc-
of a finite dimensional matrix. We also present an
iterative algorithm based on the power method of tion uses a componentwise minimization scheme,
estimating eigenfunctions, an approach which is where each function is estimated in turn, using
valid in the population for general H(X). the function estimates of the previous iteration.

We shall not discuss the stability of these es- The iterative approach is important both because
timation methods in depth, but it is important it enables estimation for a class of functions that
to bear in mind that estimating the smallest are only constrained to be "smooth", and be-
eigenfunction is an intrinsically unstable prob- cause it provides an alternative to the expense
lem when the second smallest eigenvalue is close of an eigen decomposition when the dimension of
to the smallest eigenvalue. Any estimation pro- H(X) is large.

cedure will have difficulty finding a unique, stable
estimate of the eigenfunction in this case. 5.3.1 A power algorithm

It is easily shown for a symmetric, non-negative
5.2 The direct solution for finite dimen- operator, that for some initial 4i t), the sequence:

sional APC

Assume the function space for the ith variable, pk't(0) k = 1,2,...
H(X,), is finite dimensional. Then for some finite 1Pk (°)11

set of orthogonal basis functions, {ftk }, converges a.s. to the eigenfunction of P belong-

H(X,) - span{fk(Xi) : E fk(X,) = 0, ing to the maximal eigenvalue. This can easily
E (f,k(X,)f,k,(X,)) = 0, k - 1,d,}be adapted to find the eigenfunction belonging
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to the smallest eigenvalue, since there is a simple stationary points, hence it can be sensitive to

linear relationship between the eigenvalues and starting values; convergence will be slow when

eigenfunctions of P and pl - P. neighbouring eigenvalues are close.

The eigenvalues of P are non-negative and Obtaining finite sample estimates using the

bounded above by p. For E an eigenfunction of iterative method essentially entails choosing a

P with eigenvalue A, method for estimating the conditional expecta-
tion term of the inner loop. If H(X) is finite

(pI - P)e = PO - Pe = (p - A)O. dimensional, this is easily done. If H(X) has in-

finite dimension, approximate solutions are corn-
It follows that P and pI - P have common eigen- puted using smoothing techniques.
functions, however the order of eigenvalues for
the shifted operator, pI - P, is reversed. Thus, 5.3.2 Finite dimensional
the sequence :

For the finite dimensional H(X,), each condi-
(pI- p)k (O) tional expectation operator has the decomposi-

II(pI - P)k( °)1 I tion :

converges to the smallest eigenfunction of P. The k
value p can be replaced by the largest eigenvalue so each inner loop step is simply a linear least

of the operator P, in any specific problem, which squares regression of 0 = E, i on fil ... fid:
will improve the rate of convergence dramati-
cally. g(¢ AX ) -- E k(0Jik)fk.

The iteration scheme employed is an alter-

nating conditional expectation algorithm, in the Noting that fik 1 fik,, it is easily shown the inner

same vein as the algorithm used to .estimate product, (4, fik) are the coefficients of the linear
ACE (Alternating Conditional Expectation) re- least squares regression of -i 0i on fil ... fad.

gression. Algorithmically, the sequence is gener- Finite sample estimates are obtained in the ob-
ated as follows: vious way, the inner loop step is simply

Algorithm a -) -,. -
a i  4- p a °l)- .Pit (E 1 j a od),

Choose initial transformations 0'0],0[0] . 01 j=
1t' ' 2 1 - 1 P

Repeat 1 and 2 for N - 1, 2... [Outer Loop and 0'(xi)

(1)Do for i = 1,... ,p[Inner Loop 5.3.3 Infinite dimensional

A powerful and practical alternative to finite
0,- i] - E (E- 4=1 ' [N-i] IX,). dimensional estimation techniques is estima-

) 0j tion of conditional expectations using scatterplot

(2)Standardize smoothers.
Let S, denote a smoother with respect to X,.

(O[N] g ,[4g]) - (C(NiCJ.2, ,c) The inner loop step is implemented as
"1 ,'02 O'P' "'"C0 , -- C

where c (E, var 0')2
€,- (r - 1)0[N - 1] - S IN1

Until var E € N1 converges.

Note that while in the ACE regression algorithm, Since S, is typically not a projection operator,

each €, is updated to its new transformation as it is important that € tN - 1] is excluded from the

the inner loop proceeds, we obtain the new p- smoothed term. The value r is an estimate of the
tuple using only the previous p-tuple throughout largest eigenvalue of P.
the entire inner loop. The advantages of using a smoother for esti-

The iterative algorithm, as a veision of the mation in terms of flexibility, interpretability and
power algorithm, shares its shortcomings as a cost are obvious. The disadvantage is that most

method of estimation: it is prone to difficulties smoothers are non-linear, hence mathematical

associated with finding local, rather than global analysis of the estimation procedure is usually
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not feasible. Our experience, however, matches Ideally, it will be distributed symmetrically
that of Breiman and Friedman (1985) with the about zero; departures from symmetry, such
ACE algorithm: with good starting guesses the as outliers or grouping in the kPC, indicate

iterative procedure generally converges to accept- cases which are unusual with respect to the
able estimates of the minimizing functions. concurvity relation.

We have presented both a direct and iterative
method for computing APC estimates, which are 3. APC-function weights: sd (O(X))
equivalent when the function spaces are assumed
known and finite. In practice, the iterative algo- The relative scale of the APC-transforms, as
rithm implemented with a scatterplot smoother measured by the APC-function weights, in-
may be a preferable method, particularly for ex- dicates the relative importance of the vari-
ploratory analysis, since smoothing techniques able in the APC : a zero weight indicates no
place far fewer restrictions on the function space. contribution, a large weight, a large influ-
Unfortunately, justification for this procedure is ence.
heuristic for the most part, as smoothers are not
usually projection operators. Nevertheless, in the
ensuing examples, we use the iterative algorithm 4. APC-functions : Oi(X,)

with a scatterplot smoother for estimation of the Plotting Oi(X,) versus X, reveals the shape
conditional expectation. I of the transform, which can indicate the sen-

sitivity of the values of X, in the depen-
6 INTERPRETATION OF ESTIMATES dence : a step function indicates sensitiv-
Using the smallest APC as an applied tech- ity only between corresponding levels of the

Usin th smlles AP asan aplid tch- variable, an asymptote defines a region of

nique for multivariate analysis of a dataset, re- rele nsyptt.

quires careful consideration of the properties and relative insensitivity.

interpretation of the estimators characterizing
the APC: the eigenvalue; the APC; the APC-
functions. However, unlike a linear analysis, ex- 6.2 Interpretation using graphics
amining these estimates alone is not sufficient
to infer the dependencies between the variables. Suppose for a data set, x, we have estimated the
The APC determines a dependency linear in the smallest AP, and its eigenvalue is small, imply-
transformed variables, so unless the transforms ing near concurvity between the variables. The
themselves are linear, translating this depen- transformed data, c(x) have the strongest in-
dence to the original space is far from easy. We ear dependence achievable -how can we inter-
suggest a graphical technique using simultaneous pret what this linear dependence of transformed
highlighting of plots to aid in understanding the variables implies for the relationship between theconcurvity, original variables ? Simultaneous highlighting ofscatterplots of the data facilitates the interpreta-
6.1 The estimates tion of the concurvity.

Simultaneous highlighting requires a graph-
1. Eigenvalue : var (Z, $,) ics capability that is most naturally suited to a

The eigenvalue measures the strength of con- high resolution graphics terminal equipped with

curvity, and by definition is bounded be- a flexible pointer device, such as a mouse; how-

tween 0 and 1 : 0 corresponds to exact con- ever it can also be effective with static plots. For

curvity, 1 to mutual independence of trans- a set of plots displaying different variables of the

formed variables. The size and spacing of same data set, we want to select any group of

different eigenvalues can warn about poten- cases in any plot and have the selected cases high-

tial difficulties with stability and uniqueness lighted in all the remaining plots; thus a subset of

: since A = 1, instability becomes more likely cases are highlighte'l simultaneously in all plots.

as A approaches 1. Selection and highlighting are usually indicated
by a change in color, size or symbol of the se-

2. APC :,-i# lected cases.

The smallest APC, by definition, has min The use of simultaneous highlighting for inter-
imal variance, hence interpretation of the preting an APC is best illustrated by a simple

APC vector is akin to a residual analysis. example in three variables.
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Figure 1: The APC-function plots of the smallest APC. var (E, 0j) 0.084. Highlighting of large
values of 01(X1) indicates a strong relationship between X, and X2

6.3 An example: Interpretation for a three constraint Ei 0i 0, for low 01, can be inter-
variable APC preted in the variables x :cases with values of

The malest PC f X1 X2 X3,estmate usng 2 near zero will have either high or low values of
eta,. Continuing with selection of cases by condi-

has variance 0.084 - hence the data almost lie on tingonvleoerhenieraeof1,w
a sufac in -spce. he ariale eighs ae :can understand the configuration of the variables

asurac in = 3-7,sae The = aia 0.71,t re 03=0.3 in the original scaling. In this case, the relation-sship between , and X2 is easily understood to be

so we can conclude t.he third variable is not ira- circular, hence the v&iablcs Ile on a cylinder ori-
portant in determining the relationship between t

entedl0707wiad lon0.707z ais 0.02e8. I

the variables. The APC-functions are plotted in general, conditioning on the values of each trans-
Figure 1. form in turn, much more complex relationships

For the moment, consider O(x) and x to be can be explored using this technique.

distinct data sets : the former has a strong linear
structure which we want to use to explore the 7 near eoi at
structure of its untransformed version. Display
the two data sets together in the 3 scatterplots : The variables for this example are the variables
h1 vS a, 2 VS 2, 03 VS 3; so (x) appears in selected by Breiman and Friedman (1985) as ex-
the horizontal marginal projection, x in the ver- planatory variables for median hou s i ng values in

tical marginal projection. The small variance of Boston •the APC implies 1, 2 and 03 are almost linearly
dependent : 01+ 02 + 03 0. As sd (3) is small, Noxsq Nitrogen Oide concentration in pphm
ths e an On tae always close to zero, hence squared.

low values of T1 will constrain values Of e2 to
Tax Full Property Tax rate

be high. Selecting low values of 01, as in Figure
1, and simultaneously highlighting the selected Ptratio Parent Teacher ratio of the town school

cases in the other plots illustrate hs ahtconstraint district

Now, highlighting enables us to usxploe the lin-
ear dependence of the transformed variables to Lstat Proportion of population that is of lower

reveal the dependence between the original vari- status

ables. In Figure 1, low valu e s of 1x occur when Roomsq Average number of rooms squared

th is extreme (either high or low); high values
Of 2 when 2 is central; in the Plot Of 3, the The smallest APC of the five variables is esti-
selected points are evenly spread along the hori- mated, and shown in Figure 3. The variance
zontal axis, confirming the observation that this of the APC is 0.035, hence there is strong ev-
variable does not determine the concurvity. The idence that dependencies exist. The estimated
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Figure 2: The configuration of the dataset in Example 6.1. The variables lie on the surface of a
cylinder

transforms indicate Tax as the rajor dependent the APC presents a strong case for this general-
variable in the smallest APC. This transform sep- ization of linear principal components. The char-
arates the two highest Tax values from the rest acterization as an eigenfunction provides a large,
of the data - highlighting of these values show well understood body of literature with which to
these cases have an almost exact correspondence approach theoretical considerations, and the task
in Ptratio, and have relatively high values of the of estimation.
pollution indicator, Noxsq. The smallest APC As an applied method, concern centers on two
has identified a group of town districts (the dis- issues: the reliability of the estimates and the ac-
tricts explain the close correspondence between cessibility of the information it provides. Meth-
Tax and Ptratio) with high property taxes, and ods of assessing reliability, based on asymptotic
high pollution. results for eigenvalue estimation, are well known

The interpretation through highlighting de- for the direct estimation methods; tr i a lack
pends quintessentially on the additivity of the of such results for general smoothing techniques.
APC relationship : from this follows the linear- The interpretation techniques we have pre-
ity between transformed variables that leads to sented are a first attempt at providing a read-
the highlighting method. The essence of the idea ycessible mtho forunrtandig eth-

Tis tand thPtra) rm guh ide propetioaes nd d of te aessie meh bsd fooesadng asymptoti-

isthe for s guide sele of the linear dependencies of the smallest APC. This
case fo car task of interpretation is not an easy one, clearly
dpend ienilea, n athere are many approaches yet to be explored.

8 CONCLUSION
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STOCHASTIC TESTS OF FIT

P.W. Millar, University of California
0. Introduction. For the remaining examples, we shall, for convenience

This paper describes a method for using controlled deal mainly with one particular space B. To describe it,
randomization, coupled with computationally intensive let Sd= (s E Rd: IsI = 1) be the unit spherical shell of
methods, to resolve computational problems arising from Rd. Define the halfspace A (s, t) by
a broad class of goodness of fit tests. Since the models (1.2) A(s,t) = (x E Rd: x's ! t).
whose fitness is being assessed here are, in general, non-
parametric, a certain amount of care is necessary in If P is any probability on Rd define P (s, t) by
choosing methods of numerical implementation. Issues (1.3) P(s,t) = P{A(s,t)).
surrounding the choice of method are discussed in sec-
tions 1,2. The main new result (cf., sec. 3) is a very gen- By this means, the probability P is identified with an ele-
eral asymptotic representation theorem which, among ment of L_ (Sd x RI), the Banach space of bounded con-
other things, can be used to justify asymptotically both tinuous function on Sd x R1 with supremum norm. For
the methods proposed and the validity of bootstrap d-dimensional data, half-spaces are the simplest class of
methods for calculating critical values from the approxi- sets which remains invariant under affine transformation
mating expressions. and which separates measures: if P ( )= Q (A) for all

halfspaces A, then P and Q are iden I as measures on

1. Computational difficulties in certain tests of fit. the Borel sets. In certain problems, suti as the location
model below, halfspaces fit in with the structure of the

Let x, x2. .  x n be iid, Rd-valued random variables model in an elegant way, leading to a much simpler
with unknown common distribution G. Let c be an analysis than one based, e.g., on lower left quadrants (cf
index set, and (P6 , 6 E 0) a statistical model that can be (2.2c) below).

either parametric, semiparametric, or non-parametric. An Examplew.

important question is to decide whether the model (P0) Rd, s that (P, 0 E) is a par2metric model. A good-
fits the data; more precisely, it is desired to test the null ne,  o t st of t f ( 1 is te n
hypothesis that G belong to Pe , }. ness of fit test of the form (1.1) is then

A reasonable class of tests can be described as fol- (1.4) infn /2supI n(s,t) - T9(s,t)l
lows. Let B be a Banach space, To a B-valued function
of 0, and Tn a B-valued function of the data x1 . . . . . . . . . . where To (st) = P0 IA (s, t)), and Tn (s,t) = P~nA (s, t))

If I denotes the norm of B, then a plausible goodness of and where Pn is the empirical measure of x1 ..... x.
fit statistic is One especially important case is when (P@) is thecollection of normal distributions on Rd with unknown
(1.1) infn112 in - Tl, mean and covariance. Another important example, dis-

0,o cussed briefly later on, concerns the Fisher distributions
the hypothesis being rejected for large values. While this on the unit spherical shell in 3 dimensions. In this latter
recipe is reasonable in a large number of situations, the case, the supremum in (1.4) becomes
statistic (1.1) is incomputable, in general, for several rea- sup n l2 0,,(C) - P0 (C) I where C ranges over all spheri-
sons. To understand the computational difficultics sur-
rounding (1.1), and to understand the computationally cal capson

intensive substitutes for (1.1) which we develop later on, Example 1.3: symmetric location models on Rd. In Rd

let us first look at several examples of statistics of the there are many notions of symmetry for random variables
form (1.1). - for example,

Example 1.1: classical statistics. Let the data be real (a) "simple symmetry": the rvX has the property that
valued, let IPO} be a parametric family of probabilities on both X and -X have the same distribution
the line. Let T o be the cdf of P6 : To(t) = P0 (x l 

-< t) and (b) "isotropy": rvX has the property that X and yX have
let t,, be the empirical cdf of the data: the same distribution for every orthogonal transformation
Tn(t) = n- Il xi _ t). The Banach space B above can y. See Beran and Millar, 1988c, for further dcvelop-
be taken to be the collection of real bounded functions f, ments. Let F0 denote the collection of all probabilities on
with norm If = suplf(t)I (i.e., B = L_(R1)). Then (1.1) Rd that are "symmetric" according to, say, one of the

b possibilities just suggested. The F0 symmetry model
becoistwhoe prualorties rwellknon ifoonsis of asserts that for some unknown rI E Rd and some unknown
statistic, whose properties are well known if E) consists of F c F 0, the centered data x, - r , x. - 71 have distri-
a single point. bution F. The parameter set E then consists of all pairs

To obtain a different classical statistic in this frame- ( (11, F e E Rd F F F0 . P0 is the probability given by
work, let gi be a probability on R1 , and let B be the space P0(A) = F(A - I), and (1.1) becomes
of real functions f with norm IfI2 = Jf(s) 21.(ds) (so now
B = L2 (.t)). Then, with T0, Tn as before, and the norm (1.5) inf nP2 supli (s, t) - To (s, t)

(, F) S'l
Just given, (I.I) is a variant of the Cramer-von Mises where, as usual T0 (st) = Pe(A(s.t)), Tn( .t)
Roodness of fit statistic. Pk (A (s, t)).
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Example 1.4: Logistic model. Here the data On c 0 used to construct (1.6), a search set for 0; if 0,
xt ..... xn takes the form xi = (yi, zi), where yi takes on is random, we call it a stochastic search set. Throughout
only the values 0,1 and where zi are jid Rd-valued with the rest of the paper, 8 is assumed to be a subset of a
distribution F. If P = (130, . P... , d) c Rd+ and if F is normed space.
a probability on Rd, then the logistic model asserts that Search method (a): sieves on 8. Although the statistic
P{yi = 1 Iz) = P(3, z), where log P(13; z) (1.1) is generally incomputable, it is often theoretically
I I - P (13, z)] -  = 30 + 131'z, with 131 = 12 ... ,Pd). intractable as well, because either the differentiability
Then 0 = (13, F) where P3 e Rdt and F is the probability hypothesis of standard minimum distance theory may fail
governing the covariates z1 ..... zd. The family Pe is on 0, or else the non-singularity hypothesis fails; for
given by P0 (yi = 1, zi E A) f P (P; z) F (dz). Define example differentiability problems arise in the location

A model and non-singularity falls for certain regression
T (s, t) = J 1 - P (P; z) i P(1; z)'F (dz), i =0, 1 models (cf. Millar 1982). (These concepts are defined in

. A(st): section 3). It may be possible, however, to find (non-
and Tn' (s,t) = n- t 1 1{YK= i,zj E A (s, t)), i = 0,1. Set random) subsets (9n T 0, such that these hypotheses hold

Te= (TT), Tn - (T6,T), random elements in the on en sufficiently well that an asymptotic analysis may
Banach space B - L,,(Sd x R') x L_ (Sd x Rl). With the proceed, albeit with technical complications. The
Banach space just mentioned (the norm is the maximum difficulties are reminiscent of those found in maximum
of the norms of the factor spaces), the test statistic (1.1) likelihood estimation on infinite dimensional 9 (cf.
for the logistic model is, with the above choices of T,, Grenander, 1981; Geman, Huang, 1982) where the On so
Te, B, given by (1.5) introduced are called "sieves".

With these examples behind us, we can now easily The theoretical difficulties have a counterpart in sound
see the computational difficulties surrounding (1.1). First, intuition: it is undesirable to "over fit" the model relative
the computation of inf will, for the supremum-type norms to the data at hand. While sieve methods are of consider-

a
described above be intractable. In the location and logis- able theoretical interest, they frequently leave, in the
tics models, this calculation involves an infimum over an situation of goodness of fit statistics like (1.1), a computa-
infinite dimensional collection of probabilities. Actually, tional problem as bad as the original one
this particular calculation is already intractable (for Search method (b): simple searches of 9. A different
supremum norms) in the Gaussian and Fisher cases modification of (1.1) is to replace infO by a minimum
described in example 1.2. Second, the calculation for over a finite subset On c 8.
fixed 0 of I T, - Tel, is also intractable: in the examples How should a finite search set be chosen? The set 8
1.2-1.4, it involves computing the supremum over the col- is infinite dimensional, perhaps bounded, but it may not
lection of half-spaces in Rd. Finally, even the computa- be precompact. In this case it would not be possible to
tion of T9 (s, t) - P9 (A (s, t)) in examples 1.2-1.4 is typi- construct a finite c-grid over 0. Even if 8 were compact,
cally intractable. In Gaussian parametric situations, the and thus there exists such a grid, actual construction of it
calculation is simple, because of properties of the normal could be formidable, except in very special cases. For
distribution; on the other hand, for the Fisher distributions example, construction of an e-grid over all the probabili-
on S3, the calculation of To (s, t) (the mass given a panic- ties on the unit ball of Rd appears to be intractable; such
ular "spherical cap" by a particular Fisher distribution) is a difficulty can arise in both location and logistic models.
intractable and must be obtained by approximation. Finally, construction of E-grids is, in general, a much
Equally difficult computational difficulties can arise in the more ambitious undertaking than the one required to pro-
logistic and location models. vide a decent approximation to inf.

This paper describes very general, comoutationally o
intensive methods which can successfully confront the Another suggestion might be to construct iid 8-valued
numerical intractability of (1.1). These methods involve random variables Y1 ..... Yj,. and take On to consist of
(a) replacing the parameter set 0 by a (random) subset the values of this sample. Except in special cases, there
On (b) replacing the norm I of B by a random norm I'In may be difficulty in carrying out this construction in a
and (c) replacing the functional T9 by an approximating computationally feasible way.
(random) functional T n). The computationally feasible A more fundamental difficulty centres on the fact tnat
replacement of (1.1) takes the form if P00 is the actual data distribution, then typically

(1.6) minn t1/2i,- T~n)In. infITn - T0 achieves its minimum within a ball of
00, ~0,9

radius cn- 1/2 about 00 (see section 3). On the other hand
Because of the possible infinite dimensionality of 0, the it can be shown (Millar, 1988) that for many bounded,
choices of I In, (n must be made with some care; issues infinite dimensional On, the Y,-search, I < i !5 in, will in
surrounding these choices are discussed in section 2. general miss this crucial n-' 2-ball with positive orobabil-

ity, no matter how fast n T -. More precisely, for any
2. Stochastic Methods. sequence (Jn), there exists 00 and a sequence (a,.

This section discusses issues surrounding the choice a, 3" n-1/2, such that lin P (1 YI - 00(1 > an for some
of O(n, Tfn), and I" In in the formula (1.6) i I in) > 0.
(2.1). Search of 0. Henceforth, let us call k! . Seqrrh method (c): local stochastic sezrch. A more
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promising approach, which is justified by the result of has had a long history in statistical methods. For a pro-
section 3, depends upon the fact that, if 00 is the 'true' bability space X and a linear space B, a stochastic norm
parameter, then the minimizing point of ni12 iTn - Tol I In is a map from X x B to R 1 such that for each
occurs within a neighborhood of diameter n- 1(2 about 00. x E X, b - I b In (x) is a pseudo-norm on B. Here are
Thus search methods which stray outside such neighbor- several examples of stochastic norms.
hoods waste time searching unimportant parts of 0. One (2.2a). Kolmogorov distance.
way to capitalize on this property is to suppose that there
exist estimates 6 n = 6 n (xn ) of 0 f G, with values in ELet x = (x. .  x) be iid real random variables
such that, whenever IOn - 00 1!5 cn-2, On E): with continuous c.d.f. F, and empirical cdf Fk. Let B

denote the space of bounded, real, right continuous func-
(2.1) nl"21n - OnI is tight under Pg. tion on R' with left limits. A stochastic norm I In on B

is hengivn y Ib I =max (maxlIb (xi))1, maxlIb (xi-) 1),(We then call the estimators 6n "n" 2 consistent"). In is then given by bln,
many nonparametric applications, such estimates are b E B. The Kolmogorov distance between F, F. is then
known: an example is given below. Next, let given by the stochastic norm IF - F In-

i = (xiT.  xin), 1 S i 5 j be jn independent (2.2b). Cramer von Mises discrepancy. Let
bootstrap samples of size n drawn from P6.; cf. Efron, x = (x1 ... xn), F, Fn be as in subsection (2.2a). The
1979. Define a random search set 9 n by Cramer-von Mises discrepancy is

(2.2) On = AO(x.), 6.(X1 ) . 0n(xj,)} [f[ Fn(t) - F(t) 12dF(t)]a. For fixed F this defines the
L2 (F) norm on (F, - F). It is asymptotically equivalent

The search set (2.2) may be rewritten as to [ (t) - F (t) 12 dFn(t) I 2
, a stochastic norm I In

(On(-xn)' On(xn) + Y, n-i 6n(Xn) + Y n} on the difference Fn - F. The stochastic norm I In is
where the Y', 1 !_ i Jn, are conditionally iid, given x given by ,fl 

-  that is L . replaces the
n,* -ie by1 f( 2dp(t) htisL( epae hhere Y* = .n (xi*) - On (Xn) ] ni /2. In our applications, E norm of L2 (F).

is typically not open. Therefore, the structurally simpler
local search set {n (n), 0

n (Xn) + yl n- 1/ ... (2.2c). Stochastic norms based on quadrants. For
r(Xn) + Y n1/2), ,khcrc Y,, Y .  Yj. are iid, cannot t E Rd, let K (t) denote the lower left "quadrant" with

0, ( n) +'I j. n Icorner at:*: K () = u E Rd: U, !5 , I1 i ! d), where
be used here since there is no guarantee that co... a t ri  t f, 1 t)),
6n + Yi n- I"2 

F 9. Such difficulties arise in both the loca- u d,t P th .  td). WiePt f or P(d).T
tion and logistic models. On the other hand, this thus identifying P with an element of B -_ L_ (Rd). The
appoac can lg mdel toorkn classicl ot ra etric quadrant metric between two probabilities P, Q is thenapproach can be made to work in classical parametric sup P (t) - Q (t) I
problems, provided 0 is open; see also J.-P. Kreis, 1987, t
for another interesting case (involving time series) where There are several ways to replace the quadrant metric
such an iid local search is quite effective. Obviously, with a more computable approximation.
when the structurally simpler search just mentioned can - (t1 .  tk) be i vector iid N(O, I) random
be justified, it might be preferred because of the greater (i) Let t =
freedom in the method for simulating Y1, variables on Rd. A simple stochastic norm I In on

.i L. (Rd) is then I b In = max I b (ti ) 1, b F L.
Example 2.1: Location model. What does the local sto- isk.
chastic search amount to in this case? Here is one possi- (i', Let x1, . .x, x be iid, Rd-valued, with empirical
bility. Recall that here the parameter 0 is 0 a (T1, F), measure Pn. Let C be the smallest cube in Rd con-
where 71 is the center of symmetry and F is the "sym- taining the data points x1 ..... xn. Pave C with
metric" underlying distribution. An easy choice of esti- (pn)d cubes of equal size; let ni be the number of
mate en ('l, Fn), which satisfies the condition (2.1) data points in cube i; draw (ni/n)k points uni-
begins by taking In to be an a-trimmed mean (co- formly from cube i. Then a stochastic norm on
ordinatewise trimming will do). Next, let ftn be the L. (Rd) is given by the maximum of I b (t) I, b E L_
empirical measure of the centered data over the points t just drawn. This data based sto-
Xl - fin, • , xn - , and let FN be the "symmetriza- chastic norm will more nearly approximate the L_
tion" of Hn. What Fn actually is depends on the exact norm of P1n - P than will the stochastic norm of (i)
definition of symmetry, but in the two illustrations given above. On the other hand, it involves more compu-
in Example 1.3, the definition of F nis intuitively clear. tation.
For example, in the isotropic case, Fn puts the uniform (2.2d). Stochastic norms on half-spaces. Let P be a
distribution of weight n- on each of the spherical shells probability on Rd, and write P(s,t) = P(Ais, t)), for the
(x E Rd: IxI = lxi - ~ln', 1 i n). The stochastic half-space A(s,t), as explained in (1.3), so that P is an
search set On then consists of bootstrap replicas of element of L_ (Sd x Rt ). Let s,.. sk, be iid, uni-

(fn (1,,P,). This choice of On ,uil be a n- 1/2 consistent formly distributed on Sd, and ti . tk, be iid N(O, 1).
estimator of 0 = (rI, F) with values in 8. Then two possible stochastic norms on B = L,(Sd x R')

(2.2). Stochastic norms. In this subsection we explain are: max I b (si t i)I, and max sup Ib (si, t) I, bE B. If b is of
some methods for replacing I-1 in (1.1) by a computable is,. isk. t
approximation I" In, as in (1.6). Our procedure involves the form b = 15n - P where P,, is the empirical of n iid
the notion of a random norm, a concept that, it turns out, observations from P. then the second of these two sto-
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chastic norms is more data dependent and thus appears to how smooth A9 may be. The difficulty can often be
give a better approximation to the true norm. Data traced to the infinite dimensionality of 0: analogous
dependent stochastic norms along the lines of the second objects in the finite dimensional case typically converge
example under (2.2c) are also possible. Finding the (Beran and Millar, 1988a).
"best" data dependent stochastic norms for estimating Here is a simple illustration of the difficulty.
IPn - PI for the half-space metric is currently an interest- Example. Let B be the linear space of all real sequences
ing open problem. As regards simulation of st ..... sk. b = (bl,b 2,...) such that bk = 0 for all sufficiently large k.
here, note that the following simple method works: simu- For a,b B define < a,b> = Yib i. Let ei denote the
late g1 ..... gk, iid standard Gaussian rv's on Rd, and set members of B with I on the ith co-ordinate and 0 else-
si = gi / I gi Iwhere I gi I is the Euclidean norm of gi. where. Define Iblk = max I< b,e i >l and OJ-
2.3. Stochastic functionals and a generic form of the ik,
test statistics. Evaluation of the test statistic (1.1) often {e. .  e0j. Then mi 101 k, = 0 in> k%, = 1, i n;
entails, as the examples of section 1 make clear, evalua- t, kbtionof uanitis suh a P0 (A)forvarius araetes ~thus, without conditions on Jn, k% there can be no conver-tion of quantities such as P0 (A) for various parameters 0 gence of mi:r.Jn 1 0 Ik as r - .

and certain sets A, such as half-spaces and quadranis. As 0, asn-
in the Fisher example (cf. sec 1.) such an evaluation may Despite the simplicity of this example, its basic moral
not be easy. Thus, one wishes to replace P0 (A) by an carries over: if convergence of min I A0 In is desired, then
approximation P4n)(A), or more generally, the T o in (1.1) 8.

by an approximation T9. While the main result of sec- the "size" of the search set On should not be "too
tion 3 gives a very general approach to this approxima- sophisticated" for the norm I In- Intuitively, one should
tion problem, the special examples listed in section 1 not "over fit" the model relative to the measure of
have, in fact, involved only two kinds of approximation. discrepancy I In- In particular, applications will often
First, for given 0, one may estimate P0 (A) by drawing hn therefore require conditions on the relative size of the
iid. variables from P0, obtaining an empirical mcasure search set On and the sample size determining the sto-
Pn) which provides the estimate ,(n)(A). Such a method chastic norm I In-
has been used in the Fisher distribution problem described 2.5. Critical values. Critical values for test statistics
in section 1 (cf. Beran and Millar, 1986). Of course, in (1.6) can often be obtained by bootstrap method. There
some cases it may be extremely difficult to carry out such are several valid ways to do this. A technique which
a simulation. In the location problem on Rd, the relevant entails significant computational savings is a "conditional
probabilities P0 (A) can be represented as averages of bootstrap method", which for convenience we describe
simple measures, over a certain Haar measure (which only for the paradigm statistic (2.3).
depends on the notion of symmetry adopted). While such First, fix the random variables (s, 1 s j s k) which
an averaging is uncomputable, in general, replacing this determine the stochastic norm; fix the random variables
Haar measure by an appropriate empirical probability *
yields an effective approximation. No doubt, in some ( , ' in) which determine the local stochasticsearch of 0, and fix the simulated estimates P( . Next,
situations it may be also possible to replace Pe (A) by an a s
analytic approximation. While there are a great many draw mn bootstrap samples u1 .  u,n, each of size n,
statistics of the form (1.1), (1.6) the paradigm case from the fitted model Pd.(x,); here On is the same n t 2-

underlying the specific examples of section 1 is consistent estimator used to generate the search set for 8.
(2.3) main max supn 1f2  (A(sj, t)) - P0W (A(sj, t))[ It is assumed that the ui* are conditionally independent

i s upq (given _xn) of the bootstrap samples used to construct 0*

where (si), A(s,t) are given in (2.2d), ({i*) is a collec- and of the random variables used to construct p~n), and
tion of in bootstrap replicas of a preliminary n independent of (si). Let P0(ui -)denote the empirical
consistent estimator of 0 (cf. search method (c)) and pn) measure of ui, and let G denote the empirical cdf of
is, for each 0, the empirical of In iid. random variables min max supnla lln(u' I;A(si, t)) - Po1W(A(si, t)),
drawn from Pe. Notice that this latter approximation 1 S I S in. Then under suitable conditions the quantiles

need be performed only for 0 = 8"*, I i Jn; thus the of G' give asymptotically valid critical values for the
Monte Carlo for the approximating finctionals p(n) will stochastic test statistic (2.3). A proof can be based on the
depend upon the outcome of the bootstrap samples which asymptotic representation theorem in section 3, together
determine the local search set for 0. As usual Pn in (2.3) with techniques developed in Beran and Millar, 1987.
is the empirical measure of the data and (Pe1 is a possi- Other valid bootstrap methods could involve recalculating
bly nonparametric statistical model. either (or both) the search set (0,*) or the (si) for each

(2.4). Variable On vis a vis variable I In. The test bootstrap sample ul*, 1  1 s nin. The added computa-
statistics suggested by (1.2) have the form min IAe n,  tional burden is enormous and up to first order asymptot-

0,8, ics, there is no gain over the "conditional" method.
where On is a variable subset of 0 and I In is a pseudo Whether or not there is any compensating extra "stabil-
norm depending also on n. Even if On 1 0 and ity" in such methods is an interesting open question that
I In -4 I I (this last denoting a norm), one cannot in requires second order asymptotic analysis.
general hope for convergence of minlA 0 1n, no matter
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3. Asymptotic representation theorem. (3.5). Approximation property:
This section establishes, under suitable hypotheses, the supiT - T0 Jn1/2 

-- 0
asymptotic form of test statistics of the form (1.6). The 0, H.
formulation is sufficiently general so that the result in Qn probability.
applies to statistics based on sieves (cf. section 2), to the
stochastic statistics illustrated by (2.3), as well as to a (3.6). Proximity of 00:

number of other possibilities. It can be used to show inf nf2lT o - T 0 In = An is Qn tight.
under supplementary hypotheses that approximations like 0e o.

(1.6) have an asymptotic form similar to that of (1.1). Condition (3.5) says that Tg' approximates To in a

The triangular array formulation makes the result a con- suitable fashion. In the case where Tn is an empirical

venient tool in establishing the asymptotic validity of measure obtained by simulating iid observations from a

bootstrap methods in the calculation of critical values (cf probability P9 - To, familiar exponential bounds on the

subsection (2.5)). Motivation for the particular formula- empirical process (cf, e.g., Alexander, 1984) quickly yield

tion adopted here comes from the "paradigm" statistic simple conditions on the size of On vis a vis the number

(2.3), the logistic testing problem (cf. section 1) which is of simulations used to construct Tq. See Beran and Mil-
not of the form given in the paradigm, and the possibility lar, 1988a for a simple illustration. If no approximation
of extending sieve methods from an MLE framework to a To to To is needed, as in the case of certain problems
"minimum distance" framework. involving multivariate normal distributions, then of course

Let X be a measure space, and xn = (x .  xn) a (3.5) is automatically satisfied. The proximity condition

vector of X valued random variables having joint distribu- (3.6) ensures that the point 00 is not far from 8 n. If 0n
tion Pn. Note that the general formulation does not consists of bootstrap replicas of a preliminary estimate,

require that the xi be independent. Let 0 be a subset of a and if 0o is the 'true' parameter, then (3.6) is automatic.

normed linear space B 1, and let 9n, n = 1,2.... be subsets Ie with is a sieve, (36) imposes conditions on the

of 0. The subsets En are allowed to be random. For speed with which 9~ exhausts ). The other conditions
are n-dependent variants of familiar conditions from the

each 8 p o let T o be a functional defined on X (or on theory of minimum distance estimators. Roughly speak-
the n-fold product of X) with values in a possibly ing, the effect of (3.1) is to ensure that the minimizing
different normed space B2 . Let Tfn = Tn (xn) be a B2- 8-points for (1.6) can be found eventually (as n -- 0) in

valued statistic on X'1. any given "ball" about the "true" parameter, (3.2), (3.3)

Let I In be a (possibly random) pseudonorm on B2. ensure that said "ball" has a diameter of order n 1/2. It is
For each 8, n, let T be a B2-valued functional on 9. also considerations such as these that suggest the efficiency of
possibly random. In many applications Tn is an easily the local asymptotic search of 8 described in section 2.
computable approximation to Te, based on Monte Carlo Theorem 1. Assume (3.1) - (3.6). Let On be any
simulations. The construction of 9 n, I I., Tn may sequence such that nt /2(0n - 00) is norm bounded in B1.
involve certain auxiliary randomization. Let Qn be the Let Wn = n1 2 1 t n -To,]. Then under Qn
probability governing the distribution of Xn as well as
these constructions. inf n 1/ 2 ITn - Te = inf IWn - l(nl 2 (0 - 8n))in

Fix 00 c . The hypotheses are as follows. + OQ.(n)

(3.1). Identifiability. For each c > 0, c > 0 there exists

8 > 0 such that A novelty of this formulation is that TO, en, I'n all

lim Qn I inf ITn- T00n I - depend on n and can be random. Moreover, the parame-
n-&- 0, - I ter set, en is not assumed open, unlike classical develop-

eo- oi>C ments. Nevertheless, despite these novelties, the proof

(3.2). Differentiability. There is a continuous linear can be accomplished by a somewhat complicated exten-
map 1: span E -) B2 such that, for every e > 0, there sion of the methods of Wolfowitz (1953). Pollard (1980),
exists 8 such that Bolthausen (1977), Millar (1985) and others.

lim Qnl sup (ITO - T 0 - 1(0 - O0) I/I0 - 001) Remark. (a) The identifiability condition can be
n-- l6-0018 0 replaced by:

0.e.

i< l . Qn(3atleastone 0 E n such that!0-001>cI---0

(3.3). Non-singularity. as n -4 -,. When E) is a local stochastic search as in
Section 2. it is often quite easy to write down an analytic

11(E - 0o)In 2 C, 10  01- V8 E n  condition for the above convergence.

where C;1 is a tight sequence under Qn. (b) Differentiability may be replaced by the following
"asymptotic" differentiability condition, which will be

(3.4). Consistency of -n: ntn -ToIn is tight under employed elsewhere. There exist constants K1, K2 such

Qn that IT - T oe - ( 0 - )n - K~In -8 - oI

+ Kn 10 - 0 01 2 + op(i0-0o) i)
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where 8 > 0 and (y < 1/2. c'-I d.

(c) The derivative I can depend on n, provided In  4(11111 + 1)dn - d_ 3(11111 + 1)d,
replaces I everywhere in the complete theorem statement.

(d) In many applicaions W n, defined in the theorem s t i.
statement, converges to W, (n1/ 2 (0 - On): 0 E On more 10-0olid.
or less approximates span E, and I n-- 1, as = inf I Wn - I (nl1 2 (0- 00)) In, q.e.d.
n -4 -*. Oie therefore expects that the left side in
theorem I converges to inf IW - 1(0) 1, which is the 1. Research supported by National Science Foundation

spa 8
classical form of the limit. In particular applications this grant, DMS87-01426.
convergence can indeed be established; however, as the
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BOOTSTRAP INFEREiCE FOR REPLICATED EXPERIENTS

Walter Liggett, National Bureau of Standards, Gaithersburg, MD 20899

ABSTRACT to a pooled density estimate. In this case, each
Inference methods valid for nonnormal error are bootstrap repetition is obtained by separately

proposed for experiments in which each design sampling with replacement the measurements at each
point is replicated three or more times, design point (Efron, 1982). When the number of
Differences between the replicates provide the replicates at each design point is small, this
data needed for a pooled estimate of the error approach suffers from the discrepancies between
density, and this density forms the basis for the the small-sample empirical distributions and the
bootstrap. The density estimator is specified for true error distributions. If a pooled density
symmetric error in Liggett (Biometrika, 1988), and estimator can be justified, other pooled
this symmetric estimator has been generalized to estimators might be chosen in place of the
asymmetric error. In this paper, the application replicate-differences density estimator in Liggett
of this density estimator to designed experiments (1988, 1989). A model of the true values at the
is considered. The lack-of-fit test is of design points can be fit to the data, and the
particular interest. The extension of the density residuals can be computed and combined to form a
estimator to data requiring a blocking variable density estimate. These residuals might be
and to data with dispersion effects is discussed, obtained from separate location estimates for each
The bootstrap based on this density estimator is design point or from a more restrictive model of
shown to be valid for smaller sample sizes when the regression function. When the number of
the test statistics are robust. Estimation of the replicates is small, the location estimates for
error density is illustrated with measurements the design points are unstable, and the naive
rerlicated at different laboratories, combination of residuals does not provide a

completely adequate density estimate. The
1. INTRODUCTION combination of residuals from a more restrictive

In industrial experimentation, when the error regression model leads to an error density that
properties are crucial to the inferences drawn, depends on the design matrix. Acc.unting for this
the possibility of nonnormal experimental error dependence in a lack-of-fit test seems difficult.
must be considered. One source of variability Th! replicaf.e-differences density estimator does
that is potentially nonnormal is the inhomogeneity not suffer from these problems and thus seems
of physical samples of bulk materials. For attractive.
example, trace concentrations of a particulate Because of the possibility of nonnormal error,
substance in portions of a bulk material are robust statistics are the proper choice for the
usually nonnormal. Another potentially nonnormal desired inferences (Hampel, et al., 1986). The
source is material degradation that accelerates as use of the bootstrap to find the distribution of
it proceeds. Many corrosion processes have this robust statistics is the focus of our discussion.
property as does spoilage due to bacterial growth. Thus, our interest is in robustness of validity
Othei potentially nonnormal sources are inherent for statistics with good robustness of efficiency.
in measurement procedures. Examples include loss Hampel, et al. (1986) offer robust tests for
of analyte during preparation of the physical linear models based on the asymptotic distribution
sample, interfering peaks in spectra and of the test statistics. We propose to use the
chromatograms, aberrant results from the software same test statistics but to replace the asymptotic
that automatically locates peaks and measures distribution with the b.otstrap.
their height or area, and inconsistent control of Designs with three or more replicates at each
variation due to poor understanding of the design point have recently been recommended for
sensitivities of the measurement procedure. This applications in which dispersion effects are
paper discusses a bootstrap method for obtaining potentially important (Box, 1988 and the
valid inferences when the experimental error is discussion). These designs are also appropriate
nonnormal. for the density estimates given in Liggett (1988,

An approach to bootstrap inferences for 1989). The recommendation of designs with three
replicated experiments is provided by the pooled or more replicates at each design point is a
error density estimator given by Liggett (1988, considerable change from the usual recommendation.
1989). This estimator is based on the assumption For example, the number of replicates recommended
that replicate measurements involve independent for lack-of-fit tests may be as small as 5, a
and identically-distributed realizations of the number too small for investigation of either
measurement error, thL usual assumption in dispersion effects or nonnormality. When the
designed experiments. This assumption leads to a experimental error is dominated by a single error
relationship between the error density and the source, the error is often both nonnormal and has
densities of the first and second differences a variance that depends on the controllable
between error cealizations. These latter factors in the experiment. Thus, dispersion
densities can be estimated from differences effects must be considered when nonnormality is
between replicates. The computation of the error important, and conversely, nonnormality must be
density is a fitting by weighted, nonlinear least considered when dispersion effects are important.
squares. The inclusion of both nonnormality and dispersion

Bootstrap inferences in regression can be based effects in the analysis is often needed.
3n other density estimators (Efron, 1982; Efron In this paper, three aspects of the applicatiun
and Tibshiranl, 1986). When each design point is of the replicate-differences density estimator to
replicated three or more times, a separate density designed experiments are considered. The first,
estimate for each design point is an alternative which is discussed in Section 2, is the extension
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of the density estimation method to the case in Q
which the replicates of the experiment require a Pd(x) (,/2sr)-I E a2q 02q{x/( 4 ,2r)},  (5)
blocking variable and to the case in which q=0

dispersion effects are present. The seund, which
we discuss in section 3, is the effect of the K K 2
choice of test statistic and experimental design d2q = E (rk-)} E -
on the validity of the bootstrap when the sample k=l k=l rk
sizes are moderate. The third, which we discuss
in Section 4, is the performance of the density x E D2q((Yjk - j~k)/(V25r)}, (6)
estimator on a set of measurements with a variety j>j'
of real-world imperfections.

3Q
2. DENSITY ESTIMATION p,(x) (46sr)-I E c q q{x/( 4 6sr)}, (7)

The model on which this paper is based differs q=0
from the usual model for designed experiments only
in the omission of the assumption of normality. K K 2
The jth replicate measurement at the kth design cq { (rk-l)}- E
point is given by k=l k=l rk(rk-2 )

Yjk = xkTE + cjk (Q = 1,...,rk; k = 1,...,K) (1) x E Z Z (q{(2Yhk - Yjk - Yj'k)/( 4 6Sr)1. (8)
T h j>j'

where xk is the row of the design matrix j,j'#h
corresponding to the kth design point, e is the
vector of unknown parameters, C!k is the zero Equations (6) and (8) show explicitly how the
mean, independent and identicIl Y.-distributed replicate differences enter the error density
error, rk is the number of replicates at the kth estimation. As specified in Liggett (1988, 1989),
design point, and K is the number of design the fitting is accomplished by a weighted
points, nonlinear least squares algorithm. Approaches to

As specified in Liggett (1988, 1989), the avoiding negative values of the density estimate
replicate-differences estimator of the density of are presented in Liggett (1989).

64k is based on the Hermite function expansion
( chwartz, 1967). Note that this orthogonal ilL' i
function expansion is different from the Edgeworth
expansion. The Hermite functions can be defined I i I I I
by the recursion .2
po(X) = r-4 efp(-x 2 /2)
vl(X) 2 7-4 x exp(-x 2/2) (2)
q(x) (2/q)z x cq.l(x) - {(q - 1)/q)2 (q_2(x).

To apply the Hermite function expansion to the
measurements, we use a scale factor computed from
the median of the absolute differences between
replicate measurements

Sr = (0.6745)-l (2 )-! medianlYjk - Yj'kl
(lj<j'_rk, k = 1,.. ,K). (3)

Division by 0.6745 and 42 makes sr an unbiased
estimate of the error standard deviation in the
normal case. We estimate the error density by
fitting the functional form for the density given "
by

Q -3 Hot l Quantiles 3P(x) = (a/sr) o q (q{(x + a)/sr). (4)
q=O Figure 1. Error density estimated from Quinlan's

cable-shrinkage experiment (Box, 1988).
where the parameter a is chosen so that the mean
of p is zero. If the error density is assumed to An experiment with 4 replicates at each of 16
be symmetric as in Liggett (198), then a = 0 and design points was performed by Quinlan (Box,
only Hermite functions of even order are needed in 1988). Quinlan included many replicates to
the expansion. facilitate the analysis of dispersion effects.

The error density is estimated through its The reanalysis of Quinlan's data by Box and the
relation to the densities of the first and second discussants of Box's paper (Box, 1988) show that
differences between replicate measurements at the the dispersion effects are not particularly
same design point. The estimates of these strong. Ignoring the dispersion effects, we can
densities on which the fitting is based are given obtain an error density estimate from Quinlan's
by data. This estimate is interesting despite the

violation of the assumption of identically-
distributed error that underlies the replicate-
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differences density estimate. Figure 1 shows the density, we would first have to estimate the
error density estimate based on the assumption of values of 6j. Various ways to estimate the 6,
symmetry. Figure I is a quantile-quantile plot of suggest themselves. In the present context,
the estimated error density versus the normal estimation of the 6. by maximizing ao seemq
density. We see that the center of the estimated interesting since this method can be thought of as
density looks very much like the normal, but that choosing the 6. to make the error look as normal
the tails of the estimated density are somewhat as possible. Lifferentiation of a0 shows that the
thicker than the normal. resulting estimate of 6j is an M-estimate with

The tails of the error in Quinlan's data can be redescending y function.
investigated further by means of a half-normal The most general way to combine nonnormality
probability plot of the absolute differences and dispersion effects in an error model is to
between replicate measurements. This probability allow the error density to depend in some unknown
plot, which is shown in Figure 2, does not appear way on the controllable factors. Such a model
to be perfectly straight. Rather, this figure would limit the pooling that could be done in the
suggests, as does Figure 1, that the density of estimation of the error densities and would thus
the absolute differences has a tail somewhat require a very large number of replicate
thicker than the normal, measurements. One way to limit the number of

measurements required is to assume that the
dispersion effects only involve the scale of the
error so that after the replicate-differences have

I I Ibeen corrected for the scale effects, the error

density can be estimated by pooling all the
!2 corrected differences. Let the error term in (1)

be given by OkCjk, where the dependence of ok on

k, the design point, can be modeled by a function
with fewer unknown parameters than K, the number

Kof design points. We propose to estimate ak and

then correct the replicate-differences using this
9 estimate. The estimators of dispersion effects

XX suggested by Box and the discussants (Box, 1988)
may be appropriate. A robust estimator for the
dispersion effect' might be better.

K3. BOOTSTRAP INFERENCE
Bootstrap inference consists of finding the

distribution of a statistic by computing

realizations of the statistic from independent
samples drawn from an estimated density. Ii this

paper, we focus on statistics for testing lack of
fit, which is an important inference in designed

experiments. Other important inferences in

9 Half Quintiles 'designed experiments involve confidence intervals
for the differences between points on the response

Figure 2. Replicate differences from Quinlan's surface and confidence intervals for the values of
cable-shrinkage experiment (Box, 1988). o. The validity of bootstrap inferenve depend% on

both the accuracy of the density estimate and on
The existence of dispersion effects is a the characteristics of the statistic, which in

reasonable explanation for the thick tails turn, depend on the experimental design. In this
apparent in Figures I and 2 since dispersion section, we consider how the choice of design and
effeLts give a set of error realizations that statistic affect the validity of bootstrap
appear to arise from normal scale mixtui:e if th- inference based on the replicate-differences
dependence on the experimental factors is ignored. density estimate.
Thus, Figures 1 and 2 do not provide any important The percentiles of the replicate-differences
clarification of Quinlan's data. Consideration of density estimate have larger bias and larger
Oixinlan's data in this paper is intended to link standard deviation in the tails than at the center
replicate-differences density estimation with the of the distribution. This suggests that this
designs adopted for the analysis of dispersion. density estimate will provide accurate percentiles
This link raises the question of how both analyses for a location estimate robust against stretched-
can be combined. tail error even when the percentiles of the

Box (1988) mentions that Quinlan's experiment density estimate itself seem inaccurate. This
was run in the "split-plot' mode and that the principle can be illustrated with the median of
experiment may involve two error components only three. If the error density and error
one of which is reflected in the replicates. One distribution are given by p(x) and F(x),
way to mitigate this problem is to measure all the respectively, then the density of the median of
design points once, then measure all the design three independent error realizations is given by
points a second time, and continue to repeat this 6F(I-F)p. The factor 6F(I-F) downweights the
as many times as necessary. If this procedure tails of p.
were to be followed, then we would likely have to To provide some specific insight into the
include a blocking variable, that is, to replace validity of the bootstrap based on the replicate-
rjk in (I) with 

6
j + cjk to obtain an adequate differences density estimate, we consider an

model of the measurements. To estimate the error example in which the sample size is small for the
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purpose of density estimation and the error 2 1
distribution is quite asymmetric. We consider 3 Sn2 =- - (mine(F(6)1m=0 terms not in model)
replicates at each of 20 design points and error K-h n

distributed as X2 with 3 degrees of freedom. In - mine(V(O)I], (10)
the Hermite tunction expansion of the error
density (4), we let Q = 10. The mean and standard where n = Z rk, the total number of measurements,
deviation of the percentiles obtained in 100 and h is the number of terms in the model to be
trials are tested. Hampel, et al. (1986) give the asymptotic

distribution of Sn2 and propose that tests be
Error Density Median of Three carried out on the basis of this distribution. As

Prob. True* Mean Std Dev True* Mean Std Dev an alternative, we propose to use bootstrap
0.01 -2.89 -3.81 1.02 -2.60 -3.02 0.55 samples from the replicate-differences density
0.05 -2.65 -3.12 0.57 2.26 -2.38 0.47 estimate to determine whether an observed value of
0.10 -2.42 -2.65 0.50 -2.01 -2.00 0.46 S-2 is statistically significant. Work is needed
0.25 -1.79 -1.71 0.46 -1.46 -1.33 0.44 to determine the situations under which this
0.50 -0.63 -0.45 0.35 -0.63 -0.45 0.35 proposal has major advantages.
0.75 1.11 1.17 0.37 0.46 0.62 0.30 Consider the major issues involved in the
0.90 3.25 3.16 0.83 1.69 1.67 0.49 choice of the function i. For lack-of-fit tests
0.95 4.81 4.75 1.25 2.56 2.48 0.71 derived from i-tests, the issue of bounded
0.99 8.34 6.56 1.84 4.45 4.43 1.19 influence does not arise and thus, the choice of i

is simplified. For lack-of-fit tests, the
*The mean of the X2 with 3 df is subtracted, minimization of F() under the full model is

simply fitting a separate location estimate to
Dividing the standard deviations by 10 to obtain each design point. Thus, no design point has
standard errors of the means, we see that the higher influence than any other and no choice of t
density estimates are biased near the center and provides depeiuderice on the design point. Since no
in the tails. In the tails, both the bias and the design point is downweighted, a single design
standard deviation are smaller for the median of point might cause rejection of the fit of the
three than for a single error realization. Thus, model. This behavior is what is usually expected
the replicate-differences density estimate clearly of lack-of-fit tests.
provides more accurate results for the median of Another issue is whether to choose a i with a
three. These trials suggest that even for the redescending * function. On one hand, a
median of 3, the design, 3 replicates at 20 design redescending 0 function provides superior
points, and the error density, X2 with 3 degrees performance when severe outliers are present. On
of freedom, may not lead to an adequately stable the other hand, with a redescending w function,
density estimate. In an application of the the minimum of F(6) under the model might be such
replicate-differences density estimate, the effect that a design point is completely ignored in both
of the stability of the density estimate on the the estimate of 8 under the model and the value of
desired inferenccr should be investigated by Monte F(e) that appears in the statistic Sn2. Thus, the
Carlo experiment, test might lead to acceptance of the fit of the

To test lack of fit, we specialize the i-tests model even though all the replicates at one design
discussed by Hampel, et al. (1986). A lack-of-fit point have very large residuals. Belief that all
test is a comparison of the fit of the model of the measurements at one design point can be
interest with the fit of the most general model rejected as outliers dees not seem reasonable.
that can be estimated, namely, a location estimate One way out of this dilemma is to estimate 0 using
for each design point based on just the a i that has a redescending function but to
measurements aL that design point. Let ul, u2 , avoid a redescending 2 function in the F(0) chosen
... be variables that specify the factor levels in for the statistic Sn2 . In other words, in testing
the experimental design, and let xTO be a K-term lack of fit, the i-test, which is based on the
polynomial in these factors, xT = (1, ul, u2 , u1

2 , same t for estimation and testing, might be
ulu2, ... ). We can choose such a polynomial with generalized to different x functions for

the property that i]l the elements of 8 can he estimation and testing.
estimated and the property that the model we wish The ;alidit -f a bnotstrap h nd on the
to test is given by setting Om = 0 for elements in replicate-differences density estimate also
x not in the model. Let xk be the value of x at depends on the choice of i. As we have already
the design point k. Hampel, et al. (1986, p. 346) noted, the choice of a robust test is important
offer a test based on for validity. Moreover, whether the 4 function is

redescending may be ave n0 effect on validity.
K rk Roughly speaking, in the case of stretched-tail

F(9) = Z Z t(xk, (Yjk - xkTo) /°), (9) error, the replicate-differences density estimate
k=l j=l tends to have shorter tails than the true density

estimate. Thus, for a redescending 4 function,
where the function x is chosen based on the the bootstrap samples may have fewer observations
desired robustness properties and a is a scale that have no influence than samples from the true
parameter that must be estimated. Our notation distribution would have. For a non-redescending 4'
differs from that in Hampel, et al. (1986) in fun-t-ion such as Huber's, the location of outliers
obvious ways. Hampel, et al. (1986) propose the beyond a certain point makes no difference.
statistic The design of the experiment also has a beario,

on validity. For some designs, the evidence for
lack of fit comes from only one design point. An
example is a centerpoint that has been added to a
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two-level factorial design. This is the case in
which an analysi, the experiment based on Absolute Differences
normality may - be saved by the central limit
theorem. Thtis is also the case in which validity
depends -i. -ne percentiles of the distribution of " U 6
the le:ation estimate for a single design point. .s
For other designs, the evidence of lack of fit is
spread over many design points. In this case, the
bootstrap should be valid over a broader range of son

error distributions and sample sizes.

4. APPLICATION
In this section, we consider a set of kinematic

viscosity measurements made on re-refined oil.

The set of measurements consists of 3 measurements
on each of 65 samples of re-refined oil (Weeks, et as

al, 1983). The measurements are of the kinematic i

viscosity at 100 "C. In this application, the
actual variability of the samples, which is of
interest, must be distinguished from the
measurement error, which is not normally
distributed. Each oil sample was measured by w
three different laboratories. However, since the

same standard measurement method was used by each tiIe A

laboratory and since the interlaboratory bias was E
corrected on the basis of reference sample
measurements, the model given by (1) is plausible. Figure 3. First differences between replicate
The non-normality of the measurement error is kinematic viscosity measurements, empirical versus
manifested in two ways. In the set, 5 estimated distribution.
measurements differ markedly from the
corresponding measurements by the other two Second Differences
laboratories. Even without these outliers, a

half-normal probability plot of the differences I I I
between measurements on the same sample sLows

evidence of an error density that has a longer
tail than the normal. Consider a statistic for
comparison of the variability of oil samoles from
various sources. An appropriate statistic might

be computed from the medians of the three
measurements : n each oil sample. The contribution
of the measurement error to this statistic can be

assessed by means of a bootstrap based on the

error density estimate.
An estimate of the error density of the

kinematic viscosity measurements was computed.
Before considering this estimate itself, we
consider two diagnostic quantile-quantile plots, a

plot of the empirical distribution of the absolute
differences between replicates on the same oil
sample versus the distribution of these

differences obtained from the estimated density,
and a plot of the empirical distribution of the
second differences versus their distribution as - v i v tie ,
obtained from the estimated density. The plot of ",4 Estimted Quantiles .3
the absolute differencis in Figure 3 shows that
the estimated density fits the data well except Figure 4. Second differences between replicate
for the 10 differences that involve the 5 kinematic viscosity measurements, empirical versus
outliers. Similarly, the plot of the second est imated distr bution.
differences in Figure 4 shows that the estimated
density fits the data well except for the 15 Figure 5 shows a quantile-quantile plot of the
second differences that involve the 5 outliers, estimated distribution versus the normai
four of which are high, and one low. Clearly, the di;tribut in. The error density appears to be
estimated density does not account for the extreme negatively skewed, but this conclusion must be
values of the differences. T1,':e figures contain tempered by the results in Figures 3 and 4. One
a warning about. the interpetation of the way to check the effect of the outliers is to
estimated density. Also, these figures suggest remove :hem from the data set and re-estimate the
that a better error density estimate might be error density. The %1uilt of this is shown in
obtained by increasing Q so that the error density Figure 6. Both Figures 5 and 6 show the same
estimate can better represent the tails, basic shape for the error density, a negative

skewness. Thus, we conclude that -- error
density estimator largely ignored the 5 outliers.
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REGRESSION STRATEGIES

David Brownstone , University of California, -.vine

regression models. Kipnis looks at the strategy of
INTRODUCTION choosing the subset of variables to maximize R 2 in a

model with orthogonal regressors, but he does not
Almost all statistics and econometrics texts contain report the properties of individual cuefficient

strong admonitions against sequential estimation (or estimators. Veall considers these properties for a
"data mining"). These admonitions are as effective as stepwise regression strategy applied to an empirical
those against teen-age sex and drug abuse. Applied example. Although his results are qualitatively similar

econometricians ignore the textbook warnings and use to those in this study, it is impossible to disentangle the
sequential strategies because they believe that they effects of possible model misspecification from the biases
yield better estimates. In spite of considerable efforts, caused by the estimation strategy.

theoretical statisticians have been unable to analyze the Since most applied econometricians use some
sampling properties of these strategies under realistic sequential estimation strategy but only report the
conditions (see Judge and Bock (1978) and Judge biased t--statistics and standard errors from the last
(1984)). This study solves this problem by using the stage, this study concentrates on examining the size of
bootstrap (see Efron(1982) and Efron and Gong(1982)) these biases for a number of known models. The design
to compute the sampling distribution of different of the experiments concentrates on isolating the effects
estimation strategies. of multicollinearity among the regressors. The biases

This paper examines the sampling properties of reported here are caused solely by the use of sequential

simple multiple regression estimation strategies based estimation strategies. This study is not designed to
on variable and outlier deletion. With only small explore exactly when the biases will be large, but rather
deviations from a model with orthogonal regressors and to show how pervasive large biases are and suggest a
normally distributed errors there are substantial biases methodology for removing them. In particular, there are
in the standard errors and t-statistics reported at the always large negative biases in the standard errors
last stage of these simple strategies. Since the bootstrap estimated from the last round of even simple sequential
is only asymptotically valid, the results presented here procedures. With moderate collinearity, these biases are
are based on Monte Carlo repetitions from known error frequently greater than 100 per cent.

distributions to eliminate the confounding effects of Although it would be interesting to further isolate
possible small sample biases. However, for all of the the causes of the biases from sequential estimation,

designs considered in this paper, the small sample biases there is clearly large potential gain from designing
in the nonparametric bootstrap are negligible. The key better estimation strategies. The bootstrap methods
conclusion of this work is the necessity of completely described in this study could then be used to generate

specifying the estimation strategy and then consistent estimates of the sampling distribution of

bootstrapping it to get consistent estimates of the these strategies.

sampling distribution.
The bootstrap technique works by generating

artificial data samples and computing the estimator for EXPERIMENTAL DESIGN
each sample. This technique '-,s been used to derive

small sample properties of estimators for autoregressive The experiments are designed to investigate the
linear models by Freedman and Peters (1984) and for sampling properties of two estimation strategies,
Nested Logit models by Brownstone and Small(1988). Ordinary Least Squares (OLS) and Sequential OLS,
Independently, and more recently, Kipnis (1987) and with and without deletion of outliers and influential
Veall(1987) have used the bootstrap to examine the observations. The Sequential OLS (abbreviated by

effects of various estimation strategies in linear SEQ) procedure used in this study consists of first
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estimating the full model by OLS, deleting all variables The four experiments used in this study are chosen
(except the first two) with absolute T-statistics less to investigate commonly used variable and outlier
than 2, and finally estimating the restricted model by deletion strategies across a wide range of realistic model
OLS. The T-statistics for this procedure are calculated settings. The experiments are:
from the usual OLS formulas at the second stage.

RUN1: OLS and Sequential OLS (SEQ) are
There are 7 regressors and 100 observations in each compared where the dependent variable is

data set. The regressors and true parameter values are uncontaminated (e.g. the -s are all draws from a
initially generated as independent draws from a unit unit Normal distribution).
Normal distribution. Each set of independent regressors

is then transformed into 5 increasingly collinear data RUN2: OLS and SEQ are compared where the
sets. The most collinear data had condition numbers 2 of dependent variable is contaminated (e.g. 10% of the
approximately 135. These data are examples of strongly fs are drawn from a Normal distribution with
collinear data, but such data are quite commonly variance equal 100).

encountered in applied econometric work. The highest
bivariate correlation between any two regressors in any RUN3: After first removing outliers and influential
of the experiments is 0.9. observations, SEQ and OLS are compared where the

For each of the four experiments, 100 independent dependent variable is uncontaminated.
draws of the regressors and true parameters were made.

For each of these draws, and each of the 5 collinear data RUN4: After first removing outliers and influent,al
sets based on them, 300 independent "dependent observations, SEQ and OLS are compared where the
variables" were generated according to dependent variable is contaminated.

Y = Xfl + f, 100 different basic models (initial X matrix and
values) are used for each experiment since there is no a

where X and j3 are fixed, and the e are independent unit priori reason to expect convergence to anything over
Normal random variables or, for two of the these repetitions. The purpose of these repetitions is to
experiments, independent unit Normal contaminated investigate the behavior of the estimation strategies
with 10% independent draws from a Normal across different models and to insure that the results are
distribution with mean 0 and variance 1003. The not artifacts of some peculiar X or 0 values. Finally,
sampling distribution of each of the estimation since the matrices for transforming the basic
strategies is then estimated from the sample of independent X matrices into collinear regressors were
estimates over the 300 bootstrap repetitions 4. All of the fixed across all of the runs, the repetitions also induce
results presented in this study pertain to the estimation small variations in collinearity around the experimental
of the coefficient of the second of the two variables design values.
which were always kept in the regressions.

Each experiment considers the SEQ and OLS

estimation strategies for 100 independent draws of the RESULTS
true parameter values and 6 increasingly collinear

regressor matrices. In two of the experiments, outliers The results of the four experimental runs are
and influential observations were deleted before the presented as percentiles across the 100 basic data
estimation strategies were calculated. Outliers are those repetitions in Tables 1 - 4 . The numeric suffixes on the
observations with standardized residuals3 greater than 2 row labels refer to the degree of collinearity in the X
Influential observations are those with "hat" values matrix. The suffix I refers to the basic independent
greater than 0.14. These measures, and choice of cutoff data set, and higher suffixes correspond to the
values, are fully described in Belsley, Kuh, and Welsch increasingly collinear transforms of these data. The rows

(1980).
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TABLE 1: RUN1 RESULTS TABLE 2: RUN2 RESULTS
Uncontaminated Errors, No Outlier Deletion Contaminated Errors, No Outlier Deletion

Percentiles 5 25 50 75 95 Percentiles 5 25 50 75 95

CONDI 1.36 1.46 1.52 1.58 1.66 COND1 1.39 1.48 1.53 1.61 1.67
EFFI -4.16 -1.26 -0.19 0.01 1.15 EFFI -8.35 -3.92 -2.35 -0.03 3.74

BIOLS1 -5.57 -1.62 1.80 3.84 6.56 BIOLS1 4.22 8.22 10.92 14.01 19.10
BISEQ1 -4.69 -0.39 2.14 4.39 7.61 BISEQI 4.44 9.21 12.09 14.31 19.33

COND2 5.16 6.27 6.72 7.25 8.11 COND2 4.60 6.19 6.91 7.41 8.29
EFF2 -44.96 -16.56 -6.31 -0.69 5.45 EFF2 -52.82 -28.19 -13.30 -2.16 22.15

BIOLS2 -5.76 -1.41 1.04 3.49 6.34 BIOLS2 -0.08 4.83 8.23 12.11 17.77
BISEQ2 -3.30 2.86 6.44 15.03 33.20 BISEQ2 5.75 15.39 24.05 35.97 51.11

COND3 10.34 12.66 13.65 14.85 17.00 COND3 9.15 12.46 14.17 15.19 17.17
EFF3 -69.69 -39.66 -20.66 -5.02 12.65 EFF3 -80.17 -29.88 1.44 23.25 64.68

BIOLS3 -5.99 -1.81 1.45 3.63 7.69 BIOLS3 -2.42 5.13 9.57 12.99 17.25
BISEQ3 -2.12 9.30 23.45 38.09 72.92 BISEQ3 14.96 27.53 38.16 51.54 66.36

COND4 29.35 36.79 40.72 44.29 51.00 COND4 27.48 37.45 41.24 45.59 52.45
EFF4 -120.04 -66.68 -30.98 21.96 89.89 EFF4 -57.50 24.80 57.65 96.01 134.18

BIOLS4 -7.20 -1.17 0.77 3.76 8.13 BIOLS4 -0.31 5.79 9.00 13.25 19.81
BISEQ4 5.26 38.09 63.30 86.85 117.39 BISEQ4 13.37 24.22 41.12 60.09 109.46

COND5 58.17 73.31 81.51 88.15 102.25 COND5 54.10 74.58 82.41 91.83 105.18
EFF5 -132.83 -66.24 7.60 60.75 111.65 EFF5 -65.79 50.05 89.00 121.69 148.44

BIOLS5 -7.29 -2.36 0.28 2.73 6.37 BIOLS5 -2.89 6.20 10.44 13.22 18.97
BISEQ5 11.37 32.72 63.39 96.11 128.30 BISEQ5 8.34 23.00 36.97 59.85 120.41

COND6 96.78 121.72 135.88 146.74 170.45 COND6 89.81 124.32 137.34 153.21 175.36
EFF6 -125.98 -41.93 27.43 75.78 137.30 EFF6 -43.33 56.68 95.34 128.77 151.01

BIOLS6 -5.38 -1.79 0.25 3.18 7.54 BIOLS6 -0.28 6.01 9.75 13.25 20.23
BISEQ6 11.59 29.46 59.25 94.29 141.82 BISEQ6 14.80 22.82 38.61 60.75 108.46

labelled "COND" give the condition number for the X over the 300 bootstrap repetitions with:

matrices.

The other three rows in each group give the S
properties of the estimated second regressor coefficient T = i

(recall that the first two regressors were always r(biW2

included). The row labelled "EFF" gives the percentage

improvement in the mean square estimation (MSE) where denotes the estimate of the second element of

error of SEQ versus OLS: positive values imply that

SEQ is a better estimator. Note that the MSE here is at the ith bootstrap repetition and 1 is the sample mean

measured relative to the true parameter value used to of the b. Since Tables 1-4 are based on a Monte Carlo

generate the dependent variables, study with the error vectors drawn from their known
The remaining two rows (prefixes BIOLS and true distributions, T converges to the true T-statistic as

BISEQ) in the Tables give the percentage bias in the the number of bootstrap repetitions gets large.
T-statistics for the two estimation strategies. These If the error vectors are drawn from the empirical

biases are computed by comparing the average of the distribution of the residuals from a regression using all

standard OLS T-statistics from the last stage regression of the regressors, the resulting U would be Efron's
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TABLE 3: RUN3 RESULTS TABLE 4: RUN4 RESULTS

Uncontaminated Errors With Outlier Deletion Contaminated Errors With Outlier Deletion

Percentiles 5 25 50 75 95 Percentiles 5 25 50 75 95

COND1 1.36 1.46 1.52 1.59 1.70 COND1 1.38 1.46 1.50 1.61 1.72

EFFI -4.49 -1.30 -0.28 0.01 1.10 EFFI -7.69 -3.31 -1.13 -0.02 2.29

BIOLS1 12.41 17.07 20.83 23.80 29.18 BIOLSI 2.01 7.78 1061 14.16 20.15

BISEQ1 13.49 17.57 21.54 24.51 29.77 BISEQI 3.52 8.73 11.88 14.93 19.65

COND2 5.00 6.18 6.92 7.51 8.44 COND2 5.52 6.13 6.77 7.46 8.21

EFF2 -34.37 -17.22 -4.16 -0.72 3.29 EFF2 -42.97 -22.55 -10.90 -3.44 16.02

BIOLS2 12.71 17.23 19.60 23.15 26.02 BIOLS2 3.87 7.75 11.36 15.01 19.46

BISEQ2 12.52 21.60 25.78 34.27 47.85 BISEQ2 12.29 17.19 22.82 28.56 47.48

COND3 9.98 12.65 14.09 15.48 17.29 COND3 10.94 12.39 13.76 15.46 16.99

EFF3 -62.82 -31.62 -13.52 -3.43 23.82 EFF3 -79.91 -42.80 -18.56 -3.41 32.56

BIOLS3 13.71 16.80 21.26 24.35 27.51 BIOLS3 -0.20 7.59 11.50 14.43 20.16

BISEQ3 17.54 26.95 41.97 56.69 103.73 BISEQ3 12.41 25.47 35.28 54.37 76.82

COND4 28.38 37.05 41.91 46.80 52.97 COND4 31.35 36.65 41.38 45.92 51.32

EFF4 -109.17 -48.01 -16.94 24.76 63.45 EFF4 -101.95 -39.32 -2.31 40.63 79.29

BIOLS4 12.20 17.39 21.52 24.67 28.99 BIOLS4 -1.20 7.87 11.28 13.74 19.80

BISEQ4 34.41 53.72 77.91 101.03 150.48 BISEQ4 23.64 42.65 64.45 86.20 132.02

COND5 56.78 74.05 84.27 93.65 106.37 COND5 62.35 73.44 82.88 91.75 103.33

EFF5 -105.51 -24.69 15.17 55.82 88.88 EFF5 -81.06 -20.41 36.51 79.96 120.77

BIOLS5 14.61 18.04 20.36 22.94 26.94 BIOLS5 0.63 6.50 10.41 13.19 18.13

BISEQ5 28.99 53.99 79.04 99.73 162.33 BISEQ5 18.83 35.70 60.52 84.14 135.69

COND6 94.66 123.43 140.65 156.13 177.41 COND6 103.80 122.40 138.21 152.95 172.52

EFF6 -104.89 -15.20 42.87 76.36 96.63 EFF6 -103.36 2.11 50.34 91.57 135.16

BIOLS6 12.88 17.48 21.56 24.10 28.15 BIOLS6 -0.61 6.89 10.24 13.56 20.03

BISEQ6 31.22 51.77 77.37 95.24 150.99 BISEQ6 12.95 29.32 54.59 87.97 124.89

nonparametric bootstrap estimator. Since all of the RUN1, with uncontaminated errors and no outlier

models considered here satisfy the Gauss-Markov deletion. As textbook theory predicts, there are no

assumptions, Efron's (1982) results show that T biases or differences between OLS and SEQ if the

converges to an unbiased test statistic for the regressors are independent (corresponding to the suffix

hypothesis that Plim F = 0 as the number of bootstrap "1" in the tables). The OLS T-statistics are also

repetitions gets large. Note that these estimators do not unbiased since they are Uniform Minimum Variance

require knowledge of the true model so that they can be Unbiased estimators in this situation. However, with

applied in real situations. The small sample accuracy of even mild collinearity, there are substantial efficiency

this bootstrap estimator was checked by rerunning all of differences between OLS and SEQ. More striking are

the experiments with the error vectors drawn from their the increasingly large positive biases in the T-statistics

empirical distributions. In all cases the results are for the SEQ strategy: these biases average 60 per cent

almost identical to the Monte Carlo results in Tables and frequently exceed 100 per cent. With

1-4, thus justifying the use of the nonparametric multicollinearity it is possible to considerably improve

bootstrap at least for these experimental designs. estimation efficiency using the SEQ strategy, but the

Table 1 gives the results of the first experiment, resulting T-statistics will certainly be overestimates.
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FIGURE 1: BIAS IN SEQ T-STATISTIC, RUN RUN2 considers the same estimation strategies in a
case where 10 per cent of the errors are contaminated.

175 The results, shown in Table 2, are similar to those in

RUNt. One difference is that now some of T-statistics

for OLS for collinear regressors are positively biased,
although these biases are much smaller than the

100 positive biases in the T-statistics for SEQ. In addition

there are now dearer efficiency gains to using the SEQ
50 strategy as collinearity increases.

RUN3 has the same data generation process as

0 Y TRUN1, but the OLS and SEQ strategies are modified by
- 10 - 13 4 1 first removing outlying and/or influential observations.

As expected from the properties of the data generating
Condition, Numrber process, approximately 10 percent of the observations

are removed in each replication. The efficiency

comparisons between SEQ and OLS are similar to those

FIGURE 2: BIAS IN SEQ T-STATISTIC, RUN3 for RUN1. Note that now the T-statistics for both OLS
and SEQ are biased even for orthogonal regressors. The

175 magnitude of this bias increases with collinearity for
SEQ, but remains constant for OLS.

00 RUN4 compares the same estimation strategies as
100 o0 0RUN3 for data generated with contaminated errors.

o Since there are now some serious outliers to be removed,

50 0 - - the estimators should perform better than in RUN3.

_ ____ _Although the biases in the T-statistics are lower than in

0 RUN3 for both estimation strategies, the biases for the
-10 SEQ strategy are still very large for highly collinear

6 41 139 regressors.

Conditio, NMwer One common feature of all the results presented in

Tables 1 - 4 is the large variation in almost all the

measures across the different data designs. Figures 1

and 2 graphically show the bias in the T-statistics for

the SEQ strategy in RUN1 and RUN2. The largeNotes for Figures 1 and 2:
These figures show box plots of the percentage bias magnitudes of the efficiency differences and biases

in the T-statistics for the SEQ estimation strategy. Box clearly suggest that there is large potential gain from
plots, originally designed by Tukey, are common tools
in exploratory data analysis. They are described in developing better estimation strategies.
textbooks like Kitchens (1987). The upper part of the
box is at the 75th percentile, the line in the middle of
the box is at the median (50th percentile) and the lower
part of the box is at the 25th percentile. The upper CONCLUSIONS
whisker is at the "upper adjacent value," which is the
closest observation to the 75th percentile + 1.5 x the
Interquartile Range (the 75th - 25th percentile). The The simulations show the dangers in using the
open circles denote outliers, which are any observations
past the adjacent values. If the data followed a Normal results of common estimation strategies for hypothesis
distribution, then we would only expect to see .7 of testing. Although this study only considers simple linear
these outliers per box in any of the plots, regression models, I expect the qualitative conclusions

to hold for more complex econometric models. The
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methodology used here can easily be applied to Kipnis, V. (1987), "Model Selection and Predictive

analyzing any estimation strategy for any well-specified Assessment in Multiple Regression," Dept. of
Economics, University of Southern California,

models. Mimeo.

This study also demonstrates the feasibility of using Kitchens, L. J. (1987), Exploring Statistics: A Modern

the bootstrap to generate consistent estimates of the Introduction, West Publishing Co., Saint Paul,

sampling distribution of estimation strategies for Minnesota.

multiple regression models. The large differences in Veall, M. (1987), "Bootstrapping the Process of Model

estimation efficiency between the OLS and SEQ Selection: An Econometric Example," Dept. of

strategy show that there is large potential gain from Economics, McMaster University, Mimeo.

designing better strategies. Even if one only uses OLS,

there are still substantial biases in the T-statistics when

there are outliers and/or influential observations. NOTES

Although it would be interesting to explore the

conditions where SEQ works well in these experiments, .

theoretical work (Belsley et. al. (1980) znd Judge and Financial support from a UCI Academic Senate
Faculty Fellowship grant is gratefully acknowledged.

Bock (1978)) suggest that these conditions will depend The author also wishes to thank Ami Glazer, Ken

on unknown parameters. Bootstrapping allows Small, and Carole Uhlaner for helpful comments. Of
course, they bear no responsibility for any remaining

consistent estimation of the sampling distribution of flaws.

any sequential procedure, which allows comparisons to 'Although some of the simplest experiments reported

be made for each model and data set. here could be analyzed using analytic techniques, the
experiments involving outlier and influential
observation can not.

2The condition number is defined to be the ratio of the
largest and the smallest eigenvalue of the moment

REFERENCES matrix (X'X) of the independent variables. See Belsley,
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DATA SENSITIVITY COMPUTATION FOR MAXIMUM LIKELIHOOD ESTIMATION

Daniel C. Chin
The Johns Hopkins University Applied Physics Laboratory

ABSTRACT

This paper presents a computational procedure discussed in Spall (19851, IFAF pertains to an
and the numerical results for studying the approximation framework of the form handled by a
effects of outliers or other anomalous data on parameter estimator, that is, from data xj,
maximum likelihood estimates. This procedure is x2,..,xn, xi N (Ij, Z + Pi), IFAP can be used
based on a first order approximation relying on to gain insight into the properties or the
the implicit function theorem. The numerical maximum likelihood (ML) estimate, ^, of the
results of this paper are given for a
multivariate signal-plus-noise problem with vector of unique and relevant parameters,
independent non-identically distributed noise B, in U and E. This study demonstrates how the
terms. These numerical studies will illustrate current software can be used to study the
the procedure, influence of anomalies or outliers within the

1. INTRODUCTION set of xi's on the estimate 8.

This paper presents an efficient method of Assume that 8 is found as the root of the

determining the sensitivity of maximum likeli- score equation, i.e.,

hood estimates (MLEs) to the data used in cal- = t8: =

culating the estimates. This method is much
more efficient than a standard simulation that where L represents the log-likelihood func-
would involve several recomputations of MLE and tion. Since () invrlvc a term like
is useful in predicting the effect of outliers DL/MZ = 0 and since it may be that Z 0
or anomalous data on the estimate. satisfies 3L/E = 0, IFAF is not necessarily

working with a constrained (positive semidefi-
Maximum likelihood estimation is widely used nite) estimate of I . A further restriction of

in statistical analysis. It is found in te ent f formutn istt P

estimating the instrumentation error for a the current IFAP formulation is that all Pi's
guidance system or a navigation system, in the are assumed to exist (i.e., (Pi-) 1 exists).
guidanc sysate o ror s r n atin systmoi e We believe that a modification of IFAP to accom-geodetic parameter errors for an earth model,

modate either the square-root formulation (i.e.,and in orbit determination for satellites. In

addition, the MLE is also utilized in the procedure for ensuring E ; 0) or the so-
macroeconomic modeling, biometrics problems, and called information formulation, which relies on
education. Because of sophisticated equipment Pi instead of the nonexistent Pi, would be
and the complications of the real world, the fairly straightforward.
dimension of a MLE problem can be very large;
therefore to have over a hundred parameters in a Given an observed set of data,
single case is very common. Since the MLE has = *T *T *T T and
no closed form solutions, it is very costly to " - (x1 Ix2 , ) a.,

find a MLE. To find many MLEs for data the present software computes quantities related
sensitivity studies is even harder. Therefore, to the first-order expansion.
it is worth the effort to develop a method which
can approximate MLEs in a quick and accurate

fashion. This method is different from the ( + T *(
sampling techniques discussed in Iman 119801. 1

whr * h/dx.' scmue sn h
Section 2 will present the approximation where TI = /dT , * is computed using the

method named the First-Order IFAP, or Implicit implicit function theorem and 8 = 8(x*). The
Function Approximation. The general IFAP theory ,
can be found in Spall [19861. Section 3 various quantities computed from 8 and T
presents numerical studies on the signal-plus- include several unit-free, normalized measures
noise problems, and Section 4 is a brief of sensitivity which will be discussed in

conclusion. greater detail in the next section.

2. AN APPLICATION OF THE IFT
3. SIGNAL-PLUS-NOISE EXAMPLES

The First-Order IFAP contains the first two-
terms of the Taylor expansion around the
existing MLE using the implicit function theory There are three subsections in this section.
(IFT). Since only the "first-order" will be Subsection I will deb.ribe how that data was
discussed, this hyphenated word will be generated. Subsection II shall demonstrate the
omitted. The nonlinear estimation for nonlocal accuracy of the approximations. Subsection III
sensitivity can be found in Kalaba [19861. As uses two examples to show the IFAP results.
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I. Introduction II. Accuracy Demonstration

A series of numerical results were generated There are six cases in this section: in the

to evaluate the IFAP methodology and its soft- first case, Ax has only one nonzero element in

ware. These results use the same set of input x; in the next three cases, the Ax represents a

* certain percentage change of all elements in one{ .xPi} for i = 1, 2, .... , 25 *
Iii fof the x's with respect to the baselinex ; for

where the fifth case, Ax represents a change in one
positive standard deviation for all elements of

x R15 one x; the last case assumes one of the samples

P A iis abnormal and that 8 =(x* +Ax), and then
P, - Aifi - 1, 2, ... , 25*

Ai is a 15 x 30 matrix with its elements, the IFAP approximation, 8(x Ix + Ax), is com-

{aij}, generated randomly using the uniform pared to the MLE, B(x

distribution over (-1, I). CASE 1: The first element of x, was changed by

xi is generated using normal distribution 100% of its nominal value (xl), i.e.,

N(O, P i + Z10 fit oia)vle(
Ax = vec (Axl,0,... ,o)

25 1 2where vec denotes the vector form of a matrix,
15 0 the zeroes to the right indicate that all the[elements in that column are zeroes, and

E Ax"'1'o)Ax = 0 .l 0 )T.
15j Since only the first element of the first x

A nonconstrained scoring algorithm is used to was changed, the parameLeLS 11 and I 1,1 were

get a maximum likelihood (ML) estimate, most affected. The (*,El,) values are (2.21,
.* . *I '

a = O(x ), as the baseline value. The param- 223); the IFAP approximates are (2.57, 230); the
eters of 8 include all the means MLEs are (2.59, 228). The normalize (defined

(11, l2, **, "15) and the nonzero part of the below) differences between the IFAP
approximation and nominal values are (.11, .09);

following covariance matrix: the differences between the MLE and nominal

values are (.12, .08). The normalization fac-
1,1 tors were the square roots of the appropriate

O diagonal element of the Fisher covariance matrix
2,1 2,2 evaluated at the true p and E values used in

simulation. The changes in the other parameters

are small, not exceeding .03 times their stan-

9,1 9,2 99  
dard deviations.

,10,10 CASE 2: The elements of x 12 were changed by 50%

0 of their nominal (x12) values, i.e.,

L Ax - vec [.. .0,.5x 1 2 0,

That is, 8 contains the unique elements of the
upper 9 , 9 section and the diagonal el~ments of

row 10 to 15. For a change, Ax, from x , the Tal I

c *CBWpa/IsO o th. IFA and ML Solutions• So% change 3 for All Elements of x,

IFAP program generates B(x +Axlx*) the

approximation to 8(x* + Ax). Then, for each STATt B ESTMITES DELXTA BASKIKAI S ozLA
MEAN SIGMA

Ax there are ML estimates 8 corresponding to ML IFARM IFA. I7? PAP 1 L MIT. A

1 2.21 1.a4 1.87 -0.12 -0.11 223. 243. 241. 0.26 0.23
). By coqparing 8 and 8, the accuracy of 2 -.1 - -7.32 -0.0 -0.06 178. 183. 184. 0.08 0.08

E . B opa iga a d h cc rc f3 2.93 Z.81 2. 77 -0.04 -0.0 221. 220. 22. 0.06 0.00
4 -4.72 -4.9 -4.75 -0.0 -. 0 11. 112 112. 0.02 0.02

-1.82 -2.5Z -2.22 -0._ 2 -0.13 211. 241. 233. 0.39 0.28

the IFAP approximation can be studied. Since
A 3.18 3.20 3.42 0.02 0.08 389. 390. 390. 0.02 C.01 .19 -. 28 -. 84 -0.1 -0,20 90. 326. 310. 0.46 0.36

IFAP is afirst-order estimator, x + ) -0.89 0.71 -. 0 -0.06 .-11 300. 304. 302. . 0.04
IA isa fi s -r er e t m t r,0( xjx, 9 -4.82 -S'.13 -4,89A -0.10 -0.02 203. 20 1. 1 99. -0.0 3 -0.00S

* 10 1.01 0.87 0.72 -0.04 -0.09 267. 274. 274. 0.08 0.09

and the ML estimate ( + Ax) are expected to 1 -3.44 -2.70 -2.76 0.23 0.21 179. Z44. 232. 0.84 0.69
12 2.89 2.08 2.76 -0.10 -0.04 32P 118 1 31. 0.11 07
13 -3.84 -3.92 -3.8S -0.02 -0.00 16. lb .. m6 . 0.00 ...be different. However, 8 will approach 8 as Ax 14 -2.31 -1.90 -2.03 03.3 0.23 460. 13i. 510. 0.90 0.70

approaches zero. 10 -3.63 -4.46 -4.21 -0.26 -0.18 37 . 0.76 0.7
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where 0 represents all elements in the column positive delta is reached). Then, the IFAP vs
are zeros. The IFAP and ML estimates are given ML ranks were plotted. If IFAP and ML ranks
in Table 1. The BASE MEAN and BASE SIGMA in the were perfectly matched, then the plotted points
table represent the baseline parameter esti- would stay on a 450 line; on the other hand, if

m s, d the IFAP and ML ranks were completely unrelated,
mates, and The updated ML and IFAP the plotted points would be scattered Pvenly

estimates for the means and variances represent throughout the area plotted.

SWxx The error bars show the absolute differencesthe values for 8 (x + Ax) and 0(x + AXX). between the IFAP and ML estimates

The DELTAS, I- and -i  , are normalized

d1(x +Axix) -A (x +Ax)I, normalized by theby the appropriate standard deviation as appropriate standarA deviation. If the numeri-
described in CASE 1. cal differences between the IFAP and ML esti-

As shown in the table, the actual ML values mates are small then the rank agreements are

and the IFAP estimates are fairly close. Also less important.

note that the sign of the deltas are the same in Note that, in terms of ranks, the greatest
ML and IFAP in every parameter. discrepancy betwcen IFAP and ML occurs in the

However, it is not immediate from the table middle of the plot (see Figure 1). These param-

how well IFAP works as a predictor of the rela- eters, however, also correspond to those that
tive sensitivities. That is, can IFAP accu- are least sensitive to Ax (and thus of least

rately detect the parameter that is the most interest), and, as shor in the error bar chart,

sensitive, the second most sensitive, etc.? tiose for which the norlized errors between

Therefore, Figure I is a plot that compares the

ranks of the estimates in terms of their sensi- discrepancy in ranks can be attributed to the
interest variability associated with such smalltivities. Sometimes, the IFAP rank may not nrlzeeros

oiaLh L' .ippropriate ML rank, even though the normalized errors.

actual numerical differences between these two CASE 3: All the elements of x, were changed by
estimates are small. So, an error bar chart was
added in Figure I underneath the rank plot. 50% of their nominal (x1 ) values, i.e.,

The ranks of the parameters are assigned by Ax - vec [.5x*, 0,..
their values of the normalized deltas from the
largest negative value to the largest positive where 0 indicates that all elements in that
(i.e., rank "I" Is assigned to the largest column are zeros. This case is similar to
negative delta, rank "2" is assigned to the CASE 2. The purpose of this case is to demon-
second largest negative, etc. until the largest strate that CASE 2 was fairly typical.

301 30-

2,- - 25-

20 20-
c:5

0 2

10- 10
c c

la

0 W 0 x - T I

0 5 10 15 20 25 30 0 5 10 15 20 25 10
Rank Predicted by IFAP Rank predicted by IFAP

O.ZSC0.2-

o0125-1

0.000 -MMni I 0,0
o io 5 20 25 30 0 5 to IS 20 2 30

Rank Predicted by RAP Rank Predicted by IAP

Figure 1: MII!IFAP Ranks and Normalized iriorN Figure 2: ML/IFAP Ranks and Norinalhzed Errors
50% Changes for all Eletnents of x12 50? Changes for All Elenrients of x,
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Figure 2 show,. Lhe rank plot and the error bar CASE 5: All the elements of x1 were changed by
chart of this case. The pattern in this figure positive one standard deviation, i.e.,
is the same as In Figure 1. The lower left and
upper right of the plot have many points lying Ax = vec[Ax, 0, ... ,]

o~i the 450 line while the error bars at center
area are short and have the same magnitude where
errors as in CASE 2. Ax1  [( ,+9 P 1/2,

Since the plot and chart together convey the1 "/2
essential information for comparing IFAP and ML, (E12,2 + P, 2 
a table such as Table I will be omitted in this 2 2
case as well as in CASES 4 and 5. (Ep'p + P )l/2] T.

P,P

Some of the changes in the previous cases may
CASE 4: All the elements of X12 were changed by be small in comparison to the standard devia-

* tions since 100% of a small value is still
100% of their nominal mXa2 l values, i.e., l. The changes of the elements in this case

have the same ratio to the standard deviations;

Ax vec[ ... , 0, therefore, the rank plot at the top of Figure 4
is expected to be more evenly spread out than
the previous plots. From this spread, the

In comparison with CASE 2, Ax is twice as points in the plot still tend to stay along the

large: this case also shows larger differences 430 line and several of the most sensitive

on the error bar chart, and a more scattered parameters have been assigned at the same ranks

rank plot. Figure 3 sitowa that the largest in both IFAP and ML. Referring to the error bar

error in the chart tripled in values, and there chart at the bottom of Figure 4, the points that

are 6 more points off the 45 line in the tend to be off the 450 line in the plot have

plot. However, it is apparent from the plot smaller errors, less than one-tenth of a stan-

that there is still a strong tendency for the dard deviation. Therefore, the IFAP approxima-that- there and stl ar strongy matched.o h
points in the rank plot to lie near the 450 tion and MLE are closely matched.
line. The IFAP approximation has the same ranks CASE 6: Assume that all the x's have the same
as the MLE at the lower left and upper right * ,
corners of the plot. The points off the 450 x1 's as in the previous cases (1-5), except x3
line are concentrated at the center section and, is replaced by 2x*
as before, correspond to smaller normalized Te
errors. 2x3 are changed back to original values, i.e.,

30-

30-

25-

25- X

20-

20- a

-

4m ,, to-

10

5

X

S0 T- T --- -

0 5 10 15 20 25 30

0 --- r ---- t Rank predicted by IFAP
0 5 o is 20 25 30

Rank predicted by IFAP

0.2

0.4

0.0W 0.2 0 5 to IS 20 25 30
0.0 -Rank Predicted by IFAP

0 5 to 15 20 25 30

Rank Predicted by IFAP
Figure 4: ML/IFAP Ranks and Normnalized Errors

PIgure 3: Ml,/IFAP Ranks and Normalized Errors Positive One Standard Deviation Changes
100% Changes for all Elements of x,, for all Elenents of x,
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Ax = vect0, 0, -x3 , 0, .. ] The two examples shown in this section are

displayed in Tables 3 and 4. Each example was
This case was designed to show how IFAP would do generated from nine similar IFAP runs. Every
when one of the x was an outlier. The compari- run was generated from the same baseline
son of the IFAP approximation and MLE is shown
in Table 2.

T.bl. 2
Comparison of the lPEP and ML Solutions

100% changes for All Elements of x7Tbl 3

BASE EAN GORML1ZED BASE COVARIA CI 6NORMALIZD Relative Change. in 0 Parameters to Their Standard Deviations
STATE ESTIMATES DELTA ESTIKATES DELTA for 100 Percent Changes in x (First 9 of 25 Samples)

MEAN ;IGA F
I 1L SAMPLE (right) X.. ... .. . .. ..

1 1.43 2.21 1.71 0.24 0.09 246. 223. 216. -0.28 -0.38 PARAMETER(down)
2 -7.47 -7.12 -7.12 0.11 0.11 181. 178. 172. -0.00 -0.12
3 4.43 2.93 3. 3 -0.48 -0.34 36. 221. 176. -1.51 -2.10 v 0.04 -0.06 -0.07 0.14 0.11 -0.01 0.0 0.26 0.43
4 -5.20 -4.72 -4.84 0.10 0.11 116. 111. 103. -0.07 -0.17 v, -0.36 -0.56 -0.12 0.20 -0.03 0.29 -0.09 -0.12 0.07
5 -2.26 -1.02 -1.91 0.14 0.11 224. 211. 201. -0.17 -0.30 v; 0.53 0.22 0.31 -0.15 0.13 -0.04 0.23 0.07 -0.47

Or -0.25 0.22 -0.09 0.15 -0.42 0.20 -0.24 -0.07 0.26
6 4.47 3.18 3.08 -0.41 -0.44 500. 3089. 356. -1.44 -1.86 s -0.03 -0.02 -0.11 0.13 -0.21 0.09 0,40 0.16 -0.54
7 -3.79 -3.19 -3.37 0.19 0.13 30". 290. 279. -0.22 -0.30
8 1.92 0.89 0.90 -0.33 -0.31 360. 300. 204. -0.77 -0.98 u6 0.33 -0.73 0.43 0.01 0.26 0.00 -0.00 -0.24 0.42
9 -4.11 -4.02 -4.09 -0.22 -0.25 246. 203. 194. -0.00 -0.66 _0.07 0.55 -0.11 -0.39 -0.17 -0.06 -0.25 0.13 0.25
10 2.70 1.01 1.03 -0.54 -0.53 470. 267. 202. -2.61 -3.46 o. -0.32 0.12 0.32 -0.19 -0.07 -0.04 -0,31 0.55 -0.16

0.09 -0.03 0.24 0.21 -0.35 -0.32 -0.17 0.15 0.22
11 -3.54 -3.44 -3.33 0.03 0.07 178. 179. 179. 0.00 0.01 1,. 0.15 -0.42 0.53 0.20 -0.45 -0.02 -0.22 -0.04 0.25
12 2.S0 2.69 3.13 0.10 0.17 331. 320. 320. -0.0 -0.03
13 4.3 -384 -4.08 0.15 0.08 169. 165. 156. -0.05 -0.16 A,, -0.22 -0.34 -0.08 -0.07 0.12 -0.20 0.08 0. 2 0.09
14 3.40 -2.71 -2.70 0.24 0.22 487. 460. 451. -0.34 -0.45 i., 0.50 0.24 -0.19 -0.01 0.59 -0.42 _0.01 -0.07 0.26
15 4.14 -3.63 -3.6 0.16 0.12 120. 107. 101. -0.16 -0.25 ,, 0.06 - 4 -0.'7 _ 6 -0.20 -0.41 90.24 0.00

. . . . . .. A,, -0.11 -0.21 0.24 -0.03 -0.19 -0.33 0.40 -0.26 -0.64
A19 - 3. -0.26 -0.11 0.35 -0.15 -0.10 -0.17 0.11 0.04

0 1[ 3.34 4.53 .o Z.50 3.60 2.37 3.49 2.78 4.12

0,., 0.05 0.04 0.23 0.24 0.23 0.02 1.17 0.54 0.49The baseline value in Table 2 is O, 4.8 12 I 0 05 0.5 1 0.04 0281 00 3 0.02 0.21
Z0. 1 .42 0.6 0.90 0.25 -0.13 0.00 0.14 0.0 1 1 7

S* = 0 * A1.. 2.12 0.02 -0.05 0.22 1.5, 0.21 0.43 -0.02 0.15

a (x Ax). The MLE have the same values I,., -0.2 00 30 . 02 0.10 0o 1.2 .24 1.75

1 * 1 2.22 2.43 1.02 0-21 -0.02 -0.06 0.01 0.12 0.51.. 0 2 7 0. Gh 0.11 0 8 a .0 3.01 0.12 0. 14 0.34

as the previous baseline value 8(x ), and the 1, 0116-0:00 0157 0.1 0.14 0.09 0.67 1.1 0.24
1,, 0.00 -0.02 0.4G 0.1. 0.40 0.5' 0.17 0.30 0.10

*(Z * 0,,.,, 0.12 00.51 000 -0.01 3.25 0.05 0.39

IFAP approximation is a(x Ix -6x). The nor- ,., 0.10 0.44 -0.06 0.1I -00 0.20 -0.10 0.39 0,07

194 0.20 0.00 0. - 1.4* 1.12 -0.01 2.06 0.46
S 0

. 0 7  
1 S6 0 .01 0,10 , .17 0,04 0.95 20 0 03malized deltas are the differences between the 0,,,, 0. 1.3 .05 0.32 .17 0.04 0.9 o 3.200

01,.,1 0.04 ..I o,03 0.10 .12 0.03 0.2* -0.05 .05

IFAP or ML estimates and 8 ; they are then 1 01 7.0 8- 5. 1 4.09 5.3 326 S.90 4.4 1. 253

divided by their standard deviations as
described in CASE 1.

Table 2 shows that the IFAP and ML estimates

are near one another even though 8(x -Ax) is
Tab1e 4

far from 8 (x ), and that the (normalized) deltas tIo .Ov change .. P to Their. Standard Deo,,tAon,

for the IFAP and ML have the same signs. Thus, S e,100 P, - Cn in Ot 9 Of 6* S l

SAKPLE(r ight) x, .1 .1 x, X. .1x ;, z

IFAP performs well for this outlier-type case, PA AETo(do-)

tOO. o, -0.03 0.00 0.09 -0.13 -0.06 0 '.49 -0.24 -0.42

_0.34 0.56 0.11 -0.29 _.03 -0.29 0.08 0.1Z -0.07
T 0.00 -0.21 -0.34 0.14 -0 11 0.03 -0.24 -0.02 0 4

Il1. The IFAP Results/Interpretation o. 0,22 0.22 0.11 -0.6 0.42-o.21 0.24 0.06 -0.6
s 0,0 0.01 0.11 -0.13 0.17 -0.08 -0.40 -0.16 0.55

There would be several ways to apply IFAP in -0,36 0.74 -0.44 -0.02 -0.25 -0 01 0.01 0.23 -0.42
-0.00 05 0.13 0.38 0.27 0. 0 0.25 _0 .1 3 -0. , 5

actual data processing, e.g., approximating the , 0. ,-0 1 -0.91 0. 19 0 '0 0.4 0.01 -U.54 0!.*
-0,09 0.01 -0.5 -0.21 0.22 32 0.12 -0.15 -0.22

estimates and studying the sensitivities. This .,, -0.16 0.43 -0-3 -0.20 0.6 0.uo 0.Z 0.04 -0.24

section presents two tables that give some 0,, 0.26 034 0.12 0.01 -0f14 0.21 -0.0 -0.31 -0.10

insight into such applications of IFAP. Recall -0. -0 -0 24 0 17 -noo -o 'A 040 0 o .08 o.-0.09 0,56 0,08 0.17 0. 4 0.19 0.42 0.25 - V-2

that the lEAP program uses the same data as the ., 0.11 0 24 3.22 0.04 0.-0 0.2 - 0.40 .* 0.54

ML estimator. A, 0.20 0.24 0.12 -0.31 0.15 O. 0.2b -2.10 -0.05

1.28 4.57 3,06 2 91 3.50 I ' 5 l 46 2.7S 4 19

Most sensitivity studies require a large , 0; _7 07 03 -. 0 0 .02 .41 S 0.1',
[z -O q 9 1 17 -0 1 -0 , 0 -0.84 -).0D2 -0.02 -0.22

number of runs. Therefore, a study was made to X, , -1 -0.25 -2.1O -0 2 I 0.05 -0. 13 -3.D O.79
0, * -0.15 -0 66 -0.17 -0.39 -1.42 -024 -.341 (0.2 -1.27investigate the efficiency of the IFAP pro- ,., 20 -7.0 0.01-n -0 : -C.5 -1.14 -. 24 -1.2

gram. The study, including 51 samples, 59 Z, -1.10 -2.53 -1 06 -0 27 0.1 0 04 -0.05 -0.41 -0.54

states and 154 parameters, shows that the IFAP I, , -1,24 .0 *0 -0.35 -0 74 0 0 . .2.0 .
0 

1 1 0.10 -0.1 3
0P -00 006 -0.308 -0.20 -0.19 -0 n4 -0.2.7 - 4 -0.06

CPU time was less than 1/25 of that required to 6,6, 0.02 .0 -o060 3S 04 -0. 1 -0. . -o.1.0

generate an MLE by DL/scoring. For a case size n 0. 0 2 -. 46 -050 0 7' 0 03 t, 21 .30 .0

",, ,, -1229-3.43 0.0 ' -0 0.'-002 I1 0 11 -1 " -0.12like this large, an IFAP run took about 10 CPU ' q -94 -0. 0 -0.2 -0.29-I 52 -1 1 13 -300 -040

seconds on IBM 3083. In other cases, of course, 0,, ,, -0 09 -i 3 o6 03 0I0 0 -30 03,.20 0 .4

the CPU times may vary according to the number 1'. 0 04 -0 f, -n 2 -04 -0 - 0 -0 I 0 n 0 0n

of x's, states, and parameters. 1, A, A 12 11 20 000 ,4 10 6 '19 4 44 7
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I I*

*x and Pi's. Each column corresponds to in Section 3.11 it was shown that the current
first-order implementation provides an accurateapproximation to the changes in parameter esti
mates resulting from changes in the data of a

generating ; the other samples remain at their selected x. It was found that if the parameters

x values. Table 3 was generated using the were ranked in order of their sensitivities to
• these changes in data, the ranks of the param-xi's and P 'a as in Section 2. Table 4 was
i. eters as given by IFAP were close to the ranks
generated with a modified x3 , the elements of as given by recalculating MLEs. This was espe-
which were doubled in comparison with the values cially true among those parameters that were
of Table 3. This will illustrate how IFAP most sensitive to data changes, which, of
performs in the presence of an outlier (sample course, would correspond to the parameters of
3). most interest.

Section 3.111 demonstrates how IFAP might
Tables 3 and 4 show the normalized deltas, apply in actual data Analysis. In particular,

* two tables were presented that illustrate how
i.e., the difference between 8 and 8, normalized IFAP can be used to show at a glance how sensi-
by the Fisher-based standard deviations as tive various parameter estimates are to changes
described in CASE 1. The columns headed by xI , in the data of one x. As an aside, it was found
x2, ..., x9 correspond to samples, 1, 2, ..., that we were able to detect an outlier x by its
9. The values for IbE and NEI at the bottom of abnormal impact on the estimate of the variance
each column denote the sum of the absolute terms; we have not yet developed a rigorous
values of the entries in that column, theoretical basis for this observed phenome-

non. We found that it was approximately 25
times more efficient (in terms of CPU time) to

Table 3 was generated using 8 = 8(x ) and calculate updated IFAP estimates than to calcu-

N(OP +) for i - 1, 2, 25. Notice late updated MLEs in a larger size problem.
This may be the difference between feasibility

that the NEI's are about twice as large as the and infeasibility in a large-scale data sensi-

Ipi's within all samples. The differences tivity study.

in III and Ili may be largely attributed to the ACKNOWLEDGEMENT
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BOOTSTRAP PROCEDURES IN RANDOM EFFECT MODELS
FOR COMPARING RESPONSE RATES IN MULTI-CENTER

CLINICAL TRIALS

Michael F. Miller
Hoechst-Roussel Pharmaceuticals Inc.

Somerville, New Jersey 08876

1. INTRODUCTION
Clinical trial designs for comparing an intervals for statistical inference

experimental treatment with an appropriate problems generated by the above model.

control commonly use several investigators Parameters are defined in terms of the
located at a variety of medical centers, random effects density g, and estimates of
all operating from the same protocol. these parameters are generated from
This paper is concerned with treatment estimates of g based on the observed
versus control comparisons based on a response frequencies. An important
dichotomous response, A specified event, special case is studied first: the
termed a response in this paper, is proportional odds assumption, where the
observed to have occurred or not occurred treatment to control odds ratios are
for each subject in the trial. The assumed to be homogeneous across centers.
context for a statistical comparison of Nonparametric versions of the bootstrap
treatment and contr-l is a stochastic are then explored for the more general
model assuming treatment and control random effects model when the proportional
probabilities of response at each center. odds assumption cannot be used.

DerSimonian and Laird (1986) observe Two examples will be given illustrating
that the control and treatment response the use of these methods. One example
probabilities will likely vary from center involves a multi-center trial, the other

to center, or vary from study to study in example is a meta-analysis of several
a meta-analysis of similar clinical trials discussed in DerSimonian and
trials. They prop-se a random effects Laird's paper. For this meta-analysis the
model assuming that a center's control and sampling unit for the random effects model
treatment response probabilities are is a particular study rather than a study
themselves random variables with a site. The models and methods used here
distribution dependent cna the population are formally the same for a meta-analysis
of centers under stud . as they are for the multi-center trial

Let <P,Q> be the control and treatment although the interpretation of the results
response probabilities at a given center. can be different.
The pair <P,Q> are themselves random
variables with: 2. PROPORTIONAL ODDS MODELS

Suppose, for the random pair <P,Q', the
(1.1) joint distribution of <P,Q> following can be assumed:

g(p,q), <pq> varying in the
unit square, or in a subset of (2.1) Q/(I-Q) : r*P/(l-P), r a fixed

the unit square. pc..itive constant.

Following the selection of <P,Q), Here the odds for occurrenct in the
independent samples of n control and m treatment group is a constant multiple of
treatment subjects are observed. If X, Y the control odds for occurrence, and r is
are the observed frequencies of the the constant odds ratio, treatment to
control and treatment responses, then X control. Under this assumption the random
and Y are assumed to have independent pair <P,Q. must vary within a one
binomial p.d.f.'s conditioned on the dimensional subset (curve) of the unit
assumed values P~p, Qrq. square.

If k centers are planned for a This important special case has been
multi-center trial, then the unobserved studied extensively in connection with the
response probabilities <Pj,Qj>, j~l,k are Mantel-Haenszel test. Note that the
assumed i.l.d from g, while Xj,Yj are the hypothesis of rl in the proportional odds
observed control and treatment response model implies Pj:Qj for every center
frequencies from nj,mj subjects at jzl,2,..k. This is the usual "no
center j. treatment effect" null hypothesis for the

This paper explores the use of the Mantel-Haenszel test. Wittes and
bootstrap method (Efron, 1982) to compute Wallenstein (1q87) discuss approximations
significance levels and confidence to the power of this statistic and give an

excellent reading list on this subject.

86



Under the proportional odds assumption T(p,q)=-T(q,p) yields a distribution
inferences about the fixed odds ratio r symmetric about zero for T(P,Q) under
(or log odds ratio Ir = ln(r) ) do not (3.1) and this in fact characterizes
require a random effects model even though (3.1). In particular, T(p,q)=ln(q/(l-q))
the response probabilities can vary - ln(p/(l-p)) = log odds ratio satisfies
considerably from center to center. The this property. Estimates of g under (3.1)
conditional likelihood function given the are proposed in section 4. Estimates of
assumed values Pl=pl, P2=p2,....Pk~pk, and the joint p.d.f. g in general are

formulated now in terms of the estimated
qj = r*pj/(l-pj+r*pj) control and treatment response rates:

can be expressed entirely in terms of the PHj = (Xj+.5)/(nj+l)
control response rates, pj j=l,..k, and QHj z (Yj+.5)/(mj+l), j=l,....k.
the common odds ratio r. The maximum
likelihood estimates of r and pl, p2 .... pk Three nonparametric estimates of g are
cannot be found in closed form, but an considered in this paper. Each of these

elementary numerical iteration can be used estimated ioint p.d.f.s assigns all of its
to calculate the estimates and their mass to the subset of observed response
standard errors. Bootstrapping the rate pairs:
sampling distribution of the MLE of r, and
the Mantel-Haenszel estimate of r given in SPRT { <PHj,QHj>: j=l,..k }.
Fleiss, 1981, suggests their sampling
distributions are very similar for (3.2) GHl(p,q) = 1/k, <p,q) in
examples involving moderate within site SPRT,
sample sizes.

Computation of the MLE's permits the (3.3) GH2(p,q) = c*nj*mj/(nj+mj),
use of the likelihood ratio test for <p,q> = 'PHj,QHj>, where c i.
assessing the goodness of fit of the the constant making GH2 Lum
proportional odds assumption. In practice to 1.0 over SPRT,
this test should be made at a level higher
than p=.05 so that the greater sensitivity (3.4, GH3(p,q) = maximum likelihcoo
available under homogeneous odds ratios is estimate of g among p.d.f.s
not so easily assumed. Examples of these assigning all mass within
methods are given in section 5. The next SPRT.
section discusses inferences when the odds
ratios cannot be assumed to be Estimates (3.2), (3.3) are
homogeneous. Because sample logits tend computationally simple, and are consistent
to be more normally distributed than odds when k and the min{nl,...nk,ml,....mk)
ratios, log odds ratios will be used from diverge to infinity. The details of this
now on. are not relevant here because while the

nj's and mj's are often large, k~number of
3. A NONPARAMETRIC RANDOM centers is usually small.

EFFECTS FORMULATION The maximum likelihood estimate
Consider again the random response specified by (3.4) can be obtained from

probabilities (Pj,Qj> j=l,... k as a random the EM algorithm (Dempster, Laird, Rubin,
sample from the joint p.d.f. g defined in 1977), but a closed form solution is
(1.1). The null hypothesis of no available also. The likelihood function
treatment effect proposed here is given that must be maximized has the form:
by:

(3 1) g(p,q) = g(q,p) , mj(g) E gw j

Symmetry of the joint p.d.f. about pq where

conveys the essential meaning of no gw g(pwqw),

treatment effect. Note that any real bwj pwxJ(l-pw)nj- xj x
valued transformaticn having the property qwyj(l1 qw)mj-yj,

,pw,qw) in SPRT.
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The details of this will be given in conclusions regarding treatment effect
another paper. depend on the selection of this model, as

Once an estimate of g is obtained, will be illustrated by examples in section
namely CH using either (3.2), (3.3), or 5. These examples will also illustrate
(3.4), then estimates of the log odds the price in precision that must be paid
ratio can be formulated. In this section in moving away from a proportional odds
the log odds ratio is not constant. Let assumption.

The general algorithim for the
(3.5) lr(g) E[n(Q/(I-Q)) - bootstrap used here is as follows for the

ln(P/(1-P)): g2, random effect situation. The percentile -
t method of generating interval estimates

where the expected value is taken with for lr(g) will be used in order to take
respect to g, and g is such that ir(g) is advantage of any reduction in coverage
finite. Define probability error (Beran, 1987).

(3.6) LRH = lr(CGH) (4.1) Obtain an estimate, GH, as in
(3.2), (3.3), or (3.4).

as the estimate of the mean log odds ratio Compute LRH and SEH, an
based on GH. Note that LRH is just a asymptotic approximation to
weighted average of the empirical log odds the standard error of LRH.
ratios, the weights provided by CH. The
next section discusses how the sampling SEH Q T (I GH 2*(vh + F2 GH))),
distribution of LER can be approximated i

for forming confidence intervals and where
computing significance levels.

vhj=I/(nj*PHj*(I-PPij))

4. APPLICATION OF THE BOOTSTRAP 1/(mj*QHj*(IQHj)),
The role of the bootstrap here is to

provide an approximation to the sampling 42(g)=Variance (In(Q/(I-Q))
distribution of LRH, where both this in(P/(l-P)):g).
sampling distribution and LRH are
determined by CH. The bootstrap (4.2) Sample i.i.d. k pairs
distribution can be an imperfect <PBj,QBj> from CH.
substitute for the unknown sampling
distribution of LRH determined by g, the (4.3) For each J, sample nj,mj
true underlying random effects p.d.f. binomial trials using response
.4ith small k there is no guarantee that probabilities <PBj,QBj) and
the measure defined by GH is anything like note XBj,YBJ, the response
the measure defined by g. There is also frequencies, j=l,2,... k.
the issue of whether a g exists, whether
sites chosen for a clinical trial are (4.4) Using the data obtained from
representative of any real population, (4.3) compute the estimate GHB
4ith some p.d.f. g. Note that these in the same way GH was
problems of small k and a population of computed from the original
sites disappear under proportional odds data. Then compute LRI4B and
because the odds ratio MLE was driven its approximate standard error

entirely by the conditional likelihood SEHB from CHB. Also compute
given the assumed values of the site ZB:(LRH-LRHB)/SEHB, the
response probabilities. However, when studentized transformation.
proportional odds cannot be assumed, using Repeat (4.2, 3, 4) NB times (I used
GH as a working model in a random effects NB=600) to obtain empirically the sampling
setting can be more credible than the distribution of LRH when using GH as the
usual Mantel-Haenszel tests even with the random effects p.d.f. The empirical
small k and the artifactual nature of OH. distribution of the ZB's is used to form a

In the realm of heterogeneous odds percentile-t interval estimate of lr(g).
ratios, the conclusions derived from a If Z(2.5) and Z(97.5) are the 2.5th and
data analysis may depend heavily on the 97.5th percentiles of the ZB's then
selection of the method for estimating g.
The bootstrap readily provides answers to (4.5) (LRH + Z(2.5)*SEH, LRH +
the inference problems within any Z(97.5)*SEH}
"computable" empirical model selected for
analysis, and therefore provides the is an approximate 95% confidence interval
ability to assess how the general for lr(g).
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To obtain a test of the null hypothesis 5. TWO EXAMPLES
given in (3.1), namely g(p,q)=g(q,p), then The first example involves a test drug
the following estimation procedure is used for treating ulcers. The following data
for g assuming the null hypothesis is was obtained after two weeks of treatment.
true. Let OH again be an estimator of g
with support SPRT. STUDY PLACEBO DRUG LOG ODDS RATIO

SITE NO. HEALED/N % NO. HEALEDIM % DRUG TO PLACEBO

(4.6) First translate the points in
SPRT so that the center of 2 0 2 64.9 1.31fal nteln ~.2 2/25 8.0 5/26 19.2 1.01
mass falls on the line p=q. 3 / 7.9 7/23 30.4 0.70

4 4/16 25.0 3/1: 21.4 -0.20
PHTJ =PHj + (mean[QH:GH] - s 7/17 41.2 6/21 28.6 -0.56

mean[PH:GHI)/2 6 3/23 13.0 4/24 26.7 0.29

QHTj = QHj + (mean(PH:GH] -
mean[QH:GH)/2 This drug was clearly effective after

4 weeks of treatment. The question here
(4.7) Now define the estimated null is whether an efficacy claim is warranted

distribution GHO, GHO(p,q) after two weeks.
(i/2)*GH(p,q), for The likelihood ratio test for
<p,q>=<PHTj, QHTj> or proportional odds yields a chi-square
<QHTj,PHTj> j=l,2 .... k. statistic = 6.09 with 5 degrees of
GHO(p,q)=0 elsewhere. freedom, clearly not significant at p=0. 2 .

Assuming proportional odds, the likelihood
Note that CHO is just the original GH ratio chi-square statistic testing the
equally divided among the translated hypothesis that r=l is 4.31 with 1 degree
points and their reflections through p=q, of freedom, significant at p=.05. The
and by construction satisfies the null estimated common log odds ratio is
hypothesis. A reflection of the points in .58 +- .28 with a 95% confidence Interval
SPRT without a translation would create of (0.03, 1.13). This analysis suggests a
too wide a dispersion for CHO if most of claim for efficacy relative to placebo can
the points in SPRT were far from the line be made after two weeks of treatment.
p=q. This would result in an What is disquieting about this
unnecessarily heavy tailed null conclusion is that the last three study
distribution for LRH. sites did not yield overwhelming evidence

To obtain an empirical one tailed for the drug. The lack of significance in
significance level for the estimate LRH the test for proportional odds may be due
repeat steps (4.2), (4.3), (4.4) NB times more to small sample sizes rather than
sampling from CHO instead of GH. Here the homogeneity of odds ratios.
empirical distribution of the LRHB's will The three estimators given by (3.2),
be symmetric about zero and can be used (3.3), and (3.4) were used in the context
directly to compute the significance of a random effects model. The following
level. If large values of LRH are results were obtained for the expected log
expected with a treatment effect, then the odds ratio.
bootstrap significance level is:

TwH wmIs ON TREATMENT(4.8) phb = (number of LRHB's MEAN LOG OS RATIO ESTIMATES

exceeding LRH)/NB. TYPE OF ESTIMATE ESTIMATE I SE 05% CONFIDENCE INTEIVAL

Bule Wghts (3.2) 0.39 t 039 (-0 2q. 1 OQ(

Again if k and the nj's, mj's are large n 13) . '4 0.39 1-0.14. 1 26)

then phb will be close to the actual MLE (4 0.29 f 0.33 -0.4. 0q4)
attained significance level under the nulJ
hypothesis. With smail k this method The standard errors were obtained via the
provides an internally consistent asymptotic approximation, and the
approximation within the context of confidence intervals were obtained using
sampling from CHO. Using several methods the percentile-t bootstrap method given by
to obtain GH as discussed in section 3 it (4.5). With the exception of the MLE,
is possible to obtain several values of these asymptotic standard errors were in
phb to see if the overall treatment effect agreement with the corresponding bootstrap
conclusion is affected by the method of standard errors. The bootstrap standard
estimation. These procedures are error for the MLE was 0.38, somewhat lower
illustrated in the next section. than 0.53 given above.

Bootstrap significant levels were
obtained using (4.8).
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ESTIMATED P LEVEL This example is interesting because the
proportional odds assumption is rejected

Equal Igts 0.15 by the data, but this should not stand in

n*m/(n+m) 0.09 the way of observing that cimetidine was

MLE 0.27 significantly more effective than placebo.
The chi-square test for proportional odds

The confidence intervals and significance was 15.85 with 7 degrees of freedom,

levels do not support a claim for efficacy significant at the .05 level. Since a

because the estimators GH tend to common log odds ratio is rejected by this

emphasize the variability in the log odds data, estimates of a mean log odds ratio

ratios. Note that the Equal Weights are given.
estimator gives more weight to the
negative studies than the second estimator P380CI OF CIMETILINE

which weights the sites according to a 
MEANU ODDS RTO ESTM

sample size factor. Note also that this TYPE oF EA ESTMAE ± sE 9 coNODcE INTEmVAL

second estimate is closer than all the Equal ,ght (3.2) 1.79 0.30 (1.31, 2.32)

others to the proportional odds estimate, n-a/(n-.i (33) .41 2 0.37 (0.77, 2.13)

because the sites are weighted in a manner LE (3.4) 1.74 t 039 (1.21, 2.08)

similar to the Mantel-Haenszel method.

The random effects MLE (3,4) assigned As evidenced by the estimates and the

-weights according to the following confidence intervals, the estimated mean

proportions: log odds ratio is sufficiently far away
from zero regardless of which method of

SITE 1 2 3 4 5 6 estimation is used. All three bootstrap

MLE .167 .000 .071 .135 .125 .501 significance levels were less than .001.
The estimate (MLE) of the log odds

Most of the weight was pulled toward site ratio under the erroneous assumption of

6, where the results for the drug were not proportional odds is 1.41 +- 0.17. In the

spectacular. Why site 1 got one sixth of random effects model the conclusion of

the weight and site 6 got 50% of the cimetidine efficacy is still apparent even

weight is a subject for another paper. after paying a substantial penalty in the

In summary, this first example seemed standard error. Note that again the

to satisfy the proportional odds second estimator (weights prop. to

assumption which, when applied, led to a n*m/(n+m) ) gives a value similar to the

conclusion of drug efficacy after two MLE under proportional odds.

weeks on treatment. This conclusion The maximum likelihood estimate (3.4)

relied heavily on proportional odds of the random effect distribution was:

because all three random effect analyses
yielded nonsignificant evidence for STUDY 3 5 6 7 8

efficacy. MLE .02 .225 .036 .529 .148

The second example, discussed by

DerSimonian and Laird, is a meta-analysis Studies 1,2, and 4 received zero weight.

of placebo controlled trials testing the

effectiveness of cimetidine for healing The SAS programs used in this paper are

ulcers (Winship. 1978). The following available by request from the author.

data was taken from this study.

PLACEBO DRUG LO O00S RAIO

STUoy mo. HEALED/K % R DRUG _ OPACESO

1 8/19 42.1 16/19 84.2 1.99

2 5/14 35.7 26/30 $6.1 2.46

3 12/20 60.0 17/20 85.0 1.33

4 5/18 27.A 17/20 85.0 2.69

5 7/24 29.2 47/65 72.3 1.85

6 4/21 19.0 13/21 61.9 1.93

7 16/42 38.1 36/43 83.1 2.12

8 55/142 38.7 74/30 56.9 0.74
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Bootstrapping the Mixed Regression Model with Reference to
the Capital and Energy Complementarity Debate*

Baldev Raj, Wilfrid Laurier University

and Ilmakunnas (1986). It can be argued that
the use of exact constraints, which are a spe-

1. INTrRODUCTION cial case of stochastic constraints approach
are both restrictive and unnecessary. Our ex-

The estimation of the partial Allen elas-arbohesicvendueesry Orex
the estiation o ten rl aend lca- amination builds on the papers by Freedman and

ticity of substitution between energy and caps- Peters (1984) and Ilmakunnas (1986) who have

tal in the manufacturing process has been the us simila d to thos in th pae

subject of a number of studies. The results bu retd ote We staed

a different but related context. We estimatedfrom these studies have not always been in 'asytemxdetmain M)mto

agreement. For example, Berndt and Wood (1975) oij by the mixed estimation
3 (MR) method

(Theil and Goldberger, 1961) to show that thefound that capital and energy were complements, estimates of o. are sensitive to choice of a

while Griffin and Gregory (1976) and Pindyck eytpaterij ale ite tochic on-

(1979). found that capital and energy are sub- straints. This parameter may be interpreted as

stitutes. The implications of energy and capi- a coefficient of stickiness towards homogeneity

tal complementarity is that ceteris paribus, and symmetry hypotheses. Our results show that

higher priced energy will not only dampen its wn the stickiess Oicets ssge a

own demand, but also the demand for new invest- vle hhe than toefint sa gte e
mentin lans an eqipmnt.value higher than those in the sample the esti-

ment in plants and equipment. mate of OKE can be positive instead of nega-
A number of avenues for reconciling these tive. Further, its 75% confidence intervals

conflicting empirical results have been explor- 75
ed in the literature. For example, it has been [OKE ± td0  SE COKE)] fail to exclude a posi-

suggested that the use of time series versus tive value for the dKE either when the standard

cross-section data lead to different results; error of OKE (SE) from the standard asymp-

studies that use time series data capture totics or bootstrap (Efron, 1979) is used.,

short-run factor relationships while studies This result shows that energy-capital substitu-

that use cross-section data measure the long- tability cannot be ruled out for this configu-

run factor relationships. Others have argued ration of the stickiness coefficient which

that there is a need to disaggregate capital might be interpreted to reflect higher per-
inputs into physical and working capital. The ceived or real uncertainty, asymmetric informa-

hypothesis is that while physical capital is tion or institutional stickiness faced by

complementary to energy, working capital is a firms. The confidence intervals of OKE con-

substitute for energy. Others have stressed tinue to include positive value of elaticity

the need to exclude taxes from the capital when fatter-tailed errors are considered. The

working service price. Similarly, the need to fat-tailed errors are said to arise where

use four inputs instead of three has been sug- sample data include unusual events such as oil

gested. These and other arguments are reviewed price shock, oil emgargo, etc. (Taylor, 1983).

by Solow (1987).' The paper is organized as follows: follow-

In this paper we examine the sensitivity ing this section we present the model and des-

of the energy-capital complements issue by cribe the MR estimation technique. In Section

estimating the partial Allen elasticity of sub- 3 we present the results and their discussion;

stitution between inputs i and j (oij) under this section also includes a brief review of

stochastic constraints 2 on the coefficients of the bootstrap idea. Final remarks conclude the

the conditional input demand (CID) functions. paper.

The stochastic constraints are imposed corres-
ponding to homogeneity and symmetry hypotheses; 2. THE MODEL AND MR ESTIMATION METHOD

the estimates of oij 's are obtained by using
time series data covering the period from 1947- The CID functions for the transdental

71. The data are obtained from Berndt and Wood logarithmic (Cristensen et al 1971) unit cost

(1975). A novelty of this paper is the use of function are given by:

the bootstrap (Efron, 1979) to estimate the
standard error of the estimate of o. A case (1) Si 

=  
i + Z ij In wj + e.

for using stochastic constraints instead of
fixed (or exact) constraints has been made by where Si is the cost share of input i repre-
many researchers including Tsurmi et al. (1986) senting labor (L, capital (K), energy (E) ai,d
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material (M) and the ei represent the error in The asymptotic variance-covariance of b is
the ith equation. We assume that Eei=O and given by

Eciej= Iii for all i and j = L, K, E and M. The
cost minimization hypothesis imposes the follow- (5) Vb) + 1/02 RR)-

ing set of exact restrictions on the parameters ( U XX R

of the CID: (I) i. = 0; (II) Oij = Pji for all It is easily verified that the covariance matrix

i # j (III) I a1 = 1 and X Pij 
= 0. (5) is also the mean square or risk matrix of b

i i since the stochastic constraints are assumed to
The restrictions (I) to (III) are commonly hold on the average (cf. Judge et al., 1985, pp.

known as homogeneity, symmetry and additivity 58-59).

constraints on the CID functions. The estimates of oi can be obtained from
The additivity constraints are easily in- the formulas:

corporated into equations (1) by dropping one of
the share equations. We shall follow this con- (6) . = (bij + 9 is) / Sigj for i j

vention by dropping the material input equation and

and wiring the remaining 3 equations compactly (7) oil = + g2 - S/Si
as:

where gi and 9j are average values of cost
(2) y = (I X) P + € shares for inputs ij = L, K, E, M and bi.'s are

the MR estimates of O. in the CID equations (1).
where y is a 3nxl vector of n observations on The asymptotic standard errors of oijs may be
the input cost sha-es with y' = (SLI, SL2 ... obtained from

SLn, SKI, SK2 , .  SEn), X is an nx5 matrix of
2 2 1 ,2observations on variables on the right-hand (8) SE(°iJ) = [V(bij)/g. S ]

side of equation (1) with the t-th row Xt = (1, 1 1

ln WLt, ln wKt, in WEt, ln wMt), 5 is a 15xl 3. THE BOOTSTRAP IDEA AND MR ESTIMATES

vector of parameters of the CID equations with

P' = (CL, PLL' 5LKI PLE' OLM' 'K, PKL .... IEM )  3.1 The Bootstrap Idea
and e is a 3nxl vector of observations on the
errors. The vector e is assumed to be distri- The bootstrap is a distribution-free method

buted with 0 mean and covariance matrix Eet' of determining the accuracy of the parameters of
1 0 I where 2 = (i3) for ij = L, K, E and M. a model. The bootstrap theory is discussed in

The stochastic constraints of the homogeneity detail by Efron (1979, 1982). A survey of the
and symmetry constraints (I) and (II) can be bootstrap theory and applications is provided by

compactly written as: Efron and Tibshtrani (1986).

The bootstrap standard error can be used for
(3) RP = u calculating standard confidence intervals CI) of

oij from formula .± tdf SE(oij) where %. is

where R is a 6x15 matrix whose elements are an 13 13 , Is
an estimator of the parameter o- SE(o-i) is

specified by the homogeneity and symmetry con- the bootstrap SE of oij, and tdf is the 00a
ditions, 0 is a 15xl vector of coefficients percentile point from the t-distribution.
defined above and u is a 6xl disturbance vector The bootstrap idea in the context of stand-

such that Eu = 0 with Euu' = 0 where 0 is a ps- ard regression model E(y) = Xijmay be

itive definite matrix. We follow Ilmakunnas a= 13

(1986) in using a convenient parameterization of described as follows. Suppose we have n obser-

'b such that 0 = ok I; the parameter ok repre- vations on the dependent variable y and the

sents the degree of stickiness towards homogen- regressors (xl, x2 ..... xp). Further, suppose

eity and symmetry. As oh approaches zero the that the regression errors ei 
= Yi - E(Yi) for

stochastic constraints tend to become exact con- i = 1, 2, ..., n are from an unknown distribu-

straints. tion F and that b's are least squares estimators

The MR estimator of 0 in (2) under stoch- of O's. Then the bootstrap idea is to approxi-
astic constraints (3) is given by mate an unknown distribution G(F) of b3-P, by

G(F e ) where Fe is the empirical distribution of

F for a given sample data set on the dependent
(A (variable and its regressors.

w Now, consider a large number of random
estimation of -, Y is an nx3 matrix with t-th samples of size n with replacement, drawn from a
row CSLt St) and B is a 5x3 matrix of box containing the least squares residuals el ,

coefficients of cost-shares equations for L, K, e2, e. en. Suppose one such sample is then

and E. We estimate b's using an iterative meth-
od until the estimated values converge (see

Berndt and Wood, 1975).
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designated e, e* ee effectively and capital are complements was found not to be1. . 3 n.... viefft 2 
-6

yielding the "pseudo data" for y from y* violated when OR 10 and a' = 10-8. The MR
P , estimates corresponding to o R - 10-8 correspond

+ I Lj Xij + ei (i=1,2. n). This "pseudo to the exact constraints case. The point and
j=l interval estimates of oij's for R2 

= 10- 4

data" along with the sample observations on the in ale 10 are

regressors would then constitute a set of sample The results in Table 1 show that the esti-
values for the bootstrap empirical distribution, mates of OKE and OEK are of opposite sign; thus

In view of the fact that the least square the energy-capital can be substitutes instead of
residual e's are not independent even though the complements when the stickiness parameter is
S's have this property and that the e's are a equal to 2 = 10-4  But, the asymptotic stand-
bit smaller than the e's, the bootstrap sampling ar eor Of i um the ootstap

from e's can be downward biased. This bias can
standard error in column 5, which are the pars-

be reduced by scaling up the ei's by a factor of metric and non-parametric measure of the accur-

[n/(n-p-l)] /2 (see Freedman and Peters, 1984).
acy of the estimator o.., respectively , are

We used a scaling factor in our bootstrap re- large. Therefore, it ight be worthwhile to

suits reported below. calculate the 75% CI to determine if the posi-

3.2 The Results tive value of OKE is included in the CI. The
possibility of a positive value in the CI would
suggest that the hypothesis of energy and capi-

Tt 2 tal substitutability cannot be rejected at the
three values of the stickiness parameter OR :a' = 10-4 , a' = 10-6 and25% level. The 75% CI in column 4 and 75% CIb

0 R =0 in column 6 represent the parametric confidence
However, we shall present the detailed re- intervals with SE(oij)a and SE(oi )b, respect-

sults for oA = 10- 4 only in view of space limi- ively. These 75% C a i b
tations. Moreover, the hypotheses that energy

Table 1: The Mixed Regression Estimates of Allen Partial Elasticity of Substitution

ci when o2 10
- 4

(0i) SE(*ij) a  75% CIa  SE('ij)b 75% CIb

1) aLL -1.607 0.128 [ 1.694, -1.520] 0.103 [-1.677, -1.537]

2) aLK 1.174 0.547 [ 0.803, 1.546] 0.476 [ 0.851, 1.497]

3) aLE 1.427 0.828 [ 0.865, 1.989] 0.464 C 1.112, 1.742]

4) aLM 0.488 0.132 [ 0.398, 0.578] 0.088 0.428, 0.548]
5) OKL 0.770 0.424 C 0.482, 1.058] 0.336 C 0.542, 0.998]

6) OK] -6.391 2.095 [-7.813, -4.968] 2.141 [-7.844, -4.938]

7) oKE 0.941 3.660 [-1.544, 3.426] 2.761 [-0.934, 2.81(]

8) oKM 0.322 0.524 [-0.034, 0.677] 0.439 [ 0.024, 0.620]

9) aEL 1.009 0.363 ( 0.762, 1.255] 0.308 [ 0.800, 1.218]

10) aEK -3.444 1.556 [-4.500, -2.388] 1.617 [-4.542, -2.346]

11) aEE -12.260 3.356 [-14.539, -9.981] 3.194 [-14.429,-10.091]

12) aEM 0.491 0.431 [ 0.198, 0.784] 0.394 C 0.224, 0.758]

Notes: oij: The point estimate of the Partial Allen elasticity of substitution
of factor input i with j.

SE(oij)a The standard error of Ojfrom the asymptotic formula.

75% l.a: The 75% confidence intervals with SE(*ij) a and tq7 5 = .679.60-

SE(ij)b: The standard deviation of the bootstrap distribution.

75% Clb: The 75% confidence intervals with SE(Oij) b and t 
7 5 = .679.
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tive value of OKE' Hence, the hypothesis that 2 Estimates of the parameters of the cost

energy and capital may be substitute appear not function under stochastic constraints can be
to be rejected by the data, carried out in either a mixed regression or

How does the existence of fat-tailed errors Bayesian framework. In this paper we will focus

affect the CI? We investigated this question by on the MR approach.

reestimating the oij's by the MR method with 3 The Mixed Regression model is a conven-
fatter-tailed errors. These errors were obtained ien; econometric technique for combining in-
as described below. Under the assumption that forr.ation from a given sample with prior non-
residuals from (2) are normally distributed, we sample stochastic information with a view to
generated a fatter-tailed error by mixing two obtaining a more efficient estimate of regres-
sets of normally distributed errors such that a sion cueft:.cients. The MR model has proven to

proportion (l-s) of original errors with 0 mean be useful if judged solely by the plausibility
and covariance matrix 0 = 1 0 I were combined of the results obtained from it, although the

assumptions it is based on are somewhat logic-
with a proportion s of another set of errors ally flawed (see Zellner, 1975). This method was

with 0 mean and covariance matrix do where d is originally proposed by J. Durbin in 1953 and
a scal~r gteater than 1. The matrix of eiiors later developed more fully by Theil and Gold-
so obtained are distributed with 0 mean and co- berger (1961) on heuristic grounds. However, it
variance matrix Q(d) = (1-s) 0 + s(dQ) and these can also be interpreted as a Bayes estimator and
errors are fatter-tailed than the original has been applied in areas of consumer demand
errors (see Flood et a!., 1984). We used d=4 (e.g., see Paulus, 1975) and cost functions

and s=2/5 such that the Kurtosis coefficient of (e.g., see Illmakunnas, 1986 and references

fat-tailed errors is about 1.64. The use of therein).

fatter-tailed errors resulted in somewhat higher I Efron (198) has provided some evidence

SE(' )compared to those in Table 1. The 75% for the relative performance of the jackknifeiJ

CI were also computed and again failed to reject and bootstrap methods. He found that while both

the substitutability of energy and capital for jackknife and bootstrap standard errors provide
a' = I0- 4 . an almost unbiased estimate of the parameters,
R the bootstrap method has a lower coefficient of

4. SUMMARY RARKS variation than the jackknife method.

In this paper we examined the sensitivity REFERENCES
of the estimates of the partial Allen elasticity
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Dimensionality Constraints on Projection and Section Views
of

High Dimensional Loci

George W. Furnas
Bell Communications Research

Abstract

Fundamental limitations are presented for two general graphical techniques for constructing geometric
views of high-dimensional loci, projection and section. Projections can only easily display aspects of
structure that are of low dimensionality. Sections, i.e, intersections of affine subspaces with a locus,
can easily display structure of only low co -dimensionality (and hence high dimensionality). However,
compositions of section and projection can display aspects of structure of any intermediate
dimensionality. These assertions are proven for fundamental idealization of loci that are arbitrary affine
subspaces of a high-dimensional space. The issues introduced by finite extent, by curvature, by
quantization and by error noise are then discussed, basically in terms of notions of scale. Examples of
using the composition technique are given, examining the structure of two high-dimensional objects
embedded in a six-dimensional space.

1. Introduction space. (This locus arises in efforts to understand the families
of distance matrices satisfying different metrics, e.g., general

The investigation of high dimensional loci arises in both metric, euclidean, ultrametric.[iSl Its importance here is
mathematics and statistics. In mathematics, sets of equations simply that it is an interesting locus in six-space.)
and inequalities, or computational procedures can define Consider, for four points A, B, C and D, the vector of six
mathematical objects of high dimensionality. Graphics pair-wise distances between them:
provides one set of tools to augment algebraic attempts to
understand the structure of these objects. The typical (u, v, w,x, y, z) = (dAB, dc, dBc, dAD, dBo. dcD).
graphical approach is to make various 2-dimensional
projections and sections of the locus, from which some sense Of all possible (non-negative) sextuples of such
of its structure is obtained.['] [21 131 In statistics, multivariate distances, consider only those that correspond to distances
data form high dimensional point-clouds whose structure satisfying the Ultrametric Inequality:
must be detected and modeled. Again graphics are playing
an increasing role in augmenting parametric characterization dij < max (dik , djk) i ,j ,ke [A , B, C, D J
of the structure of such loci, particularly in the exploratory
stages of data analysis 141 [51 [6 171 is1 [9] l vll t21 Though Ultrametric distances are interesting because there is a
statisticians sometimes use various glyph variation schemes1  one-to-one correspondence between such sextuples of
for graphical presentation of multivariate data (e.g., distances and hierarchical clusterings of objects A, B, C and

Chemoff Faces[i 31, trees and "castles" t 41), geometric D, or equivalently rooted ultrametric trees with these four
transformations, usually projection, are also used to produce objects as their leaves. Thus undcrstanding this loris
two-dimensional renditions of high dimensional loci (e.g., 141 amounts to understanding the complete set of Utrametric

18] lit)). This paper represents a basic attempt to understand trees on 4-points.
the theoretical power of views generated by such geometric The set of ultrametric sextuples forms a locus (UM-
transformations. Locus) of some type embedded in the six dimensional space

1.1 A Motivating Example: The 4-point Ultrametric Locus of all sextuples. For various algebraic reasons, this locus
was known to have interesting structure. To get a better

The inherent limitations of low-dimensional projections sense of it in detail, one might try to "look" at it using a
can be illustratied by the 4-point Ultrametric Locus, a powerful high-dimensional rotation and projection system,
particular mathematically defined locus embedded in 6- such as The Data Viewer, developed by Andreas Buja and

his colleagues 1121 for looking at high dimensional
multivariate point-clouds. To do this, a point-cloud

Author's Address: Bell Communications Research, Inc., 445 South representation of the locus was created by generating and
Street, Room 2M-397, P.O. Box 1910, Morristown, New Jersey,
07960-1910 USA testing each point in the six-dimensional unit hypercube

The author would like to thank Andreas Buja. John Schotland, and whose coordinates were multiples of 0.10. Points on this
Adolfo Quiroz for their comments on drafts of this paper and its grid that satisfied the Ultrametric Inequality were collected,
related proofs. and the rest ignored. The resulting six-dimensional point-

1. Such schemesuse some "glyph", such as an iconic face, whose van- cloud was then entered into The Data Viewer which then
ous graphical features (e.g., aspect ratio of the face, size of eyes, etc.) dynamically rotated the locus and generated a continuous
are parameterized and associated with variables. Thus a set of points moving sequence of two-dimensional projections. One such
becomes a family of glyphs. projection is shown in Figure 1.
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Figure 1. 2-Dimensional projection of the 6-dimensional, '4-Point Ultrametric Locus'

The critical feature of Figure I is that it shows essentially a 2D graphic, i.e.. a picture on paper or in a video display.
nothing interesting! The only visible aspects of the By a k -section we will mean the intersection of ak
structure are artifactual: e.g., the edges and corners seen in dimensional affine subspace with the high dimensional locus
the figure are the edges and corners of the hypercube that the residing in n -space. A 2-section arising from intersecting
locus was sampled from and not special features intrinsic to some plane in the n -space with the locus can be presented as
the structure itself. a sort of cross-sectional picture of the locus.

Here is a graphical tool used frequently by statisticians, Although for simple graphics k=2. interest in t±e general
sometimes with marked success, to look at high dimensional case of k >2 is not just theoretical. There are ways to present
loci. Yet for this locus, which is known to have interesting graphics that are more than 2-dimensional, e.g., using stereo
structure, projection shows nothing. The work presented in pesentation, color and motion/time (e.g., (41 (21 [fi (121 (S1 (61

this paper represents an attempt to understand what is 7r ,161 ). The results that follow should pertain to these
happening in Figure 1, by addressing a simple, though higher-dimensional graphics as well. Also, as will be seen, it
fundamental idealized case. will be useful to consider the composition of section and

Vprojection operations of various dimensionalities, and their
t.2 he To Gometic iewig Tchniueenet effect can only be understood by considering the general

We will actually investigate two common geometric case.
techniques for deriving a low dimensional picture of a higher
dimensional locus: projection and section. 2. The Affine Subspace Idealization

By a k-pro jection we will mean an orthogonal Imagine that a demon opponent presents an investigator
projection of a high dimensional locus embedded in n -space a n -dimensional black box that has a target object embedded
onto a k -dimensional affine subspace (e.g., onto a line,' i t n hlegs h netgtr t s
plane, or general k -dimensional hyperplane, not necessarily inoeit, gadicalltecnes te dincvetigat to unse.

tThe demon's goal is to put in something hard; the
canonical inner product on .) Most typically, this means

somectn oriettonn n -space tis 2-proecion plause as general problem is exceedingly difficult, so we consider here
someorintaionin he n-spce.Thi 2-rojetio isuse as a fundamental simple case: Suppose we allow the (lemon to
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put only certain very simple high-dimensional loci in the The projection operation cannot preserve dimensionality

box: flats. By a flat, we will mean an arbitrary affine of a target rn-flat if m gets so large that it exceeds the

subspace: a point, line, plane, or hyperplanes (not dimensionality of the viewing space. Illustrating this case

necessarily through the origin). In particular, an rn-flat will where m>_k, note that a plane (2-flat) in 3-space will

mean an rn-dimensional affine subspace embedded in n- almost surely 2-project onto the whole projection plane. The
space. whole 3-space (3-flat) will also 2-project to cover the whole

Note that these special loci differ from loci of practical plane. The 2-projection alone cannot distinguish a 2-flat
interest in several ways. They are infinite in extent and high target from a 3-flat one.
translational symmetry (a line looks the same everywhere Thus if the demon puts a p-int or a line in the box, the

along its length). In addition, unlike statistical loci (and investigator can easily disclose it with an arbitrary 2-
some mathematical ones in theory, and many in projection, and thereby win. However if the demon sets as a
computational practice), they are continuous. In this target a higher dimensional m-flat, all 2-projections will be

difference resides the idealization: and we will try to return completely and indistinguishably covered.

across this gap at the end. In any case, flats are sufficiently A second look at the Ultrametric Locus of Figure 1 bears
primitive and fundamental objects that understanding their out the results just given. The projection made visible only

behavior has value in its own right. 0-dimensional features (point-like comers) and I-
Accepting for the while this restriction, the situations is dimensional features (line-like edges) of the locus.

thus: the demon will put some target in-flat in the n -space, Unfortunately these were artifactual aspects of the locus.
and the investigator will try to use k-projection or k-section The interesting structure apparently was in the higher

to look at what is there. What will the investigator see? dimensionality, and to the demon's gratification, was self-

2.1 Constraints on Projection Views obscured by the projection operation.

This means that projection is a powerful technique for

Consider first the case of projection, i.e., "How does an identifying low dimensional affine substructures in high

r -flat appear in a k-projection?" The answer turns out to be dimensional space, but almost surely useless in finding

quite simple:2  higher dimensional ones. Put another way, if the affine

structure of interest is of low dimensionality, essentially

The operation of k-projection will yield an image of ANY projection will show it clearly. If it is of high

the m-flatthat almost surely dimensionality (where "high" is often only in >2, since

9 preserves dimensionality of a m-flat (i.e., m-flat typical projections are 2D), only very singular projections

in n-space ==> m-flat in k-space), when m < k, will show it. It is the struggle against this almost surely

and condition that makes the pursuit of informative projections

* is of full k dimensionality when m > k (thus (e.g., in Projection Pursuit 1181 so difficult.

indistinguishably covering the k -dimensional 2.2 Constraints on Section Views
iewing space).

Fortunately for the investigator, the second tool available

Thus for example, a point (0-flat) in 3-space always for creating low-dimensional views, section, has a

appears as a point (0-flat) in a 2-projection. Thinking of the complementary power. Considering the case of section, we

casting of a shadow as a projection, recall that the shadow of ask, "How does an r -flat appear in a k -section?"

a point is a point, regardless of its position in 3-space. It is The answer to this requires the notion of co-dimension.

likewise true in n-space. Similarly, a line (I-flat) in 3-space The co-dimension of a flat is the complement of its

will almost surely appear as a line in a 2-projection; the dimensionality with respect to that of the full space. That is.

shadow of a line is almost surely a line. The italicized in n -space, the co-dimensionality of a rn-flat is defined to be

phrase, almost surely, is being used in the technical ian-r. Thus the co-dimensionality of a plane in 3-space is

(meas-tre theoretic) sense. 3 That is. for example, it is (3-2)=l, that of a point in a plane is (2-0)=2.

possible for a line (I-flat) to 2-project not into a line (I-flat)
but into a point (0-flat). However, this can happen only in the Whereas the effect of projection was put simply in terms of

singular case that line is perpendicular to the 2-flat used for dimension, the effect of section is put simply in terms of co-

the projection (the viewing space). This singular case has dimension:
measure zero (i.e., zero probability if flats are chosen
randomly), and hence almost surely the 2-projection of a I- The operation of k-section will yield an image of an

flat is a I-flat. m-flat that almost surely
* preserves the co-dimensionality of a m-flat (i.e..

(n-il-flat in n-space ==> 1k-il-flat in k-space),

2. Proofs of the almost surely assertons about dimensionality of pro. when In-rn) > k, a-d

jectioris and sections witl be published elsewhere, and arc also avail- wiep (i . kndm

able in I'll, a is empty 0 e, indiscriminatelY missing m-flats)

3. The almost surely statements here require only that underlying proba- whci; (n-mI) > k,
bility distnbutions be absolutely continuous w.r.t, the Lebesque
measure on the corresponding natural euclidean parameter spaces. Let t be the co-dimension of the in -flat, i.e., in =(n-t -.
For example coordinates of the n xfn-p) matrx defining a p- If i =(n-m )<k, then the (n-i 1-flat almost surely appears as
dimensional linear subspace could be sampled from the standard
sphencal multivanate normal on , See the proofs for details. a (k-i )-flat in the k-section. Tius for example, in 3-space a
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line [=(3-2)-flatl almost surely appears as a point [=(2-2)- Fortunately, composition of these techniques can
flat] in an arbitrary 2-section. A plane [=(3-1)-flatl completely bridge the gap. For example, consider the
almost surely appears as a line [=(2-l)-flat] in an arbitrary problem of finding a 3-flat in 6-space, using a k=2
2-section. dimensional viewing space. Neither single approach will

On the other hand, if i=(n-m)>k, it almost surely find it: Since m=3 > k=2, it will almost surely
disappears from the k-section. Thus in three space an indiscriminately cover 2-projections, and since
arbitrary 2-section will almost surely miss a target point n -m =6-3=3 > k =2, it will almost surelv not appear in 2-
[=(3-3)-flatl. It will reveal the point only under the singular sections. How can an informative 2D view be created?
condition that the viewing plane happens to be positioned Following Figure 3, note that a 4-section of the 6-space
and oriented so as to pass through the point. will almost surelv contain an image of the 3-flat, since

Thus if the demon puts a flat of co-dimension 0, 1, or 2, n-m =6-3=3 < k =4. Since section preserves co-dimension,
(dimensionality n, n-I or n-2) in the box, investigator can the (6-3)-flat will become a (4-3)-flat [=1-flat] in the 4-
easily disclose it with an arbitrary 2-section. But if the section. Thus we have a section that at least contains some
demon sets a target of higher co-dimension, all the image of the target. The problem is that a 4-section is not a
investigators' 2-sections will almost surely miss. So, 2D picture. That is easily solved by taking a 2-projection of
whereas projection is a powerful technique for identifying the 4-section. The 4-section is now a new 4-dimensional
structure of low dimension, section is useful for finding black box with a 1-flat target in it. Correspondingly let
structure of low co-dimension. n'-=4, m'=1 and k'=l Thus, since m'=l < k'=2,

dimensionality will be preserved by the projection, yielding
2.3 Complementarity and Composition a clearly visible 1-flat (line) in the final image. That is, if the

These previous properties of projection and section are investigator takes a 2-dimensional projection of a 4-
summarized in Figure 2 for flats in 6-space, the dimensional section of a 6-dimensional space, and sees a
dimensionality of the black box containing the Ultrametric line, she has just found a 3-flat.
Locus of Figure 1. If the affine structure of interest is of low
co-dimensionality, essentially ANY projection will show it 6-Space 4-Section 2-Projection
clearly. If it is of low co-dimensionality essentially ANY
section will show it. Thus these two patterns of strengths are
complementary. However, even the unioil of the two T 6 4 2*
techniques is still limited. Given that one seeks only two- E
dimensional pictures, so that k=2, projection can find
substructures of dimensionality 0 and 1, and section can find M 4 - 2

11- 4 _ 2 _ 2*1

covers all the cases. But for larger n, there is a gap between - 3 .-1 line
the low dimensional and low co-dimensional extremes, and 0
so the demon can still win. a 2 -o-- 0 - point

0

6-Space 2-D Image
. 6 2 plane Figure 3. Effects of a 4-section followed by a 2-

5 1 line projection, and the remaining gap.

4 0 poin By similar combinations, the investigator can reveal an
arbitrary m -flat. E.g., it will almost surely appear as a line

3th GA ?in a 2-projection of a (n-m +l)-section. Equivalently, the
0the GAP m-flat target could be revealed by an alternative
0 2

- composition, taking a 2-section of a (m-I)-projection. In
line either case the investigator can now always beat the demon.

SIt should be stressed that when used as suggested by the
4) constraints discussed here, m-flat structure can be found
E WITHOLT SEARCH through the orientation and location
is' parameters of the section and projection operations. The

"almost surely" considerations mean that sections and
projections of arbitrary positions and orientations should

Figure 2. The joint capabilities of section and yield the desired result. One must only examine at most n1k
projection. k-dimensional views. Each corresponds different

dintensionalities of the initial j -section
(j = n , n-k. Pi -2k, n -3k _.k ), which precedes the final k -

projection in the composite strategy.
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3. Two Examples

The previous theory is based on the idealization that the
demon can only use flats as targets, yet real loci can deviate
from this idealization in many ways. Before considering
such deviations in detail, we will first present some examples
to show that the technique holds promise even for real loci.

Views of the loci in this section were again generated
using The Data Viewer to do 2-D projections and
systematically using its "brushing" facility compositely to do
sections. (Note that a p -dimensional brush, i.e.,
conditioning on a linear combination of p variables leaves
n-p free to vary, creating a (n-p )-dimensional section).

3.1 Example 1: The 4-point Ultrametric Locus revisited

In this example the composition of section and projection
is used to get a more informative display of the Ultrametric
Locus. An arbitrarily oriented 2-projection of the full locus
was presented in Figure 1. Figure 5. Another 2-projection of a 4-section of the

Ultrametric Locus.

Working backwards through Figure 3, we can see that a
1 -flat image in a 2-projection of a 4-section corresponds to a

- 3-flat in the embedding 6-space. That is, the locus is An
articulated tree-like collection of 3-flat pieces. Further
investigations can show that there are three distinct though
connected sets of these 5-segment images.

All of these results are consistent with what is known
about the set of ultrametric distances on four points. It has

- been mentioned that such distances correspond to distances
in rooted binary trees on four points. There are 15 different
such binary tree topologies, one associated with each of the
segments of the three 5-segment shapes in the figures. Each
of the 15 tree topologies has three continuous parameters
that affect distance: the distance matrix is altered in a
continuous fashion by changing the heights of the three
internal nodes of the rooted binary tree. This explains the
local three-dimensionality of the locus as revealed in the
line-like appearence in the 2-projection of the 4-section ofFigure 4. A 2-projection of a 4-section of the Figures 4 and 6. The composition of section and projection
yields a powerful look at this articulated high dimensional

Figure 4 presents a 2-projection of a 4-section through object, even though it is not simply a flat.

the locus (the same 2-projection as in Figure 1; so Figure 4 is 3.2 Example 2: A three dimensional torus in 6 dimensional space
actually embedded in Figure 1.) The result is a 5-segment The second example examines a curved object, a three
tree structure. Essentially all such sections have this dimensional torus in 6 dimensional space. Such a torus is
structure (Figure 5 shows another completely different simply the Cartesian product of three circles. Le., the set of
section and projection.) These trees are made up of I-flat sextuples (u, v, w , x, y, z) such that
pieces.U2+V 2 

= 1

W
2 +X 2 = I

y2 +Z
2 = 1.

Note that these three equations define a 3-manifold
embedded in 6 space. This continuous object was turned into
a point-cloud by taking 10 points around each circle. The
Cartesian product thus yielded 1000 points. Figure 6 shows
four simple 2-projections of the resulting toroidal cloud in 6
dimensional space. Note that beyond a general curved
convex appearance, the special character of the structure is
obscured in these simple projections.
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Figure 7 shows four corresponding 2-projections-of-4- other a piece of a 3-flat in 3-space. Since the distinction
sections of the torus in 6 dimensional space. The between these is not one of low dimensionality; they will
fundamental circular structure is clearly visible and, look the same in projection. They differ with respect to low
referring back to the diagram of Figure 3, the appearence of co-dimensionality, so only section ca.. distinguish them.
the locus as curves in the viewing plane evidences its local One will appear as a ring (1-manifold) the other as a disc
3-dimensionality. (piece of a 2-flat). One could by similar means distinguish

hollow and solid hyper-spheres. Topographic maps are
4. Deviations from the Idealization another interesting examples of the implicit application of

The previous two examples illustrate how the earlier this theory. The surface of a piece of terrain is essentially a

ideal theory seems to extend to less ideal cases: both the 2-dimensional manifold in 3-space. Its structure is of co-

limitations of sections and projections and the possible dimension I and cannot be conveyed in a 2-D map by

power of their composition are manifest. In both of these projection. Instead topographic contours, i.e., a family of

examples, as in many real situations, the high dimensional 2-sections, display its shape -- as curves (structures of co-

loci of interest differ in many ways from the idealized case dimension 1) in.the image plane.

of affine subspaces. In this section several of these 4.2.2 Hyper-surfaces with singularities
deviations are discussed, with the principal conclusion that
once a suitable level of scale is determined, ideal results The investigation of general r-surfaces, i.e., surfaces
rain useful, thanks to the robustness of linear that may have singularities is more problematic. First note,approximations. The treatment here is casual and though, that singularities are structures of lower

conjectural; other's efforts at formalization would be dimensionality, p, where p <m. If one can partition thewelcome, structure a priori into singularity-substructures bydimensionality, then each dimensionality can be examined
4.1 Fiite Extent according to the preceding treatment of manifolds. If no such

Many mathematical loci and (presumably) all empirical partition is available a priori, the situation is more difficult.
The problem is that structures of different dimensionality arestatistical ones are bounded in extent. To begin to

understand the implications of boundedness, consider first present at the same time and can obscure each other.

the simple case of bounded pieces of m-flats. Since real Singularities of dimension p=m-1 can be seen along with

viewing windows (paper or CRT screens) are also bounded, the m -surface by section and projection. They will appear as

the relative scale of the target and viewing bounds is 0-dimensional singularities on a 1-manifold, e.g., like a

important. In particular, on sufficiently large scale (i.e., the cusp-point on a bifurcating curve. However if p <m-l, the

target object is much smaller than the window), an m-flat- singularities will either be lost by k-sections if k is small

piece becomes point-like and projection will show it. On a enough to clearly reveal the m-structure, and obscured by

sufficiently small scale in its neighborhood, the m -flat-piece the over-projecting m -structure, if k is large enough not to

becomes like an m -flat. Then the previous techniques of miss the p -structure. A simple example of losing the

section and projection should work as described. Thus the singularities is the inability to see the exact location of

viewing process requires an additional tool which can mountain peaks (singularities of co-dimension p=3=m -2) in

rescale the object with respect to the window size. a topographic map. The 2-sections generating the contours

Projection is first used at large scale to locate the object as a almos surely miss the exact peak location -- hence the need

point-like entity. Then scale is reduced while staying for a special map symbol to mark them.

centered on the object until the object looms large with 4.2.3 Intersections and Unions
respect to the window bounds, whereupon section and Some objects are defined by the intersections and unions
projection can be used. of simpler loci. Convex polytopes, for example, are defined

4.2 Non-Linear Loci by bounding linear pieces. We simply note that the resulting

4.2.1 Manifolds boundaries and joints may be thought of as singularities and
understood as in the previous subsection. Note that usually

Like the second example above, many interesting loci these singularities are cleanly nested by dimensionality, and
are manifolds that are curved, not flat. Technically, however, may possibly be teased apart into a partition a priori.
any manifold appears increasingly fiat when viewed more Despite the problems of seeing all levels of singularities, the
and more locally. Thus the earlier results should hold with first example in the previous Examples section shows the
respect to the image of all local regions under section and usefulness of applying section and projection to a structure
projection. For example, the image of a 2-manifold in 3- made up of quite a few jointed flat pieces.
space under 2-section should almost surely be locally 1-
dimensional. But something which is locally 1-dimensional
is a I-manifold. Thus the results should generalize to Many objects of interest are not piecewise continuous,
manifolds, with a further caveat: The almost surely but are made up of collections of isolated points. This is the
condition here means that sometimes there could occasional typical case in statistics, where empirical multivariate
local alteration in dimensionality -- singularities can be distributions are made up of a set of observed data points. It
introduced. is also typically true for computer renditions of continuous

For a simple example, consider how best to tell a hollow mathematical objects: the object is approximated by
sphere from a solid one. One is a 2-manifold in 3-space, the quantized sample. The point-cloud composition of such loci
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is no problem for projection, since it will preserve the image one might argue that the "true" shape of the locus has
of points. (The projection of a point-cloud is still a point- become problematic in a more theoretically fundamental
cloud.) It is a problem for section, however, since a random way.
section will almost surely miss all points in a finitely dense
sample. There are several possible solutions that may work 5. Discussionin various circumstances.

The first approach is to select sections carefuly, so as to This paper has examined some formal capabilities of the
sue frstht prtheygo to poinctsectios mihrelly, posbltwo geometric transformations section and projection. It wasinsure that they go through points. This might be possible, s o n t a h y h v o pe e tr te gh nfor example if the locus is generated by sampling in a shown that they have complementary strengths and

for xamle f te lous s gnerted y smplng n a weakness in revealing structure of various dimensionality,
regular grid. This was the solution used for the example loci ane in ee t ruture of variosieiona
of the previous section. Caution is needed, however, since Athogh theysfoma oerfu opstion
some such convenient sections may be singular (i.e., w.r.t. Although the systematic joint use of section andthe almost surely conditions). Also new aliasing artifacts projection should help the investigation of high dimensional
mahe inmostsroducdicethection Asopnerai in amouncts loci, a number of difficulties remain. The challengesm ay be introduced, since the section operation w ill am ountpr s n e by i gu a tes o d m ni np -1 a dto a yet-more-sparsely sampled version of the true section presented by singularities of codimension, p <m -1, and
image. quantization effects have already been mentioned. By far theimg.most important outstanding problem regards the

A second solution available in some mathematical cases, mo mpr ta nt outsag proe the
is to generate the section loci explicitly. That is, instead of comprehensive assessment of shape. Section and projection
generating a sampled version of the full object and trying to are certainly among the fundamental graphical tools for
section it, it may be possible to first specify the parameters. getting relevant information, but the geometry of higher

of a sectioning hyperplane, and then explicitly generate a dimensions is fantastically rich, and even the most

version of the object exactly as it intersects that hyperplane. informative individual 2-D images can only capture

A third solution is to try to "smooth" the locus in some glimpses of aspects of the shape.

sense, that is by interpolating between points in some local Thus there are at least three important major directions

region to make a continuous approximation which can be of future research. The first involves getting the most from

treated directly. each low dimensional image, which requires understanding

A fourth solution is to make "fat" points, i.e. make the what these transformations do to a variety of features of a

points in the cloud spheres of finite radius, so there is a finite locus. The feature of dimensionality was the focus of this
chance of hitting them with a section. paper. Examples of other important aspects (with someA final solution involves taking "thick" sections, i.e., conjectured results given in parentheses) are: what do theones with finite volume so that they can intersect some of the transformations do to simple aspects like distancespoints. A "thick" section would capture all points in the (projection shortens but never lengthens them; section
locus within some distance, w, of the sectioning hyperplane, preserves them), angle, position, and orientation; convexity
This would be accomplished by intersecting the locus with a (preserved in both), polytopality (preserved by both -- butwhat about the number of faces, etc.), connectedness
generalized cylinder, the Cartesian product of a m -flat and a(n -m)-sphere of radius 5, and projecting the intersection set (preserved in projection, but not section). A systematic
onto the o-flat. It is the final projection operation that understanding of these will enrich the ability to understand
maintains the visibility of the points. how a given picture relates to the object pictured.

maintaisthe isibis y of thes pitds dA second direction for future work is how to make use ofesother techniques, such as projections that preserve densit
the scale of quantization must be sufficiently small w.r.t. oter technique r s serve ty
scale of meaningful structure. This will help prevent inormtion, p ro g (amec n close ete taliasing problems in all the methods. It keeps the notion of projection), the use of regular sampling grids, etc.
neighbors mprles for sllthmoet . It th s tion it iThe third major direction involves the efficient collectionneighbors simple for smoothing. With thick sections, it is and assembly of multiple glimpses to capture the wholewhitlay mager than scale of quantization that slices will structure. There has been considerable work on algorithms
sufficiently larger than scale of sice for the assessment of shape from projections, motivated by
not usually miss points, yet smaller than scale of structure th il ftmgah 1'4 [2 11 yhr a ls ensm
so that the thickness will not blur the global structure. Of the field of tomography There has also been some
course if the scales of quantization and structure are too general work on inferring shapes of polytopes using
close together, then there are intrinsic limits on the adequacy probing 221. Further work, encompassing both section and
of the rendition in the full space. How much more latitude is section-then-projection will be needed.needed for section and projection is not yet clear. An additional, independent issue, concerns the

psychological aspects of high-dimensional visualization.
4.4 Noise The formal treatments can explore the question about what

A final deviation from the idealization is noise, kind of information is theoretically available from various

Empirical statistical loci typically have the structure of tools, information that could be used by some arbitrary

interest obscured by noise, i.e., random perturbations of the intelligent machine. It is a further question what kind ofinformation can be captured and integrated by human
positions of the points. Again scale seems the key: If the in tinc fo e ape o sp teflald inferenc

scale of the noise is small with respect to that of meaningful intelligence, for example to support useful valid inference

structure, then there should be no serious problems. If the about the locus as a result of the low dimensional views.

scale of noise gets too large, then the structure's image under
section and projection may be obscured. But in such cases,
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A DEMONSTRATION OF THE DATA VIEWER

Catherine Hurley

University of \Vaterloo

ABSTRACT

We have designed and implemented a program called data viewer for explor-

ing multivariate data sets. The program produces plots ?noting in real-time

by projecting onto a sequence of user-controlled planes. Multiple plots may

be simultaneously controlled, allowing dynamic comparisons of data sets.

In this presentation, we demonstrate the data viewer by describing and

interpreting a selection of plots.

1. Introduction

Recent computing advances have encouraged the plot appearing on the screen. With the dais

development of new data analytic methods, many of viewer, the user controls the sequence of

them graphical in nature (Cleveland 1987). \Ve have projections, implying also that he/she may

been concerned with graphical methods for analyzing choose particular projections for display. The

multivariate data. Typically, multivariate data is projection sequence is constructed by interpolat-

projected onto some low (one or two) dimensional ing between consecutive elements of a user-

subspace prior to display. Motion graphics present chosen sequence of target planes. For more

us with one way of improving on the resulting display details, see Hurley (1987), Hurley ard Iluja

-- simply show a new projection every fraction of a (1088)

second. The PRIM system of Fisherkeller, Friedman
* The user-interface

and Tukey (1974) was an early demonstration of this

technique; they used motion to display a rotating 3-d Real-time, rather than animated, motion is

point cloud. Programs for 3-d rotations have become preferable for analyzing data. All data viewer

widely available in the last few years. In our data plots are produced in real-time, which calls for

viewer program, we go beyond 3-d rotations and use real-time user-controls. For this reason, we

motion to display data sets with arbitrary numbers of equip the program with a graphical user-

variables. BIriefly, the program produces moving interface, where the user communicates with the

plots by projecting the observations onto smoothly program by pointing a mouse at some part of the

changing sequences of planes. This presentation data viewer display, and depressing a mouse but-

demonstrates the data viewer by describing and ton. Further details are given in Buja et al

interpreting a selection of plots. (1987), Hurley (1987).

As background, we mention some important aspects 2. The data viewer window

of the data viewer dcsign. These will be illustrated

throughout the sections which follow. The data viewer program produces plots in sonic area

on the screen which we refer to as a data viewer win-
Constructing moving projections dow. Figure 1 shows one such window, displaying a

We consider 2-d projections displayed by a scat- view of the St. Helens data set. This data set con-

terplot, and l-d projections displayed with a tains 680 observations on earthquakes occurring in

marginal density estimate. Changing the projec- the vicinity of Mount St. lelens, during \lay, 1980,

tion reslts in a moving scatterplot or density where the quantities recorded are date, latitude, long-
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itude, depth and magnitude. point identification is the current selection, clicking
near one of the point symbols causes a label to

There are a fixed set of items appearing in a data appear. In the examples presented here, we are eon-
viewer window. These are a plot, a title, the variable cerned with moving projections, so the plot interac-

boxes on the left hand side, a control panel in the tion menu shows PROJECTION. This implies that

lower left corner, and a plot interaction menu lying clicking in the plot region causes a mo,'ng Droiection

next to the control panel. Each o. thcsc ,tcm- to appear.

displays some information relevant to the user. In

addition, the items are mouse sensitive, and respond SrHLNSA

to mouse clicks by changing their appearance. Most

user-program interaction occurs in this way. For

example, by clicking on various parts of the control

panel, the user controls some aspects of the scatter-

plot motion, such as the speed, and direction (for-

wards or backwards). ,

Y . ..,+ .. V . .

. - Figure 2: A density estimate

"* .The data viewer program also displays i-d projec-

tions, by plotting a marginal density estimate for the

projected observations. For example, figure 2 shows

-- a density estimate of latitude. (The density es,

__-___..,-mate is an average shifted histogram (Scott 1985).)

--- As in figure 1, the box for this variable has a horizon-

Figure 1: A data viewer window tal line and an X label. Since the plot shows a 1-d

projection, there is no box with a vertical line.
In figure 1, the boxes for date and latitude have

horizontal and vertical lines drawn from their 3. 3-D Rotations
centers, telling us that the displayed plot is a bivari-

ate scatterplot of date and latitude. A variable In figure 3(a), we have picked out the 3-variable sub-

box has a label X, Y, A or blank appearing on the space consisting of latitude, longitude and

top left hand corner. These labels have a special pur- depth, by marking their respective boxes with A

pose -- they determine which projections may be labels. The pair of variables latitude and depth

shown. An A label signifies that the variable is are in the plane of the screen, while the third, long-

active and may appear in the current projection. itude, is perpendicular to the screen. Notice that

With an X ( Y) label, the variable is allowed to have the mouse cursor is positioned on the right hand side

a projection coefficient for the horizontal (vertical) of the scatterplot. With a left mouse click at this

direction only. No label indicates that the variable is position, the point cloud rotates towards the mouse

inactive, arid so has zero horizontal and vertical coef- cursor. More precisely, the point cloud spins in the

ficients. Mouse clicks in the variable boxes are used direction given by the center of the plot region and

to change the labels, the cursor position. A mouse click in the pht region

as the points are moving stops the motion. The next
The plt interaction menu controls the style or pjot itepn-armoIgsos

click restarts the rotation, in the direction specified

interaction, where the current possibilities are point by thle c urrent positin of thle rioilse cursor. \Vith
identification, shifting and scaling of the plot axes these controls, thle user can spin a 3-d poiiit cloud in

(see 'ija et al, 1987) rotation of the plot in the
plane, and moving projections. For instance, when a direcio fig r sows a ctu (ins.

data viewer window after some9 poi t cld rotations.
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Notice now that lines are drawn in all three lati- cloud in the lower window also rotates, and in the

tude, longitude and depth boxes. The lines are same direction. This is because the second window

in fact the projections of the three coordinate axes. was constructed in a special way, in order to link it
to the existing window. In this case, simultaneous

motion of the two scatterplots permits a dynamic

data set comparison, because the second window

displays oihroughou a ciose-up of the firzu.

.. . .A STHELE S

A :
_7 _. .:.t

ST H'4ELENS, .

Figure 3: 3-) rotations

4. Linking for close-up views

All of the plots shown so far demonstrate that earth-
quake locations are highly concentrated, so that it is Figure -1: A close-up view

hard to see the structure of the dense cluster. For
this, separate plots of the high-density region are 5. Connecting plots

necessary. Suppose the data set St.Helens-dense Figure 5 shows a data viewer window for the Places
contains the subset of cases in the high-density data set. This data consists of scores for 329 US
region. To view this subset separately, we may con- cities on 9 criteria, chosen to measure "livability" of
strmet a second data viewer window. Figure I shiows the cities (Rand McNally 198f6). The nine criteria are
two data viewer windows, one each for the climate, housing, health care, crinme. transport ation,
St.Helens and St.Helens-dense data sets. In education, the arts, recreation and economics. For
both windows, the cases belonging to the dlense sub- housimg and crime, the lower the score the better.
set are drawn with square glyphs, while the reniain- For all other variables, the higher the score, the
ing points have hollow circuilar glyphs. By comparing better. Three additional variales are incledj.
the lines drawn !in the variable boxes, we see that the namely, population (transformed to a log scale), lati-
two wind~ows show the same projection. This implies tude and longitude for each of the .329 cities.
that the scatterpdot in the lower window is a "close- The uipper plot. figure 5(a) gives a bivariate scatter-
up" of the uipper scatterplot. ptlot of latitude and longitude'. Th'le two extra"

As before, pointing the mnouse cursor at. the plot, points Onl thme left hiand side of th lie ap represent
region in the tipper window and clicking catuse't tl,,' Anchorage, Alaska, and onolul, Hawaii. Tlhteir lti -point cloud to rotate. I lowever, this time the poinit t tilde antd longitutde cooxrdi nates have beeni adjutsted so
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that all cities fit nicely into the plot region. The to the target plot. Briefly, the horizontal projection

middle plot shows a bivariate scatterplot of climate vector rotatus in the climate, longitude plane,

and housing. Instead of changing the display while the vertical projectiuih vector rotates simultane-

immediately from one bivariate scatterplot to ously at the same rate in the housing, latitude

another, we can gain a lot of information by watching plane. When the projection reaches the target.

a smooth progression from one scatterplot to another, motion pauses momentarily, and then resumes back

nnn 1'n'k q,;n. We e~ll this connecting the scatter- towards the climate, housing plot. The

plots. In this way, we discover which U.S. cities have displayed projection continues to cycle between these

good or bad climate, and expensive or cheap housing two scatterplots until the user intervenes.

prices. The third plot in figure 5 shows one of the interniedi-

ate projections. From the variable boxes we see that

both climate and longitude have non-zero pro-

jections in the horizontal direction, similarly, hous-

" ,Ing and latitude in the vertical direction. By

. watching the smooth progression repeatedly between
the pair of scatterplots shown in figure 5 (a) and (b),

we gain the following information:

0 The cluster of points with the best climate are

all Californian cities. They also have high hous-

-- uing prices.

" Highest housing costs are in the vicinity of N'w

York. (The two points with very high scores on

housing are actually Connecticut cities).

- The mid-west has the worst climate: Minnesota,
Wisconsin, and the Dakotas.

-" :" .:":4" '"6. Linking to compare transformed data

Sonic of the ratings, in particular the-arts and
health-care, give extremely high scores to the big-

gest cities-- New York, Chicago and L.A.. This

results in scatterplots where most of the observations

are clustered together, so that associations between

variables are hard to pick out. For this reason, rat-

ings are transformed to normal scores.

Figure 6 shows two data viewer windows, the upper
one with the rating variables as before, and the lower

_2.L' ,one with the normal scores. Both windows display a

density estimate for a linear combination of the rat-

Figure 5: Connecting scatterplots ing variables. The linear combination is the same

We construct the sequence of projections which con- since the data viewer windows are linked by common

nect the scatterplots shown in figure 5(a) and (b) as projections. Notice the dot on the extreme right in

follows: Suppose the window currently displays cli- the tipper plot; this is New York. In the lower plot,

mate and housing, and we pick longitude and New York lies far closer to the other cities. As the

latitude ss the target plot. Motion resiirpq with a projection vector moves in the space spanned by the

click on a mouse button, proceeding from the current X-variables, we see how the transformation to normal
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scores affects marginal distributions. The density have the largest coefficients, whereas the coefficients
estimate in the lower window is generally symmeLric, for economics and recreation are comparativl.\
and quite often looks "bell-shaped". For the small. (The variables have been transformed to nor-
untransformed ratings, the 1-d projections have real scores, so that it is reasonable to compare their
highly skewed distributions. With a moving x-vector, projection coefficients.)
the density's peak shifts to and fro across the screen.

Do the variables economics and recreation have
, , c a nedigible contribution to the x-y association In tb

above projection? We may answer this question as
/-' follows. Suppose we deactivate the two variables

economics and recreation, thus requiring them

: 'to have zero projection coefficients in succeeding tar-
I \get planes. In particular, the x-vector for the next

target will be the current x-vector orthogonalizedJ with regard to the two deactivated variables. With a
_. - ---.. .-- . ...... rotation towards this target, we receive a visual

impression of how tl,. quality of the x-y association
deteriorates (if at all), as the coeffic*-nts of the two

I p,-c. ,,,. variables shrinks to zero. The second plot in ii~are 7
shows the projection onto the new target. Overall, it
looks very similar to the previous plot, .vh most

cianges occurring among cities with lower popula-
tion. As far as the eye can judge, economics and
recreation do not contribute to the x-y association

. k. observed in the upper plot.

T:: - - - : . .... c: ... .. ...

Figure 6: Con paring transformed data

7. Predictor-response plots

Most of the nine rating variables tend to assign high
values to big cities. To judge the overall nature of
the association between population and the ratings,
we examine plots of population against linear combi-
nations of the rating variables. Suppose we pick
population as the single Y-variable, and make each
of the-arts, health-care, economics, educa-

tion and recreation X-variables. (From the
bivariate scatterplots, these five have the strongest

individual associations with population.) Then,
motion yields a plot of population against a chang--- .

ing linear combination of the five X-variables.

By watching the moving scatterplot, we discover a
projection with high x-y association, as shown in fig-
ure 7(a). We can see that population is linearly
related to a weighted average of the five selected rat- Figure 7: Exploratory regression

ing variables. Also, health-care and the-arts
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S. Data derived variables open circles respectively, while cities in other regions

are not shown. The l.h.s. boxes show which rating

The data viewer can also display plots of principal variables contribute to the separation. Note that
components, canonical variates or the linear discrim-

inants. Indeed, the user may choose any linear corn- * climate has a large positive coefficient in the

binations to form additional variables, but as a rule, horizontal direction; since west coast cities lie to

data derived combinations will be the most useful. the right of east coast cities in the scatterplot,

this implies that the west coast has better cli-

mae.

" '' ,: - Health-care and education have moderately

.. " . sized, but negative, horizontal coefficients.

S -* " " "" Therefore, it seems as if east coast cities offer

: *: • "superior health-care and education facilities.

I. . .. * Recreation, transportation and econom-

ics have little or no impact on the separation

observed.

9. Conclusion

Figure 8: Plotting linear discriminants This presentation aimed to illustrate some of the

capabilities of the data viewer program, through

Figure 8 shows a data viewer window for the Places

data, with additional boxes on the right hand side for describing some of the diplays prod.ced. \Vi*h a

some wth addiial Inoths cas, the ight asiaes o system which relies so heavily on real-time motion
some ne tnd bles. In this case, the new variables and real-time graphical interaction, a textual descrip-

were obtained by perforn a dicrimi nt analysis tion of a few static plots is at best a poor substitute
using the nine ratings, where the cities where "lassed foa iedmnsrtn.Hwvweoudhp

by location into (i) west coast states plus Alaska and o a ve denv n t ra der of t e p o l o a

Hawai, ii)Rocy montan sate, (ii) id-est to have cnnvinced the reader of the potential of data
Hawaii, (ii) Rocky mountain states, (ini) mid-west analysis tools such as data view(

states, (iv) south-west states, (v) south-east states

and (vi) north-east states. The purpose is to discover Acknowledgements

how the ratings vary across locations.
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ABSTRACT
By means of paralVl coordinates a non-projective mapping between subsets of RN into subsets of
R2 (i.e. 2R"- 2 R ) is obtained. In this way not only N-tuples but also relations among N
variables, for any positive integer N, can be visualized in terms of their planar images. These
planar diagrams have geometrical properties corresponding to some properties of the N-dimensional
relation they represent. Starting from a point.- - line duality when N= 2, the representation of
lines in RN is given and illustrated by an application to Air Traffic Control (i.e. for R4 ). It is
followed by the representation of hyperplanes, and more general hypersurfaces. There is an
algorithm for constructing and displaying any interior point to such a hypersurface showing some
local (i.e. near the point) properties of the hypersurface and information on the point's proximity to
the boundary.

Introduction

O ther than a superficial similarity to Y
Nomography Parallel Coordinates were first

formulated in 1978 with the first report appearing
in 1981 (see [12]). They provide a methodology for
visualizing not only N-Dimensional points but also
N-Dimensional Hypersurfaces (i.e. relations among C HN
N variables) for arbitrary N the method being the C11
same for every N. Other methodologies (but not _i x
suited for multivariate relations) are well known \ C>
(see [1], [2], [4] and the bibliographies in [5] and o
[15], for example). Some applications of parallel C

coordinates can be found in [6], (7], [12], (131, [151,
(161, (171 and (18].

41  y 4 X1_1  I X1. I ,.. X14-2 NC; i

On the plane with xy-Cartesian coordinates, and
starting on the y-axis, N copies of the real line, Figure 1: -- Parallel axes for PN
labeled x, , x2 ... , xN, are placed equidistant and
perpendicular to the x-axis. They are the axes of The polygonal line shown repr:c.,ents the
the parallel coordinaie system for Euclidean N- point C=(Cl , ... , ci-1, ,, c,+l .. .  cN)
Dimensional Space RN all having the same positive
orientation as the y-axis --see Figure 1. A point C
with coordinates (, c2 .... cN) is represented by

Parallel Coordinates
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the polygonal line whose N vertices are at (i - I , c,) coordinates, the corresponding symbols are shown
on the x,-axis for i= I, ... , N. In effect, a 1-1 with a bar superscript (i.e. 1 represents the line t,
correspondence between points in RN and planar P represents the point P etc.).
polygonal lines with vertices on x1 , X2.....XN is

established. A convex hypersurface in R N is repre-
sented by the envelope of th =. family of polygonal The Fundamental Point 4- -* Line Duality
lines representing all points on the hypersurface (seS
[3]). In short, a non-projective mapping 2)zI -. 2R

ic established. The key idea is that the descri' tion Points on the plane are represented by segments
of a higher dimensional object is captured, to a between the x, and x2-axis and, in fact, by the line
considerable extent, in the 2-dimensional representation containing the segment. In Figure 2, the distance

of the envelope of the polygonal lines representing between the x, and X2 axes is "d". The line

its points.
it: x2=mx +b, m<ow

Points are denoted by capitals and lines (or arcs of
curves) by iower-case letters respectively. In parallel is the collection of points A Thuy are rcpresented

by the infiniie collection of lines A on the xi)-plane
which when m A I intersect at the poini:

- d bP:(l 1rn ),

given with respect to the xyv-Cartesian coordinates
The reason for representing the point P by the whole
line P, rather than just the segment between the

X X1 parallel axes, is that , may lie outside the strip
between the axes. For lines with m = 1, we consider
xy and xIx2 as two copies of the Projective Plane [8]

X1 X2 so that the lihre f corresponds to the ideal poira 1
with tangent direction (i e. slope) b/d. Conversely,

in the xIx 2-projective plane the idealpoint with slope
m is mapped into the vertical line at x = d/(l - m) of

-T t ,bthe xy-projective plane. Hence, we have a duality
(0,a 2 ) d,mo 2 +b) A2 -m -M) (a 2 mo 2 +b) between points and lines of the Projective Plane.

_d,_'A 2 This duality as expressed by means of homogeneous

_dma +b A A2  coordinates is a linear transformation a--cortela-
A1  o,+b) tion--between the line coordinates [ m, -I , b] of I

(O,a 1  E:x 2 m-" +b and the point coordinates (d, b, 1 - m ) of ,:

r c CI- -I, (-)--All

X X 2  where [] and (f), the line and point (homogeneous)
coordinates respectively, are taken as column vectors

Figure 2: -- In the plane parallel coordi- and A is a non-singular 3x3 matrix.
niares induce duality. By means of the correlation CA above the collection

Fop part shows the family of segments, of points on a curve is mapped into a collection of
opresenting soins ohe famiynofis ents lines which can be considered as tangents to another

representing points Lo part n l ite- curve On the plane conics map into conics (see
sectng at a point. Lower part shows the [91) Actually, this property is more general and
duality line I F point in general. applies to generalized conicv Consider a double cone

whose base is any bounded convex set as shown in

Parallel Coordinates
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X2 Y

Xl ' X

X1 X2

Figure 3: -- Convex polygon to a
polygonal hstar

i i X 14 IS a V X1 %I S

Here the hstar is a section of a double
pyramid Figure 4: -- Interval on a line in R 10 .

Figure 5. As in the ordinary conics, three kinds of
planar sections exist, those having bounded, unbounded for hyperbola) respectively. Collectively, they are
or two disjoint unbounded components. By analogy to referred to as gconics. It turns out that gconics map
the ordinary conics they are called estars, pstars and into gconics (see [13]) and in particular estars map
hstars (the "e" for ellipse, "p" for parabola and "h" into hstars shown in Figure 3. This yields a new

duality betweem bounded and unbounded convex

N. ... ,

ESTAR HSTAR PSTAR

Figure 5: -- Generalized Conics (Gconics)

Parallel Coordinates
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sets and hstars as well as a duality between Convex
Merge (Convex Union) and Intersection. Based on
these results efficient new algorithms for Convex
Hull construction, and the Convex Merge and In-
tersection of Convex sets were derived (see [171).
For non-convex curves there is a surprising duality
between cusps and inflection points.as shown t

Lines in RN

onsider now a line I in RN described by:
11Til X! X2 X3

4i+ :x,+1 =x + b, i=2,..., N.
mn#0

In the Yx.,+I-plane the relation labeled /i+l is a Figure 6: -- The trajectory of an aircraft

line and by the correlation CA translated appropri- flying on a straight line path with constant

ately it is represented by the point velocity is a line in 4-D and can be repre-
sented by 3 stationary points.

- - , F). On the four parallel axes a polygonal line, 1 , shows the time, value on the T-axis, when

There are N- 1 such independent relations in the the position (XI X2 , X3 ) is attained. Even

given set of equations, ergo the line I is represented in an accurate 3-D isometric (above left)
by the corresponding N- 1 points. For example, in the aircraft look as if they are almost
Figu-e 4 we see several points on a line interval in colliding, the information in parallel coor-
R10 . It is clear from the diagram how a point can dinates shows that this is not the case.
be constructed on the line, for any given initial
value of one of the variables. It is also clear how,
given the equations or the coordinates of their equiv-
alent points in parallel coordinates, points on the every such line is the same as the x-coordinate of
line can be calculated. It also turns out that the every other such line, namely 1 / (1 - m). That is
minimum distance between two lines is "visible" in to say, the set of parallel lines in Euclidean coor-
parallel coordinates [16] a useful property in problems dinates transforms into a vertical line in parallel
involving proximity as in Air Traffic Control see coordinates. In N-dimensions a set of parallel lines
Figure 6. The time axis can be thought of as a transforms into N- I vertical lines. This is the
.clock" and at any given time T, the position of basis for the representation of any hyperplane by
the aircraft is found by selecting the value of T on N- 1 vertical lines and a polygonal line representing
the T-axis. one of its points. In Figure 7 a planar relation

among industrial data was discovered from this ob-
servation.

Hyperplanes in RN

U p to this point a very special and useful fact Hypersurfaces in RN

concerning straight lines has not been men-
tioned. In two dimensions a line in Euclidean space feel for the power of the representation can
transforms into a point in parallel coordinates. Ev- A be gained from Figure 9 from which, with a
ery line parallel to such a line also transforms into bit of practice, the vertices, edges and faces, and
a point in parallel coordinates. The x-coordinate of their interrelationship, of the hypercube can be rec-

Parallel Coordinates
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Y

1 OD:(0.1) C:01,1)

E0 100 2:00 8(,)

i~ndicated by- - - j

Figure 7: -- Vertical pattern between twoF:00010
variables from a multi-variate set of 2000 indicated by - -- X3

industrial data points.L

This shows a linear relation between RiII (C,

Ri112 and a third variable. OX o

Figure 9: -- Ilypercube Representation in
ognized. The representation of more certain more Parallel Coordinates.

Graph of square (a), cube in 3-D (b) and
Cube in 5-D (c) all having unit side.

__ _ _ __ _ __ _ _ __ _ _ __ _ __ _ __,_ _

15 xvgeneral classes hypersurfaces has been found. There
10- 111:3.is an algorithm for finding and displaying ialterior/

R.111.. exterior or points on the surface as shown in Figure

Raw .4Though necessarily brief, we hope to have con veyed
a notion of a new geometrical tool for visualizing

10 and analyzing multivariate relations. Parallel Coor-
dinates have a "built-in mechanism" for generalizing
'iower-dimensional" intuition and results without

20 any intrinsic limit on the dimensionality.

Figure 8: -- The polygonal line represents
the point found interior to the

ilyperellipsoid

Parallel Coordinates
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On Some Graphical Representations of Multivariate Data

Masood Bolorforoush and Edward J. Wegman
George Mason University

1. Introduction. The classic scatter diagram is a 1
fundamental tool in the construction of a model for data. It x x

allows the eye to detect such structures in data as linear or
nonlinear features, clustering, outliers and the like. 2
Unfortunately, scatter diagrams do not generalize readily
beyond three dimensions. For this reason, the problem of 3 A
visually representing multivariate data is a difficult, largely
unsolved one. The principal difficulty, of course, is the fact 4
that while a data vector m'sy be arbitrarily high dimensional,
say n, Cartesian scatter plots may only easily be done in two
dimensions and, with computer graphics and more effort, in
three dimensions. Alternative multidimensional representations
have been proposed by several authors including Chernoff n X.... ..
(1973), Fienberg (1979), Cleveland and McGill (1984a) and
Carr et a. (1986).C anr mportat t u b. oFigure 2.1 Parallel coordinate representation of two n-An important technique based on the use of motion is dimensional points.

the computer-based kinematic display yielding the illusion of
three dimensional scatter diagrams. This technique was
pioneered by Friedman and Tukey (1973) and is now availablt exploits. lnselberg (1985) originated the parallel coordinate
in commercial software packages (Donohoe's MacSpin and representation as a device for computational geometry. His
Velleman's Data Desk). Coupled with easy data manipulation, 1985 paper is the culmination of a series of technical reports
the kinematic display techniques have spawned the exploitation dating from 1981. Finally we note that Diaconis and Friedman
of such methods as projection pursuit (Friedman and Tukey, (1983) discuss the so-called M and N plots. Their special case

1974) and the grand tour (Asimov, 1985). Clearly, projection- of a 1 and 1 plot is a parallel coordinate plot in two
based techniques lead to important insights concerning data. dimensions. Indeed, the I and I plot is sometimes called a
Nonetheless, one must be cautious in making inferences about before-and-after plot and has a much older history. The
high dimensional data structures based on projection methods fundamental theme of this paper is that the transformation
alone. It would be highly desireable to have a simultaneous from Cartesian coordinates to parallel coordinates is a highly
representation of all coordinates of a data vector especially if structured mathematical transformation, hence, maps
the representation treated all components in a similar manner. mathematical objects into mathematical objects. Certain of
The cause of the failure of the standard Cartesian coordinate these can be given highly useful statistical interpretations so
representation is the requirement for orthogonal coordinate that this representation becomes a highly useful data analysis
axes. In a 3-dimensional world, it is difficult to represent more tool.
than three orthogonal coordinate axes. We propose to give up 3. Parallel Coordinate Geometry. The parallel
the orthogonality requirement and replace the standard coordinate representation enjoys some elegant duality properties
Cartesian axes with a set of n parallel axes. with the usual Cartesian orthogonal coordinate representation.

Consider a line L in the Cartesian coordinate plane given by L:
2. Parallel Coordinates. We propose as a multivariate y~mx+b and consider two points lying on that line, say

data analysis tool the following representation. In place of a (a, ma+b) and (c, mc+b). For simplicity of computation we
scheme trying to preserve orthogonality of the n-dimensional consider the xy Cartesian axes mapped into the xy parallel axes
coordinate axes, draw them as parallel. A vector (x, x2 , .. , as described in Figure 3.1. We superimpose a Cartesian
x,) is plotted by plotting x, on axis i, x2 on axis 2 and so on coordinate axes t,u on the xy parallel axes so that the y parallel
through x5 on axis n. The points plotted in this manner are axis has the equation u=l. The point (a, ma+b) in the xy
joined by a broken line. Figure 2.1 illustrates two points (one Cartesian system maps into the line joining (a, 0) to (ma+b, 1)
solid, one dashed) plotted in parallel coordinate representation. in the tu coordinate axes. Similarly, (c, mc+b) maps into the
In this illustration, the two points agree in the fourth line joining (c, 0) to (mc+b, 1). It is a straightforward
coordinate. The principal advantage of this plotting device is computation to show that these two lines intersect at a point
clear. Each vector (x,, x2 ... xn) is represented in a planar (in the tu plane) given by L: ( b(l -m) - , (I -m)-'). Notice
diagram so that each vector component has essentially the same that this point in the parallel coordinate plot depends only on
representation. m and b the parameters of the original line in the Cartesian

The parallel coordinates proposal has its roots in a plot. Thus I is the dual of Z and we have the interestingThe aralel oorinats popoal hs is rots n ~duality result that points in Cartesian coordinates map into
number of sources. Griffen (1958) considers a 2-dimensional lity rel t oint s in Cartesian coordina to

parallel coordinate type device as a method for graphically lines in parallel coordinates while lines in Cartesian coordinates

computing the Kendall tau correlation coefficient. lartigan map into points in parallel coordinates.

(1975) describes the "profiles algorithm" which he describes as For 0 < (I-my' < 1, m is negative and the
"histograms on each variable connected between variables by intersection occurs between the parallel coordinate axes. For
identifying cases.' Although he does not recommend drawing m= -1, the intersection is exactly midway. A ready statistical
all profiles, a profile diagram with all profiles plotted is a interpretation can be given. For highly negatively correlated
parallel coordinate plot. There is however far more pairs, the dual line segments in parallel coordinates will tend to
mathematical structure, particularly high dimensional cross near a single point between the two parallel coordinate
structure, to the parallel coordinate diagram than lartigan axes. The scale of one of the variables may he transformed in
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U coordinate space and vice versa. Thus the relatively hard-to-
detect inflection point property of a function becomes the

(c, mc+b) notably more easy to detect cusp in the parallel coordinate
representation. Inselberg (1985) discusses these properties in
detail.

(ma+b1.) 4. Further Statistical Interpretations. Since ellipses

(mceb.1) Y map into hyperbolas, we can have an easy template for
diagnosing uncorrelated data pairs. Consider Figure 3.2. With

(a, a +b) a completely uncorrelated data set, we would expect the 2-
dimensional scatter diagram to fill substantially a

a.0) (c,0) x.t circumscribing circle. As illustrated in Figure 3.2, the parallel
coordinate plot would approximate a figure with a hyperbolic
envelope. As the correlation approaches negative one, the

Figure 3.1 Cartesian and parallel coordinate plots of two hyperbolic envelope would deepen so that in the limit we would
points. The tu Cartesian coordinate system is superimposed on have a pencil of lines, what we like to call the cross-over effect.

the xy parallel coordinate system. As the correlation approaches positive one, the hyperbolic
envelope would widen with fewer and fewer croes-overs so that

such a way that the intersection occurs midway between the in the limit we would have parallel lines. Thus correlation
two parallel coordinate axes in which case the slope of the structure can be diagnosed from the parallel coordinate plot.
linear relationship is negative one. As noted earlier, Griffen (1958) used this as a graphical device

for computing the Kendall ta.
In the case that (-m)-i<0 or (l-m)'>l, m is

positive and the intersection occurs external to the region
between the two parallel axes. In the special case m=I, this
formulation breaks down. However, it is clear that the point
pairs are (a, a+b) and (c, c+b). The dual lines to these points p=l.0
are the lines in parallel coordinate space with slope b-1 and
intercepts -ab - and -cb' respectively. Thus the duals of
these lines in parallel coordinate space are parallel lines with p=0.8

slope b1. We thus append the ideal points to the parallel
coordinate plane to obtain a projective plane. These parallel p=0.2
lines intersect at the ideal point in direejion b1. In the
statistical setting, we have the following interpretation. For p=0.0
highly positively correlated data, we will tend to have lines not

intersecting between the parallel coordinate axes. By suitable
linear rescaling of one of the variables, the lines may be made p=-0.2
approximately parallel in direction with slope b" . In this case
the slope of the linear relationship between the rescaled -
variables is one. See Figures 3.2 for an illu3tration of large p=-0.8

positive and large negative correlations. Of course, nonlinear
relationships will not respond to simple linear rescaling. p-L.
However, by suitable nonlinear transformations, it should be
possible to transform to linearity. The point-line, line-point
duality seen in the transformation from Cartesian to parallel
coordinates extends to conic sections. An instructive Figure 3.2 Parallel coordinate plot of 6 dimensional data
computation involves computing in the parallel coordinate illustrating correlations of
space the image of an ellipse which turns out to be a general p = 1, .8, .2, 0, -. 2, -. 8 and -1.
hyperbolic form. For purposes of conserving space we do not
provide the details here. Griffen, in fact, attributes the graphical device to

It should be noted, however, that the solution to this lolmes (1928) which predates Kendall's discussion. The
computation is not a locus of points, but a locus of lines, a line computational formula is
conic. The envelope of thiF line conic is a point conic. In the
case of this computation, the point conic in the original
Cartesian coordinate plane is an ellipse, the image in the r - I - 4X
parallel coordinate plane is as we have just seen a line n(n-1)
hyperbola with a point hyperbola as envelope. Indeed, it is true
that a conic will always map into a conic and, in particular, an where X is the number of intersections resulting by connecting
ellipse will always map into a hyperbola. The converse is not the two rankings of each member by lines, one ranking having
true. Depending on the details, a hyperbola may map into an been put in natural order. While the original formulation was
ellipse, a parabola or another hyperbola. A fuller discussion of framed in terms of ranks for both x and y axes, it is clear that
projective transformations of conics is given by Dimsdale the number of crossings is invariant to any monotone increasing
(1984). lnselberg (1985) generalizes this notion into parallel transformation of either x or y, the ranks being one such
coordinates resulting in what he calls hstars. transformation. Because of this scale invariance, one would

We mentioned the duality between points and lines and expect rank-based statistics to have an intimate relationship to

conics and conics. It is worthwhile to point out two other nice parallel coordinates.

dualities. Rotations in Cartesian coordinates become It is clear that if there is a perfect positive linear
translations in parallel coordinates and vice versa. Perhaps relationship with no crossings, then X = 0 and r = 1.
more interesting from a statistical point of view is that points Similarly, if there is a perfect negative linear relationship,
of inflection in Cartesian space become cusps in parallel Figure 3.2 is again appropriate and we have a pencil of lines.
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Since every line meets every other line, the number of
intersections is (n) so that

2r 4(n)
rl = - n(n-l) -- 1

It should be further noted that clustering is easily diagnosed 2 " z
using the parallel coordinate representation.

So far we have focused primarily on pairwise parallel
coordinate relationships. The idea however is that we can, so
to speak, stack these diagrams and represent all n dimensions 3
simultaneously. Figure 4.1 thus illustrates 6-dimensional
Gaussian uncorrelated data plotted in parallel coordinates. A
6-dimensional ellipsoid would have a similar general shape but
with hyperbolas of different depths. This data is deep ocean 4
acoustic noise and is illustrative of what might be expected.

5

Figure 4.2 A five dimensional scatter diagram in parallel

coordinates illustrating marginal densities, correlations, three
dimensional clustering and a five dimensional mode.

Figure 4.2 thus illustrates some data analysis features
of the parallel coordinate representation including the ability to

diagnose one-dimensional features (marginal densities), two-

dimensional features (correlations and nonlinear structures),
three-dimensional features (clustering) and a five-dimensional

feature (the mode). In the next section of this paper we
consider a real data set which will be illustrative of some

additional capabilities.

5. An Auto Data Example. We illustrate parallel
cooordinates as an exploratory analysis tool on data about 86

1980 model year automobiles. They consist of price, miles per
gallon, gear ratio, weight and cubic inch displacement. For n
= 5, 3 presentations are needed to present all pairwise
permutations. Figures 5.1, 5.2 and 5.3 are these three

Figure 4.1 Parallel coordinate plot of 6 channel sonar data. presentations. In Figure 5.1, perhaps the most striking feature
The data is uncorrelated Gaussian noise. The second is the cros-over effect evident in the relationship between gear

coordinate represents a relatively remote hydrophone and has a ratio and weight. This suggests a negative correlation. Indeed,
somewhat different mean. Notice the approximate hyperbolic this is reasonable since a heavy car would tend to have a large

shape.

Figure 4.2 is illustrative of some data structures one

right see in a five-dimensional data set. First it should be
noted that the plots along any given axis represent dot

diagrams (a refinement of the histograms of Hartigan), hence
convey graphically the one-dimensional marginal distributions.

In this illustration, the first axis is meant to have an

approximately normal distribution shape while axis two the
shape of the negative of a x

2
. As discussed above, the pairwise

comparisons can be made. Figure 4.2 illustrates a number of

instances of linear (both negative and positve), nonlinear and Ow Rati
clustering situations. Indeed, it is clear that there is a 3-
dimensional clster along coordinates 3, 4 and 4.

Consider also the appearance of a mode in parallel

coordinates. The mode is, intuitively speaking, the location of

the most intense concentration of probability. lence, in a
sampling situation it will be the location of the most intense

concentration of observations. Since observations are

represented by broken line segments, the mode in parallel

coordinates will be represented by the most intense bundle of

broken line paths in the parallel coordinate diagram. Roughly
speaking, we should look for the most intense flow through the

diagram. In Figure 4.2, such a flow begins near the center of Figure 5.1 A parallel coordinate plot in five dimensions of

coordinate axis one and finishes on the left-hand side of axis automobile data. Note the negative correlation between gear

five. ratios and weight.
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engine providing considerable torque thus requiring a lower gear

ratio. Conversely, a light car would tend to have a small

engine providing small amounts of torque thus requiring a

higher gear ratio.

Consider as well the relationship between weight and

cubic inch displacement. In this diagram we have a

considerable amount of approximate parallelism (relatively few

crossings) suggesting positive correlation. This is a graphic

representation of the fact that big cars tend to have big engines,
a fact most are prepared to believe. Quite striking however is

the negative slope going from low weight to moderate cubic PrieI

inch displacement. This is clearly an outlier which is unusual

in neither variable but in their joint relationship.

The relationship between miles per gallon and price is
also perhaps worthy of comment. The left-hand side shows an Virlam
approximate hyperbolic boundary while the right-hand side

clearly illustrates the cross-over effect. This suggests for

inexpensive cars or poor mileage cars there is relatively little

correlation. However, costly cars almost always get relatively

poor mileage while good gas mileage cars are almost always O RatI
relatively inexpensive.

uei~t  Figure 5.3 The third permutation of the five dimensional
automobile data. Note the highlighting of the domestic

automobile group.

relatively good gas mileage, relatively light weight, relatively

Dis: la inexpensive, relatively small engines and relatively high gear
ratios. In 1980, these two characterizations describe
respectively domestic automobiles and imported automobiles.

6. Graphical Extesizons of Parallel Coordinate Plots.
Slo aThe basic parallel coordinate idea suggests some additional

plotting devices. We call these respectively the Parallel
Coordinate Density Plots, Relative Slope Plots and Color

Histograms. These are extensions of the basic idea of parallel

coordinates, but structured to exploit additional features or to

G- Rat iconvey certain information more easily.

Figure 5.2 The second permutation of the five dimensional
presentation of the automobile data. Notice the two classes of

linear relations gear ratio and miles per gallon.

rurnin, to Figure 5.2, the relationship between gear Prim 9
ratio and miles per gallon is instructive. This diagram is
suggestive of two classes. Notice that there are a number of
observations represented by line segments tilted slightly to the
right of vertical (high positive slope) and a somewhat larger

numl.er with a negative slope of about -I. Within each of
these two classes we have approximate parallelism. This
suggests that the relationship between gear ratios and miles per
gallon is approximately linear, a believable conjecture since low
gears = big engines = poor mileage while high gears = small
engines = good mileage. What is intriguing, however, is that
there seems to be really two distinct classes of automobiles each

exhibiting a linear relationship, but with different linear Figure 5.4 The third permutation showing highlighting of the
relationships within each class, imported automobile group.

Indeed in Figure 5.3, the third permutation, we are
able to highlight this separation into two classes in a truly 5- 6.1 Parallel Coodinate Density Plots. While the basic
dimensional sense. The shaded region in Figure 5.3 describes a parallel coordinate plot is a useful device itself, like the
class of vehicles with relatively poor gas mileage, relatively conventional scatter diagram, it suffers from heavy overplotting
heavy, relatively inexpensive, relatively large engines and with large data sets. In order to get around this problem, we
relatively low gear ratios. Figure 5.4 is a repeat of this graphic use a parallel coordinate density plot which is computed as
but with different shading highlighting a class of vehicles with follows. Our algorithm is based on the Scott (1985) notion of
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average shifted histogram (ASH) but adapted to the parallel Notice that since slopes are coded as heights, simply laying a

coordinate context. As with an ordinary two dimensional straightedge will allow us to discover sets of linear relationships

histogram, we decide on appropriate rectangular bins. A within the pair of variables xi and xi.
potential difficulty arises because a line segment representing a
point may appear in two or more bins in the same horizontal 6.3 Color Histograms. The basic set-up for the color

slice. Obviously if we have k n-dimensional observations, we histogram is similar to the relative slope plots. For an n-

would like to form a histogram based on k entries. However, dimensional data set, there are n parallel axes. A vertical

since the line segment could appear in two or more bins in a section through the diagram corresponds to an observation.

horizontal slice, the count for any given horizontal slice is at The idea is to code the magnitude of an observation along a

least k and may be bigger. Moreover, every horizontal slice given axis by a color bin, the colors being chosen to form a

may not have the same count. To get around this, we convert color gradient. We typically choose 8 to 15 colors. The

line segments to points by intersecting each line segment with a diagram is drawn by choosing an axis, say x., and sorting the

horizontal line passing through the middle of the bin. This observations in ascending order. Along this axis, we see blocks

gives us an exact count of k for each horizontal slice. We of color arranged according to the color gradient with the width

construct an ASH for each horizontal slice (typically averaging of the block being proportional to the number of observations

5 histograms to form our ASH). We have used contours to falling into the color bin. The observations on the other axes

represent the two-dimensional density although gray scale are arranged in the order corresponding to the x& axis and color

shading could be used in a display with sufficient bit-plane coded according to their magnitude. Of course, if the same

memory. Because of our inability to reproduce color or gray- color gradient shows up say on the x axis as on the xk, then

scale, we cannot give an example of a parallel coordinate we know xi, is positively "correlated" with x-. If the color

density plot in this paper. Parallel coodinate density plots have gradient is reversed, we know the "correlation" is negative. We

the advantage of being graphical representations of data sets used the phrase 'correlation" advisedly since in fact if the color

which are simultaneously high dimensional and very large. gradient is the same but the color block sizes are different, the
relationship is nonlinear. Of course if the x- axis shows color

6.2 Relative Slope Plots. We have already seen that speckle, there is no "correlation' and x, is unrelated to xM.

parallel line segments in a parallel coordinate plot correspond to Again we are unable to give an example of a color histogram in

high positive correlation (linear relationship). As in our this paper because of our inability to reproduce color or gray-
automobile example, it is possible for two or more sets of linear scale.

relationships to exist simultaneously. In an ordinary parallel 7. Implemnatos and Experiences. Our parallel

coordinate plot, we see these as sets of parallel lines with cor inat e medta tis are Esbei me nted in two

distinct slopes. The work of Cleveland and McGill (1984b) coordinates data analysis software has been implemented in two

suggests that comparison of slopes (angles) is a relatively forms, one a PASCAL program operating on the IBM RT

inaccurate judgement task and that it is much easier to under the AIX operating system. This code allows for up to

compare magnitudes on the same scale. The relative slope plot four simultaneous windows and offers simultaneous display of

is motivated by this. In an n-dimensional relative slope plot parallel coordinates and scatter diagram displays. It offers

there are n-I parallel axes, each corresponding to a pair of highlighting, zooming and other similar features and also allows

axes, say x, and xi, with xi regarded as the lower of the two the possibility of nonlinear rescaling of each axis. It
coordinate axes. For each observation, the slope of the line incorporates axes permutations and also includes Parallel

segment between the p.-,r in -.xs is plotted as a magnit,ide Coordinate Density Plots, Relative Slope Plots and Color

between -1 and +1. The maximum positive slope is coded as Histograms.

+ 1, the minimum negative slope as -I and a slope of oo as 0. Our second implementation is under development in
The magnitude is calculated as cos qj where q? is the angle PASCAL for MS-DOS machines and includes similar features.

between the xi axis and the line segment corresponding to the In addition, it has a mouse-driven painting capability and can

observation. Each individual observation in the relative slope do real-time rotation of 3-dimensional scatterplots. Both

plot corresponds to a vertical section through the axis system. programs use EGA graphics standards, with the second also

An example of a relative slope plot is given in Figure 6.1. using VGA or Hercules monochrome standards.

We regard the parallel coordinate representation as a
wilaw R device complementary to scatterplots. A major advantage of

I 
l  

rl 
I the parallel coordinate representation over the scatterplot

.1 ,,,,L I,, ii iiltl ii 11.11 ,I matrix is the linkage provided by connecting points on the axes.
IThis linkage is difficult to duplicate in the scatterplot matrix.

Because of the projective line-point duality, the structures seen
th~t in a scatterplot can also be seen in a parallel coordinate plot.

Moreover, the work of Cleveland and McGill (1984b) suggests

q tthat it is easier and more accurate to compare observations on
a common scale. The parallel coordinate plot and the
derivatives of it de facto have a common scale and so for

Pris I example a sense of variability and central tendency among the

variables are easier to grasp visually in parallel coordinates

., II ,1Iil, Ih...,,., ,.ll when compared with the scatterplot matrix. On the other
'Ii , .hand, one might interpret all the ink generated by the lines as a

significant disadvantage of the parallel coordinate plot. Our

oiieI~u experience on this is mixed. Certainly for large data sets on

hard copy this is a problem. When viewed on an interactive

li , ,graphics screen particularly a high resolution screen, we have
often found that individual points in a qcatterplot can get lost

because they are simply not bright enough. That does not
otFa i happen in a parallel coordinate plot. Howev, -, if many points

Figure 6.1 Relative slope plot of five dimensional automobile are plotted in monochrome, it is hard to distmgp L between

data. Data presented in the same order as in Figure 5.4 points. We havw gotten around this problem by plotting
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distinct points in different colors. In an EGA implementation, Cleveland, W. S. and McGill, R. (1984a), "The many
this means 1A colors. This is surprisingly effective in separating faces of the scatterplot," J. Am. Statist. Assoc., 79, 807-822.
points. In one experiment, we plotted 5000 5-dimensional Cleveland, W. S. and McGill, R. (1984b), "Graphical
random vectors using 16 colors, and inspite of total ce eor, W.eS. atin, an a1p84bi, torahe
overplotting, we were still able to see some structure. In data perception: theory, experimentation, and application to the
sets of somewhat smaller scale, we have implement a development of graphical methods," J. Am. Statist. Assoc., 79,
scintillation technique. With this technique, when there is
overplotting we cause the screen view to scintillate between the Diaconis, P. and Friedman, J. (1983), 'M and N
colors representing the overplotted points. The speed of plots," in Recent Advances in Statistics, 425-447, New York:
scintillation is is proportional to the number of points Academic Press, Inc.
overplotted and by carefully tracing colors, one can follow an Dimndale, B. (1984), "Conic transformations and
individual point through the entire diagram. projectivities," IBM Los Angeles Scientific Center Report

We have found painting to be an extraordinarily #6320-2753.
effective technique in parallel coordinates. We have a painting
scheme that not only paints all lines within a given rectangular Fienberg, S. (1979), "Graphical methods in statistics,"

area, but also all line lying between to slope constraints. This Am. Statistician, 33, 165-178.
is very effective in separating clusters. We also use invisible Friedman, J. and Tukey, 1. W. (1973), "PRIM-9" a
paint to eliminate observation points from the data set film produced by Stanford Linear Accelerator Center, Stanford,
temporarily. This is a natural way of doing a subset selection. CA Bin 88 Productions, April, 1973.
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GRAPHICAL REPRESENTATIONS OF MAIN EFFECTS AND INTERACTION
EFFECTS IN A POLYNOMIAL REGRESSION ON SEVERAL PREDICTORS

William DuMouchel, BBN Software Products Corporation

Abstract regression of xt on the remaining J-1 predictors, rather than
The table of coefficients from a polynomial regression the xn themselves.

analysis having several predictors is hard to interpret because
its focus is on the terms in the fitted equation, rather than on Augmented partial residuals. Mallows (1986)
the variables used to define those terms. Methods for suggested that nonlinearity in the relationship between y and
graphically comparing the effects of each predictor to each
other and to the residuals are introduced and discussed. The xt can be better detected by adding (xj - +t)2 to the regression
techniques are easy to implement and to interpret, and have equation and then replacing pril by
been generalized to provide graphical summaries of interaction
effects. april =Y+ bi(xil - x') + c[(xi1 -i')2 - aye] +e,

1. Introduction where b, and c are coefficients and the e's are residul from

the augmented regression model, and where ave is the average
Partial residual plots (also known as component-plus- of (xil - 3t)2 in the sample. The augmented partial residual

residual plots) are useful diagnostic tools in multiple plot is most effective, compared to the simple partial residual
regression analysis. Mallows (1986) discusses them and plot, when one or more of the other predictors are correlated
suggests an extension of the technique, which he calls an
augmented partial residual plot, designed to reveal a nonlinear with the term (xit - Kt)2.

effect in a regression model. This paper introduces Adjusted-Y plots. Suppose that a response surface
generalizations of such plots which are designed to help a data model equation is represented as
analyst interpret the fit to an arbitrary response surface model
(RSM), a regression equation in the form of a polynomial in Yj = F(xit, xi2. xiJ) + e,

several variables. This new technique, called an adjusted-Y where F is the fitted polynomial and the e's are the residuals

plot, can also be used to help diagnose nonlinearity of a from the regression. For any one of the predictors, say xl,
regression function with respect to one of the predictors, and define an adjusted-fit function over the range of x, as
in fact, if the regression model being fitted is additive and I
linear in the predictors, the adjusted-Y plot reduces to the fl(x) = nZk F(x, Xk2 .... XkJ), (1)

partiai resiuuai plot. Howevcr, the adjusted-Y plot is useful
for an arbitrary polynomial RSM, and the emphasis of this and define an adjusted-Y variable for the ith observation as

technique is not so much to diagnose nonlinearity as to adi = fl(xii) + ei . (2)

visualize the nonlinearity which has already been incorporated yi+

into the RSM, with a secondary goal of diagnosing deviations As proved in Section 5.2, if F is of the form bo + b1 xi +
from the assumptions of the RSM. The adjusted-Y plot is F*(x2. xj), then every Yadi priI. Also, if F is of the
especially useful as the foundation for other graphical .  te er y
techniques for comparing the effects of the different predictor form b0 + bl xi + bii x, + F*(x 2.  xj), then every Yal -
variables in the RSM, and for helping the data analyst visualize
the size and significance of interaction effects. april. The adjusted-Y plot is a generalization of the partial

Partial residuals. Suppose that a linear regression residual and the augmented partial residual plots which is

model with J predictors, of the form useful for response surface models having arbitrary power and

interaction terms.
yi =bo+blxil+b 2 xi2 +...+bjxj+e; i=l . .n,

has been fit by least squares, where the b's are the estimated 2. Example Usage of the Adjusted-Y Plot
coefficients and the e's are the residuals. Suppose it is desired
to focus on one of the predictors, say xI = (xiI ; i = 1 ... , n). 2.1 Data and Standard Analysis

and check the assumptions of constant variance and linearity The data used in this example were taken from Andrews

with respect to that predictor. The partial residuals (pr) with and Herzberg (1985, p.355- 6 ) and consist of measurements

respect to xI are defined as on 42 apple trees in an agricultural experiment. The response

is the mean weight (Wt) of mature apples on each tree, which

pri = + b, (xil - VI) + ei , i = I. n, was considered to be a proxy for the relative freedom of the

apples from a disease which shrivels them. Several variables
where Y and i) are means, and b, and the ei are taken from were measured and reported by Andrews and Herzberg (1985)
the full regression. The plot of pril vs xi has the advantage and by the original researchers Ratkowsky and Martin (1974),
that it displays both the signal coming from x, (the term bt(xil but this example will use just three of them, the

- 9-t)) and the noise (the term ei) as they occur in the concentrations, in parts per million, of three minerals in the

regression on all J predictors. This plot is to be distinguished apples of each tree. The three concentrations, labeled K, Pn,

from the "added variable" or "partial regression" plot, which is and Ca respectively, were used to form a response s-rface

similar to the partial residual plot except that the values plotted model to describe the association between the mineral
A

on the horizontal axis are the residuals (xil - xit), based on a concentrations and the mean weight variable. After some
preliminary modeling, an equation of the form
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Wt = bo + b, Pn + b2 K + b3 Ca + b4 Pn*K + b5 Pn*Ca + correlations among the minerals can prevent an easy
b6 K

2 + e (3) interpretation no matter how they are scaled.

was considered adequate for describing the data. Figure 1 Data taken frm Mulreq APPLEMUL
shows the table of coefficients and some related statistics for
this regression model. Figure 2 shows a scatterplot of the 14
absolute values of the studentized residuals versus the fitted 0
values from this regression, with a lowess fit to the points 02 0

showing no pattern indicating a violation of the usual M o

assumptions of regression models. Figure 3 shows a A * o.0 0

scatterplot of Wt versus K, with three different symbols used N "0
to denote points falling within three ranges (low, medium, and W 8'. o
high) of the variable Pn. .

Least Squares Coefficients, Response WT, Model PNK _I% PNPPM)-lI

4r - PN(PPM 2i
0 Term I Coeff. 2 Std. Error 3 T-value 4 Signif. PN(PPM -3

.. . . . . . . . .. . . . . . .. . . . . . . . . . .. . .21 I I I I II
I i - -- 3- 129.179267 1.90 0.0659 1000 8C00 9000 10100 i1000 12000 13000
2 PN -0.171712 0.76722 -2.24 0.0317
3 K 0.009638 0.014979 0.64 0.5241 K (PPM)
4 CA -0.377748 0.244072 -1.55 0.1307

5 N'K 0.00c112 0.000006 1.94 0.0607 Figure 3. ScatterplotofWt vs. K, coded by range of Pn.
6 PN'CA 0.00011, 0.000123 0.95 0.34-2
7 K-2 -0.000001 9. 523644e-0 7  -1.20 0.2386 A closer look at Figure 3 shows that the predictors K and

No. cases 42 R-sq. = 0.7532 R0 Error 9.462 Pn are indeed correlated, since the pattern of symbols denoting
Resid. df = 35 R-sq-adj. = 0.7109 Cod. No. = 441.6 approximate values of Pn on the plot shows that low and high

\ Fr values of K tend to be associated with low and high values of
Figure 1. Table of coefficients and relatedoutput for theexample data. Pn, respectively. So there is ambiguity in Figure 3; the

Residuals of WT vs Fitted Values apparent trend of Wt with K could be due partially to
Usinq ABSOLUTE STUDENTIZE Residuals confounding with the effect of Pn, and the apparent linearity of

the trend could also be an artifact of the confounding. The
.o C-scatter of the points in Figure 3 about this trend is also

ambiguous, since it is due partly to the error term from the
2.5 regression and partly to the effects of the other two predictors.

R MFAN WT.(Gl

e 2. + CA(PPM) -200

s

40

120

0 .5.4

0.061 07 11 12 1 :41

1500.6001 )01 8)0 140C 20002:0 22102300 240C2500260021
0

02E00 29000 30

Figure 2. Absolute residual plot with lowess curve for the example data, ,I,

Comparing Figure 1 with Figure 3, the difficulty of - . '.....

interpreting the table of coefficients from a response surface Figure 4. Contour plot of part of the fitted response surface. Plotted
model becomes evident. Although the scatterplot of the raw points are locations of raw data.
data in Figure 3 seems to show a definite relationship between
Wt and K, none of the three terms in the table of coefficients Figure 4 shows a contour plot of the fitted surface versus

that contain K as a factor has a significant coefficient, although K and Pn at the point Ca=200. Contour plots are frequently

the term Pn*K is borderline. In fact, a casual glance at the used to study fitted response surfaces, but they have some

table of coefficients is not enough to confirm that the fitted limitations. Many people without a technical background find

value of Wt increases with K, since complicated comparisons contour plots more difficult to interpret than the basic X-Y

of the relative contributions of the linear, quadratic and plot. There is no measure of uncertainty on the standard

interaction terms are required. If all three mineral contour plot: no residuals to show where there might be lack

concentrations had been standardized to have mean 0 and of fit to the model, and no error bars to show the magnitude of

variance 1, the task of sorting out the effects of each mineral the sampling error inherent in the contours. Each contour plot

from the table of coefficients would be somewhat eased, but must fix all but two of the predictors, so only a small slice of
the design space is portrayed on contour plots of models
having several predictor variables.
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2.2 Adjusted-Y Plots 3. Standard Errors for Adjusted-Fits and
Figures 5 and 6 show the adjusted-Y plots for the variables for Average Effects

Pn and K, respectively. Figure 5 shows the average (over the
n=a42 sample points) of fitted Wt versus Pn, namely the 3.1 Development of Standard Errors.
straight line fl(Pn), with the residuals from the response We now shift attention from the adjusted-Y values, which
surface fit added to form the ordinates, the values of adjusted- are interpreted much like partial residuals, to the adjusted-fit
Wt defined by (2). Figure 6 shows the average of fitted Wt curves. If the fitted response surface F is linear and additive in
versus K, namely the parabola f2(K), with the same residuals every predictor, and contains a constant term, then the jth
added to form the second set of adjusted-Wis. It is instructive adjusted-fit curve is just
to compare Figure 6 with Figure 3. The ambiguities of Figure
3 have been cleared up in Figure 6. The dependence of Wt on fj(x) = Y + bj (x - R),
K is portrayed in Figure 6 clear of any confusion with the where bj is the coefficient of xj in the multiple regression. In
effects of Pn or Ca. The adjusted-Y plot communicates the this case the variance of fj(x) would be estimated by
magnitude of the curvature and the strength and direction of
the overall trend more powerfully than does the table of mse+ V(bj)(x- -j)2,
coefficients. Figure 6 also makes possible a comparison of the
relati, e magnitudes of the variation due to K versus the whcre mse is the mean squared error of the residuals and V(bj)

urexplained variation in Wt. Figure 3 is misleading in this is the usual estimate of the variance of the regression
comparison. coefficient, based on the inverse of the X'X matrix from the

regression.
MEAN WT (C) 0, PN(WM). Adjut-d for ARomr,'.nq P- tr,

',!, (NPN CA o M-9 A PLEMUL In the general case of a polynomial response surface i. J
variables, the jth adjusted-fit curve is a polynomial of degree pj

.. f,(x) =Xi Bikxk

where p1 is the largest power of xj which occurs in F. The
coefficients Bjk are linear combinations of the b's, the
coefficients of F. For example, using the RSM of (3),

f2(K) = B2 0 + B2 1 K + B2 2 K 2 ,

24 00 :,t :8 010 20#C 20 2+ CfC 2 61 2O S CI C 12300 32W 400

...... B20 = bo + bl n + b3 Ca + bs Pn*Ca ,

Figure 5. Adjusted-fit curve and adjusted-Y points for the predictor N,. B 2 1 = b2 + b 4 Pn
B 22 = b6 •

M
1
AN. '2 ('!' K C i a A d o !I r WaR' ! fr .0 rdlc

where the constants Pn , Ca and Pn*Ca are averages of the

:S.-- . three corresponding terms over the n sample points. Thus, if
,AAF. b is the vector of least squares coefficients and if B is the

vector (B1 0, B11, ... )', then there is a matrix Aj, with elements
formed from averages of predictor variable terms, which

! , ............ transfor-ns b to B;B =:b

: :C = estimated covariance matrix of B E

Al - d D. V..= A, (XIX) " Al nise.
3.2 Confidence Intervals for Adjusted Effects of

Figure 6. Adjustcd-fit curve and adjusted.Y points for the predictor K. Variables

Since the curve in Figure 6, f2(K), is the average of n=42 Once the covariance matrix of each B, is available, it is
parabolas, and since the model does contain an interaction term easy to obtain standard errors and confidence intervals for the
between K and Pn, it is possible that for some values of Pn the functions f(x) at any point x. The curves in Figures 5 and 6
behavior of the fitted function will be quite different from that could have error bars or even upper and lower confidence
of f2(K). But the average behavior, at least, is easily curves drawn about them on the figures. Such confidence
visualized, standardized to the distribution of the other two intervals may not often be useful, since the height of the
predict(,,. i tL. ,ample. And any K-regions of lack of fit of adjusted-fit curve at any point is not a predicted response at
the points to the model are easily identified. In Section 4 a any particular design point, but is instead an average of
method of displaying the interaction effects in response surface predictions at n design points. A more useful application of
models is described. these covariances is for the computation of confidence
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intervals for contrasts based on the difference of two values, summary of the analysis is that it focuses on the terms of the
fj(x) - f (x), model, not on the variables of the model.

As an example, look at the adjusted-fit curve in Figure 6, Figure 4, a contour plot of the fitted RSM, although it does
f2(K). Within the range of the data. the minimum value of f2  focus on the variables, is still much less effective than Figure 7
is f 2(7240)=51, and the maximum value of f2 is as a summary of the analysis. Figure 4 gives no information
f2(12910)=l 16. So 116 - 51 = 65 is the estimated increase in about the effect of Ca, and no information about the statistical
Wt when K changes from 7240 to 12910, adjusted for all the significance of any of the effects. And it is just plain harder to
other predictors. A confidence interval about this difference is read.
derived as follows: This is not to say that you should never look at tables of

Define x as the row vector (1, x, x2 
... ), and define x' coefficients or contour plots of RSM fits, just that the graph of

analogously. Then effects as here defined is a valuable addition to the statistician's

fj(x) - fj(x') = (x - x') Bj , toolbox, especially in conjunction with the adjusted-Y plots
discussed previously and the interaction graphs d;-cussed in

vj = estimated variance of [fi(x) - fj(x')l , the next section.

= (x - x') Cj (x - x')' .

Therefore a confidence interval for the increase in mean 4. Interaction Graphs

response associated with changing the jth variable from x to x' 4.1 The Bivariate Adjusted-Fit Function
is In order to explore the interaction inherent in a fitted RSM

fj(x) - fi(x') ± t(df, 1-c/2) -7 , (4) equation, we extend the definition of the adjusted-fit function
of (1) to the bivariate case. Suppose we are interested in the

wheie t(df, l-a/2) is a tabled student's-t percentile with fitted relationship as a function of two of the predictors, say x,

degrees of freedom equal to the degrees of freedom of mse. and x2, after adjusting for all other predictors. As before, let

Figure 7 graphs these confidence intervals for the effects F(Xt, x2, x3 .. , xj) be the fitted RSM equation, and define

of the three predictor variables in the RSM for the apple data. 1
In each case, the values of x and x' used are the maximum and fn2(X, Z) = k F(x, z, Xk3. XkJ)

minimum values, respectively, of the predictor in the sample. In the case of the example model (3),
(Section 5.1 provides the rules for choosing x and x' in
general, and also discusses the choice of tabled percentile for f(PK) =(b 0 +b 3 Ca)+(bI+b5Ca)Pn +b 2 K +

the width of the interval.) b4 Pn*K + b6 K
2

As in the case of the univariate adjusted-fit function, the
coefficients of f12 are simple functions of the coefficients of F

and certain moments of the predictors which are being
- - averaged out. It is similarly straightforward to compute the

.... .. -- variance of fl2(X, z) at any value of (x, z), or the variance of

any difference of the form [fl 2(x, z) - fl 2(x', z')] for any pairs

of values.
1
2 4. :2 9

4.2 Displaying Interaction Effects

Figure 8 shows how the effect of an interaction term in a

RSM can be displayed in a graoh analogous to the effects
graph of Figure 7. The top bar in Figure 8 repea's the top bar

in Figure 7, a confidence interval for the effect of Pn, namely
f 1(3280) - fi(1490). The next three bars in Figure 8 display

Fgue7. Effcts graph asd on the adjusted c . confidence intervals for fl 2(3280, K) - f12(1490, K), for three
values of K. That is, the same contrast in Pn is repeated

Compare Figure 7 with Figure 1, the table of coefficients, assuming K is fixed, for various values of K. By comparing

as summaries of the RSM analysis. The information in Figure these three intervals, you can see the direction, magnitude, and

7 is tremendously more accessible. You can see at a glance significance of the interaction between Pn and K in their effect
that Pn has a negative effect of about 55 grams, K has a on Wt, as measured by the RSM. Since the midpoints of the
positive effect of about 65 grams, Ca has a negative effect of intervals move to the right as K increases, the interaction is

about 25 grams, and that all three effects are statistically positive. The magnitude of the interaction is about the same as
significant. (The word "effect" as used here is not intended to the mai- ,ffect of Pn, since at the largest value of K the effect
imply a causal effect, merely an associated change in mean of Pn is almost exactly 0, while at the minimum value of K the

response.) The table of coefficients is quite opaque by effect of Pn is about double its average value. And the

comparison. It i, practically impossible to tell which variables interaction is on the borderline of being statistically significant,
have effects in which directions without elaborate calculation, since the confidence intervals for the effect of Pn at the high

much less gauge the relative significance of the three and low values of K barely rverlap. (In this case the

predictors. The problem with the table of coefficients as a judgement of statistical significance is merely approximate,
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since the overlapping of the two confidence intervals does not 9. Figure 8 is model-based while Figure 9 is an exploratory
rule out finding a significant difference. But an approximate graph based on the raw data. Figure 8 contains more precise
indication of the sampling error is clearly communicated by the information on the extent and significance of the interaction,
graph.) while Figure 9 displays response values directly, rather than

,' ,q Md,1 PNoX. a being based on differences of responses.
Wntn~ o Effects of~ p P PP) "it 

ItPMGn R~pr NA W T G
Data taken frm M1ulreg APPLEJ4,L

I I I4¢
PN0 1490W 32S0

9 7240 12D-------
K 0080 M-

A 10
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Figure 8. Interaction graph based on the bivariate adjusted-fit function. PN PPN) - 3
The bottom three confidence intervals in Figure 8 provide :'ac 6t 9t 0 C 12! CC 131-

the dual interpretation of the interaction between Pn and K. KPP M

First the main effect of K, measured as f2(12910) - f2(7240),
is graphed exactly as in the middle interval of Figure 7. Below
it are confidence intervals for [f12(Pn, 12910) - ft2(Pn,
7240)], for the extreme values of Pn in the sample.
Comparison of these intervals leads to the same interpretation 5. Discussion
as before, but with emphasis on how the effect of K changes This section discusses several issues related to the
as a function of Pn, rather than vice-versa. implementation of these methods, and concludes with a proof

As a device for visualizing interaction, Figure 8 has that the adjusted-Y plot is equivalent to the partial residual plot

advantages over Figure 4, the contour plot. In order to figure when the model is additive with respect to the selected

out the direction of the interaction from the contour plot, you predictor.

can notice that the contours are more closely spaced in the 5.1 Implementation Issues
vertical (K) direction where Pn is large than where Pn is small. In order to create the special plots introduced here, a
This indicates that K has a greater effect when Pn is large than multiple regression program must have data structures that
when Pn is small. But perceiving the magnitude of the enable the system to analyze each term of the RSM, and to
interaction from Figure 4 is even more difficult, while there is determine which variables are involved. The Mulreg program,
no indication at all of statistical significance. from BBN Software Products Corporation, lets the user

The table of coefficients in Figure 1, on the other hand, specify, fit, and compare different models; the definition of a
does display the direction and significance of the Pn*K term model includes a list of terms containing such information.
(p=.06), but the magnitude of the interaction effect compared Using this information, it is relatively simple to sort the terms
to the other effects is hard to see from the table alone. And if and compute the adjusted-fit functions by calculating the B's
the model were expanded to contain cubic terms like Pn*K 2,  from the b's and certain sample moments, as discussed in
then even the significance of the interaction could become Section 3.1. The confidence intervals for the effects and
obscured in the table by the correlations between the various interaction graphs can then be computed as described in
terms of the model. Section 3.2. The following paragraphs discuss the rationale

One frequently recommended method for visualizing the for several of the choices which the system makes in forming

interaction between two factors on a response is to graph the these confidence intervals.

response versus one of the factors separately for different Choice of comparison values in the effects
levels of the other factor. The scatterplot in Figure 3 is such a graph. The effects graph of Figure 7 is based on three
plot, but the plot in Figure 9 better illustrates the idea by adjusted-fit curves, one for each predictor. The center of the
overlaying smoothed lowess curves over each of the three sets jih confidence interval is of the form f,(x) - f(x'), where x and
of points. The curve based on the largest values of Pn is x' are chosen separately for eachj so that:
steepest, confirming the interaction effect we have beenstdin.Thsmehdof displaying interaction is particularly (I) x and x' are within the sample range of x1, and
studying. This method of a twonveprticulal (2) the absolute difference Ifj(x) - f,(x')l is maximized, and
effective if the data come from a two-level orthogonal()ifXismaueon uerclclx'.
experimental design, since the plot then consists of just a pair (3) if x1 is measured on a numerical scale, x'<x.
of straighit lines, and, if the design has resolution at least 5, the If f,(x) is linear, these consuraints imply that x' = min(x,
interaction is not confounded with effects e- other variables.. .... Ixj), x = max(x I...., x-,). If f(x) is quadratic, the
The interaction graph of Figure 8 complements that of Figure systenl detenines the extreme point of f, as x" = -131I / 211,,.
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If x" < min(xj. xnj) or if x" > max(x.. xnj), then x having the same set of x-values. The confidence intervals in
and x' are chosen as for the linear case. Otherwise x" replaces the Mulreg effects graphs and interactions graphs use the pure
either min(xj, ... , xni) or max(xlj .. ,.. xn ) , so that error mean square instead of the residual mean square
condition (2) above is satisfied. If fj(x) is a cubic or higher whenever there are at least four degrees of freedom for pure
degree polynomial, then the system evaluates fj(x) at min(xj, error and the usual F-test for lack of fit is significant at the
.... xnj) and max(xlj, .x nj) and at nine equally spaced 10% level.
points in between, and then chooses x and x' to maximize Second, if a model contains an interaction between a fixed
lfj(x) - f a(x')l from among these eleven points, resulting effect and a random effect, then the confidence interval for the
sometimes in an approximate maximization of lfj(x) - f(x')l. contrast of levels of the fixed effect will use the interaction

If xj is a categorically scaled variable, x and x' are the two mean square rather than the mean square residual.
categories having the extreme values of fj. Third, if a robust bisquare regression is being used rather

The interaction graph described in Section 4.2 and shown than a least squares fitting algorithm, the robustly estimated
in Figure 8 repeats the comparisons of the effects graph for coefficients and a robust version of the mean square error are
two variables which share one or more interaction terms in the substituted into the formulas.
model. The choice of points for the second variable at which Transformations. If the response vanable has been
the contrasts for the first variable are repeated is made as
follows: If the second variable is categorically scaled, the transformed, the adjusted-Y, the effects graph, and the

contrast is repeated at every level of the variable. If the second interaction graph are all computed and displayed on the

variable is continuous but enters the model only linearly, the transformed metric. In order to make these graphs more

contrast is repeated only at its minimum and maximum values, interpretable in such cases, the program can use a "matched"

If the model contains higher powers of the variable, the scaling of the response transformation, as recommended by

contrast is repeated at the minimum, maximum, and midrange Hoaglin et. al. (1983, section 4E).

of its values in the sample. 5.2 Proof of Equivalence to Partial Residuals

Simultaneous confidence intervals. The confidence Suppose that x, enters the model additively, so that the
intervals within a single effects graph or interaction graph are fitted least squares model is of the form
not joint confidence intervals. The stated degree of confidence
pertains to each interval separately. However, if a particular Yi = Ft(Xit) + F*(xi 2 . xij) + ei, i=l. n.
adjusted-fit function has more than one degree of freedom for Then, using (1) and (2), the adjusted-Y values with respect to

contrasting x-values, as will happen if the function of a the first predictor variable are
continuous variable is quadratic or higher order, or if a ad =
categorically scaled predictor has three or more categories, yi - F1(x11) + + e1 ,
then the Mulreg program adjusts the confidence interval to
account for the post-hoc manner in which x and x' are while the corresponding partial residuals (which are

selected. augmented partial residuals if Ft is not linear) are

If f(x) is a polynomial of degree p, then the Scheff6 pri = y + (FI(xil) - FI) + ei.

technique of replacing the t(df, I -c/2) percentile in equation Comparing these formulas, we note that they are equal if

(4) by the percentile 4p F(p, df, -ax) is used. In the case
of a categorically scaled predictor, a Bonferonni adjustment is Y Ft + F

made: the t(df, l-t/2) percentile is replaced by the percentile which is the requirement that the average of the fitted values

t(df, l-a/m(m-1)), where m is the number of categories being from the regression equals the average value of the response.

compared. As is well known, this will be true whenever a least squares
regression model contains a constant term, or whenever some

Confidence intervals in the interaction graph described in linear combination of the predictor ters is constant for all n

Section 4.2 are computed using the same tabled critical values

as the effects graph of the same contrast. In Figures 7 and 8, cases. If the model cannot be rearametrized to contain a

the intervals displaying contrasts with respect to K use the constant term, then, depending on how the partial residuals are

ScheffW method with 2 degrees of freedom, while the other defined, they may differ by a constant amount from the

intervals use the percentile t(df, l-a/2), since the fitted adjusted-Y values.

function is linear in Pn and Ca. 6. References

Choice of error term. Mulreg usually uses the mean Andrews, D. F., and Herzberg, A. M. (1985) Data. New

squared error of the residuals (mse) in the computation of the York: Springer Verlag.
sloaglin, D., Mosteller, F. and Tukey, J.. eds. (1983)

confidence intervals for the effects graph and the interactions Understanding Robust and Exploratory Data Analysis.
graph, as discussed in Section 3. There are three New York, Wiley Interscience.
circumstances in which another quantity is substituted for the Mallows, C. L. (1986) Augmented Partial Residuals.
residual mean squared error in the formulas. Technornetrics 28:313-320.

First, if the data for the multiple regression contains Ratkowsky, D.A. and Martin, D. (1974) The use of
Fepicins, ithe dtm c s afnutivariate analysis in identifying relationships among

replications, the system computes a mean square for 'pure disorder and mincral element content in apples. Aust. J.
error" based on the response variation within groups of points Agric. Res. 25:783-790.

132



V. COMPUTATIONAL ASPECTS OF SIMULATED ANNEALING

Computational Experience with Generalized Simulated Annealing
Daniel G. Brooks, William A. Verdini, Arizona State University

Simulated Annealing in the Construction of Exact Optimal Designs
Ruth K. Meyer, St. Cloud State University; Christopher J. Nachtsheim,
University of Minnesota

A Simulated Annealing Approach to Mapping DNA
Larry Goldstein, Michael S. Waterman, University of Southern California



COMPUTATIONAL EXPERIENCE WITH GENERALIZED SIMULATED ANNEALING

Daniel G. Brooks and William A. Verdini, Arizona State University

ABSTRACT

Stochastic optimization procedures (1984), who report solution times for
have been shown to be efficient methods their method. The study reported here
for finding global extrema of objective investigates the behavior of the gener-
functions. In this article we report alized simulated annealing (GSA) method
computational results obtained using the introduced by Bohachevsky, Johnson, and
generalized simulated annealing method Stein (1986), which uses the current
on a set of standard global optimization value of the function to control the
test problems. The results are compared random process; various aspects of the
to those obtained using a self- method's behavior over a range of test
regulating mechanism which chooses a problems with continuous variables arerandom step distribution based on the shown. Section 2 presents the simulated
local topography and the currently annealing algorithm and its generaliza-
specified annealing temperature tion, and Vanderbilt and Louie's self-

regulating simulated annealing (SRSA)
INTRODUCTION algorithm. Section 3 gives the results

of its application to the test problems,

The problem of finding the global and Section 4 gives a summary with
extremum (assumed to be a minimum here) comments.
of a real-valued function has been an
important one for a long time. There APPROACHES TO SIMULATED ANNEALING
has been a recent increase in interest "Annealing" refers to the process in
in solving global optimization problems w Astance is t ted hen
using stochastic methods which, though which a substance is first melted, then
computationally intensive, are efficient the temperature is lowered slowly. The
because of the increased speed of compu- substance is allowed to spend a lot of
tation now available. These methods time at temperatures near the freezing
combine some form of sampling (usually point of the substance, thereby allowing
random) and local search procedures, the atoms in the substance to arrange
The better-known stochastic optimization themselves into configurations with the
methods have some very attractive beha- lowest potential energy. The desire is
vioral properties and have proved to be to achieve a "ground state" (lowest
efficient search procedures over a wide potential energy) arrangement of atoms

of objective function topogra- at each temperature. This ground statephies, including problems with high configuration occurs when the potential

dimensionality and multiple extrema. energy (function) is at its global mini-
A stochastic method based on the mum for all possible arrangements of

simulation of the cooling of a liquid atoms at that temperature. KGV give an
substance was shown to be useful for interesting history of how Metropolis et
function optimization by Kirkpatrick, al. (1953) developed an algorithm to
Gelatt, and Vecchi (KGV) (1983). Called simulate this annealing process for any
"simulated annealing," the method has particular substance. Starting with a
proven to be very useful for solving substance with an arrangement of atoms
large combinatorial problems as documen- at potential energy E, the Metropolis
ted by KGV and others, including NP-hard algorithm simulates
problems like Bonomi and Lutton's (1984)
work with the traveling salesman prob- a new arrangement of atoms
lem. The method also has attractive resulting in a change in
theoretical properties for discrete energy, denoted AE;
spaces; Lundy and Mees (1986), Hajek
(1986), and Geman and Geman(1984) all If A E is negative, accept
prove convergence of the algorithm under the arrangement by letting
various assumptions on classes of NP- that be the new arrangement
hard problems. The extensive biblio- of atoms for the substance;
graphy compiled by Golden (to appear in
1988) contains numerous references of If E is positive, accept
applications to combinatorial problems, the arrangement with

Simulated annealing applied to func- probability of exp(-A E/KBT)
tions of continuous variables behaves
much like a random walk with a bias, but where T is the temperature
lacks reasonable convergence behavior in of the substance and KB is
many applications. Certain modifica- the Boltzmann constant.
tions can be made to hasten the method's
convergence, such as the stepwise para-
meter adjustment of Vanderbilt and Louie ration to configuration, following a
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random walk with a bias to lower energy K. Vanderbilt and Louie set g = 0 and
values, since the probability of accep- use an indexed set of coefficients for K
tance of lower-energy arrangements is to force p. to approach 0. In addition,
greater. The simulation assumes the they suggested a method for self-
system evolves into a Boltzmann distri- regulating the determination of the step
bution. size and the step distribution.

The analogy to more general applaca- The GSA aroi-itbm can be summarized
tions is clear: the energy function is using the following notation. Let F(x)
any objective function, the arrangement be the real-valued function of interest
of atoms is the combination of indepen- evaltated at point x, an element of some
dent variable values, and the rearrange- bounded subset of Rn. Let Z be the
ment of atoms is equivalent to the global miaimum value of F and let x. be
iterative improvement of function values the initial set of independent variable
by changing variable values. The useful- values. The algorithm proceeds by:
ness of simulated annealing as a func-
tion optimization procedure is that it 1. Selecting x (randomly or
can move to detrimental function values based on other available
in its optimization search, which pre- information) and computing
vents it from being trapped in local Fo = F(xo).
minima. In addition, the implementation
of the search for the global minimum 2. If this value is close
does not require any derivatives, only enough to Z, stop; otherwise
function evaluations, making it both
analytically and computationally conve- 3. Choose a direction from the
nient. uniform distribution on the

This standard annealing method is unit hypersphere centered at
handicapped in function optimization, x0 . Generate unit direction
however, because there is no "cooling" for U-
(referred to as an annealing schedule); 2 2 2 1/2
that is, the temperature of the subs- Ui = Yi/(Yl + Y2 +  + Yn )

tance remains fixed and, therefore,
excessive numbers of moves are made in i = 1.....n
searching for minimum-energy configura-
tions. The generalized simulated where Y. is a standard
annealing method provides a gradual normal eviate.
(though not necessarily monotonic) dec-
line of temperature values thereby redu- 4. Choose a step size Ar and
cing the probability of acceptance of a determine a new set of
higher-energy, and detrimental, point as variable values
the function values approach the (esti- x = xo + Ar*U
mated or known) global minimum of the
function. This is achieved by automati- 5. If x is not in the bounded
cally setting the acceptance probability support of F, generate a new
according to the function topography. x; otherwise,
The change in position is governed by a
specified acceptance probability which 6. If F(x) < Fo, accept x by
depends on the parameters of an accep- settinC xo = x and F0 = F(x).
tance probability function. This func-
tion decreases the probability of moving 7. If F(x) > Fo , accept x with
to a new location as the algorithm prog- probability
resses. p = exp(-Beta* (F(x)-Fo)/Fo)

Simulated annealing has an exponen- where Beta is a preset
tial acceptance probability function so parameter. Otherwise,
that the probability of moving from the generate a new step.
location at the i-th function evaluation
to the new location corresponding to the 8. Continue this random walk
(i+l)-th evaluation is until IF, - Z1 < E , some
pi = exp(fi*(fi - fi+l)*K) arbitrary specified

precision.
This was generalized to

To use the algorithm to search for
Pi = exp(f?*(fi - fi+l)*K) the optimum of a function, it remains to

set the parameters r (the step size]
Although any g _ 0 can be used, this and Beta [analogous to i/(temperature of
investigation considers only g = -1. the system)]. A large Beta causes less
Standard simulated annealing is movement than a small Beta. This is
recovered from this generalization by typically done by trial and error. The
setting g = 0 and using a predetermined practical consideratiozis are to
set of values for K and a predetermined
number of function evaluations at each 1. select Beta so that the
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probability of accepting eter Beta and the step size. For any
detrimental points is not specified pair of parameter values, the
too small (the algorithm can variability in number of evaluations to
not escape local extrema) or termination is due to differences in the
too large (totally random search path taken because of different
walk); random number seeds. This variability

can be substantial in terms of number of
2. select Ar so that the evaluations, but for small problems such

probability of exiting a as this one the differences in CPU time
local extremum is not too are negligible.
small (in which case the The Branin (BR) function is a two
algorithm gets stuck too dimensional function with three minima,
easily) or too large (leaves all global. It is shown with an illus-
all extrema, including the trative search path in Figure 3. Figure
global), given Beta. 4 shows the sensitivity of the mean

number of evaluations to the two param-
In practice, the algoritihm appears to eters for several representative values.

perform best when about 60% (and between One function (H3) of the Hartmnan
50% and 90%) of the detrimental moves family is a three-dimensional function
are accepted. The performance of the with five minima: four local minima and
algorithm for a selected step size is one global. The actual global is not
influenced most by (1) the variability the one reported in Dixon and Szego
in the topography (values of F) over the (1978); this function was difficult for
support of F, (2) the range of the sup- GSA because the function is virtually
port, and (3) the number of dimensions, flat in one dimension at the global, so
The next section illustrates this prob- the independent variable is unstable in
lem more specifically, that dimension prior to termination of

In addition to setting the parameters the algorithm. The global found in this
which govern the acceptance probability, test was (approximately): (.11, .555,
a stopping rule must be specified. The Another function (H6) of the Hartman
most straightforward method, comparable family is the six-dimensional version of
to that used with several of the other H3. It was more stable at the global
stochastic optimization methods is to and, surprisingly, easier for GSA to
terminate the algorithm after a speci- terminate than the three-dimensional
fied number of iterations without a function. This held true for a wide
move. The results reported in the next range of parameter values and a large
section are based on using 50 iterations number of random seeds, although this
without a move as a stopping rule; majcr performance does not seem to hold true
shifts in this number, however, did not for the other methods tested. Figure 5
appear to have a large impact on the summarizes the mean number of evalua-
results. tions required on these test functions

for some representative parameter
COMPUTATIONAL RESULTS values.

Three functions from the Shekel fam-
Computational results applying a ily - (S5), (S7), (SI0) - were also

collection of stochastic optimization tested. This series of functions in
methods to a set of seven test functions four dimensions has 5, 7, aiid 10 minima,
were first collected in Dixon and Szego respectively, each including one global
(1978), who proposed the standard test minimum. This function family is the
functions. Two other stochastic optim- most difficult for the GSA method. A
ization methods were tested on the same two-dimensional version shown in Figure
set of functions by Rinnooy Kan and 6 illustrates the reason: the depths of
Timmer (1984, 1987); the specific coef- the local minima are great relative to
ficients for the test functions are the region of attraction at their
given in Dixon and Szego. In this sec- mouths. The remainder of the surface is
tion, summary measures of the perfor- largely flat so that large step sizes
mance of the GSA algorithm are given for tend to step over the regions of attrac-
the same set of functions. tion and small step sizes fall in the

First a brief discussion of each local minimum they first encounter and
problem is presented below followed by a are never able to escape.
summary list of the problems, and final- The GSA algorithm was started from a
ly the solution results are presented, number of boundary positions and one

The Goldstein-Price (GP) function is internal position and Figure 7 shows
a two-dimensional function with three that the proportion of search paths
local and one global minima. An inver- terminating at each of the minima is
ted view of the function is given in proportional to the depth of the mini-
Figure 1. It shows the smoothness of mum, so that the largest proportion of
the function along with the minima . searches terminates at the global. This
Figure 2 shows 'the mean number of eval- is because the area of attraction for a
uations for various values of the param- minimum is proportional to its depth.
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GENERAL SOLUTION METHOD The results reported for GSA are the
average time over 100 trials at the

The precision of the solutions parameter values given in Table 2, star-
depends on the step size. The most ting from some remote boundary point in
efficient method for determining the the support of F. The test results for
global minimum of a function with appro- the other methods are the averages of 4
priate precision was to first conduct a independent runs and no variability
global search with a larger step size measures or parameter settings are
proportional to the volume of the bound- available.
ed support for F in Rn. This phase What Tables 3 and 4 do not show is
proceeded by starting the GSA algorithm the sampling necessary to determine
from several remote boundary positions reasonable values for the parameters.
and running 100 independent random This is not extensive, given initial
search paths from each starting location settings related to the function proper-
(with reasonable parameter values deter- ties, but is a component of the solution
mined by pre-sampling the function) to process (as it is for some of the other
give some indication of variability in methods).
solution times and paths. The global
phase located all the minima in all the SUMMARY AND CONCLUSIONS
test functions (except the shallowest
minimum in the 10-minimum Shekel func- Computational experience with the
tion). GSA always terminated at a mini- generalized simulated annealing method
mum. Then the step size was adjusted for small problems over continuous var-
for precision and a local search was iables indicates that the use of GSA may
conducted in the region of each of the have some promise for problems of this
minima found in the global search. To type. The results are compared to a set
determine which local minimum is the of stochastic global optimization meth-
global, a local search should be done in ods which represent some of the best
each region identified by the global alternatives available. GSA appears to
searches. The GSA algorithm was run 100 be competitive in terms of solution
times in each local region and found the times as well as reliability on this
value of the local minimum for that class of problems. The number of eval-
region for all runs on all functions. uations should be interpreted correctly:
Using this general approach the GSA the number of local evaluations must be
method found the global minimum to every done for each of the minima located by
test function to any arbitrary precis- the global search. The disadvantage of
ion; the algorithm did not terminate at this procedure is that it requires a
the global on every run for some func- large amount of user interaction re-
tions, but multiple runs resulted in the starting the procedure at different
highest proportion locating the global points. The advantage of the procedure
minimum for all the functions. Local is that for small problems like these,
searches always discriminated between this method provides a microcomputer-
local and global minima, and terminated based ability to solve problems that we
in the local regions in which they were not able to solve using Eureka, a
began. This method also showed the commercially available micro-based
approximate minimum previously given for steepest descent non-linear optimization
H3 to be incorrect, package.

There are several potential modifica-
tions that could make the algorithm more

COMPUTATIONAL RESULTS efficient. Two current concerns are its
sensitivity to the value of the paramet-

Table 1 gives a summary of the test ers which govern the probability of
functions described in this section and acceptance (and to random seeds), and
the parameter settings used to reach its lack of an operable stopping rule.
solutions. Table 2 lists the other Results of using the algorithm on
global optimization methods used on large-dimension continuous-variable
these test problems. problems (50 or more) have not been

The proportion of global searches reported. Although it has proven suc-
terminating at the global is listed in cessful on very large combinatorial
the summary chart of computational re- problems, th( behavior of the algorithm
sults presented in Table 3. All other on these small problems with continuous
searches terminated at a local minimum, variables indicates that there appear to

Table 3 gives the number of function be some serious potential problems for
evaluations to termination for the var- the algorithm to be a useful "general
ious methods used on the test functions, purpose" tool for solving very large
Table 4 gives the same results in terms problems (over 100 dimensions, say) with
of standard time units where one unit is continuous variables. The method is
the CPU time to do 1000 evaluations of sensitive to the parameter values deter-
S5 at a specified location, mining the acceptance probability, the

variability with respect to the random
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seed is significant, for functions that Hajek, B. (1986). "Optimization by
are not very "smooth" it appears to be Simulated Annealing: A Necessary and
slow, and the two-phase procedure of Sufficient Condition," in Adaptive
global and local optimization requires Statistical Procedures and Related
substantial interaction on the part of Topics; IMS Lecture Notes, ed. J.
the user. VanRyzin, Institute of Mathematical

Statistics.
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Table L Test Functions and Values of peta and Sr to
Solve Th

Table 2: Optimization Methods used on Test Problems

line Dim Mina Form Beta ar
Method Descriptic

Goldstein-Price 2 4 Eighth-order polynomial G: 1 .2 Trajectory m Gradient path method (Branms and Hoo (1972))
(GP) L: 100 .005

0Raca direction Randm directions (BreB e an (1970))

Branin 0BR) 2 4 Fourth-order polynC mial G: 10 .75 00E)
plus cosine term L: 500 .02

Controlled rando Price (1978)

Iart'san on) 3 4 -1cje:T'-x'AX G! 50 .05 search (CR)
L: 2500 .005

5 tansity clustering Sample concentratian and clustering rborn(1976))

HartmAn (6) 6 4 (Sam ) G: 45 .07 IDC }
L: 2500 .005
S.hee .S05 406D ity reduction Density clustering, reduction and Splie

5n~kel 5 (S5) 4 5 .E xp1 2 * cij- G: 50 1.15 (DR) fitting Mte BAsi and Fnontini (1978))
L: 500 .01

ti-levl ,n e Clustering by d-istance (Ri o yr Kan

Shekel 7 (97) 4 7 (sae) G: 50 1.75 linkage (ML) and Tinner (1987))
L: 500 .01

Self -requlat ing An jng wit) self-adjusting stop detemnatiCo

L: 500 .01
Generalized Sectimn 2. this article

-----------. . s usluated

Dim: Nuber of dimensions anneal ing (GSA

G : G lobal s arch . ...... . .... ................... . .. ....... ... . ... . .. . . .

L: Local search
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Table 3: Nuber of Function Eyaluations to Table 4: Number of Standard Tire Units to

Find ti- Gloal Mida Find the Global Minimum

Method Metiod

Function T RD 07 DC DR ML mRSA / p GSA P / FunctionI T 8D 07 DC DR Mt SRSA GSA

GP - 300 2500 2499 378 294 1186 / 99 170 122 / 100 GP - 0.7 3 4 15 0.4 2 .6

BR - 160 1800 1558 597 219 557 / 100 121 115 / 100 R - 0.5 4 4 14 0.4 1 .4

H3 I 2400 2584 732 370 1224 / 100 310 + 145 / 78 H3 I 8 8 16 1 4 1.2

H6 515 7600 3447 807 877 1914 / 62 27 + 235 / 100 H6 3 46 16 21 3 12 2.0

5 5500 * 3800 3649 620 347 3910 / 54 400 + 296 / 58 5 9 * 14 10 23 .75 16 2.1

57 15020 * 4900 3606 788 399 3421 / 64 261 + 296 / 47 S7 8.5 20 13 20 1 15 1.7

010 14860 * 4400 3874 1160 447 3078 / 81 224 + 296 / 47 SIc 9.5 * 20 1 30 1.5 15 1.9

/P: Proportion of trials ending at the glical; rewainfer at locals Standard time urt: CPU time for 1000 functicn evaluations of S5.
-: tb results available

Failed to find global -: MO results available
tuber of global evaluations plus local evaluations Failed to find global

* i ster of global evaluaticns plus local evaluations

Figure 1. GP Function (inverted)
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Figure 2. Goldstein-Price
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Figure 4. Branin
Mean No. of Function Evaluations
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Figure 6. 2-D Shekel
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SIMULATED ANNEALING IN THE CONSTRUCTION OF EXACT OPTIMAL DESIGNS

Ruth K. Meyer, St. Cloud State University

Christopher J. Nachtsheim, University of Minnesota

Introduction prediction and adding the point with maximum
Exact optimal design of experiments is variance. Convergence of the sequence,

concerned with specifying n points from a however, may be to a locally optimal design.
design space at which observations are to be When X is finite, various simplifications
taken in order to achieve precise estimation. result. For example, optimization of the
A linear model of the fucm variance function can be globally obtained at

Y = Xc + £ each iteration. Moreover, when there are N
is assumed, where Y is an nxl vector of design or "candidate" points in \, there are
observations, X is the nxp design matrix, is (n N - 1 ) possible designs (Welch, 1982),
a pxl vector of unknown regression parameters, making an exhaustive search theoretically
and c is an nxl vector of uncorrelated possible. Welch (1982) developed a branch-
experimental errors with mean zero and and-bound algorithm which guarantees global
constant variance 

2
. The ith observation yi exact D-optimal designs, but is

is obtained at a vector-valued point xi in a computationally infeasible with large
q-dimensional compact design space x , arid dimensional problems.
the corresponding row of x is written f'(xi). However, design spaces are often
For example, consider a second order response represented by convex regions in Rq, and the
surface model with two factors, simplifications described above are not

f'(xi) = (1,xil,xi2,xil
2
,xi2

2
,xilxi2). applicable. Cook and Nachtsheim (1980) and

If the parameters are estimated by least Johnson and Nachtsheim (1983) have advocated
squares, the variance of the estimate of j is the use of exchange algorithms with embedded
given by 2(X'X)I . The variance of the nonlinear optimization routines to determine
fitted values at xi is proportional to the points to exchange. Cook and Nachtsheim

d(xi) = f'(xi)(X'X)-
1
f(xi), (1980) used a combined grid-Powell search in

termed the variance function, an attempt to locate the D-optimal design.
Designs are chosen using one or more Meyer and Nachtsheim (1987) implemented GRG2,

optimality criteria. Generally such criteria a Peneralized reduced gradient method for
are represented by functionals on the pxp nonlinear optimization, within the k-
covariance matrix (X'x)-l0

2  
(See Steinberg exchange algorithm.

and Hunter, 1984, for a review). The most One inherent difficulty associated with the
widely applied criterion is D-optimality, use of nonlinear optimization routines is the
first proposed by Wald (1943). D-optimal convergence at local optima. As the dimension
designs maximize jX'X1, in effect, minimizing of the problem and the number of terms in the
the generalized variance of the estimated model increase, the number of local optima of
coefficients. If the errors (Li) are normally the variance function increases. In an
distributed, the design minimizes the volume attempt to surmount the obstacles encountered
of a fixed level confidence ellipsoid for :. with current algorithms, we implement the

If X* is the design matrix corresponding to simulated annealing algorithm to directly
the D-optimal esign, the D-efficiency of any maximize the determinant of X'X, and evaluate
other n-point design is given by 100(IX'XI/ its performance on both finite and convex

IX*'VI ) I/P If the D-optimal design is design spaces.
unknown, as is often the case, the relative Haines (1987) applied the simulated
efficiency, annealing algorithm to construct various

R-efficiency = IO0( X1X 1 1/iX 2 X22 1)l/P, n-point optimal designs using several criteria
is typically used to compare n-point designs for polynomial regression of up to degree S
having respective design matrices XI and X2. and for the second order model with 2 factors.

Early efforts in D-optimal design Trial designs were constructed by successively
construction used mathematical programming perturbing individual points. The algorithm
techniques to directly maximize IXX (See was most effective in constructing G-optimal
e.g.,Box, 1966). Box and Draper (1971) used designs that minimize the maximum variance
Powell's direct search to maximize [X'X in up function.
to 30-dimensional space. More recently We modify the generalized simulated
various exchange algorithms, for example, annealing method described by Bohachevsky,
Mitchell's DETMAX (1974), Federov (1972), Johnson, and Stein (1986) to maximize iX'X .
k-excthange (Johnson and Nachtsheim, 1983), This algorithm, which has the "ability to
reduce the dimension of the search space, migrate through a sequence of local extrema in
These algorithms begin with a nonsingular search of the global solution and to
n-point design and iteratively add a point recognize when the global extremum has been
from the design space and delete a point from located" (Bohachevsky, et al, 1986, p. 209)
the current design such that a maximal substantially improved the D-optimal l1-point
increase in ,X'Xj is obtained. The exchange design for a specitic nonlinear problem with
of design points typically is determined by many constraints given by Bates (1983).
computing optima of the var;'; e function, Generalized simulated annealing makes the
deleting the point with minim-Am variance of probability of accepting a detrimental step
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tend to zero as the random walk approaches the The steps of the algorithm with finite
global optimum. design spaces are as follows:

1. Generate a random starting design, X0 .
Application of the Generalized Simulated 2. Calculate 4(Xo). If 4 (Xo)il ,
Annealing Algorithm go to 7.

The models we consider are the first order 3. Determine a trial design, X, by randomly
and second order response surface models, selecting m coodinates to change.
The first order model a. For first order models:

E(y) = %0 +Zj xj , j = 1,2,...,q has If x.j = -1, set xij = +1.

p = q + I parameters. The second order model If x ij = +1, set xi. 
= -1

b. For second order models:
E(y) = 0 + lojxj +ZZjk- Xxk j,k 1,2k. If xij = -i, set xij = 0.

contains p = (q+l)(q+2)/2 parameters. If xij = +1, set xij = 0.

The construction of D-optimal designs If xij = 0, set xij +1 with
requires the maximization of JX'X , the value probability .5.
of which is quite large particularly for Set xij -l with probability .5.
problems with many factors or many design 4. Calculate the new value of the objective
points. The values of the parameters used in function t(X) and let
applying the generalized simulated annealing ;,(X) = (Xo) - W(X).
method are simpler to adjust if the objective If P(X) I , go to 7.
function is defined as the maximization of 5. If ;(X) < (X0 ), let Xo = X and
IX'Xil/P , where p is the number of parameters 4(X0 ) = p(X). Go to 3.
in the model. To ensure the desired behavior 6. If 4(X) > (Xo),
of the probability near the global optimum, let p = exp {- 014 (X)/4(Xo)} and
the objective function is defined to converge generate a uniform [0,11 random
to zero at the global optimum. The variable, u.
maximization of X'X I/ p  is thus substituted a. If u > p, go to 3.
by its equivalent, the minimization of i(X) = b. If u < p, let X0 = X and
Dmax - JX'XII/P , where Dmax is the user's (X0 ) X). Go to 3.
prior estimate of the optimum determinant. If 7. Stop.
the value of the maximum determinant is
understated and 4(X) becomes negative, Dmax is Convex Design Spaces
increased and the search !F continued. If the We consider the design space most often
estimate is too large, Dmax is decreased to used in experimentation, the q-dimensional
ensure the objective function converges to hypercube defined by
zero. -1 < xij < 1; i = 1,2,...,r,, j 

=  
1,2,...,q.

Since many of the optimal design points
Finite Design Spaces occur at the vertices of the design space, the

The D-optimal design for first order models algorithm performed better if the constraint
has been shown to consist entirely of th- set on the design space was elminated. A
vertices of the q-dimensional hypercube (Box useful transformation described by Box (1966)
and Draper, 1971 and Mitchell, 1974). The and used by Atkinson (1969) for D-optimal
candidate set contains 2 q points; each design computations is
coordinate of xi is -1 or +1. For second xij = sin Yij, for i = 1,2,....n and
order models we Fssume each coordinate may be j = 1,2,...,q.
-1, 0 or +1, defining 3 points in the Then for all values of Yij' -1< xj 1.
candidate set. A trial design matrix is determined by

The algorithm begins with an nxq starting perturbing each transformed coordinate by te
matrix consisting of the coordinates of n amount 'm*vij, where vij is a random direction
points chosen randomly from the candidate set. in nq-dimensional space and .m is the step
At each iteration, a trial design is defined size. The trial design is accepted with
by perturbing m < nq of the coordinates. If probability I if the value of the objective
the value of the objective function is function is decreased, and accepted with
decreased, the trial design is accepted with probability p = exp(- .'_ (X)I;(X 0)} if the
probability i. It the value is increased, the value is increased. The values selected for 'm
trial design is accepted with probability and I depend on particular problem

p = exp{- (X)/;Xo) !  characteristics and are found bv
where is a nonnegative control parameter, experimentation. The value of ,m is decreased
':.(X) is the change in the objective function gradually during execution of the algorithm to
value, and :(X, ) is the current value of the refine the design as the global minimum is
objective function. The appropriate values approached.
for m and depend on particular problem The algorithm for a convex design space
characteristics and are found by follows:
experimentation. As the algorithm is 1. Generate a random start ing des4gn, X0 .
executed, the value of m is gradually 2. Calculate A(XO). If ;XO)
decrease(, to a minimum of I as the global go to 9.
minimum is approached, in which case a single 3. let YU = arcsin X0 .
ciordinate change is made to define a trial
des i gn.

145



4. Determine an nxq random direction matrix References

V by choosing independent uniform 1-1,1] Atkinson, A. C. (1969) "Constrained

random variables, bij, and computing the Maximization and the Design of Experiments"

components of V: vij = bi /J(bbii)1/2. TECHNOMETRICS, 11, 616-618.

5. Let Y = Y0 + .mV; let X = sin Y. Bohachevsky, Ihor 0., Mark E. Johnson, and

6. Calculate the new value of the objective Myron L. Stein (1986) "Generalized Simulated

function (X); let : (X) = (XO) - (X). Annealing for Function Optimization"

If !,(X)J< , , go to 9. TECHNOMETRICS, 28, 209-217.

7. If .(X) <,(Xo), let X0 = X Box, M. J. (1966) "A Comparison of Several

and ;(Xo)= ;(X). Go to 3. Current Optimization Methods, and the Use of

8. If ;(X) >;(Xo), let Transformations in Constrained Problems"

p = exp{- :;(X)/.(X 0 )} and generate a COMPUTER JOURNAL, 9, 67-77.

uniform [0,11 random variable, u. Box, M. J. and Draper, N. R. (1971)

a. If u > p, go to 4. "Factorial Designs. the X'X Criterion, and

b. If u < p, let X0 = X and Some Related Matters" TECHNOMETRICS, 13, 731-

:(XO ) = ;(X). Go to 3. 742.

9. Stop. Cook, R. Dennis and Christopher J.
Nachtsheim (1980) "A Comparison of Algorithms

Results for Constructing Exac D-Optimal Designs"

The algorithms were executed on the Cray-2 TECHNOMETRICS, 22, 315-324.

supercomputer at the University of Minnesota Federov, V.V. (1972) THEORY OF OPTIMAL

using test problems for first and second order EXPERIMENTS, New York Academic Press.

response surface models on both finite and Galil, Z., and Kiefer, J. (1980) "Time- and

convex design spaces. A detailed account of Space-Saving Computer Methods, Related to

the empirical results is contained in Meyer Mitchell's DETMAX, for Finding D-optimum
and Nachtsheim (1988). Designs" TECHNOMETRICS, 22, 301-313.

Haines, Linda M. (1987) "The Application of

Conclusions the Annealing Algorithm to the Construction of
The generalized simulated annealing Exact Optimal Designs for Linear-Regression

algorithm was used to construct D-optimal Models" TECHNOMETRICS, 29, 439-447.

designs on both finite and convex design Johnson, Mark E. and Christopher J.

spaces in an attempt to overcome the problems Nachtsheim (19t3) "Some Guidelines for

of premature convergence and/or computer Constructing ExaLt D-Optimal Designs on Convex

infeasibility with high dimensions encountered Design Spaces" TECHNOMETRICS, 25, 271-277.
with current algorithms. For the finite Meyer, Ruth K. and Christopher J.

design space, the only algorithm currently Nachtsheim (1987) "Optimal Design of
available for construction of globally optimal Experiments in the Presence of Irregularly
designs is Welch's (1982) branch-and-bound Constrained Design Regions" Paper presented at

search, which is not recommended if N > 30. the American Statistical Association Annual

Our results suggest that the generalized Meeting, San Francisco.
simujated annealing algorithm can he simply Meyer, Ruth K. and Christopher .
implemented and cheaply used to search for Nahtshvim (1988) "Simulatea Annealing in the
g I (hall. opt ima I designs on as many as N = Construct ion of Exact. Optimal Design of

h1000 oatiilto points. We have demonstrated Experiments" Technical Report 88/!,8,
it t iilitv for first order response surface U;niversitv of Minnesota Supercomput er
', le I s hav i g up Io Ill fact ,rs, and Fur seco(nd Institute.
,re) Meiels with as manv as 5 factors. The MiltchelI, T.i. (1974) "An Algorithn for the

" "sh , h,1w-:er, i
,  

tha I-i pt ir)l it v is not Const rit ion of 'D-Opt imal Experimental
guaar'ou [e. Designs'" TECHNOMETRICS, 16, 20 -210.

c v tselv'. ,tit resuits ire nit encouraging Mitt lh l I, T.I. ( T19-.1 tomputer
lN hie pr -(.t v of onvex des ign spa( te'. (;onst ri t ion o ' "[)-Opt imol I Ir t -Order
',n-ic iv' .'u rinri touil r tire w..s retiuired Designs" TEC HNOMFIRICS, 16, 201- '10.

ot 'n ntr ( t i,, " If I i-1c imal do ilg s k'n Ot,.itberg, David M. aInd Wi I t . Ht ntor

-I -(1 ii eil ,'T itIiti SpA a ( . h o ho FNJ I oxir Ment al I ig ' 11 ic it:d
S tg i ' rat e'W0 '' wi, I t'pl toig t't ,tmr nT' " I'F('11N0M(lETRICS, 20, 1-97.

valiat I. ni . A,, iitit,', Wald, A. (19.1) "On the Ff . iicint Pc"ig 07
c 'h I I . : trl, i' v,- "-(/"t I ! riet' i)-, , SI 0, i S1 I t 1 [l1V(-t iI f~ io11s," ANNV .1 1,

.: , !', (} 6 ' 11 p.n ig~it, " t Ir- t i"11 '1A IE MA I I CAI, S;I AI I S II IS, I1.,, I.' I .,'r.

mf;,f !I , : - ,,,.1 , , n ' t Ie , .' i F. ' r lw -.]h h , W il] i,jl i. ( l )82 1 "PT'In( h nd ),

"~ ~ ~ ~ ~ ~ ~r, I P" 'Z{';
t , "  

;i ' , 1' . A, I,- ( It 1 ,1 im ri .1 ,Ill ,;l- I[, .517o- i 1.

it u 'l I III

71 !1 IT . 1 1

-iIi - ) ' I''' I



A SIMULATED ANNEALING
APPROACH TO MAPPING DNA

LARZRY GOLDSTEIN MICIIAEL S. WATERMA N

UNIVERSITY OF SOUTIIEAZN CALIFORNIA

this area see [13, [12:,[3%, 1W, 2.and [14).Summary It is perhaps not surprising that the double

Thle double digest miapping problem that arises digest problem in a member of the class of NP
in rtolcula bilogyis n NPcomleteprolemcomplete problems, a class of problems for which

that shares simrilaritv with both the travellingnoplomatielgrhsarkow.Ts

salesman problem and the partition problem. Se- may be dcmonstrated by showinig that a special

(mieflces of I)NA are cut at short specific pa: terns case of the double digest problem is an NP corn-

by onev of two restrict ion enzymes singly and then plete problem known as the partition problem.

bY both in comobinat ion. Fromt thm set of result- itetime, the (double digest problem is at least as

Ing lengthis,, one( is required to construct a miap bard as the partition problem, and itself belongs

showing the location of cleavage sitcs. In order to the class of NP hard problems.

to i pVleoen the simruilat ed annealing algorithm, Given that therefore it is unlikely one will

one miust (lelirte appr,, ate ngiborhoods on the finid a fast, polynomial tine algorithm to solve

Confiiturat on spa( e. in this case a pair of peri- time, double digest prob~lem, one may turn to the

I ations, and an enrirgy funiction to luinitnize that simulated annealing algorithm, a recetnt proba-

at t ains; its global Iminlinmu1t) Value at thle true so hilist ic procedure that has enjoyed some success

loioin. We slt jly tie( rforinatice of the sinmu- on coimbiiatoriallv hardI problemts of t his nature.

bitled annealing, algorit Ii for the(, double digest lois paper is a report on the application of

problem with a particular eniergy function amid a thle Simllateld annealing algorithmn to the dlot-

nevighborhood structure based omi a deterministic ble digest problem. We first give a mathematical

pyredure for t lie travelling salesmian prolblemt. description of the dhouille digest problem. Next,
we show t hat, the domblo digest problem is an
NIP coimplete probitm. In the section that fol-

lows, we give a description oif the simim lateil an-

1 Introduction tiial lug algorithIi i getieral, aiid state how ii
mlay be applied to III' problemn at hanid. Last lv,

Tioeiiil aii ling algont lii hall sliiiaiu we colic liime with some remarks onti tlie effectiye-
piomti -eoi at %i I . of( i i l aI oriai I ltia r I I)rib- tocss, of tie( proctidere iii t liis ista lice and on thle

if-Ii,. 11iijl M ) t ' NI oiiplief truivillimig oili~tii'iciii~if >ioliuttirs to 1hle douible iligesm
I ; i p (1,( T I. lil,,-'.v ' % si wlldyv I( l ie i'lir- irlle~ iii genevril.

T1 ,IuI of (d ;il i li Tit( ill i n~l of I te similiuhiOei

7uulrgalgm ituiii , on ilp dlI ditI ~ll
prull riia NI oinil(,f I rilev arsn 2 Desc ript ion of t he Doubl1e

illiil a 0' ' i t~ I r ;,1 m l, ~ c tr,-

*.I a riii, r1h Iwir I ti phahi'erA i-lril ln l i Ite i.u~ii r D Aq

1) ''i r_ , .- w f T *' vi 1i,riil i til ll f'i ~ f. i 1 rl eific

lo 7,, !w 1:, pi r! - ;I-- I~w I_ p- ~ ilirn in.....................I~i1_
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B { b, : I < <m The double digest implied by the configura-
m} tion (a, gi) can now be defined as the lengths that

fromn the second digest, as well as a list of dou- result when the fragment is cut at the locations

ble digest fragment lengths when thu restric-tion indicated by S, that is, by

enzymes are used in combination and the DINA
cut at all occurrences specific to both patterns, C (a, IL) - (c, (c, C, c(0,A) xv 5, -- Sj

say for sorme 1 < j < n 1 ,21
C - {c, :1I < i < nli4-

where we assume as usual that the set is ordered
only length1 inlformation is retained. In general in tile index 1. The probkmrn then is to find it

1.B a11( C will be multisects; that is, there may configuration (C,,A) such that C C(a,.u).
be values of fragment lengths that occur more We note fur future reference that the funct ion
than once. We adopt the convtention that the / on fihe con figuiration space given by

Sets A,fland C are ordered, that is, a, 1o- a for
i j, and likewise for the sets B and C. Of f(a. ;1) (C'a1n) _ '-2/C

course in

a, >~&, cattains its global ioininiuro value of zero at thle
~ i,~ ~<<,,Configuration (ar, p) if and only if this configura-

tin is a solution to the double digest problem.
since we are assuming that fragment lengths are Ilence, we may consider an equivalent formula-
measu red in niu nber of letters .J2, c.-rors. t ion of the double digest problem: find %%here f
Given the above data thle pribleun is to find or- attains its global tninimium va'ue of zero.
(lerings for the sets A and 13 Such that thle double

digest imiplied by these orderings is, iii a setise
toade pirecise blow. C. d

Wemay expresc the double digest pr~el k Computational C~omnplex-
moeprecisely. a is follows. Let -;klti Ill(' s"t ity of the Double Digest

of all Ilerinill 1iions onl k ob~jec(ts. lb. >.

S,, call (a, p) a ( onfigiiraiioii. Ity ot'l., rti .1 andro le
I? it '(or'ling 1 t o (7 at: I 1p re Ipec((-' is 0Iv we I! ;IilW uos rt eo htth obedas
thle Set of loeat iosl of ( il ii \ l iintaehbcta h dul lgs

probleni is NI' cotmplete. It is clear thlat thle doll-

S .s N ,. r hhe dige st proldem DIV)1 &,s described above i

I. inl Inh k,s NI', as a tiondeterniinist ic algorithio
ticed ilS gusiit c(otifigiration (c, it) and chieck

6 u r ri 0 tI . m polknotliil tiroie if C (a pf C 'Ihe( nuimbher

of steps to check this is in fairt linear. lo show
~s i ri,(i woi ilcH. to!h i lhll IMPtI i ,NPI comiplete we transfortini( par-

- ti' iv -ii pitli,- I,) Ttjot problviii to 1)11' In) the partitioti problemr.
ti A I u.t N i , b' ! I(, I ,~'Ii kiio\%Ii tio NI'M comiplete . w e are giveti at fitiite

.i, At . s;I\ .1 7, ai'd at positive integer I(a) for

o,(11i A itoh~ wish to det er'Mine whiethbir t here

\il i A I 1 a
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probability. Therefore, a probabilistic solutionIf Z A s(a) = J is not divisible by two, theretohepblmflcaigneeetv V
can e n suh sbse A' els, cnsier s iputto tihe problem cf locating an element v (- V

can be no such subset A'; else, consider as input for which f(v) is minimized is given by sampling
to problem DDP the data from the distribution 7rT for small T > 0.

A = {s(ak) :1< k < n} One way this may be achieved is to simuiate

a Markov chain {X,)},>o with state space V that
has 7rT as its stationary distribution and let it ap-

B = {J/2,J/2} and set C = A. proach equilibrium. It is possible to write down
an explicit formula for the transition law of such

It is clear that any solution to problem DDP a Markov chain.
with this data yields a solution to the partition Simulating a Markov chain of this type with
problem through the order of the implied digest the parameter T fixed was proposed by Metropo-
C. lis et al. [10'. One may observe that in the con-

text of minimization, the smaller the value of T
the higher the probability of finding the state ol"

4 The Simulated Annealing global minimum energy. Kirkpatrick et al. 8; in-
Algorithm troduced the idea of cooling the system in the

hope that in the limit one would obtain the dis-
We now give a description of the simulated an- tribution 7r, that puts mass one uniformly over
nealing algorithm. The algorithm is based on the states of minimum energy. In this way the
the following analogy with statistical mechanics, algorithm resembles the physical process of an-
To a given physical system, there corresponds a nealing, or cooling, a physical system. As in
function f that assigns to the state of that sys- the physical analog, the system may be cooled
tem its energy. The algorithm mimics the behav- too rapidly and become trapped in a state cor-
ior of such a physical system moving from state responding to a local energy minimum; Geman
to state in order to minimize energy. and Geman 6 (see also Ilajek 17) showed that if

Specificaly, let V be a finite set of elements, at stage n in the algorithm one cools the system
and f a function that assigns a real number to with a sequence of temperatures T,,where T, 0
each element of V. The elements of V represent and Tn > c/log(n) with c a constant that de-
the state of the system, and we think of f(v) as pends on f, then the state of the Markov chain
the energy of the system when in state v. converges in distribution to 7-3 .

In statistical mechanics, the Gibbs distribu- In order to simulate the Markov chain it is
tion gives the probability of finding the systcr in required to specify, for each possible state v, the
a particular state. Introducing the temperature collection of states N where transitions are to

parameter T, we write the Gibbs distribution as be allowed. We call such a collection of states
neighbors of a given state. Of course, we must

7.T(V) - erp{ 1 (e),/T}ZT, require each state to be reachable from any' other
state through a sequence of neighbors.

v'here ZT the partition function, is chosen such ou gh tru c t wa o tv e
t hatOur neighborhood structure was motivated

h at by a neighborhood structure used in a simulated

L7rT(V) - 1. annealing algorighm for the travelling salesman'1 V

problem 11, which in turn was based on a de-
For large va;,es of T the distribution tends to be terministic procedure for that particular prob-
uniform over V, while for small values of T the

favorable elements of V, that is, those elements of 1m 9 .In the travelling salesman problem one

V for which f (v) is small, are weighted with large is required to find the tour of shortest length that
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visits n given cities in the plane. Hence, the con- T, Select a neighbor v G N. uniformlyfiguration space for the travelling salesman prob- from N.. For the case at hand, this selection

lem is the set of permutations, where a particular may be done in the following manner. Choose
permutation gives the order in which cities are to to invert either a or r, each with equal probabil-
be visited. For the double digest problem, as de- ity. Say a is chosen. We now randomly invert a
scribed in section 2, a configuration is a pair of portion of the "tour" given by a in such a way
permutations. that all inversions are equally likely, yielding a

We now describe a neighborhood structure new "tour", say r. Let v = (r,). Compute
for the travelling salesman problem( 11], 19]). If, A - f(v) - f(u). If A < 0 then accept v as
for a given pernmtation, or tour, a we imagine the new state of the chain for iteration n 4 1. If
links connecting cities in the tour, we say that the A > 0, accept v as the new state of the chain
tour a i5 k-optimal, or k-opt for 1 < k < n, if for with probability p - exp{ A/T,} and keep u as
all tours that can be obtained from a by break- the new state for iteration n + I with probability
ing at most k links, the tour given by a is the 1 -p,
shortest. Thus, every tour is -opt and only the
true best tours are n-opt. We define a neighbor- 5 Performance of the Algo-
hood system using the concept of 2-optimality.
For a given tour a - (it, i2 , .. _ in) visiting city it rithm
then i2 and so on, let the neighborhood of a be
defined by With the above framework in place, the simu-

lated annealing algorithm was run on both sirn-
N(o) {T C S, : r - (i 1 , i 2 , ulated and actual mapping problems.

• • .kThe performance of the algorithm on large
Sl,1 'k, lk I, ", , , 'k ... ,,) simulated problems led us to suspect that in gen-
for some I < j < k < n}. eral solutions to the double digest mapping prob-

It is not difficult to see that this notion of neigh- lem are not unique. In fact, under a certain
borhood allows one to transition from any state probability model, the number of solutions to the
to any other state through a sequence of neigh- double digest mapping problem increases expo-
bor hs. nentially in the length of the segment 5'. Tte

For the double digest problem our configura- performance of the algorithm for these problems
tion space is a pair of permutations. Accordingly, is therefore cm ilU.O by .ic large n er of
for this problem we may define a neighborhood exact solutions.
of a configuration (o, ji) by For mapping the bacteriophage lambda,

45,360 base pairs in length, with the restriction
N (c, p) enzymes Bamill and EcoRl each which cut

;arnbda into 6 pieces of distinct lengths for a
(7.p) :' 7-.V(o)} {(av) : v( N(it)} problem of size 6%" 518,000, the algorithm

hlre v (p) are the neighborhoods used in tlhe was able to find the correct solution i;i 20,702.
discussion of the travelling salesman problem 6895. and 3670 iterations in runs from three dif-
a bove. forent initial conditions. It is interesting to note

\•, conclude this section with alr explicit de- that lhe solution to this actual problem was in
script ion of t he simulated annealing algorithm. fact unique. Furt her details imayi be found in 5 .

Let IHe initi,d state v, lie an arbitrary ele-
irwlit of the coiliguation space S. At stage n, 1t
is say Ile state of t lie system is ?1 (a./ ). Set
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Modeling Parallelism: An Interdisciplinary Approach

Elizabeth A. Unger Sallie Keller-McNulty
Department of Computing Department of Statistics
and Information Sciences Kansas State University
Kansas State University

Abstract sor architectures and computer networks requires a
different approach to problem expression to fully utilize

One can easily conjecture that we humans have impostd the available computational power. The primary corn-
sequential solutions onto most problems, such are a better ponent of this approach is the division of a problem solu-
match to our physical architecture, but we propose that tion into computational units and the ordering ,' the exe-
there are parallel solutions to many problems and these cutiun of these divisions. In thi paper, a model/method

are a better if they can be matched to our computer archi- will be developed which is based on the examination of the
tectures. The discovery of problems involving parallelism flow of data and on aggregation data to discover parallel-
in many and diverse disciplines which are the subject of ism in numerical algorithms. This method of parallel
current research efforts has been a simple matter, however computation seems to hold the great promise for statistical
the development of methods which discover the parallel- application (Lafaye de Micheaux. 1984).
ism pcss:ble in solutions to a problem is not a simple
matter and is the focus of this research. This paper will Unlike much of the current research in parallel algorithms
describe the model and discus, the current research efforts for statistical and numerical linear algebra problems. the
in terms of academic contributions and the strengths model/method developed here is architecture independent
gained through the interdisciplinary group approach to [Heller 1978. O'Leary 1985.1980. Gokhale 1987]. Through
problem solving. the fundamental ideas of dataflow computation [Dennis

1972] and spatial and temporal partitioning of data struc-
At Kansas State University a group of people from three tures into computationly independent units [Unger 1978] .
disciplines in two colleges has been formed to provide a the inherent parallelism in a problem solutions can be
critical mass of researchers and to create broader base of specified without the traditional concerns of communica-
knowledge from which to draw to find an architecture-free tion. synchronization. data sharing and physical architec-
model which can be used to express, in a natural way. the ture [McBride 1983]. The architecture free approach to
potential concurrency in problem solutions. A partially parallel computing is prompted by the idea that only after
defired model based upon a conditioned dataflow which the inherent parallelism of a numerical method is
incorporates the concepts of control flow based on expressed as grouping of the data (not necessarily limited
dataflow, of the description of an action at any level of to the data aggregates) does the architecture become a con-
detail with subsequent further refinement if desired, of sideration. Jamieson (1987) calls this the virtual algo-
repetition based upon partitions of data aggregates, of sin- rithm for a problem solution approach. Different architec-
gle assignment of values to uniquely identify each incarna- tures will give rise to different sequencings of the indepen-
tion of data objects, and of partial computation, i.e., corn- dent computational units from this virtual algorithm.
putation which can proceed until a needed unavailable
datum is encounter has been developed. The group has This paper is divided into three parts. Section 2 gives a
four major foci to their work, 1) continuing development description of te basic model/method we have developed.
of the theoretical fo'.-.dation of the model, led by the com- This section is followed by a discussion of the concepts of
puter scientists. 2) ise of the model to discover paradigm data and procedural abstraction. Section 4 deals with the
parallelism models for particular problems at the small notion of the existence of a virtual algorithm with a
and the large granularity levels of detail, led by the statis- motivating example.
tician and engineers 3) the development of methods of
determining the best fit of the discovered parallelism to
existing architectures, led by the statistician and engineers. 2. Basic Concurrency Model/Method

4) the continued implementation of a prototype on a dis-
tributed network of processors. led by the computer scien- In this section a mathematically based model which can
tists. All members have contributed to all phahes. be used for concurrent computation is presented. This

concurrency model/method is built upon the concept of
The current status of our work included a model which representing both data and action as objects (Unger 1988b].
has been shown to contain a core of statements which The fundamental principles of sequencing these objects
always describe determinate problem solutions for atomic will be illustrated as well as how this sequencing can be
data types. A prototype is being used to study problem altered through the use of predicates.
solutions where the granularity of the parallelism is small.
On going research work involves providing the theoretical Objects representing action can be aggregated into collec-
basis for temporally partitioned data aggregates, the inclu- tions of objects resulting in more abstract action object or
sion in the prototype of partial computation. and limited disaggregated into several less abstract action objects. Each
data structures and the development of models of existing action object can be represented as a 5-tuple (s.ma.r.t)
architectures using the model for the current multiproces- where s is a boolean predicate whose truth value deter-
sor architectures. mines when the action will be eligible for execution, m is a

list of materials (input objects). a is the name or designa-
1. Introduction tor of the action. r is a list of results (output objects), and

t is a boolean predicate whose truth value determines if

Traditionally. computing machine design and the choice of and when the action should terminate prior to completion.

problem solution has been lwedicated upon the sequential
expression of computation. The advent of multiple proces-
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For illustrative purposes. the following syntactic form for provide the concept of the single assignment of a value to
an action object will be used. an object [Comte 1976]. If the corporality type of a data

object is static, only one value may ever be assigned to
[s] a(m:r) (t] . that data object. The default corporality of a data object

is dynamic. When the corporality type of a data object is
where the elements of m and r are separated by commas, dynamic. the model adds a sequence indicator to the desig-
For example. computing the length of the hypothenuse of a nator. This can be envisioned as the data object having a
right triangle using the Phythagorean Theorem could be series of incarnations, each distinguished by the sequence
expressed as shown in Figure 1. indicator (e.g.. xi.xi+Ixi+2 . .... ) Objects with corporality

type of dynamic can be referenced by their designator and

Model Objects Interpretation sequence indicator or by their designator alone. If a
Sqrt(temp3: c) V/a2 + b 2 _- C dynamic object is referenced without a sequence indicator.
Add(templ, temp2; temp3) a2 + b2  the latest available incarnation of the object is retrieved.

m 2  
An additional corporality type of fluid is also defined by

Sqr(a; tempi) a the model. A data object with the corporality type of fluid
Sqr(b- temp2) b 2  can change value with no incarnation indicator (like the

common implementation of variable in current program-
Figure 1: Hypothenuse Computation ming languages). Such objects are currently not allowed in

the determinant subset of the model and will not be dis-
The model is data driven. This means that the time at cussed further in this paper.
whic. an action is first eligible for execution is when all of
the elements of m, the materials list. are available. Figure Figure 3 gives the calculation of a Fibannoci sequence of
2 gives the dataflow diagram (Petersen 1977, Karp 1966. numbers as it would be described within the model. In
McBride 1987. Noe 1973]. for the hypothenuse computa- this example the data object designated x has a dynamic
tion of Figure 1. It is drawn such that an action appears at type of corporality. The statements I and 2 indicate abso-
the first level, horizontally at which it is eligible for ca=- lute references to the incarnations x. and x1 . The state-
putation. At level 1 of Figure 2. there are two actions ment 3 references the data object x in a relative fashion
which can be computed concurrently, this represents the directing that the previous incarnation is to be added to
only inherent parallel computation in the example. Note the current incarnation to form the next incarnation.
that since the sequencing of computation is driven by the
availability of the materials, or inputs, the order in which Model Objects Interpretation
the syntactical statements are listed is immaterial. Thus
allowing each problem solver freedom to conceive the declare x dynamic.
problem solution in the most natural way for them. assign (1: x.0) x0  1 [11

assign (1; x.1) X- 1 [12)
add(x.-l. x; x.+1) x +i = xi + xi-1  [3]

Figure 3: Use of Data Objects with Dynamic Corporality

The granularity of the action and data objects can vary.
A I The smallest granularity action object are those that

_ L7 . specify primitive actions, (e.g +. -. *./). Large granularity
action objects are ones in which considerable detail must
be provided in terms of the composing actions before prim-
itive actions are specified. The action objects specified in
Figure 1 are atomic actions, hence they have small granu-
larity. If the action objects in Figure 1 were aggregated

2e together into the action object Phythagorean(a. b: c). say.
then this would be an example of an object with larger
granularity. Syntactically this will be denoted as shown
in Figure 4.

Phythagorean(a. b: c)
( {.., Sqrt(temp3; c)

Add(tempt. temp2; temp3)
j "Sqr(a: templ)

Sqr(b; temp2) .

Figure 4: Phythagorean Action Object

Figure 2: Data Flow for Ilypothenuse Computation This aggregate object has the designator. Phythogorean and

two input (material) objects. a and b. The use of thisData objects in the model have two important components, aggregate object and the accompanying dataflow is shown
the designator and the corporality type. The designator is Figure 5.
contains an arbitrary name assigned by the problem solver.
Corporality or the length of existence of an object provides
the capabilities to assure the determinacy of the problem
solution results. Two corporality types of the model
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Phythagorean ( side1, side2 hypothenuse) If one wished to merely have a measure of central ten-
dency but did not care which one or did not want all

three, internal termination conditions could be used on the
object Averages as shown below.

[count >0 Averages(count, occurrences; b)
Mean(count. occurrences; b) [b*]

Median(count. occurrences; b) [b)1
Mode(count. occurrences; b) [b*]S Phythaor ....

The termination condition [b*] denotes the existence of a
value for b. In this case the first action of mean. median .
or mode to return a value for b will cause the other two
actions to terminate immediately.

e The model/method discussed in this section has a subset

which will guarantee determinant behavior. Determinant

Figure 5: Aggregate action object Phythagorean behavior means that given same values for the input
objects, the same values for the output objects will result.

Values for each of the data objects. sidel, and side2 are It should be noted that there are many situations. e.g.. the

required for the action object Phythagorean to execute. above action object Averages. in which indeterminism is

We can use an aggregate data object say. A. composed of useful. A general insight into the determinant core is pro-

sidel. and side2 and then the use of the action, vided in Figure 7. If the model developed here is used on a

Phythagorean could be expressed as shown below, computing system. deadlock potential exists. Also. the
model requires there be exactly one viable source for each

partition A: side,, side2  
output this requirement may be difficult to ascertain.

Phythagorean (A: hypothenuse)
No objects with longevity type fluid must exist.

The use of aggregate data objects allows us to form a par- No internal stimulation or external termination
tition of a data structure. For example, consider the pay conditions may be used.
check computation (CHECK) for a company with 100 Number of requests in an action object must be
employees and two computers. If the input to CHECK is finite.
pay file which consists of 1000 records, we can aggregate
the data into 2 aggregate data objects pay, and pay 2 as At any level of abstraction, there can be only

shown in Figure 6. one viable source for each output object result-
ing from a request with an external stimulation

partition pay, : payfile. records 1-500. condition.

pay2 " pay-file, records 501-1000.
the call for action would be : Figure 7: General Conditions of the Determinant Core
CHECV (pay 1 )
CHECK pay2 ) 3. Abstraction

Figure 6: Aggregate data object based on partitions A fundamental concept in this research is that inherent

Predicates are used to govern when and if an action object parallelism in a problem solution can be located by exa-

is started or when an action object is terminated prior to mining the problem solution at various levels of abstrac-
competion of itspecified task. Predicates which appear tion. This section explores the concepts of both actioncompletion of its seiidts.reiaswhhaparabstraction and data abstraction.
on a defined action object are termed internal conditions.

Predicates used when an action object is requested (called Benjamin Whorf (19 ) has said "Language shapes the
into use) are termed external conditions. For example, an thought and culture of those who use it." The
internal stimulation condition of [a-b] placed on the model/method described in Section 2 provides an environ-
Phythegorean action object defined above limits the ment or language that encourages abstraction by its syn-
hypothenuse computation to isosceles triangles. Any tactic constructs and structure. Top-down statement of
attempted use of the Phythegorean object on non-isoscelestriangles would result in no action. The action object solutions to problems is encouraged through the concept of
Arages given beslo ilustration The e ocin jet l detailing or disaggregation of objects. Bottom-up state-
simulation condition. inent of solutions to problems is encouraged through the

concept of aggregation or construction of objects.

[count >0] Averages(count, occurrences; al.a 2.a2  Detailing of an object involves the replacement of the
where the detail of Averages is: Averages (count, object with a set of smaller granularity objects expressing
occurrences: a1,a2 a3 ) the same action or data. only in more detail. Detailing can

( Mean(count. occurrences: 8) continue in a problem solution until either an interface
Median(count. occurrences: a2 ) with an existing object occurs or an interface with a com-
Mode(count. occurrences: a3 ) putational device occurs. kggregation or construction is

The action object Averages will be execut-d only if count the reverse of detailing. Aggregation is the process of

(number of occurrences or data paints) is greater than defining a structure or collection of one or more objects.
nero oThe basic operations on the collection are defined within

the aggregate and are the operations used when

When executed, this action object returns three measures instantiations of the collection are manipulated.
of central tendency. the mean, the median, and the mode.
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Parallelism in problem solutions can be discovered and
described by examining the way in which aggregates or A variation on the previous example would be the initiali-

collections of data objects can be manipulated. An aggre- zation of a matrix to the identity matrix. Again the max-

gation of data which results in aggregate tokens (or imum degree of parallelism would occur by letting each

groups) of the data objects which are computationally element form an aggregate token and initialize everything

independent represents a set of data aggregates which can at once assuring that the partitions containing the diagonal

be scheduled in parallel or concurrently. These aggregate elements were assigned a one and everything else a zero.

tokens can be homogeneous, like in type and semantic An alternate aggregation of the matrix elements could con-

meaning, or nonhomogeneous. We will restrict our discus- sist of forming an aggregate token that contains the diago-

sion here to homogeneous aggregate tokens. nal elements and one or more aggregate tokens that collects
together the off-diagonal elements of the matrix. Initiali-

A series of examples from both office automation and zation would then occur sequentially within each aggregate

numerical linear algebra will be used to demonstrate the token.

concept of abstraction in a problem solution. It is interest-
ing to note that the model/method developed in Section 2 The calculation of X X using this outer product is an
is equally effective in both of these areas. example where one can consider the solution at several

levels of aggregation; for simplicity we illustrate this with

The payroll check calculation example (See Figure 6) is one X. a 3 X 3 matrix. Figure 8 illustrates the calculation

example of a transaction processing problem solution. oased upon data object aggregates which are rows. Figure

Transaction processing means that the calculation of each 9 is a detail of the outer product calculation for the first

unit of computation, e.g.. a payroll check, is independent row of the matrix X. Clearly if X were larger we might

of the computation of all others units. In such situations group the rows together as shown in Figure 10 and then

the input can be divided by partitioning the input file in send these aggregate token to different processors for

any fashion without affecting the output results. There potentially concurrent computation.

are consequences of the level of aggregation. For instance
if the pay-file was divided into 1000 aggregates which
form a partition then one cou!d cause 1000 different aggre-
gates to be sent to other processor,. While in Figure 6
there are only 2 data object aggregates (tokens) which can
be sent, thereby reducing communication overhead.

There is no need for the data aggregates to form a partition , ____t

of the data although the potential for indeterminate com-
putation may occur if the problem solver creates code out- ,

side of the determinant core. For instance, there could be .
more than one source for a given result (see the Averages
example).

Consider examples. ihis time involving a two dimensional
collection of homogeneous data objects which form a
matrix. In parallel solutions to numerical linear algebra -

problems. the questions of what computation can be done
in parallel and what degree of aggregation of the data
should be used arise. The first question deals with locat-
ing the inherent parallelism in a problem solution. The
second question addresses the issue that a particular
numerical method will be of interest to people dealing
with both small and large dimensional matrices and the
fact that one cannot expect to have an infinite number of
processors available.

The repetitive computation of initializing each element of
the matrix to the same value can be thought of as creating
?ggregate tokens which contain exactly one element of the ,Madd - is an action
matrix and scheduling the entire initialization to occur that is an element hy
concurrently. This solution represents the maximum element add for matrices
amount of potential parallelism. In many situations, the
dimension of the matrix will greatly exceed the number of
available processors or this small level of granularity will Figure 8: Outer product for X'X based or row partitions
be impractical because of interprocessor communication
costs. Another solution to this problem would be to
aggregate pieces of the matrix into aggregate tokens and to
perform the initialization on the tokens in the aggregate
tokens sequentially. The initialization of each aggregate
token can occur in parallel.
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4. Virtual Algorithm

Jamieson (1987) proposes that for any problem solution
approach there is a virtual algorithm. She also proposes
that this virtual algorithm can be mapped to one of a
number of architecture specific algorithms. Jamieson's
Virtual Algorithm Approach is depicted in Figure 11.

The virtual algorithm, for those problem solutions that

require no iterative computation. is defined by mapping the
inputs directly to the outputs. recognizing the renaming
and use of the inputs in intermediate computations. In
terms of the methodology discussed in this paper, this

2 2 X 2means expressing the problem solution with the finest
1 1 2 3degree of detail and complete disaggregation of the data

objects. Obviously this is a formidable task and two prac-

tical questions arise. First, is finding the virtual algorithm
useful? Second. since detailing is the reverse of aggrega-
tion, is it possible to gleen the useful information from the
virtual algorithm expressed at a higher level of abstrac-
tion?

If virtual algorithms could be found and expressed in a
reasonable way, all the inherent parallelism in a numerical

method could be understood and all possible sequencings
of the computations could be defined. We will use a
graphical representation of the Cholesky decomposition of
a matrix to study the usefulness of a virtual algorithm.

The answer to the second question remains open.

, X 1 .First we will consider the dataflow of two well known
whl.rl, M X11 X1: XCholesky decomposition algorithms. The first is a tradi-

tional method given in Figu-- 12a and b and the second
X11 X 12  X12 XX]: given in Figure 13a and b was discussed by O'Leary and

xl ,3  XIStewart (1986). Neither of these datafiow diagrams
13 .represent the virtual algorithm for this numerical method

in that the renaming and use of the original inputs has

been ignored. Figure 14 represents the virtual algorithm
for this numerical method. Within the dataflow graph of

Figure 9: Detail of outer product for first row of X Figure 14. each primitive action on the original inputs is
represented at the earliest time frame (level) in which the
input for that action is available and for which the
corresponding predicates are satisfied. The diagram of the
virtual algorithm maintains the vertical positioning of
actions corresponding to tim.-. ObbS, c that thc :aflow
of the traditional algorithm of Figure 1 lb is equivalent to

Xl ...- X1. "sequencing the computation according to horizontal planes
X21 ... X2 . XR13  cutting the diagram at each time frame. The O'Leary and
X31 . . . X3. Stewart method of Figure 13b is also evident in the virtual

algorithm diagram. That computation proceeds in the
X1•. X4. order given by the vertical planes shown in Figure 14.
X51 ... X5. 3 XR46

X61 ... X6. 5. Conclusions

This research is direc ' toward the discovery of inherent
parallelism (or the vitual algorithm) for a given problem

solution approach. A concurrent method/model which has
a graphical form and a linear syntactic form has been
presented which can be used as a tool for parallel algo-
rithm development. One advantage of the location of such
virtual algorithms is the potential of mapping these algo-
rithms to optimal architecture specific algorithms.

Figure 10: Data aggregate of 3 rows
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ASYNCHRONOUS ITERATION
William F. Eddy Mark J. Schervish
Department of Statistics, Carnegie-Mellon University

I Introduction and Summary An obvious question arises as to what is to be
gained by such a partial iteration scheme. For ex-

Solutions to fixed point problems, solutions of ample, in the eigenvalue calculation, might it be that
equations, and maximizations often involve itera- it takes fewer than twice as many "half iterations"
tive schemes. When each iteration consists of eval- to achieve the same degree of convergence? Could it
uating a vector of functions, the possibility exists be that the partial iterations do not even converge?
for evaluating the coordinates of that vector asyn- In this paper, we provide some theoretical and some
chronously, that is, not necessarily all at the same empirical answers to questions of this sort. One situ-
time. For example, consider the following iterative ation in which partial iterations have a great deal of
method of finding the largest eigenvalue and corre- potential is in a parallel/distributed computing envi-
sponding eigenvector for a symmetric m x 7n matrix ronment. For example, in the eigenvalue calculation,
A, starting with a vector x0 : if one had two processors available, one could assign

Yi all iterations invoving A0 to one processor and all it-
Xn erations involving A1 to the other one. The sequence

y = Ax" = " of iterations would not be the same as that described

( YM above if both processors were allowed to work at the
c,+, = maxyj same time. The reason is that iterations n and n + 1

-i might be proceding simultaneously, hence iteration+1 = e.-+1Y" n+lI could not be a function of iteration n. If the pro-

Under certain general conditions, the sequence cessors ran at different speeds, the iterations would
cl,C 2 ,... is known to converge to the eigenvalue not even alternate between the two halves of the vec-
of A with largest absolute value and the sequence tor. For this reason, such a sequence of iterations is
x i , X2.... converges to a corresponding eigenvector. asynchronous.
Now suppose that rn is even and we write In Section 2, we give a precise definition of asyn-

/ \ chronous iterations and the types of problems in
Ao, which they have been applied. In Section 3, we give

- 'examples of some asynchronous iteration schemes
where each of A0 and A1 are (m/2) x m matrices, which can be used in most iterative problems. In
We can form the sequence of "partial" iterations Section 4, we present some theorems giving condi-
x1 ,x 2 ,..., where tions under which asynchronous iterations converge.

In Section 5, we desribe the example calculations we
xn (X performed. These calculations are all based on the

- xi eigenvalue problem described above. In Section 6, we
Yi briefly describe a video animation system and some

y = A d 2 )x n = - videotapes we created to help visualize the sequenceA(nmo2) yof asynchronous iterations.

Cn+ = maxyj
.~'n2 Definitions and Notation
( x if n is even, Consider a mapping from a subset D of i.-

xn+ ( ) dimensional Euclidean space R' to I",

n+Iy]".

Each iteration here only calculates new values for half We will consider the problem of finding a fixed point
of the vector, keeping the other half the same as the of this mapping by means of successive iteration. The
previous iteration. idea is that, since a fixed point x satisfies F(x)
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x, then starting at an arbitrary point xO, we could 3.1 Jacobi Iterations
successivel) dalculate x j = F(xj 1 ). If the sequence Jacobi iteration is a standard procedure for solving
{ x) } =0 converges, it must converge to a fixed point.

Here, we consider a more general sequence of iter- linear systems and is sometimes called the method of
ationsw caled er ac re geral ence o simultaneous displacements. We describe a few of itsations called asynchronous iterations.

variants here.
Definition 1 Sequential vector-wise evaluation. This iterative
A sequence of iterations x,x, .. ,x j .... are called scheme is designed to run in a single process. We
asynchronous iterations if use

x,. i-1 i V Lj Lj = {1. n)

,...,x,") i E Lj, i -

where Lj is a nonempty subset of {1 ... n} listing Here, every coordinate of F is evaluated at the same

the components of x updated at iteration j and the vector xI (z- 1 ,...,x{- 1 ) and then the entire
numbers si are integers indicating which iterate of xi vector is updated to x 1  , (x,_ xl). Thus, n com-

to use at iteration j. We require that j - 1 so ponents are updated per iteration. This is the stan-
tat te proeuresan e reaizedn thati _ dard method of iteration mentioned at the beginning
that the procedures can be realized in practice, of Section 1.
For convenience we define Independent component-wise evaluation: If n pro-

cesses are available, each one can be devoted to up-
L = {Ljjj = 1,2 .... } and dating a separate coordinate. That is, we use

S = {(sj ... , ,sJ)IJ=1,2, .. = {(j-lmodn)+l}

The types of functions F we will consider are Lip- - I1
schitzian contractions. These are a special class of ln

Lipschitzian operators. What happens here is that no updated coordinate is

Definition 2 A function F : D -- R' is a Lips- used in any iteration until every coordinate has been

chitzian operator if there exists an n x n matrix A updated. That is, every iteration consists of updating

with non-negative entries such that IF(x) - F(y) < a single coordinate, and then every it iterations all of

A Ix - yI where I - I and < are taken component-wise. the updated coordinates become available for future

The matrix A is called the Lipschitzian matrix for iterations. Thus, one component is updated per iter-

the operator F. ation and the processes must be "synchronized" after
every n iterations; that is, the n+ 1st iteration cannot

Definition 3 A function F : D - R' is a Lips- proceed until the first n have all been completed.
chitzian contraction if F is a Lipschitzian operator Independent block-wise evaluation: If k processes
with matrix A having p(A) < 1, where p(.) is the are available and n = qk, then each process can eval-
spectral radius of its matrix argument. uate q coordinates at a time. Here we use

3Lj 
{imq +  < i < (m + 1)q}

3 Exanple s~i= LJ-nlq
In this section, we present examples of this general

class of iterations, some of which can take advantage where m = (j - 1 mod k). Instead of updating only
of distributed computation. Because the definition one coordinate per iteration, we evaluate q coordi-
of Lipschitzian contraction requires the operator to nates per iteration. But we still wait until all n coor-
be essentially linear (at least locally) we will consider dinates get updated the same number of times before
here itcr,;,,ns Gf the form releasing the updated values for use by the next iter-

j ~ Lation. Thus, q components are updated her iteration
x;- 1  ' Lj an! the processes mtt, be synchronized ai~t: every

4 J xi k iterations.
i = Ai i E Lj,

sI )3.2 Gauss-Seidel Iterations
Xr~

;auss-Siedel iteration is another standard proce-
where A, is the imh row of a matrix A. (ure for solving linear systems and is sometimes
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called the method of succesive displacments. Gauss- section because component-wise schemes are special
Siedel iteration is generally considered preferable to cases with one component per block.
Jacobi iteration for solving linear systems. We de- Asynchronous fixed block-wise evaluation: If k pro-
scribe a few of its variants here. cesses are available, separate the { 1, . .. , n) into k

Sequential component-wise evaluation: At each it- disjoint blocks. Each process can be assigned one
eration a single component of F is updated making of the blocks of coordinates. Each process updates
use of the most recent values ,f all the other corn- the same coordinates at each of its iterations, using
ponents. In this method, we do not wait for every the latest available iterates of all coordinates. A pro-
nth iteration to release updated coordinates for use cess begin: a new iteration as soon as it, finishes an
by the next iteration. We use old one. When each block has q coordinates, so that

S1(j -Imod n)+1 n = qk, we can express this by

s = j-1. Lj = {i[(j-1)q+l<i<jq}, 1<j k
Lj= L , j>k

That is, the coordinates are updated in sequence, one

atatime, but as soon as a coordinate is updated, itis = max{kECjliELk},
used in all future iterations. In the Jacobi methods, where J is the random iteration number of the most
it was always the case that, for j sufficiently large, recently completed iteration. Here, the block of co-
xi = F(x l ) for some I < j. In general, this will not ordinates to be updated at iteration j is uncertain
be true for Gauss-Seidel iteration.Sequential block-wise evaluation At each ittionion due to the fact that we do not know which of the

k ongoing iterations (processes) will finish next (and
a block of coordinates of size q is updated making hence begin the next iteration). After each iteration
use of the most recent values of all the components completes, the newly updated coordintates become
not in the block. At the end of each iteration the available for use at all future iterations.
new coordinates are leased for use in calculating the Aialfrus all future eans.
iterates for other blocks. We can use Asynchronous cyclic block-wise evaluation: If k

processes are available, and n = kq, the coordinates

Lj = {ilmq + 1 < i < (m + 1)q} are divided into blocks of size q and the blocks are
updated cycliciy. Each iteration consists of updating
the next block of coordinates. Each process uses the

where m = (j- 1 mod k). At iteration j each coordi- latest available iterates of all coordinates. A process

nate in a block is updated based on the same starting begins the next iteration in sequence as soon as it

vector x j -1. All future iterations make use of these finishes an old one. We can express this by

updated coordinates and q components are updated Lj = {i~mq + 1 < i < (m + 1)q}
at each iteration.

= max{kECjliELk}
3.3 Random Iterations where m = (j - 1 mod k). Here, the block of coor-

Randomness can enter into iterative schemes in one dinates to be updated at iteration j is known due to
or both of two ways. Either the components to be the cyclic nature of the scheme. But which iterate of
updated, Lj, may be uncertain, or the iterates to use each coordinate to be used in the next iteration is un-
{s4 } may be uncertain, or both. The reasons why certain until we know which previous iterations have
either or both of these items is uncertain may vary finished. After each iteration completes, the newly
from one iterative scheme to the next. We will de- updated coordintates become available for usc at all
scribe two such schemes. In each of the schemes de- future iterations.
scribed below, the randomness enters solely through Obviously, none of the block evaluation schemes re-
uncertainty about the order of completion of the iter- quire that n = kq. However, Lj is simpler to express
ations. For this reason, we introduce the set Cj as the when n = kq.
seL of indices of all iterations which have completed
at the time that iteration j begins. lur example, in 4 Theoretical Results
the sequential evaluation schemes described in Sec-
tion 3.1 and Section 3.2, Cj is always {1,. .. ,j - 1}. Several authors have proven that asynchronous it-
In the independent (Jacobi) schemes, Cj would be erations converge under certain conditions. These
a proper subset of { 1, . , j - 1}. For brevity, we conditions generally involve the number of times each
only describe block-wise evaluation schemes in this coordinate is updated, and how large s gets. In
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Section 4.1, we present two previous results on the start of the jth iteration until its completion. The
convergence of asynchronous iterations which impose first type of result deals with the case in which the Lj

deterministic criteria on the performance of the iter- are chosen independently of the service times. The

ation scheme. In Section 4.2, we discuss probabilis- second type of results allow the Lj to depend on the

tic criteria which lead to almost sure convergence of service times. Throughout this section, we assume

asynchronous iterations. that the service times are finite almost surely. We will
also assume that sl = max{k E Cjji E Lk}, so that

4.1 Deterministic Results there is no chance of a coordinate "getting stuck" at

an old value when newer updates are available. The
The following conditions are assumed in the first only thing required in order to guarantee that the

two theorems. two conditions at the beginning Section 4.1 will hold

1. limp.. s= c= , Vi with probability I is that

2. i E Lj infinitely often. Pr(i E Lj, for infinitely many j)
=lfor eachi=I.. ,n. (1)

The first of these conditions guarantees that the ul-

timate step of the iteration depends on penultimate We will consider schemes which guarantee (1) both

steps rather than very old steps. The second of these when Lj is independent of the service times and when

conditions guarantees that every component will be Lj depends on the service times.

updated many times. Chazan and Miranker (1969)

proved a theorem concerning affine functions. 4.2.1 L, Independent of Service Times

Theorem 4 Chazan and Miranker (1969). If Here we will describe some schemes which are de-

F(x) = Ax + b then the asynchronous iteration con- signed to guarantee (1). The basic idea of these

verges if and only if p(A) < 1. schemes is to choose the Lj j = 1, ... in such a way
that each coordinate has a positive probability of be-

Baudet (1975) was concerned with Lipschitzian con- ing in Lj for j = k ... k + m for all sufficiently large

tractions, k and some finite m, and to be sure that the proba-

Theorem 5 Baudet (1975). If F is a Lipschitzian bility of each coordinate being in Lj does not go to 0

contraction then the asynchronous iteration con- as j increases. In this case, the law of large numbers

verges to the unique fixed point of F. will assure that each i appears in infinetly many Lj
with probabilty 1. One way to arrange this would be

The third theorem, due to Lubachevsky and Mitra to choose a collection of r subsets of {1 .... , n}, say

(1986), applies only to finding the fixed point of a Ml,..., Mr, such that
matrix A = ((aij)) with p(A) = 1. Here F(x) = Ax. r

In this theorem, for each i E Lj, sk is allowed to n) U Mt

depend on i. That is, t=l

j i Lj Then let Lj be a random choice from MA, . .. , Mr. If
x j - x"'(.. (i)) E L. the choices are made independently and

Theorem 6 Lubachevsky and Mitra (1986). Sup- Pr(L =A) > 0

pose A is a non-negative irreducible matrix and as- for each t and all j, then the law of large numbers
sume there as i such that ai > 0, x 0 > 0. and guarantees that (1) holds with probability 1.

si (i) = j - 1 for all j > 0. Then the asynchronous There is another class of schemes, which we will

iteration converges to a scalar multiple of the fixed call Markov schemes, which also guarantee (1). If we

point of A. let

pt,s = Pr(Lj = Mtj_l = M)
4.2 Probabilistic Results for all j > k, then we can state some sufficient con-

There are two types of probabilistic results with ditions for (I) to hold. For example, if the transition
which we will deal. The distinction depends oii the matrix P = ((p,,)) is regular (i.e. pm has all non-

relationship between the way L, is chosen and the zero entries for some in) then (1) holds because each

times taken to complete the first j - 1 iterations. Ve coordinate has some positive probability of appearing

define the jh service time to be the tirie from the in at, least. one of tle next, r L1 , and the probability
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does not go to 0 as j increases. Also, if P i I, but 5 Empirical Results

pm = I for some m, then (1) holds. Asynchronous

cyclic block-wise evaluatio.i is such as scheme. It cor- In this section we describe the test cases which
responds to r = k and we ran to compare the performance of synchronous

and asynchronous iterations on a parallel/distributed
ts 1 if t = (s + 1 mod k) system. The particular system of processors used in

0 otherwise. the computations is described by Eddy and Schervish

(1986) and has been used in several statistical ap-
In this case pk I. Many other block-wise schemes plications (Eddy and Schervish, 1987 and Schervish,
are available among the Markov schemes, including 1988). A brief description follows.
both deterministic and random choices of Lj.

5.1 The Distributed System Used
4.2.2 L1 dependent on Service Times The parallel/distributed system used in the exam-

When the Lj are dependent on the service times, pies of this paper is a special case of a master-slave
various difficulties can arise. For example, a silly system. In a master-slave system, one process acts
algorithm for choosing Lj would be, for j > 10, if like a master, keeping track of control information,
any of the first 10 completed service times is greater such as L and S and which iterations are outstanding.
than 14 seconds, Lj = 1}. Assuming that the ser- The slave processes perform the bulk of the numerical
vice time distribution had postive probability beyond calculations, such as function evaluations and matrix
14 seconds, there would be positive probability that multiplications. The system of Eddy and Schervish
all coordinates other than 1 would be updated only (1986) uses the DECnet communication protocol be-
finitely often. Rather than try to construct neces- tween VAX computers running the VMS operating
sarv conditions for ruling out this type of behavior, system. The master process communicates with the
we propose simple sufficient conditions, slaves by writing to and reading from network devices

Suppose that we choose r subsets of {1.... 1 n}, say (DECnet's way of defining communication channels).
M,...,Mr, such that Data-flow is implemented by having some of the

reading and writing done asynchronously. For exam-
nj 1 MAl, ple, the master begins by assigning a task to each

slave. This is done by writing the appropriate data
and/or instructions to the network device associated

and each Lj is required to be one of the Mt. One with each slave. The master then reads from the net-
way in which the Lj can be dependent upon the ser- work device, but does not. wait for a response. Figu-
vice times is for Li to be a function of which M't was ratively speaking, the master says "Let me know as
updated in the iteration which most recently com- soon as something arrives." Then the master goes on
pleted. to the next slave. When "something arrives" from a

Asynchronous fixed block-wise evaluation is an ex- slave, the master deals with the response and sends
ample of this type of scheme, in which Lj is exactly another task (if any remain) in the same way as be-
that Mt which was updated by the iteration which fore. On the other hand, each slave begins by reading

most recently completed. This requires that r = k from the network device and waiting for a task to ar-

and that the first k of the Lj are M 1 .... Mk in some rive from the master. It then does its work, writes its

order. This scheme has the property that (I) holds, response to the network device, and waits for another

There are other such schemes for which (1) holds. task. When the work is finished, the master can re-

That is, suppose that r = k and that the first k of lease the slaves or keep them waiting for a brand new

the Lj are M 1 , 1k in sorie order. Let set of tasks.

f {1. k} - {1. k} 5.2 The Example Matrix

be a one-to-one function. For j > k, let tnj be We used three different. iterative schemes for find-
the number of the iteration which completes just, ing the largest, eigenvalue and corresponding eigen-
before iteration j begins. Then (1) will hold if vector (henceforth called the larqest igen vector) of a
Lj = ]Aff(,), where L[, ,,,=M,. There are k! such matrix A. The matrix is a ,199 x 199 circulant with
scheimes and asynchronous fixed block-wise evaluia- (.9)1'-j l in the (ij) entry. The iterative methods we
tion corresponds to f(i) = i, for i = 1 . k. used were based on the it erat iye algorit hin described
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in Section I and letting xo be any vector not orthog- and
onal to the largest eigenvector. 18.73970191995797.

The matrix used in the example has a simple eigen- The first two values are fairly close together, their
structure which we describe here. These results fol- ratio being approximately 0.9859. Even the fourth
low from the theorems of Section 6.5.2 of Anderson(197). Or mtrixA cn beexpesse asand fifth eigenvalues are large, being approximately
(1971). Our matrix A can be expressed as 0.9460 times as large as the first one.

249

A = I + Z(.9)Ai 5.3 The Test Cases

We performed asynchronous iterations in double

where Ai is a matrix whose only non-zero entries precision, computing both the vector xj and the ap-

are Is on the ith and (250 - i)th sub- and super- proximate eigenvalue cj until the following conver-

diagonals. That is, if Ai = (P)), then gence criterion was met:

Convergence criterion: Wait until every co-
1if IJ - kj = i ordinate has been updated at least once and

,,( 1 if IJ - k = 250-i stop as soon as both of the following two
0 otherwise. conditions are met:

Theorem 6.5.3 of Anderson (1971) says that the 0 Inl-1 < 10-1

eigenvalues of Ai are • ¢ ,,( ,y ,)2 <1
- 6

1, cos( 2.Z ,cos (2 i \ {,k }\249/ ' 249 where yk = xk/ max{i .... IXV.
(~~ 47ri(4i

cos (24 ,cos 49]' The first condition insures that the approximate( 4) (249
eigenvalue has not changed much and the second
insures that the product Ax j-1 is approximately

(248,ri C (2487ri) cjxj -'

cos 249 , cos 249 . The test cases described here are the same cases
used in the videotape, however they are not the same

That is, all but the largest one come in pairs of two runs described there. The reason is that there is a

equal eigenvalues. The eigenvectors corresponding to significant amount of time required, during the run,
cos ( 2k), for k > 0 are to write the information used in the video tape. The

more processors used in a run, the more iterations

CO cos si ( 2 1 k were done, and the more writing that was done.
29cos ) sin ( ) The timings would not, be indicative of the savings

4, 9 achieved by multiple processors if we timed the writ-
ing of the videotape information. Because the runs
are not the same and the environment is stochastic.
the numbers of iterations will be different also.

The eigenvector corresponding to the largest eigen-

value I is (1, I ... I)T. Note that all Ai have the 5.3.1 Synchronous Computation
same eigenvectors. Since A is a positive linear com-
bination of the A,, the kth largest eigenvalue of A is We used a sequential vector-wise Jacobi scheme
the same linear combination of the kth largest, eigen- starting with x' being a vector of numbers between
values of the A,. That is, the kth largest eigenvalue 0 and 1, each chosen by a uniform pseudo-random
of A is number generator. The convergence criterion was

249 m(2 Jri net after 2332 iterations and 8hr 39iiin of wall-clock
+ Z( COS , time on a single VAXstation 2000 dedicated to the

1 ) task.

In particular, the first three eigenvalues are approxi-
mnately: 5.3.2 Asynchronous Comlputation

18.99999999992728, Ior t he asynchronous conputations, we divided

18.73270191995797, the vector into nearly equal subvectors and updated
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one subvector per iteration. We used both a fixed coordinates in block Lk before the one which just fin-
allocation and a cyclic allocation. In the fixed allo- ished, and the iteration which just finished must be
cation, one processor was devoted to each block of ignored (otherwise it might be a "downdating" rather
coordinates, while in the cyclic allocation, whenever tban an updating).
a processor required another block, it was assigned
whichever block was next in the cycle. 6 Animated Videotape

Fixed Allocation We used an asynchronous fixed In the videotape we display the sequence of itera-
block-wise scheme with k = 5 blocks, 4 of size 100 tions for three different iterative schemes for finding
and one of size 99. After 2hrs 15min and 23155 iter- the largest eigenvalue and eigenvector of a matrix A
ations, the convergence criterion was met. The five described earlier.
processors were not identical. The third one was a
VAXstation 3200 and the other four were VAXsta- 6.1 The Video System
tion 2000s. The fifth processor was busy with other A 512 x 512 x 8 pixel video frame buffer is in-
work (unrelated to our calculations) to a greater ex- stalled in a VAX workstation to generate an RGB
tent than the other four. The numbers of iterations video signal under program control. The signal Is
performed by each of the five processors were translated by an encoder to NTSC video; NTSC is

3753 3903 9413 3782 2304. the United States standard for home television. The

NTSC video signal is recorded on a 3/4 inch Umatic
Notice that the smallest number of iterations is about VCR. This VCR has the capability to edit single
the same as the number of iterations required by the frames of video onto the tape under the direction
Jacobi vector-wise allocation. The starting vector x 0  of a controller in an IBM PC/XTr which follows corn-
for this calculation was a unit vector with I in the mands generated by a program running on the VAX.
first coordinate and 0 elsewhere. The crucial point in the application of tlii system

to the generation of video tapes is that the computa-
Cyclic Allocation We used an asynchronous tions involved in generating a video image are quite
cyclic block-wise scheme with k = 10 blocks, 9 of separate from the actual recording of the video tape.
size 50 and one of size 49. The starting vector x0  A typical recording cycle requires about ten seco'nds
for this calculation was the same uniform pseudo- to record a single video frame because of the time re-
random vector used in the Jacobi scheme. After lhr quired to position the tape in the VCR. On the one
9min and 28818 iterations, the convergence criterion hand this means that it takes a long time to generate
was met. The 10 processors were all VAXstation a video tape (about 5 hours per minute of completed
2000s or VAXstation Ils and the numbers of itera- tape). On the other hand it makes a clear separa-
tions perfomned on each of the 10 blocks were tion between the calculations needed to generate the

image and the actua! -vent of recording it. This al-
2884 287' 2890 2888 2881 lows fairly massive computations to be involved in
2890 2881 2888 2877 2865. the generation of the images without imposing the

visual time-lag in viewing the resulting pictures.Since the 10 blocks were assigned to iterations

cyclicly, we did not keep track of how many itera-
tions were performed by each processor, but rather
how many iterations updated tile coordinates in each Figure 1 exhibits output from a laser printer which
block. Notice that tho 10 blocks were all updated shows what a single frame of the video tape looks like.
approximately the same number of times when con- This single frame illustrates the values of the com-
vergence occurred. There are two reasons why the ponents of a particular iterate. 'Ihere is a bitiiap
numbers are riot all equal. Most obvious is that there which is 512 x 256 pixels. Each of the 512 columns
are still iterations ongoing when tile convergence cri- is used t~o display a number. The 256 rows are di-
terion, is met. This, however, would riot account for a vided into 6.1 groups of four pixels each. Each of the
difference of 35 iterations between two blocks. Such (A groups is used to display the value of a single bit
a utifferenc,, is due to the nature of the asynchronous of the tnumber in that colunuin; all four pixels with in
updating. Suppose a proce ssfinishes iteration k and tlie group have the same color. A double precision
begins iteration j. if thri:, processor was particularly floating point number lives in 64 bits. On the VAX
slow oil this iteration, it may be that, for i E Lk, where this was done eight of the 6.1 bits are reserved
k < s . That is, some other processor updated the for exponent and are ignored. h'lre remaining 56 hits
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Figure 1: One Iteration From Eigenvalue Calculation, Cyclic Assignment

(of tile fraction) are displayed with the most signif- I this cusp appears approximately 50 colunms (10%

icant bit at the bottom and the least significant bit percent of the bitmap) from the left edge. There is

at the top. Figure 1 is from a fixed-blockwise evalu- also an "anitcusp" approximately 300 columns (60%

ation, and the five shaded regions correspond to the percent of the bitmap) from the left edge. Standard

five blocks and the five respective processors. theory does not adequately explain the presence of

In order to understand this more precisely, look at these features although they are clearly related to the

the last 13 columns on the right of the bitmap. Using eigenvectors associated with the second largest (and

white for 1 and black for zero these thirteen column smaller) eigenvalues. Second, there is an additional

display the value effect which is also visible in Figure 1 but is more pro-
nounr-d in the animated sequence. Approximately

1042.99999999992728 four bits above the "zone of convergence" there is a

The 56 bits in the floating point representation of very high frequency band of alternating bits. The
this nmber ite ff"buzzing" of this band is very distinctive visially in

the video tape and has no explanation known to us.

10000010010 111 I1 11IIIIll11
1111101101111111110000000000
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ABSTRACT is the use of multilayered networks with
We discuss results relevant to a class of neu- theoretically unbounded order in the sense of
ral networks that have close relationship to [Mi69]. A fundamental advance with respect
existing techniques in applied statistics such to multilayered networks has been the dis-
as density estimation, CART and projection covery of training algorithms that have
pursuit. The perspective of this presentation worked well empirically in many applications
is from that of approximation theory. We in- [PDP].
dicate how some statistical methods might be
used to shed light on the behavior of neural This paper addresses a number of problems
networks. related to multilayered, feedforward, contin-

uous (MFC) networks. We emphasize this
1. Introduction restriction because many different ideas fall
Neural computing is a general approach to under the general rubric of neural network
computation that strives to use networks of theory and, while we acknowledge the ex-
simple processing elements instead of tradi- istence of other technologies (such as net-
tional procedural algorithms to implement a works with feedback, various associative
desired functional input/output relationship. memories, Hopfield-Tank optimization net-
Although the foundations of neural computa- works, Boltzmann machines, etc.), we can-
tion go back over thirty years, there was a not pretend to deal with them all. Moreover,
long period in the 1970's during which inter- we believe the class of MFC networks to be
est in the technology dwindled partly because the most promising for time series and other
of some mathematically demonstrable limita- statistical applications. Indeed, the classical
tions described by Minsky and Papert in work of Widrow on adaptive filtering [Wi62I
[Mi69]. By the 1980's, researchers became is perhaps the simplest manifestation of feed-
confident that some of the limitations de- forward networks applied to statistical fil-
scribed by Minsky and Papert might be cir- tering problems. Needless to say, those ideas
cumvented by making the underlying neural have proven to be extremely useful in appli-
networks more complex (see for example cations such as channel equalization and echo
IPDP,Ho82, Ho85]). cancelling in real-time telecommunications

settings [Wi85]. More recently, there have
There are two major ways in which networks been some interesting empirical studies done
have been embellished to make them more in nonlinear time series prediction that indi-
powerful. One involves the introduction of cate some potential utility of neural networks
feedback or stochastic mechanisms into the in such an application [La87, Mo88].
networks thereby making them dynamical
systems capable of more complex behavior. We discuss some practical issues surround-
The other, on which we focus in this paper, ing multilayered, feedforward, continuous

networks especially in the context of known
statistical techniques. The first question to be

This research was partially supported by Office discussed concerns identifying the class of
of Naval Research grant N00014-87-K-0182 problems that can in principle be solved by
and National Science Foundation grant DCR- MFC networks. On that point, we have ob-
8619103. tained general results demonstrating that, at
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least theoretically, networks with single in-
ternal hidden layers can be used to solve any An N-node is a simple computational unit that
continuous approximation problem [Cy88a, accepts some number of real-valued inputs,
Cy88b]. Next, we discuss the class of prob- applies an affine transformation to the inputs
lems that are feasibly (as opposed to theoreti- and then applies some fixed nonlinear func-
cally) solvable by MFC networks. Finally, tion to this affine transformation. The output
we discuss procedures for determining of an N-node is the output of the nonlinear
whether a candidate problem (as presented by function. In the sequel, we assume for sim-
empirical input/output data) might be feasibly plicity that the nonlinearity is fixed for all
solved by MFC networks. nodes but that the affine transformations are

of course node dependent. (The use of the
In an area that is both promising and contro- same nonlinearity is arguably the most inter-
versial, it is perhaps important to outline our esting case from an implementation point of
perspective and philosophy on this general view since then all nonlinear components are
area of research. Our primary interest has identical.)
been and continues to be the investigation of
numerical algorithms for signal processing. Figure 1 graphically illustrates an N-node
We believe that MFC networks offer an while the simple function that an N-node im-
interesting and potentially powerful tech- plements is given by
nology for solving certain signal processing m
problems. At the same time, there are a o(Eyi xi + 0)
number of known statistical techniques that
share many basic ideas with MFC neural
networks - namely, density estimation,
CART and projection pursuit methods. We Here X =(x1, x2, ... , xm ) are the real
will attempt to bring some of these connec- valued inputs to the node, Y =(yl, y2,
tions to light. Ym ) are real valued constant weights, 0 is a

2. Technical Background real constant and o is some univariate func-
The neural networks of interest to us are
multilayered feedforward continuous (MFC) tion. The quantities y 1, y, "", ym and 0
networks. In order to discuss such networks, determine the affine transformation at the
we introduce the notion of an N-node. node. An MFC network is built from such

simple N-nodes by composition in layers.

m
Output O(Xt i xi +0)

Inputs

2i =

Figure 1.

Input-output relation of a single neural node
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Figure 2
A sample network with two hidden layers

Figure 2 depicts a two layered MFC network. Here f is the real-valued response function of
Generalizations to networks with more layers the system - for input vector X, the system
are done in the obvious manner. Without ex- output is f(X). Based on these observations,
plicitly writing out the functional form of the an MFC network is sought that approxi-
network output, let us qimply express the mately interpolates the data and hopefully ex-
output as trapolates to be a good approximation of f

over the whole input domain of the system.
N(X) = N(X,9) Thus we seek to find the parameters E that

minimize some error criterion where the error
where 0 is a large dimensioned vector of is taken to be the difference between the ac-
the parameters in the network. These pa- tual system output and the network output.
rameters include all weights and thresholds. Algorithms for adapting 9 to attempt to
Viewed as such, an MFC network imple- minimize this error criterion are called
ments one function from a family of func- supervised training, learning, etc. algorithms.
tions parameterized by E. Viewing the situation from the perspective of

nonlinear optimization, most of these learning
Now suppose that some system produces algorithms are gradient descent methods
samples of input/output data of the form whereby some estimate of the gradient of the

error function (gradient with respect to the

{(Xi,f(Xi)), 1 : i ! M} parameters E) is used to update and improve

an estimate for E [Pa87j.
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by the output of a neural network? This of
Such empirical parametric model fitting is of course depends heavily on the class of net-
course the essence of much of applied statis- work architectures being considered and the
tics and approximation theory and by no type of nonlinearity implemented by a single
means a revolutionary idea in its own right, node.
In fact, scientists and engineers have for
centuries used parametric models such as In prior research, we have definitively an-
polynomials, splines, rational functions, swered a number of these questions in a rig-
Fourier series, exponentials and so on to in- orous manner. Define a class of network ar-
terpolate and extrapolate empirical data. chitectures to be complete if: given a continu-

ous function, f, with compact support and an
What then is the novelty of neural network E> 0, there is a network from that class
theory? From the point of view of MFC net- whose output approximates f uniformly to
works, we believe that the novelty lies pri-
marily in two quite different directions. First within E over the support of f. For example,
of all, the kinds of parametric models being there are many classical classes of functions
used in neural network theory typically in- that are complete - polynomials, multinomi-
volve sigmoidal functions quite different and als, Fourier series and so on.
primitive in comparison with traditional alge-
braic or transcendental functions. The impli- We have shown that the following classes of
cations of using combinations and composi- networks are complete in this sense:
tions of such primitive functions for ap-
proximation are not yet clear although sig- 1. networks with two hidden, internal lay-
moidal functions that are normally used have ers and any continuous sigmoidal nonlin-
certain locality properties that suggest earity [Cy88a];
robustness. Secondly, there is a
preponderance of case studies and examples 2. networks with a single internal hidden
illustrating that MFC networks work layer and any continuous radial basis
reasonably well across an array of seemingly type function (see [Bu88,Ca87,
different applications. This is not to say that Mo88,Po87] for discussions of radial
the MFC network approach is the best basis functions - one can think of them as
approach among many, just that it works generalizations of spherically symmetric
quite often. In this respect, there is a certain Gaussian densities in density estimation
similarity between MFC networks and sim- problems) as a nonlinearity [Cy88a];
ulated annealing [HP851 - they both seem to
be reasonably good at solving many different 3. networks with a single internal hidden
types of problems but for any given problem layer and any continuous sigmoidal non-
there may well be a better way to solve that linearity [Cy88b].
problem. This fact alone begs for a better
explanation. These results make absolutely no claims

about the number of nodes needed to perform
There is of course another important innova- the approximation although in some cases,
tion in that at some level of abstraction, MFC gross and probably unrealistic upper bounds
networks are biologically meaningful models could be obtained.
of intelligent behavior and their study sheds
light on the neurophysiological foundation of Of these three results, the last concerning
intelligence. networks with only one internal, hidden layer

is certainly most surprising. It has generally
3. Theoretical Capabilities been felt that such networks could implement
For a given choice of network parameters, an decision functions for convex regions and
MFC network implements a continuous there have been examples of special noncon-
function. Without constraining the architec- vex regions being discriminated as well
ture or size of the network, what kinds of [Li87,Ni65,Wi87] but a general result has
functions can be arbitrarily well approximated been missing. We believe that the results of
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[Cy88b] are definitive in their resolution of the nonlinearities that they implement do not
the issue. constrain the kinds of problems that can be

handled by MFC networks. However, in any
The proofs of 1. and 2. above are construc- real engineering attempt to implement a net-
tive and basically reduce to showing that work solution, constraints must be imposed
networks in that class can implement so- on the number of nodes used, the amount of
called approximations to the identity or data that can be observed and the complexity
Parzen windows [Pa62,Du73] together with of the algorithm used to find suitable network
sums of such functions. It is well known parameters.
that convolution with approximations to the There have been numerous recent efforts
identity approaches the identity function trying to deal with such issues for a variety
uniformly over a compact domain. What of different settings [Ah88,Ba88,BI87,
remains is to show that the convolution Ke87,Va84]. Valiant formalized a notion of
integrals can be uniformly approximated by feasibility with respect to learning a boolean
finite Riemann sums over the whole domain, function and demonstrated that certain classes
By contrast, the proof of 3. is of boolean functions were feasibly learnable
nonconstructive, using the Hahn-Banach and in that sense [Va84]. (It should be clarified
Reisz Representation Theorems to show that that in the context of our prior discussion,
a certain linear subspace is dense in the space learning is any technique for selecting model
of all continuous functions. parameters that let the parameterized system

duplicate or approximate the input/output be-
In summary, we feel that these results give havior of the observed system.) Valiant
rigorous meaning to the assertion that in introduces a probabilistic setting for learning
principal any continuous function can be ap- that is reminiscent of classical hypothesis
proximated by any of the three classes dis- testing.
cussed above. Extensions to discontinuous,
integrable functions are outlined in [Cy88bJ Blumer et al. generalized Valiant's ideas to
as well. more general notions of learning (for exam-

ple, learning rectangles or convex sets) and
Given that the classes of networks described related feasibility in learning to the concept of
above share the same completeness properties Vapnik-Chervonenkis dimension in a non-
as many classical classes of functions trivial manner [B187]. Vapnik-Chervonenkis
(splines, polynomials, Fourier series, expo- dimension was an idea introduced in non-
nential families), what, if any, properties of parametric, distribution free pattern recogni-
MFC networks make them distinct? As we tion some time ago [Va7l] and its interpreta-
have mentioned before, in cases 1. and 2. tion and utility in the context of learning is
above, the networks are capable of imple- therefore quite natural although not at all ob-
menting Parzen window type estimators and vious. Baum and Haussler have recently ap-
hence there is a certain localization property plied those results to neural networks with
that such approximations have. In a noisy hard limiting nonlinearities by estimating the
approximation problem, this might be inter- Vapnik-Chervonenkis dimension of a simple
pretable in terms of robustness. Secondly, class of neural networks [Ba88]. However,
the strong biological motivation makes the the results of [Ba88] are disappointing from a
study of these types of approximating fami- practical point of view since the results make
lies interesting from a purely intellectual point statements about the extent to which neural
of view - if indeed nature implements pattern networks can accurately generalize assuming
recognition and classification this way using that some fraction of the empirical data pre-
neurons, then it is interesting to understand sented to the network can be correctly
how that is done. learned, without directly addressing the diffi-

cult question of what sets of data can be
4. Feasibility learned by such (finite) networks. Recent

work by Judd and Rivest [Ju88,Ri88]
The results summarized in the previous sub- demonstrates that this is indeed a difficult
section indicate that network architectures and question by showing that the problem of de-
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termining whether a given network architec- -n
ture can exactly implement a given empirical than cE points for some constant c. Con-
data set is in general NP-complete. -n

versely, if chosen properly, O(E ) points are
All of the research discussed above deals sufficient.
with Boolean (0,1) valued systems such as
Boolean expressions and characteristic func- A simple application of the mean value theo-
tions of sets. The situation with respect to rem shows that sampling f at that many
real-valued functions and real-valued net- points (properly distributed) is sufficient
works is largely uncharted territory. There while constructing a simple class of functions
has been some recent theoretical analysis of f that oscillate unpredictably but within the
so-called universal Donsker classes constraints shows that that sampling is
[Du84,Du87] that generalize Vapnik- necessary. (The details are simple and the
Chervonenkis classes in the context of dis- reader can easily fill them in.) For example, if
tribution free limit theorems but even then, it we want to approximate such a function so
appears that most interesting examples are that the approximation has two significant
closely related to the idea of Vapnik-Chervo-
nenkis dimension anyway. There are some digits. then E = 0.01 and for n=6 we need
intriguing relationships between Donsker about 1012 samples of the function. This
classes and metric entropy [Du871 that might observation is completely independent of the
be interpretable in terms of signal bandwidth technique that we use for approximating, be it
- we discuss this shortly. Accordingly, most polynomials, Fourier series or neural net-

of the work on real-valued networks has been works. Moreover, this could also be inter-
empirical (such as [La87,Mo88] and many preted in terms of the classical sampling the-
papers in INN1,NN2] ). ory of multidimensional signal processing -

The problem of approximating a real-valued signal bandwidth and the sampling rate are

function by some parametric combination and closely related in a like manner.

composition of simple functions is of course This example illustrates that smoothncss of a
the raison d'etre of classical approximation function is not sufficient for making the
theory. The traditional measure of how easy problem of approximating the function feasi-
or hard a continuous function is to approxi- ble - the problem lies with the volume of the
mate is given by the magnitude of the func- sample space as a function of linear dimen-
tion's derivative. Generally speaking, func- sion which grows exponentially in the num-
tions with small derivatives are easier to ap- ber of variables. Accordingly, multi-
proximate because they change at a slower dimensional approximation theory has
rate. However, even functions with small largely restricted itself to problems involving
derivatives are very hard to approximate if the very small dimensioned coordinate spaces.
dimension of the underlying space is moder- Similarly, empirical data analysis has had to
ately large. A precise statement of this fact be restricted to small dimensions. Two no-
can be stated as follows: table exceptions are the techniques of
Suppose that j(x)l < 1,projection pursuit [Hu85] and CART

(classification and regression trees) [Br84I.

Sf W < IOne of the guiding principles of both neural
f(x)I <1 network theory and projection pursuit meth-

Ox i ods is that some multidimensional functions

have parsimonious representations in terms

for x E_ 1, (I1,, being the unit n-cube in R~ n. of linear combinations and functions of a

Then if we seek an approximation g(x) so single variable. Linear combinations and uni-
variate functions are considered relatively

that If-gl < F on I,, we must sample f at more easy to estimate and compute. That attitude is
encouraged by the well-known result of
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Kolmogorov [Ko57,Lo76J that goes as fol-
lows: At the same time as we outline this dismal

situation, there have been a number of ex-
Theorem [Kolmogorov] There exist amples where MFC networks have done an
m(2m+ 1) continuous increasing univariate admirable job of modeling and approximating
functions h p, with the property that given any complex time series via nonlinear prediction
continuous function f on In,, there is a contin- [La87,Mo88]. Those examples require a
uous univariate function g so that closer look to see exactly what kind of mech-

anism is used for generating the time series.
f(x x = The example in [La87] shows that a simple

'1 network can learn and then replicate quite
2m 1 mwell the behavior of the quadratic map of the

Sg ( Z hr(xd unit interval into itself given by f(x,b) =
q-.1 P-- bx(1-x). The time series is generated by iter-

ating f. This family of maps, as b varies, ex-
hibits period doubling and chaos. Hence, for
different values of b, a plot of the time series

This representation involves summations, can look impressively complex. However,
fixed univariate functions and only one uni- the underlying function itself that generates
variate function that is not predetermined, this complex behavior is by any measure very
namely g(x). While superficially this sounds simple to approximate. It is a two dimen-
encouraging, it packs all of the complexity of sional quadratic function. The general theory
the multidimensional function f into the uni- outlined by Feigenbaum [Fe78I shows that
variate function g. See [Di84] for some the behavior exhibited by bx(1-x) is generic
discussion of the properties of functions and will be exhibited by any function that is
representable in such terms involving unimodal with a quadratic maximum. Hence,
polynomials only. any reasonable approximation would likely

have similar behavior.
We have tried to investigate the Kolmogorov
function, g, defined above for a complex The time series modeled in [Mo88] is gener-
problem in spectral estimation. Our numeri- ated by the Mackey-Glass equation which is a
cal experiments sought to get least squares more complex example of chaotic behavior.
estimates of g with increasing accuracy. The Nonetheless, the model used four prior sam-
results clearly show that the complexity of g pies of the series to predict, nonlinearly, a
is enormous - it a highly oscillatory function future sample. The modeling in [Mo88] ba-
that is poorly approximated by Fourier series sically involves estimating a real-valued
or other orthogonal basis functions. This function of four real variables and, by our
leads us to conjecture the existence of a rela- previous observations, this comes close to
tionship between the complexity of a general what must be regarded as a feasible problem
multidimensional function, f, and the com- to solve in general. To understand this
plexity of its univariate version, g, via the particular example better, we need to examine

olmogorov representation. The complexity solutions to the Mackey-Glass equation and
of a function can be measured for instance in see if they possess any special properties, in
terms of its bandwidth (ie spectrum). We terms of either predictability or smoothness.
believe that there arc severe limitations on the
complexity of multidimensional functions that 5. Determining Feasibility
can be implemented as simple combinations
and compositions of univariate functions The discussion of the previous paragraph
such as sigmoidals. We believe that some surrounded the question of identifying gen-
research ought to be devoted to such ques- eral analytic criteria for determining the feasi-
tions. bility of using MFC networks to implement

approximate solutions to problems in
continuous-valued applications. These appli-
cations include nonlinear time series predic-
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tion and the implementation of difficult to quantitative measure of granularity as dis-
compute functions, cussed above?

The practical problem remains of deciding In questions such as this, we believe that
whether a given empirical data set is of the guidance must be sought from very similar
type that could be feasibly implemented by an kinds of problems studied by statisticians in
MFC network. It may not be possible to de- the general methodology of CART
termine whether the underlying application (classification and regression trees) [Br84].
satisfies the requisite criteria, whatever they CART is a statistically based, data driven
may be. This would be the case in, for method for partitioning an empirical data set
example, continuous recognition problems typically using a succession of linear dis-
such as signature classification from sonar, criminant functions. Loosely speaking, the
IR or radar imaging data. The underlying an- hierarchy of linear discriminations determines
alytical model that determines the classifica- a binary decision tree which is something
tion may be too complex or difficult to ex- very similar in fact to a multilayered neural
press explicitly to decide whether the network with hardlimiting nonlinearities. The
application can be well served by MFC net- technique of projection pursuit [Hu85J in-
works. volves computing good (with respect to some

criterion) projections of multidimensional
In fact, classification using many continuous data onto a vector direction and performing
input variables is a general application area general nonlinear regression on the projected
that has been successfully handled by MFC data. That basic step of projection and re-
networks ([Se88] for example) in some gression is iterated on the residual data. The
cases. We introduce the informal notion of resulting functional form of the approxima-
granularity as a parameter of an approxima- tion resembles the Kolmogorov representa-
tion problem in the following way: granular- tion very closely and this is discussed in
ity refers to the number of distinct function more detail in [Di841.
values that are of interest in an MFC applica-
tion - a finely grained problem is one that in- We pose the following two questions as a
volves many function values over a large part challenge for the statistical audience, given
of the input variable space while a coarse ap- the various observations that we have made
plication is a problem with few function val- above.
ues of interest and the regions where the
function assumes all except one of those val- Can statistical techniques such as CART
ues are sparsely distributed in the input and projection pursuit be used as prepro-
space. cessing steps for determining the feasibil-

ity of applying MFC networks to a specific
Thus in a classification problem involving the empirical data set?
recognition of say 10 signatures from 20 real-
valued signal statistics would be characterized How does the performance of MFC net-
as a coarse problem since the classification works compare with CART and projec-
would be nontrivial typically in only 10 iso- tion pursuit on sparse continuous classifi-
lated regions of the 20 dimensioned input cation problems?
space. Thus, relatively speaking, the volume
of the input space that involves an interesting In summary, we believe there are valuable
function value is relatively small even though contributions to be made by using known
there are many real-valued input variables, statistical techniques to assess the feasibility
Moreover, the precision sought in such a of using MFC neural networks in a variety of
classification problem is relatively low com- problems.
pared with an application such as time series
prediction. In a qualitative way, let a coarse
problem be one that involves some combina- Bibliography
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Abstract

Stochastic models of some aspects of the electrical activity in the nervous system at the cellular and

network levels are investigated. In particular, models of the subthreshold activity of the somal

transmembrane potential of neurons are considered along with methods of identification of

physiological parameters of the discussed models. A simulation study is conducted to evaluate the

performance and efficiency of the estimates of the parameters.

1. Introduction. Studies of mechanisms underlying neural coding and the representation of

information in the nervous system are of great interest to neuroscientists and modelers of neural

networks. Stochastic models are essential tools in describing the behavior of neurons under conditions

where large numbers of inputs and internal events occur at the cellular and network levels. For

instance, there is an extensive literature concerning experimental and theoretical studies of neuronal

integration of synaptic inputs as reflected by the difference in potential across the somal membrane of

nerve cells (see e.g. Johannesma, 1968; Tuckwell, 1979; Ricciardi and Sacerdote, 1979; Baranyi and

Feher, 1981; Kallianpur, 1983; Habib, 1985; Ferster, 1987; Habib and Thavaneswaran, 1988.) The

stochastic models developed in some of these studies relate the subthreshold behavior of somal

membrane potential near the spike generation (or initial) region to physiologically meaningful

parameters. These include the effective membrane time constant, amplitudes and rate ot occurrences of

membrane perturbations due to the arrival of excitatory and inhibitory post-synaptic potentials

(EPSPs and IPSPs, respectively), and measures of variability of synaptic inputs. Estimation of these

parameters using experimentally generated intracellular recordings of the neuronal membrane potential

should shed light on some aspects of neuronal integration of synapic input.

In Section 2, we present several Ito-type stochastic differential equation models that describe

the activity of different types of neurons or activity of certain type of neurons under different

experimental conditions. In Section 3, we discuss statistical methods of parameter estimation such as

maximum likelihood and the theory of optimal estimating functions. In Section 4, we report on a

simulation study to evaluate the performance of the parameter estimators.

1This research was supported by research contract with the Office of Naval Research, Contract,
Number N00014-83-K-0387.
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2. Stochastic Neuronal Models. Assume that the state of the neuron is characterized by the

difference in potential across its membrane near a spatially restricted area of the soma called the

trigger zone (or spike initiation region). The membrane potential is modeled by a stochastic process,

V(t), defined on a probability space (Q, cI, P). It is subject to instantaneous changes due to the

occurrence of a) EPSPs which are assumed to occur according to mutually independent Poisson

processes P(Ae; t) with rates A (k=l,2,...,n1), each accompanied by an instantaneous displacement of

V(t) by a constant amount ae > 0 (k=l,2,....,n 1 ), and b) IPSP which occur according to independentk
Poisson processes P(Ak ; t) with effective displacement ak > 0 ( k = 1, 2,..., n2 ). Between PSPs, V(t)

decays exponentially to a resting potential with time constant r. As a first approximation the PSPs

are assumed to sum linearly at the trigger zone, and when V(t) reaches the neuron's threshold, an

action potential takes place. Following the action potential, V(t) is reset to a resting potential. Based

on this simplified model neuron and considering n1 excitatory synapses and n2 inhibitory ones, the

membrane potential V(t), is modeled as a solution of the stochastic differential equation

n, 112

(2.1) dV(t) = pV(t)dt + E e dP(Ae;t) -" ak dP(Ak ;t),
k=l k=l

where V(0) = V0 and p = r-1. Under certain conditions the solution of (2.1) is a homogeneous

Markov process with discontinuous sample paths. This model is known as Stein's model (Stein, 1965)

and is a special case of the well known Poisson driven Markov process models. This model has been

treated in the literature by many authors, among them Johannesma (1968) and Tuckwell (1979).

Diffusion models in which the discontinuities of V(t) are smoothed out have been sought as

approximations to the discontinuous model (2.1) (see e.g. Ricciardi, 1982; Kallianpur, 1983; Lansky

and Lanska, 1987). These types of approximations are justified on the grounds that for many types of

neurons in the central nervous system, synapses are densely packed along the dentritic tree. If the

jumps of V(t) are small and the rates of occurrence of the post-synaptic potentials are very large, then

the approximation of the Poisson driven Markov model by a diffusion model is appropriate and is

accomplished by allowing the amplitude2s a , a' to tend to zero and the frequencies Ae , to

become large in a certain manner. Under some regularity conditions it was shown that model (2.1) can

be approximated by the diffusion model

(2.2) dV(t) = (-pV(t) + p) dt + a' dW(t), 0 < t < T,

V(O) = V0 , where W is the standard Wiener process (or Brownian motion).

As has been mentioned, model (2.2) describes the subthreshold activity of the somal membrane
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potential of neurons which receive extensive (or rapid) synaptic input with relatively small potential

displacements. This model may be suited for neurons which are spontaneously active. Ilowev,-vr, in

many situations especially for stimulus driven neurons this last assumption on synaptic input might be

too stringent because the nerve cell might receive a limited number of effective synaptic inputs that

induce relatively large potential displacements, in addition to the extensive synaptic diffusion inputs

discuss ed above. For example, in a study of the organization of inputs from the lateral geniculate

nucleus to cells in the striate cortex of the cat, Tanaka (1983) found that about 10 genicular neurons

are functionally connected to one simple-cell during the presentation of effective stimuli. A large

(converence) number (more than 30) was obtained from studies of geniculate projection to complex

cells. In this case a mixed model of diffusion and point process inputs may be more suitable for

describing the activity of such cortical neurons. To that end, assume that in addition to the extensive

synaptic input leading to the diffusion model (2.2), there are n1 EPSPs arriving according to

independent Poisson processes N(Ae, t) with random intensities A., and EPSP displacement

amplitudes ae, k=l,2, .. , n,. In addition, IPSPs are arriving according to the independent processes

N(A , t), with the corresponding parameters Ak and aok, k=l,2..n 2 . This setup leads to the

following extended mixed model to describe the membrane potential of a stimulus driven neuron:

(2.3) dV(t) = (-pV(t) + y) dt + a dW(t) + E adN(A, t) - okdN(k , t).
k-I k=l

Model (2.3) is remarkably similar to the continuous neuronal model proposed by Ilopfield

(1984). The problem of parameter estimation of the mixed model has not been sufficiently addressed

in the literature. In the next section we treat the problem of parameter estimation of the diffusion

model (2.2) and the mixed model (2.3).

3. Parameter Estimation of a Diffusion Neuronal Model. Lansky (1983. 1984) considered the

problem of parameter estimation for diffusion neuronal models observed over a fixed interval 0,T'I'] and

discussed the asymptotic properties of the estimators as "'-x. (iven n independent trajectories

{Vk(t), 0 < t < r k ) k = 1, 2 ... n, where, r,, 7 2 ,..., r are independent random variables (stopping

times) with P(rk<oc) = 1, k = 1, 2, ... , n.

Ilabib (1985) derived maximum likelihood estimators of the parameters p and p and

established their large sample properties such as strong consistency and asymptotic normality assuming

(7 is known. Now recall the diffusion neuronal model (2.2). From Sorensen (1983), the log-likelihood

function is given by
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(3.1) Ln(P, P) =LI (-Pvk(t) + p) dVk(t 2 (-pVk(t) + ~2d}

k=1A Ar - r

The maximum likelihood estimators (NILE) pn and Pn of p and p respectively are simply those, values

given by

n r n rk

(3.2)F-n 1DntZJ kV(t) d V k(t)_IJ 1 V k(t) d t[ 1f dV k(t)J

k= 11- V Vk (t) d t]2 - Dn En

(33 A ~l l k (t) dt]I F, rkV k(t) dVk(t)-En~k l~ dV k(t)1
Ai = 1 k-k1 rklk r-

E~r 11 V k(t) dt 12 _ Dn En

where

Dn I (k-I i)]and En = ZJ V2jt) dt].

Using the fact that the membrane potentia, Vk(t) is observed continuously over raiidom intervals, the

diffusion coefficient s may be estimated from ail observed trajectory V k (k~1 ,2,.n) by thle formula

A 1 Mk-I k i k 9

(3.4) ( 2 (k) 1 unm E IV Vk(7k _I+jd k )N"k (7k -I+j )
(k -rk..l - 1) - I +(ix)(lk2 )1
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This result may be proved using the corresponding result of Levy for Brownian motion by transforming

Vk via time substitutions into Brownian motion (or Wiener process). A natural estimate of 0 2 which

employs all the observed trajectories is given by

A2 1nP A

k=

The consistency and asymptotic normality rf Pn and Pn (as n--.x) have been established in Habib

(1985).

4. Simulation Studies. In this section we briefly discuss the results of a simulation study to

evaluate the performance and efficiency of estimates of the parameters p and p of model (2.2). This

study provides general guidelines for the choice of the number of observed trajectories and the length of

the observation period of every trajectory.

For simplicity, we consider the diffusion model (2.2). Assume for the moment, that the period
A A

of observation is fixed, say [0,T]. In this case, the estimators Pn.T and PnT are defined in terms of

stochastic and ordinary integrals (c.f. (3.2) and (3.3)). But, in practice one has to approximate these

integrals with appropriate finite sums which depend on the digitization scheme or the partition mesh

{t 0,t . .tKJ C [0,T].

In order to evaluate the performance of the estimates PnT and Pn,T' we simulated the

solution of model (2.2) using the difference equation

(,1.1) V(tk+l) = (-pV(tk) + 11) 11 + a(W(tk+l)- W(tk)

where h = t/K, tk= kh, k=1,2..,K. It is well known that the solution of (2.8) converges to V(t). For

instance, if we set VK(t) = V(tk) for tc[tk ,tk+l), then

E(sup I V(t) - VK (t.) 12 0.
0< t<T

as K-. (see Gihman and Skorokhod, 1979). This and other kinds of discretization, especially Runga-

Kutta schemes, have been extensively studied (see e.g. Magshoodi and Harris, 1987).

It is clear from Table 4.1 that for processes which are observed over a period [0,T) with T=I10
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ms, the estimates of all parameters except for o, are very close to the true values of the parameters and

they improve as the number of observed trajectories, n, increases. From Table 4.2, there is no

improvement in the estimators as the number of observed trajectories n increases (in fact, they

deteriorate). This apparently happens because for Table 4.2 the period of observation [0,T] was longer,

T = 15 ms. Therefore, one may conclude that for action potentials with long durations, one does not

gain much by recording a large number of spikes, but for action potentials with relatively short

durations, one can expect that the parameter estimators will improve as the number of observed action

potentials increases.

5. Conclusions. The stochastic models considered in Section 2, take into account only the

temporal aspects of synaptic input. It is well established, though, that among the important factors

influencing synaptic integration are the geometry of the dendrites of post-synaptic neurons and the

spatial organization of synaptic input. Habib and Thavaneswaran (1988) proposed a stochastic partial

differential equation which is based on a cable model of a system of branched dendrites projected onto

a one dimensional equivalent dendrite as proposed by Rail (1978). The theory of optimal estimating

functions was applied in this case to obtain estimates of the model's parameters.

Table 4.1 : Parameter estimates using a simulated diffusion process

observed n-times over a fixed period [0,T] and sampled every a units:

a. T - 10 m.s., 6 - 0.10.

Parameters True Value Estimated Estimated Estimated
Value Value Value
n-i n-lO n-50

-i
p - 1 0.33333 0.30336 0.33000 0.33427

5.00000 4.63803 4.84648 4.88702

a 0.31623 0.67566 0.67364 0.67583

Table 4.2 : Parameter estimates using a simulated diffusion process

observed n-times over a fixed period [0,T] and sampled every 6 units:

b. T - 20 m.s., 6 - 0.10.

Parameters True Value Estimated Estimated Estimated
Value Value Value

n-i n-lO n-50

-I
p - r 0.33333 0.30369 0.32705 0.32399

5.00000 4.86121 4.77822 4.71001

a 0.31623 0.33012 0.51796 0.33537
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Before concluding, it should be noted that the parameters p and P in the mixed Ito-Markov

model (2.3) may be estimated using the theory of optimal estimating functions. Indeed, let

nl n2
n 1 1

(5.1) N(t)= e N(A I N(Al t),
k=1 k=l

and

1j e A n 2 • •

(5.2) E[N(t)]-- "  - A  )t = At.
k=l k=1

Notice that M(t) = W(t) + N(t) - At is a martingale with M(0) = 0. Substituting in (2.3), we obtain

the equivalent model:

(5.3) dV(t) = (-pV(t) + p't) dt + dM(t),

where u A+. The method of optimal estimating functions can be used in this case and it can be

shown that the optimal estimates of pand p are identical to the maximum likelihood estimates P and

u in (3.2) and (3.3).

One may then estimate the parameters p and p of model (2.2) from data recorded while the

neuron is spontaneously active. In the meantime, the parameters p and p/ of model (5.3) may be

estimated form data recorded from the same neuron during periods of stimulus-driven activity. In this

case, it is possible to estimate the parameter A=p -p which reflects the impact of the synaptic

activity due to the presence of the stimulus. Also a changc in the value of the parameter p may reflect

changes in the membrane properties due to the stimulus.
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STATISTICAL LEARNING NETWORKS: A UNIFYING VIEW

Andrew R. Barron 1, University of Illinois
Roger L. Barron, Barron Associates, Inc.

Abstract
A. varie of network models for empirical inference have variance (estimation error) associated with such networks can

been introduced in rudimentary form as models for neurological be much smaller than associated with more traditional
computation. Motivated in part by these brain models and to a approaches. As for the bias (approximation error), the
greater extent motivated by the need for general purpose evidence is that for many practically occurring functions
capabilities for empirical estimation and classification, accurate network approximations exist, in spite of the
learning network models have been developed and successfully theoretical fact that high-dimensional functions can possess
applied to complex engineering problems for at least 25 years. sufficiently irregular structure so as to preclude accurate
In the statistics community, there is considerable interest in estimation.
similar models for the inference of high-dimensional Some dynamic network models (such as the Hopfield
relationships. In these methods, functions of many variables network 1981) are differential equations (or difference
are estimated by composing functions of more tractable lower- equations) resulting from cycles present in the interconnected
dimensional forms. In this presentation, we describe the network. In this paper we restrict attention to static network
commonality as well as the diversity of the network models models which have no loops in the network. Thus the network
introduced in these different settings and point toward some is a tree of interconnected functions which implements a single
new developments, input/output function, which may be adjusted by the empirical

1. Introduction estimation process, but otherwise is static.

In the context of empirical inference of functions of many 2. Block Diagrams
variables, a network is a function represented by the We present a hypothetical network to get oriented to some
composition of many basic functions. The basic functions terminology and notation. A function which is defined as a
(which are also called elements, units, building blocks, composition, such as
network nodes, or sometimes artificial neurons) are constrained
in form: typically nonlinear functions of a few variables or fix 1 x2, x3 ' x4 ) = g0 (g1(g 3(xl1 x2), g4 (xl1 x3 x4 )),
linear functions of many variables. By definition, a learning
network estimates its function from representative 92 (9 4 (X1, X31 X4), g5(X))),

observations of the relevant variables.
Several composition schemes for network functions and may also be written in terms of intermediate variables

corresponding estimation algorithms are reviewed in this
paper. Consideration is given to certain networks popular in f= g (z1, z 2)
the neurocomputing field such as perceptrons, madelines, and
backpropagation networks. (For a collection of some of the key z = g1 (Z3, z4), z 2 

= g 2(z4, z5)
papers in this field see the volume edited by Anderson and
Rosenfeld 1988.) Unfortunately many learning networks are z3 = g3 (X1 ' x2 ), z4 = g4 (x1' x3" x4)" z5 = g5 (x4),
inflexible in the form of the basic functions, inflexible in the
connectivity of the network, and lack global optimization of or it may be drawn as a network diagram (Fig.l):
the network function. More consideration is given here to
globally optimized networks, networks with adaptively x1
synthesized structure, and networks with nonparametrically
estimated units. Particular attention is given to polynomial 2
networks (R.L. Barron et al. 1964, 1975, 1984, lvakhnenko x 1
1971), projection pursuit (Friedman et al. 1974, 1981, Huber x
1985) and transformations of additive models (Stone 1985, 3 g f(x I X 2 X , x 4
Tibshirani 1988). New composition schemes are suggested x4 " 2

which combine the positive benefits of the above methods.
Although there are interesting analogies of statistically 4

estimated network functions with the activity of networks of
living neurons, we shall not constrain our network functions to
be biologically viable models. Instead the focus is on the Fig.1. Example Netwui&
development of empirical modeling capabilities for network
function so as to represent the input/output behavior of a wide The layers of a network are the sets of functions which occupy
range of complex systems for scientific and engineering the same depth in the tree.
applications. For a general notation for network functions, in which the

Mathematical limitations of high-dimensional indices on a basic function specify the position of the function
estimation are discussed. Bounds from nonparametric in the tree relative to the root node, see Lorentz (1966). He
statistical theory show that reasonably accurate estimation called network functions superposition schemes. Lorentz made
uniform for all smooth functions (e.g. functions with bounded fundamental contributions to the theory of representing
first partial derivatives) is not possible in high dimensions functions by compositions which are discussed later in this
with practical sample sizes. Network strategies avoid some paper.
of the pitfalls of high-dimensionality by searching for Representations for network functions are not unique. For
structures parameterized by lower dimensional forms. The instance, if some of the basic functions are absorbed into the
advantage is that for high-dimensional problems the functions to which they are input, then fewer elements are

obtained, but the new elements have possibly greater input
dimension.

JWork supported in part by an Office of Naval Research grant N00014-8K Motivated by the application to modeling human vision,
0670 and by a National Sctence Foundation Postdoctoral Research Fellowship. Rosenblatt (1962, ch. 4) callcd networks with arbitrary
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elemental functions perceptrons (although subsequently the Mixed parametric/nonparametric: In this case both types of
term has been used to refer to just one type of network with elements appear in the network. A particularly interesting
thresholded linear elements that Rosenblatt extensively approach is to combine nonparametric elements, each of which
studied). Our definition differs slightly from Rosenblatt's in depends only on one variable, with elements which implement
that he allowed transformations to occur on the branches linear combinations of many variables. It will be seen that
(interconnections) of the network. Such networks are networks of this mixed structure have the potential to
repreented in our form either by defining additional single approximate any function.
input nodes or by absorbing each such transformation into the We use the notation fts, 6) to reter to the complete
node to which the branch is directed. network function where X. is the vector of all original input

variables and 0 is the vector of all parameters which appear
3. The Building Blocks in the network.

For learning networks it is important to choose elements
of the network with sufficiently general form that the 4. The Structure of the Data and Objective of Network
resulting networks can approximate nearly any function of Estimation
interest. It is also important to choose these elements with In practice, networks are estimated from a training
sufficiently small dimension or complexity that they can be sample of observations of relevant variables. The sample is
accurately estimated. Different approaches to resolving the tpically a sequence of input/output pairs ( X, Y1 .(&, Y )
tension between these two seemingly conflicting objectives where each X is a d-dimensional vector. We focus on the case
result in a variety of different learning network schemes. in which the observations are independent, each with the

Let the function g(z) denote an element of the network, same probability distribution P.. (Certain problems
where z is the vector of intermediate variables (outputs from involving data with stationary serial dependencies can also
preceding elements or sometimes original input variables) be treated, in which case the relevant distribution is the
which are input to the given node. The most common forms of conditional distribution given the past.) This probability
elements roughly can be categorized as parametric or distribution is assumed to depend on an unknown function f(g):
nonparametric. it is this function which neural networks seek to approximate.

The assumed nature of this function depends on the objective of
Parametric elements: These are basic functions g(z, 0) which the problem (e.g. regression, prediction, classification, density
depend on a vector of unknown parameters. The parametric estimation) and the criterion by which performance is
elements which have been proposed for learning networks measured.
usually take one of the following forms: Perhaps the most common use of learning networks is to

seek a function f(a) to minimize the mean squared error
g(z, e) = h (,E 4z + O)  (1) E(Y- f(X))2: that is, the function we wish to estimate is the

conditional mean f(x) = E [Y IX = xJ. For problems of curve

g(z, 6) = , O (z) (2) fitting, regression, or prediction this conditional mean function
has traditionally been the principle object of interest for

or, more generally, learning networks. (For certain time-series prediction
problems the desired function takes on the spcIitic form

g(z, 0) = h( Okk(z)) (3) f() = E[YI Yt 1 = xl ... Yt-d = XdJ). in particular, this
framework (associated with a squared error measure of loss) is
appropriate when a function fx) is measured subject to (mean

where 9k, k = ,.m, and h are fixed functions. The two most zero) Gaussian error at randomly distributed design points.
common choices for the ipk are linear terms (coordinate For classification problems, an optimal discriminant
functions), so that the sum simply implements a linear function is one for which the overall probability of error is
combination of the inputs as in (1), or polynomial terms of minimized. Most often, learning networks have been utilized
moderate degree. The nonlinear function h is typically chosen to seek an indirect solution to the classification problem by
to be a nondecreasing function bounded by one (such as a unit using the mean squared error as the criterion. For two-class
step function) -- this is frequently incorporated in networks classification with Y e (0,1) the conditional mean function
intended for binary classification. The parameters of each reduces to the optimal discriminant f(a) = P I Y = I I X = XJ.
element are estimated from observed data, typically by a Nevertheless, it may be more appropriate to seek to estimate
least squares or likelihood based criterion. The specific the logistic regression function f(S) = log(P FY = I I J/(1 -
method used to estimate the parameters depends on the PLY = I IX1)) using likelihood-based criteria. In principle,
probabilistic structure of the data, the network synthesis probability density estimation can also be handled using
strategy, and the intended use of the network (see section 4 learning networks and a likelihood criterion, in which case f
below). is taken to be the logarithm of the joint density function of the

random vector.
Nonparametric elements: Some of the element functions g(z) The intended use of estimated network functions f may
may be regarded as unknown and constrained only in terms of Te itymde s ad erfor n ctives other

basic smoothness properties (e.g. bounded derivative), or in dictate probability models and performance objectives other

some cases g is modeled as a stochastic process indexed by z (a than those indicated above. For instance the object may be toBaye fomultio). Sch , ntios ar esimaed y asearch for the extreme points of a function f by using the
Bayes formulation). Such functions are estimated by a
smoothing technique such as local linear fits, smoothing extreme points of f . For problems in vehicle guidance, the
splines, variable kernel estimation, truncated trigonometric functionf might estimate parameters of an optimum (two-
series, variable degree polynomials, or stochastic process point boundary-value) guidance law as a function of current
estimation. Typically parameters of the smoothing technique and desired final vehicle states (in situations where the
are selected by a criterion such as cross-validation, predicted optimum f can only be obtained by extensive off-line
squared error, or penalized likelihood. With nonparametric iteration), in which case the ultimate performance objective is
elements it is important that the dimension of the z variables to minimize the final miss distance, rather than to minimize
be kept to a minimum. (Otherwise the statistical theory the mean squared error of the parameter estimates.
indicates that it would be difficult to estimate these element Nevertheless, learning network methodologies have proven
functions.) successful in some of these contexts (see R. L. Barron and Abbott

1988).
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Most network algorithms have been designed for sets of test data (in the sense that if the growth of adaptively
regression or classification with minimum mean squared error synthesized networks is halted on an earlier layer or allowed
as the performance objective, and our attention will be focused to extend to a larger number of layers, then a significant
primarily on this case. increase in the average squared error on the test set does not

usually occur).

5. Criteria for Network Estimation and Selection If the error variance a 2 is not known, an estimate .2c
Here we discuss model selection criteria needed for the can be used in its place in the PSE criterion; however, to avoid

estimaLion of network functions. Without the use of an overfti care mus, be taken to avoid having a much less than
appropriately penalized performance criterion, an overly 2 A2
complex network may be estimated which accurately fits the a in particular , a2 should not be varied during the process of
training dataeutwill not prve estte h accurate y fs nw t selecting k (A. R. Barron 1984). We suggest that nearest
training data but will not prove to be accurate on new data. neighbor regression be used prior to network synthesis to

determine a rough estimate of the error variance with the
Predicted squared error: of a network structurefix, ) is fixed desired properties. To permit consistent estimation of f in the

and if the total number of parameters k is small compared to case that it can be exactly represented by a finite dimensional
the sample size n, then the minimum mean squared error network (as well as in the case that it can be arbitrarily well

min, E (Y - f(X, 9))2 is approximately achieved by seeking approximated by networks of sufficient dimensionality) other
parameter estimates that produce the minimum average criteria should be used which place a greater penalty on the
squared error onte thraining set, TSE = n (Yim- f (Xi e))2 dimensionality of the model (e.g. ;-log n instead of 7 )_

Criteria significantly different from PSE will not possess the

However, if k is large compared to n, then the model may optimum rate property of Shibata in the context that he

have small error on the given data, but it is likely to have considers; however, it is not known to what extent the
large error on future data from the same distribution. This convergence rate is slowed.
phenomenon is partly explained by noting that, under certain
conditions (namely that the network depends linearly on the Likelihood based criteria: Suppose the random vectors (Xe,Yd
parameters and the true function fx) happens to be a member have a conditional probability density function p(y I x f)
of the given k-dimensional family with error variance which depends in a known way on the value off (whereas the
a 2 = E (Y-f(X)) 2), the mean squared error of an estimated tru e in a known e l e a te

network of fixed dimension k is not equal to the error variance true function ft) may be unknown). Let f(LO) be a given
ne btwor ofe dieq on k )) = + network structure with a k-dimensional parameter 0. Assume
Cr but rather is equal to E (y _f (X, )2 o 2 +(k/n)a 2: see ta
Mallows (1973), A.R. Barron (1984). This leads, in view of the that 9 is estimated so as to maximize the likelikhood

fact that under the same conditions E (TSE) = a2 - (kn)a2, to p(Y" iX, f(.,O)) = r" n p(yiI Xi, flXi,9))" Define the Akaike

the predicted squared error PSE criterion as an unbiased information criterion (Akaike 1973) by
estimator of the future performance:

PSE = TSE + 2k02. (4) AIC log p(Y I X", ft.,0)) + k (5)n

This criterion is very similar to (and in some cases equivalent and define the minimum description length criterion (Rissanen
to) the CP statistic proposed by Mallows (1973), the 1978,1983) by
generalized cross-validation criterion of Craven and Wahba
(1979), the final prediction error of Akaike (1970), and a M
specialization of the AIC proposed by Akaike (1973). For a MDL log p(Y' I 1, f(,9)) .logrn. (6)

recent treatment of these various criteria with emphasis on
generalized cross-validation see Eubanks (1988, ch. 2). These criteria are used to choose between models of various
Calculations similar to those in Akaike (1973) show that PSE dimensions. Akaike derived the AIC as an asymptotic bias
continues to be an asymptotically unbiased estimator of the correction for the estimation of expected entropy loss, in much

) 2 ethe same manner that PSE is an asymptotic bias correction for
mean squared error E (Y -fiX, ))u even if f fx, 0) is not a the estimation of expected squared error. Rissanen derived the

linear function of 0, provided this function is sufficiently MDL criterion as the length of a uniquely decodable code for

Unfortunately, if the network function is selected so as to quantizations of the data Yr given the data X" (ignoring terms
minfotuatiyz e monacoecton functions sefeted ras owhich are asymptotically constant for k bounded). Unlike the

minimize PSE among a collection of functions of various optional Shannon code, Rissanen's code does not require
parameter dimensions, then there is no general guarantee that knowledge of the function f. Instead, the MDL code uses

the resulting minimum PSE will be an accurate estimate of the quantized maximum likelihood estimates of the parameters of

mean squared error of the estimated function. Indeed, if the the function as a preamble of the code (using 'log n bits per
true function f is a member of one of the finite-dimensional

network families, then the PSE criterion has a tendency to parameter). The criterion can also be derived as an

ov-zrestimate the dimension (see Atkinson 1980, 1981). On the asymptotic approximation for the Bayesian test statistics

other hand, the work by Shibata (1984, 1986) shows in related which minimize average probability of error in the selection

contexts that if the true function f(x) is not exactly of the model (see Schwarz, 1978, Clarke and A.R. Barron,

representable by any of the finite dimensional models in a 1988).
sequncek~x 0, fo k=,2,.,. butcannevrthles beThe validity of the derivations of AIC, MDL, and Bayes

sequence fx, k for k=1,2 ... (but can nevertheless be criteria require smoothness conditions. In particular the

approximated by such models), then selection of k by a sample Fisher information matrix A of second partial

criterion of the form given above is optimal in the sense that derivatives with respect to I of - elog pp I Xl f.,9))

the resulting expecteJ squared error E (f(X) -f^X))
2 is asymp-

totically equivalent to minkE (f(X)- ftX, O4))2 as n-4 -. It is (evaluated at 0=0) should be positive definite. A more

not known if the results of Shibata carry ovcr to the precise form of the MDL or Bayes criterion uses 'Jog det(l)

estimation of network functions. Nevertheless, in our instead ofk4ogn.

experience with numerous practical cases (see Barron et al. For regression with a Gaussian error distribution and

1984), networks selected by minimizing PSE have known error variance, the AIC reduces to the PSE criterion and

approximately minimal average squared error on independent MDL reduces to a criterion equivalent to
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parameters in a given element g(z, 0) rray be estimated by
TSE + (.log ncr' .  (7) usual least squares or likelihood maximizLtion techniques. It

is most common for the elements on each layer to be greedily
For classification problems with Y E (0,1), likelihood based trained to attempt to best estimate the de'sired final output,
criteria are defined by using the Bernoulli model even though the outputs of these elements are combined on

p(yl&f) - (f())Y(l -ft))-Y (in which case care must be succeeding layers. On the other hanc., some methods
taken to use networks with 0 < f(L) < 1). The equally general developed in statistics select the element fLnct-.,hts so as to

logistic model p(y I xf) = eYff)/(1 + eft-) may be ,rcerred for work best in linear combination with the previously selected

classification problems, since it forces satisfaction of the elements on a given layer.
probability constraints 0 < p < I without constraining the Practical experience shows clear advantages of the
function f. For logistic regression the minus log-likelihood adaptively synthesized networks over some of the globally

optimized fixed network structures. (However, certain
takes the form Ilog(1 + ef( " e_,y-if(,X. ' 0), which is theoretically appropriate fixed structures have yet to be tried
minimized (e.g. by Newton's method in the context of various i. practice; also, the smoothness penalty criteria have yet to
synthesis strategies) and then penalized by k or flog n as be utilized with the larger fixed networks.) In most instances
appropriate for the desired criterion, the adaptively synthesized networks are more parsimonious.

Parts of the network which are inappropriate or extraneous
Complexity regularization: In A.R. Barron (1985) the for statistically modeling the given data are automatically
minimum description length criterion is extended to not included in the final network. The drawback of the
nonparametric contexts in which the description length need adaptive strategies is that they cannot be guaranteed to work.
not reduce to the form of (6). Consistency results are obtained It is possible to find counterexamples of data corresponding to
in A.R. Barron (1985, 1987) which show convergence (as n --. -o) functions which are exactly modeled by a two-layer network,
of distributions estimated by the complexity regularization. but no non-trivial first layer elements are selected by a given
The specialization of the convergence results to the case of adaptive synthesis strategy.
estimation of network functions is given in the Appendix. Mixed adaptive/global strategies: After the best elements on
6. Main Strategies for Network Synthesis each layer are computed, a numeric search can be used to

There are two main strategies for the synthesis of update the estimates of parameters for ancestral nodes on
networks depending on whether the structure of the network is earlier layers. An iterative scheme that alternates between
fixed or allowed to evolve during the synthesis process. estimation of the parameters of the given element and the

estimation of the parameters of the ancestral nodes is
Fixed networks: In this approach a fixed composition structure suggested by the projection pursuit algorithm and its
(often relatively large) is preselected with the hope that the generalizations (see sections 10 and 12).
desired function can be accurately approximated by networks
of the selected form. The problem of choosing parameters of 7. Some Early Network Developments
the network so as to optimize a performance criterion may be While linear models for regression and thresholded
regarded as a global search of a highly multimodal surface. In linear models for classification (e.g. of the form (1), (2), or (3))
general, global convergence is difficult to guarantee; have been long used in statistical practice (with the
nevertheless, by choosing a network function which depends beginnings of the modern understanding due in large part to
smoothly on the parameters it is often feasible to estimate R.A. Fisher (1922, 1934, 1936) who introduced measures of
sufficiently accurate network functions by certain global statistical efficiency, explained the efficiency of maximum
search techniques (e.g. techniques which alternate global likelihood estimation, and derived the linear discriminant
random and local gradient search). Other methods for function for multivariate Gaussian classification), these same
estimating network functions attempt to localize the search linear models were reintroduced (unfortunately with
within each unit of the network by defining target values for comparatively inefficient estimators) in the 1950's and 1960's
each elemental function. More specifics are given in section 7 as a basic ingredient in learning network models. The new and
below. interesting twist was that more general classes of functions

The advantage of the fixed network approach is that were modeled by combining these simpler models into a
certain structures are known to have the ability to network. Here we mention some of the development which
approximate any continuous function (see section 13). occurred in this period.
However, for moderate sample sizes, these fixed structures The forerunners in the network modeling field were
may have too large a parameter dimension for the least McCulloch and Pitts (1943), who introduced the thresholded
squares or maximum likelihood estimators to be accurate. In linear function as a model for the behavior of a neuron and, in
this case, to prevent irregularity of the estimated function, it that paper, analyzed the model not so much for its biological
is useful to constrain the parameters so that the resulting viability, which was discussed only briefly, but rather (in the
network function is smooth or to penalize the performance language of theoretical computer science) as a basic
criterion by ircorpoiating a term for the lack of smoothness computational unit with the property that any predicate
(e.g. the sums of squares of first partial derivatives of the with finite domain could be implemented by a network of such
network functions at the observations). Of course the criteria units.
mentioned in section 5 above are not adequate when the There was a surge of interest in methods for the inference
dimension of the network is fixed in advance, of networks (Hebb 1949, Ashby 1952, Farley and Clark 1954,

Minsky 1954, von Neumann 1956, Rosenblatt 1957, Lee and
Adaptive networks: In this approach, the attempt is to Gilstrap 1960) culminating in some interesting and successful
estimate networks of the right size with a structure evolved multiple layer estimation methods in the early 1960's due to
during the estimation process to provide a parsimonious model Rosenblatt (1962), Widrow et al. (1960, 1962, see also 1987),
for the particular desired function. Typically, the network is and R.L. Barron et al. (1964, see Moddes et al. 1965, Gilstrap
estimated one layer at a time, with the elements on each 1971, Barron et al. 1984). Although some of the networks due
given layer selected to minimize the predicted squared error or to Rosenblatt and Barron et al. used more general elemental
complexity regularization criterion. The basic idea is that functions than the original thresholded linear function, they
once the elements on a lower level are estimated, and the did share the form (3) (transformed variables were combined
corresponding intermediate outputs z are computed, then the linearly using free parameters). These heuristic multi-layer
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methods were not well understood theoretically and (with the halving/doubling algorithm for the step size and by adjusting
exception of Rosenblatt's book) they were not widely a variable subset of the parameters at the different steps).
disseminated at that time. We emphasize that contrary to The particular elemental functions originally used by R.L.
the popularly held current belief (initiated in the book by Barron et al. were quadratic functions in two variables
Minsky and Papert 1969 and perpetuated by statements as in g(z,O) = 0 + 91z1 + 0 2z2 + 03 zIz 2 . A spirally-connected
Rumelhart et al. 1986, p.321), powerful rules were found for network with 24 input variables and seven layers was
the estimation of multiple layer networks. constructed (see fig. 2). Using 25-50 observations of simulated

The methods of Widrow et al. and Rosenblatt for binary reentry vehicle positions during a given time frame
classification possessed many similarities. In particular, both (t, t - At., t - 76t), networks were constructed to predict the
authors exclusively utilized recursive estimation strategies in final position and impact time of the vehicle. The parameters
which the parameter estimates are updated with each new of the networks were constrained to values in the interval
observation by an error correction procedure analogous to the between -1 and +1. The CARS search routine converged to
Robbins-Monroe (1951) stochastic approximation (but without essentially the same extremum of performance for each of
the full statistical efficiency known to hold for recursive least many randomly selected initial parameter vectors, suggesting
squares or recursive implementations of maximum likelihood), that a non-unique global optimum was reached. Performance
Moreover, both approaches were amenable to clear on an independent test set of observations suggested that
theoretical proofs of convergence properties in the case of despite the complexity of the network, and the small sample
single element networks (these results are well-explained in size, the estimated function was not overfit to training data.
Nilsson (1965) and Duda and Hart (1973)). Widrow used a (However, overfit problems were later experienced with these
stochastic gradient method which he called the least mean large fixed networks on some industrial process modeling
squares (LMS) algorithm. Rosenblatt used a method (related problems -- these experiences led in the early 1970s to the
to relaxation procedures for solving linear inequalities, Agmon adoption of adaptive synthesis strategies discussed below.)
1954), which he called the perceptron algorithm: it finds a
hyperplane which perfectly separates the two classes
whenever the classes are linearly separable. The non-
convergent behavior in the non-separable case was analyzed
by Efron (1964).

For multiple layer networks the method of Widrow et al.
(1960, 1962) was only explained in the case that first layer
elements are adjustable and the succeeding layers are
preselected. Widrow used iterations of his strategy to handle
also the more general estimation problem, but this approach
was not published until Widrow 1987, to which we refer the
reader for a description.

For two and three layer networks of thresholded linear
elements, Rosenblatt (1962, ch. 13) developed an algorithm
which he called back-propagating error correction
(unfortunately, this name recently has been reused for another
algorithm for network estimation, as mentioned below). The
objective of his method is recursively to estimate desired
outputs for every element as well as to estimate the
parameters. Naturally, given a desired output of an element
Rosenblatt updates the parameter estimates in the element by
his perceptron algorithm (here a parameter update occurs only
if the actual output differs from the desired output). On the
other hand, if the output of an element does match the desired
value, then depending on whether the resulting final output of
the network is in error, the desired intermediate variable is
adjusted to reduce this error (again as in the perceptron
algorithm but with the role of parameters and variables
reversed). (Randomization is used to avoid certain
degeneracies. In particular, with each step no update action is
taken with probability O<p<l.) Rosenblatt advocated cycling

through the data and the elements of the network in such a
way that each combination (of datum and network element)
potentially would be considered infinitely often. He Fig. 2. Uniform Spiral 72-Element Network
presented a theorem (Rosenblatt, p. 294) to the effect that if
the data are separable by the network (i.e. there exist The network of fig. 2, which consists of quadratic two-
parameter values for which the network function correctly input elements, represents a family of sixth-degree
classifies every point), then his estimation strategy will find polynomials. Since the network contains a total of 288

such an error-free solution in a finite number of steps (with parameters, this family is a relatively low-dimensional
probability one). manifold in the complete (593,775 dimensional!) family of

The approach developed by R.L. Barron et al. (1964) and sixth-degree polynomials in 24 variables. Nevertheless, the
further explained in Moddes ei al. (1965), Gilstrap (1971), and network had more than enough flexibility to yield accurate
Barron et al. (1984) solved the multilayer network estimation approximations for the specific application to re-entry
problem by global search to minimize the sum of squared errors vehicle trajectory predictions.

t(Yi- ffXi, 0))2. Barron et al. introduced an algorithm called
guided accelerated random search (OARS) which alternated 8, The Current Fashion
between global random search (using a spherical normal In recent work Rumelhart, Hinton, and Williams (in
distribution centered at the current best point) and local Rumelhart et al. 1986, ch. 8) propose that an implementation
gradient search (for which convergence was accelerated by a of the gradient descent algorithm be used to attempt to
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minimize the sum of squared error for multiple layer a separate testing set was used to rank and select the best
feedforward networks. They use element functions of the form elements on each layer and to select the number of layers.
(1) with I equal to a logistic function: this choice is viewed as (Ivakhnenko called this division of the data into sets with
a smoothing of the step function to obtain a differentiable different purposes in network estimation the group method of
function of the parameters. Since the network is a composition data handling, GMDH.) The need to construct complete
of functions, the derivatives required for the gradient method quadratic polynomials for every pair of variables forced early
are determined by the chain rule of calculus (starting at the implementations of the algorithm to restrict the number k of
final node and propagating back to the parameters in the first temporarily saved intermediate variables to be typically not
layer). Although it is recognized that the gradient method more than 16.
may be inappropriate in general for highly multi-modal Later algorithms developed by A.R. Barron (1979-1982,
surfaces, Rumelhart et al. found that it worked adequately on Polynomial Network Training Routine, PNETTR III and IV,
the simple examples that they considered. Hinton and Adaptronics, Inc.) incorporated a predicted squared error PSE
Sejnowski (in Rumelhart et al. 1986, ch. 7) propose that a criterion (related to the criteria of Akaike and Mallows as
sequential random search algorithm (simulated annealing) be discussed above) at every phase of element selection in the
used to estimate the parameters of a Hopfield style network; network. Moreover, a method was developed whereby
they call their learning network a Boltzmann machine. These candidate pairs are prescreened before each layer (according
papers (see Rumelhart et al. p. 3.:) give the impression that to their predicted error in linear combination) thereby
multilayer search strategies for networks are novel to the permitting more elements to be considered on each layer
1980s. Clearly this is false in view of the methods we have (typically k is between 30 and 60). This also permitted more
discussed. In our experience (beginning in the 1960s) a complicated element calculations, i.e. third-degree
combination of random and derivative-based search polynomials with subset selection by the PSE criterion. Also
strategies, as in the GARS algorithm, is an effective technique the saved elements from all preceeding layers are candidate
for globally optimizing networks. In any event, much of the inputs to a given layer. Moreover, some one- and three-input
recent work (as in Rumelhart et al.) has ignored the elements are considered on each layer. The PNETTR
developments in the 1970s and 1980s of the adaptive network algorithm was extensively applied to problems in
strategies and the nonparametric statistical methodologies nondestructive evaluation of materials, modeling of material
for specific network structures. characteristics, flight guidance and control, target recognition,

intrusion detection systems, and scene classification; see
9. Networks with Adaptively §ynthesized Structure Barron et al. (1984) and the references cited there. For an

With the propensity of large fixed networks to result in application of an earlier version of the algorithm to weather
overfit estimates, attention was turned in the 1970s to forecasting see A.R. Barron et al. (1977).
networks for which the structure is adaptively determined The more recently developed algorithm by J.F. Elder IV
from the data. Such network strategies were introduced by (1985-present, Algorithm for Synthesis of Polynomial
Ivakhnenko (1971) and their development in the U.S. is traced Networks, ASPN, Barron Associates, Inc.) permits a choice of
in Barron et al. (1974, 1975, 1984, 1987). a minimum complexity or predicted squared error criterion.

The elements extensively utilized in these adaptively This algorithm has more user flexibility in the choice of one-,
synthesized networks are second- and third-order polynomial two-, or three-input elements and in the form of the
functions in two variables. (One and three variable elements polynomial elements (e.g. the degree may be adjusted within
are also used in recent implementations.) For the method to certain limits). Moreover, at each layer a new element is
work, the number of inputs of each element must be restricted considered which is a linear combination of all elements on
so as to avoid a combinatorial explosion in the number of the preceeding layer.
possibilities that the algorithm must check. Currently, a major applications thrust is use of

In brief, the basic strategy (using elements involving two adaptively-synthesized polynomial networks to initialize
variables) is depicted in fig. 3. On the first layer, all possible and/or re-initialize (in real time) two-point boundary-value
pairs of the inputs are considered and the best k, are guidance solutions for flight vehicles (R.L. Barron and Abbott
temporarily saved. On the succeeding layers, all possible 1988). Polynomial networks are trained off-line on a library of
pairs of the intermediate variables z from the preceeding simulated optimum trajectories and interrogated on-line with
layer(s) are considered and the best k2 (k3 , etc.) are saved, information about existing and desired vehicle states.
Finally, when additional layers provide no more Interrogation yields numerical values of six initializing
improvement, the network synthesis stops. The final network adjoint variables (Lagrange multipliers) in a calculus of
consists only of the ancestors of the final element, variations formulation of the trajectory optimization solution.

Because each new interrogation answers the optimum-path-
to-go question, a guided trajectory need not be restored, when

x disturbed, to a preconceived nominal path, and optimality of
x tIIz.t trajectory energy management and accuracy of guidance are not

X 2 J Pick z, :i ck compromised by disturbances within maneuvering limits of the
vehicle. In the two-point-boundary-value guidance

x F the zt- - the application, the role of the polynomial network is to compress

x3 a large library of multivariate trajectory information and
best best render it in a form (the network) suitable for virtually

instantaneous look-up and interpolation.
xd'l::o k I zk,-I o k 2  Fig. 4 is a diagram for networks trained to estimate two of

the initializing adjoint variables for a specific flight vehicle
k, -guidance application. These networks were synthesized from

a data base of 435 observations of the candidate variables.

Fig. 3. An Adaptive Network Synthesis Strategy Ten variables were selected by ASPN for inclusion in the final
model. The information presented in each box refers

In the original Ivakhnenko algorithm, the parameters respectively to the index of the element (in the list of

within each element were estimated so as to minimize on a elements saved by ASPN during synthesis), the type of

training s,t of observations the sum of squared errors of the fit element (in terms of number of inputs), and the number of terms

of the element to the final desired output. Cross-validation on in each cubic expression after pruning according to a PSE
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criterion. The "white" element computes a linear combination To estimate the functions g(z), Friedman et al. utilize a
of its inputs. nonparametric smoothing technique involving locally linear

functions (the linear fit at an arbitrary point z is estimated
____5___ using the data in a neighborhood of that point).

IS TERMS, Nevertheless, the methodology also works with other one-1 TERMS - dimensional nonparametric estimation techniques such as
T- 62 smoothing splines or variable degree polynomials.

1 TEAMS) I T SI Projection pursuit provides an excellent example of a
I learning network with both parametrically and

0 ,, , IT. ... j nonparametrically estimated elements. Also, it demonstrates
,, -,.,.. .- an effective iterative strategy for estimating the elements of a

52 layer of a network to work well in combination with each
T -ARIP other rather than in isolation.

.- - TREE h An advantage of projection pursuit networks is that they
____ ____ _I_ have been amenable to theoretical examination of some of

-L 1 their approximation properties (Huber 1985, Donoho and
Johnstone 1985, Jones 1987), although much work remains to be

1 29 done in this direction. In particular it is known that any
-- 8,TEAMS, square integrable function can be approximated by a

theoretical analog of projection pursuit, provided sufficiently
many (vertical) levels of the network are utilized; however,
the analogous result for data-driven estimation has yet to be
established.

11. Additive Models and Transformations
Fig. 4 An Adaptively Synthesized Polynomial Network Additive models represent functions of the form I_,(x),

where in general the one-dimensional functions gkare

The projection pursuit algorithm of Friedman et al. unconstrained and in practice usually are estimated non-

(1974,1981,1984) which is so popular in statistical circles has parametrically. (In contrast, linear models estimate only the
(n974,r98i,1984)whichdiscussepopula in t tistl crlesar g coefficients of linear combinations of fixed functions.) Thenot previously been discussed in the context of learning theory for the estimation of additive functions is developed in
networks. This algorithm adaptively synthesizes a three- Stone (1985). In particular, Stone demonstrates the surprising
layer network in the form of fig.5. The first-layer functions result that, unlike general functions of d variables, additive
implement linear combinations for ordinary projection functions can be estimated with a convergence rate for the

pursuit (or 2:80k (-X) for a generalization of projection pursuit expected squared error which is as good as the rate which can
to be discussed below). The second-layer functions gk(z) are be obtained for the estimation of one-dimensional functions

nonparametrically estimated functions of one variable. (n- 2
rI(

2 Tr ) instead of n 2 rl
(
2r+

d) where n is the sample size, r is

Finally, the third layer simply takes a linear combination the assumed order of smoothness, and d is the dimension; see

P kg k Thus the function implemented is section 14 below). Moreover, Stone showed that although not
every function is additive, a best additive approximation to a

fx, 0, P) =lk gk (Y- ek Xd) "function exists and can be estimated at the indicated rate.
Stone's approach to estimating the additive functions is to use
finite dimensional linear spaces of functions (such as splines,

X 1 9 polynomials, or truncated trigonometric series - in particular
"1 Stone uses splines), so that the resulting additive

d approximation is then written in terms of a linear function of
X " I many fixed basis functions, in which case traditional least

squares projection becomes applicable.
-f(x, ... 4) Winsberg and Ramsay (1980) and Tibshirani (1988)

I 4 generalize additive approximation by permitting monotone

xl transformations h(y) of the dependent variable. By inverting
this transformation, an approximation to the dependent

xd  variable is obtained in the form depicted in fig. 6 with g=h-1.

A related model is in Breiman and Friedman (1985) where
noninvertible transformations h are permitted.

Fig. 5. Network Diagram for Projection Pursuit

The estimation strategy of projection pursuit proceeds
vertically through the levels indicated in fig.5. On each
level, an iterative Gauss-Newton algorithm is employed
which alternates between estimation of the parameters 0 from
the first layer and the function gk from the second layer so
that in linear combination with the preceeding levels the fit x
is optimized (using the sum of squared errors or a likelihood L
criterion). Here the use of the optimized linear combination
Iflk gk is a relaxation method suggested by Lee Jones (1986) as Fig. 6. Network for Transformations of Additive Models
an improvement over the original method (which estimates gk
to fit the error y - (g, +...+ gk-1)). Networks as in fig. 6 can be estimated by alternating

between estimates of the transformation g and the first layer
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functions gk using methods similar to projection pursuit. In traditional projection pursuit. It is then expected that fewer
particular, suppose finite series approximations are used for numbers of projections are required (perhaps as few as 2d+D.
each of the functions g,. Given a current estimate of g (which
is assumed to be a differentiable function), a Gauss-Newton 13. Mathematical Foundations
type algorithm can be used for the estimation of the Consider continuousfunctionsfx!.... Xd)ofd vanables on
coefficients in a finite series approximation of the gk. Then, a bounded set such as the unit cube 10 , 11

d. Upon reflection it

given the current gk, the new estimate of g can be obtained by appears that all familiar functions of three or more variables
are built up from the composition of various functions of one orany of several nonparametric methods (e.g. least squares two variables. (For instance a sum of d variables is a

projection onto a linear space of approximating functions, local two positiones. d- orbi nstaat e a s um of d tortabe is a

linear smoothing, etc.). These steps are then iterated until composition of d- bivariate sums.) Accustomed to t!'e traps of

only negligible improvement in the optimization criterion is mathematical analysis, one might speculate that there exist

observed. truly d-dimensional functions that cannot be represented in
this way. On the contrary, Kolmogorov (1957), see also

Our purpose for mentioning additive modelsin thecontextLorentz (1966), proved the surprising result that every
of networks is that this structure is the one which is best Lontz (1966), oed he surprising prst a e
understood theoretically (except perhaps for linear continuous function on t0,1 ]d can be exactly represented as a
discriminate functions and linear regressions which have even composition of sums and continuous one-dimensional functions.
less approximation capabilities) and, moreover, the additive Lorentz (1966) identified a particular composition scheme

structure is a basic building block for more elaborate networks (depicted in fig. 2) which works for all functions of a given

which show some promise. Although additive models cannot dimension. For any continuous function f on [0,11d there exist

represent interactions between variables, interactions can be continuous one-dimensional functions gjand hk for

obtained by taking sums of transformations of additive models j=1, 2..., 2d+I and k=I, 2..., d such that
as seen below.

ft l x .... x d  ) = 1 g J j ,h (X k) (8 )

12. Generalizations .
It appears to "-,s that certain extensions to the network

forms of projection pursuit or transformations of additive Moreover, Lorentz demonstrated the existence of universal
functions lead naturally to a particular network structure functions h k which do not depend on the function f (whereas
which is known to have powerful approximation capabilities, the gi do depend on f). In his proof, Lorentz constructs
The statistical estimation strategies associated with
projection pursuit and additive models then lead to estimation piecewise linear functions gC) with the property that for
strategies for these more complex network forms. every x in the cube the majority (i.e. at least d+l) of the

In particular, consider networks of the form given in fig. 7. values g/E) (,hI (x)) (for j=l .... 2d-1) are within e of f(x).
This form may be regarded as a projection pursuit network, (This proof suggests that it might be more natural to use the
generalized to allow transformations of the original variables median of g, ( 

hik ), 
"I g2d+7 (I h2d1' ki instead of the sum

on the first layer. Using series approximations (e.g. to approximate f.) The proof of the existence of an exact
polynomials) for these transformations, the projection pursuit representation involves a careful limiting argument with
estimation algorithm becomes applicable to this network as
discussed in section 10. Alternatively, the network of fig. 7 -- 0.
may be thought of as a composition of additive functions.
Specifically, the network consists of 2d+l additive functions 1 .
with outputs zJ, z2 .... z2 ,1, say, which become the inputs to a
final additive function with output f. Whereas none of the
lower layer additive portions of the network can approximate N
every function, the composition of these functions can
approximate any continuous function as discussed in section 13 (..

below. In principle, any of the methods for estimating
transformations of additive models can be used to estimate the NX
k'th such function by fitting the model to the error resulting
from the sum of the previous k-I models. However, such
iterative approximations may require more than the 2d+1 X
levels indicated by the theory.

A specific implementation of a generalized projection
pursuit algorithm which incorporates some of the features Fig. 7. Kolmogorov-Lorentz Network
mentioned above is being developed by A.R. Barron and Gayle
Nygaard. It will permit the use of polynomial, spline, or In general the functions g! for which the representation is
trigonometric series approximations for any of the valid may be rather irregular (e.g. nondifferentiable). It is
transformations of the network. A new feature of this reasonable to expect, that for sufficiently regu.lar functions f,
algorithm is that, when estimating g, in fig. 7, the relatively smooth elements gand h,, can be used in the re-
transformations g,, g2..... g,-, are backfitted to provide the presentation, especially if the I1'k are allowed to depend on f.
best additive combination by projecting to sums of basis One way to quantify the smoothness of a function is the
functions in the manner of Stone (1985). Moreover, after each characteristic s. A function of d variables has characteristic
transformation is estimated, a backward stepwise rule (using a
penalized squared error or complexity criterion) is used to s = pid, where p = r + a if all derivatives of order r are

prune unnecessary terms from each element. In view of the Lipshitz continuous of order a where 0 < a _ 1 (this is the case
relatively large (but fixed) size of the network structure, this with a - 1, r = p - I if the derivatives of order p are bounded).
pruning of the number of coefficients is essential to avoid (This smoothness characteristic is used by Stone (1982) to
overfit with moderate sample sizes. The most important obtain minimax rates of convergence of nonparametric
generalization is to permit nonparametrically estimated estimators, see below.) Kolmogorov (1959), see also Lorentz
transformations of the variabL.. so as to achieve "projections" (1966), proved that not every function with a given smoothness
to surfaces more general than the hyperplanes utilized in characteristic can be represented as a composition of functions
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having a larger smoothness characteristic. This means, for The Jackson theorems express bounds on the accuracy of a
instance, that there exist functions of ten variables which are polynomial or trigonometric approximation in terms of the
differentiable up to order ten that cannot be represented by assumed smoothness of the function being approximated. (Se-
compositions using one-dimensional functions having more Jackson 1930 for a lucid treatment of the univariate case ar..
than one derivative. Lorentz 1966, especially pp. 87-90, for multivariate

The limitations expressed by these theoretical results do extensions.) For instance, if a function f has partial
not preclude the possibility that many of the practically derivatives fidx' of order rO which are Lipshitz of order
occurring functions which one might wish to estimate are 0 < a ! 1, then there is a constant c such that for every N > I a
representable in terms of low-dimensional functions of large polynomial approximation of degree N (in each coordinate)
smoothness characteristic. For instance, it might be true that exists with error uniformly less than cN-P 

, where p = r + a.
infinitely differentiable functions can be represented in terms Unfortunately, Jackson type theorems are not known for
of compositions of infinitely differentiable functions of low polynomial approximations which take a network form other
dimensionality. than a pproucts

The appeal of the Kolmogorov-Lorentz representation than a sum of products.
compared to other familiar network structures is the economy 14. Some Limitations on the Statistical Accuracy of Learning
of network nodes. A fixed number of one-dimensional Networks
continuous functions (namely (d+l)(2d+1)) suffices to give an In practice, learning network approximations are not
approximation or even an exact representation. obtained from completely known functions, but rather they are

Other network structures are known to possess estimated from a training sample of observations of relevantapproximation capabilities, but generally the number of etmtdfo riigsml fosrain frlvn
apxork n cpabilionte, ution genally thenmer od variables. The sample is typically a sequence of input/output
network nodes depends on the function being approximated and pisX 1 .,X .wihi sue opsesoeo
the desired accuracy. Subsequent to our Interface presentation, pairs X 1 , Y1 .... X,, YN which is assumed to possess one of
George Cybenko informed us of some of his recent results several possible probabilistic structures as discussed

(Cybenko 1988). Consider three-layer networks in which the previously. There is a fundamental question which is

element in the final layer takes a linear combination of its addressed for this class of problems: What is the relationship
inputs and the first two layers are restricted to elements in the between the achievable accuracy and the size n of the sample?

form of equation (1), each of which uses the same nonlinear Typically it is found that the answer depends on the class of

transformation h. This function h is permitted to be any fixed possible functions. Especially critical are the dimension d and

continuous strictly increasing function with bounded range. the regularity of the function. Results from approximation
Cybenko proved that for any continuous function f on a d- theory play a key role in these statistical considerations. Th,

presently known answers, which we discuss below, are
dimensional cube and any ( > , there exists a three-layer somewhat discouraging, especially with regard to practical
network with elements of the form (1) that approximates f contraints imposed on the dimensionality. To understand
with error uniformly less than c. His proof is to show that the better and to avoid the pitfalls of high dimensionality, it is
first two layers of the network may be used to implement suggested that new approximation theory and estimation
kernel functions ("approximations to the identity") of results are needed for specific network composition strategies.
appropriate bandwidths having arbitrary centers, from Stone (1982) has fundamental results concerning a class of
which the result follows by taking an appropriate linear nonparametric estimation problems which includes curve or
combination. Cybenko also points out that two-layer networks surface fitting with normally distributed errors and binary
are sufficient if quadratic 0 functions are used in first layer classification with unknown conditional class probability
elements of the form (3), for then certain kernel functions may functions. Attention is restricted to functions on a bounded set
be constructed by taking linear combinations of these elements, with a given smoothness characteristic s = p/d (in the sense
Although Cybenko does not refer to the rich collection of that all cross partial derivatives of total order r are Lipshitz
statistical literature on kernel approximation (see the books of order a and p = r + a as above). Stone establishes that the
by Prakasa Rao 1983, Devroye 1987, or Eibanks 1988), it is
apparent that results in this area could be utilized to bound optimal rate of convergence is en = n s /r2s tl for the Lq norms
the number of kernels (and hence the number of nodes in 09<q<-) and e = In- log n)s

l(
2s

+]) for the L- norm. This means
Cybenko's networks) required to achieve a given accuracy. that there exist estimators % (depending only on the sample)

Some basic results in mathematical analysis which have
impact on the approximation capabilities of network forms such that the ratio I I fI I/e,, is bounded in probability for all
should not be overlooked. The Weerstrass theorem and its functions f of the given smoothness class. Conversely, for any
generalization to multivariate functions asserts that any sequence of estimators f there exist sequences of functions f of
continuous function on 10,1 ]d can be uniformly approximated by
a sufficiently large degree polynomial. The polynomial the given smoothness class for which the ratio IIf- f II / c, is

approximations need not be restricted to the canonical sum of bounded away from zero in probability, as n - -. To achieve
products form 7kxl kl...x kd(which is itself a large network of the optimal rate of convergence, Stone (1982) uses local

simple structure), indeed, the multivariate generalization of polynomial regression. The value of the estimator f, (x) at a
Weierstrass's theorem is seen to be an immediate corollary to point x is obtained by a weighted least squares polynomial fit
the Kolmogorov-Lorentz representation theorem. using all data points for which the distance from x is less than

Other multivariate forms are known to approximate ,. Stone chooses the sequence 85, to converge to zero at ,a,
arbitrary continuous functions. For instance, finite n-u/( 2

pd) and he chooses the local polynomials to have total

trigonometric sums Yk (akcos(rkx) + f3sin(nk.x)) can degree r.
uniformly approximate any continuous function on 10 ,1 id, For convergence of the mean integrated squared error
provided the function is continously extended to satisfy (MISE) uniformly over all functions which have a bound on
boundary conditions on 1- 1 ,1 jd (see Lorentz 1966, p.87). Here the L2 norm of dLrivatives of order p, the optimal convergence

k = ( k .kd ) and k x = X k x . We remark that the sin and rate is of the form n
2

p4
2

p
r

d
, Indeed, a consequence of Stone's

cos functions have bounded variation, so they can be result is that this asymptotic rate cannot be improved. This

represented as the difference of monotone functions h. rate is achieved in regression contexts by multivariate

Consequently, the trigonometric sum is a two-layer network smoothing splines (Cox 1984) and in some cases by least squares

with first layer elements having the form (1). This gives a polynomial regression and trigonometric series regression, see

simple proof of Cybenko's theorem specialized to such h. Cox (1988). A. R. Barron (1988) has analogous results for the
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estimation of a log-density function. For the specia' case d=I, inference to become aware of the benefits and experiences in
asymptotic (and in some cases exact) minimax estimators are the use of multiple-layered networks for classification,
found in Efroimovich and Pinsker (1983) for density regression, and related problems.
estimation, and Nussbaum (1985) and Speckman (1985) for In our experience the most successful learning network
regression. In these univariate cases the constant c(p) is methodologies adaptively grow the network structure, using
determined in the asymptotic minimax error c(p)n "2

p/(2p I)
.  all the observational data (in batch rather than recursively)

For d>, it appears that the corresponding constant c(p,d) for and using an appropriate model selection criterion to ensure a
exact asymptotics c(p,d)n - 2 p (2 p + d

) is not yet explicitly parsimonious network. Moreover, the best strategies employ
determined. Determination of the behavior of this constant network structures which are not limited in their
for large d would be useful, since it would help determine approximational capabilities. The principle examples of
whether practical minimax estimation is possible in high these successful methodologies are adaptively synthesized
dimensions. polynomial networks and projection pursuit.

Observe that unless the degree of smoothness p is large It appears to us that several different approaches lead
compared to the dimension d, the optimum rate of convergence inevitably to one network structure and similar synthesis
n p/(2p+d) is disappointingly slow. For instance, with strategies: namely the netwo: . of fig. 7 (introduced by
dimension d = 8 and smoothness p = 2, a sample of size n 106 Kolmog ;rov and Lorentz) estimated by a generalization of

(one million!) would be required to make n "il(2 .d) be not projection pursuit which incorporates additive projections or

greater than 1/10. estimated by polynomial network strategies specialized to
The slow rates for optimal estimation of smooth functions this structure. This network considerably extends the

in high dimensions suggest that to understand the practical capabilities of existing projection pursuit and additive

success of certain high-dimensional estimation strategies it regression models, yet retains enough of the regularity of these
may be necessary to use notions of the regularity of a function models that it may be amenable to further theoretical and

other than differentiability to quantify the limits o n practical examinations of its properties. Nevertheless, we
statistical accuracy. One possibility is to assume proximity of should not restrict all attention to just one network structure.
the desired function to functions of low Kolmogorov Hopefully, by consideration of a variety of different
complexity. It may then be possible to obtain rate of compositions, empirically selecting the best (say by
convergence results as well as the consistency results referred complexity regularization), discovery of the true
to in section 5 (for networks selected by complexity relationships can occur.
regularization). This is a topic of further investigation.

In recent work by Baum land Haussler, the Vapnik-
Chervonkis dimension of families of network functions is Appendix: Convergence of networks estimated by complexity
characterized and used to quantify the statistical reliability regularization
of estimated networks for binary classification. Using results
of Cover (1965, 1967) on the number of possible dichotomies of In this appendix we specialize some results from A.R.
a sample by networks of thresholded linear elements, Baum Barron (1985,1987) to show convcrgcnce of estimates of net-
(1988) has bounded the Vapnik-Chervonkis dimension in work functions. In general the theory is concerned with the
terms of the total number of coefficients in the network. Let selection of a probability distribution using random dataW" = (W 1,W 2'.. We). It is assumed that r is a countable col-
O<e,<c, <1 be given. Suppose it is observed that the fraction of ,=(l2- ) IisaumdttFisacnabeo-lection of probability distributions which are candidates for the

errors of an estimated network is less than e, on a training estimate of the distribution of the process W ,W,... and that
sample of size n. Then it is of interest to bound the conditional L (P). P E F are positive nnmbers which satisfy the Kraft-
probability that a fraction of at least e2 errors will be incurred McMillan inequality ,,,pr2 - L(P) < 1. (Here L (P) may be

by this network on an independent test sample. Baum and regarded as the length of a uniquely de'od:'ble code or 2
- L (PI

Haussler (1988) have some results in this direction, assuming may be regarded as .i discrete prior probabilit% N Short lengths
that the total number of coefficients is sufficiently small L (P) are desired for as large as possible a set of distributions
compared to the sample size. tl:at can be computed, so ideally, we would let L (P) be the

The advantage of the Baum and Haussler approach is its Kolmogorov complexity (relative to a fixed universal computer)

uesfulness in retrospective analysis: i.e., given that an and r would be the set of all computable distribution,, how-
accurate estimate has been found on trainir, data, what is the ever, the determination of such an ideal complexity is practi-
probability of error likely to be on new data? This approach cally infeasible. Nevertl 'ess. the comp',xity principle provides
avoids questions concerning the approximation capabilities of a useful guide in selectin: reasonabec sets of distributions ai.il
a network: in particular, the probability that an estimated assigning priors geared toward parsimonious distribution .
network will achieve a certain acturaey is not determined. When the distribution is known except for a function f of d

variables on which the distribution Pf depends, then families of
15.Conclusions network functions and corresponding description lengths can be

Historically, neural networks, adaptive polynomial used to yield an effective criterion for s.lecting an appropriate
learning, and nonparametric statistical inference are fields of network.

inquiry with distinct perspectives and separate lines of In general the complexity regularozatton estimator P. is
development which have crossed paths renly on occasion. defined to achieve
However, by examining the purpose, scope, and min(-Iogp"0W ..... ,V,I+ L(P 1 (9)
methodologies in these fields, considerable commonality is Pr
revealed. In each case, network functions are used to Itere the density functions p' are taken w.ith respect to a fixed
appioximate possibly complex multivariate relationships by dominating measure, logarithms are taken base 2. When
composition of many simpler relationships. Moreover, '.... , are discrctited random variables, then
strategies for the synthesis of these netwf,-ks from observable - log p( ,I' ,.. It' ) (tupon rounding tip to the nearest integ., i is
data are developed. To understand the peinurmance of these the length of a Shannon code for these ,ariables based oit the
stritegies and to suggest improved methodologies, practical iistiibution P a''1 the term L (P) is the length ol a preamble
experience is supplemented by an understanding of the basic required to specify which dis ributuon. A nore general lorm of

disciplines of mathematical approximation thtory and complexity regulari/ation is to inin i/c
statistical decision theory. Conversely, it behooves the
practitioner in multivariate nonparametric statistical CR iog/p t ", I (P W)
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where X may be regarded as a Lagrange multiplier. Unless However, the L(f) term (omitted by Rissanen) can be impor-
X = 1, CR does not have the same total description length tant, especially when there is a large variety of families under
interpretation. Nevertheless, the solutions P. which minimize consideration.
CR for X > 0 do have the valid interpretation as maximum As a special case of interest consider function fitting prob-
likelihood estimators subject to complexity constraints. Such lems with Gausssian errors. In this case, for given X, the con-
estimators were first proposed by Cover (1972). Our conver- ditional distribution of the error Y -f (X) is normal with mean
gence results require that ?. ? I be fixed, although in one case zero and variance CF2. The X, are assumed to be randomly
X > I is required. selected, independently, from a distribution which does not

We mention several general convergence results. First depend on f. Then the complexity regularization criterion
suppose that the distributions P in F are stationary and ergodic. reduces to

Let P" denote the true probability law which governs the pro- 2 k(
cess. The first result is that ifP" c F then the estimated distribu- CR = 2- (Y,-f(X, ,.)) + . - log n + k L (ft. (13)
tion is exactly correct, P = P*, for all large n. with probability 22
one. For the remaining results suppose that the variables W, Let f" be the true function which we desire to estimate.
are independent and identically distributed with respect to P., Assuming the the network in S are continuous functions of
and likewise that independence holds for the distributions in F. their parameters, the information theoretic closure condition
whence p(W I '.W.) = Hlp(w,). Moreover, it is assumed reduces (in the Gaussian case) to the condition that
that the true density function p" can be approximated by densi- inff 0 sinfeE(f'(X )-f(X,O))2, i.e. the true function must be
ties in F in an information theoretic sense: that is, there exist approximable in the L 2 sense by members of network families

densities in F for which the relative entropy f p° log pi/p is under conxidcration. In which case, networks i. (X) which are

arbitrarily small. This leads to the second result that ip => p" selected to minimize (13) (with X> 1) are guaranteed to con-

(in the sense of weak convergence) with probability one; verge to f'(X) in probability.

moreover, if the densities in F are uniformly equicontinuous
then ,i. --- p in L 1. Since the uniform equicontinuity is not
easy to guarantee in general, we mention a third result which
makes no such requirement If X > I and if densities in r can References
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KARKOV CHAINS ARISING IN COLLECTIVE COMPUTATION NETWORKS
WITH ADDITIVE NOISE

Robert H. Baran, Naval Surface Warfare Center

The binary "McCulloch-Pitts neuron" obeys
ABSTRACT the rule

Recent progress in modelling connec-
tionist ("neural") networks gives rise to 1 if X i > 0
the expectation that future computing Si = (2.2)
systems will employ coprocessors in which 0 if X i < 0.
large numbers of memoryless, nonlinear
processing units interact through plastic When the T-matrix is real-valued and sym-
connections. Hopfield has drawn atten- metric, with all zeros on the diagonal,
tion to symmetrically interconnected net- the network evolves toward stable states
works of binary threshold units. These which correspond to local minima of the
collective computation networks converge computational energy. The "energy land-
rapidly to stable states corresponding to scape" can be configured so that these
local minima of the computational energy. local minima correspond to solutions of
The network can be freed from local min- constrained optimization and pattern
ima by the addition of noise at the input recognition problems 7, . In the lat-
of each neuron-like unit. T~e state then r eco U7of In the takes a random walk on the 2' vertices of ter case, the vector U of inputs to the N

units might represent the pixel pattern
a hypercube, where N is the number of
"neurons". This paper uses a simple, ex-
plicit algorithm to study the behavior of
collective computation networks with ad- "BOLTZMANN MACHINES"
ditive noise. The algorithm gives rise A provocative paper by Ackley, Hinton

to a stationary Boltzmann distribution of and Sejnowski (1] proposed simulated an-

the network state. Formulas for the tem- nealing to dislodge the Hopfield network
peratures of non-logistic noises are from local minima and enable it to settle

derived and tested in Monte Carlo trials. into states of still lower energy which
would represent better (if still

INTRODUCTION suboptimal) solutions. The network is

This concerns one of the folk theorems "heated" by the addition of noise to the

of statistical neurodynamics, which holds input of each unit. When these noises

that the states of a globally asymptoti- are independent, identically distributed

cally stable neural network, subjected to random variables, tha state S takes a

isothermal agitation, occur with relative random walk on the 2 vertices of a hy-

frequencies given by the Boltzmann dis- percube. The stationary distribution is

tribution. Global asymptotic stability Pr(S = s) = exp[-0H(8)]/ Fexp[-OH(s')].
follows from the existence of an energy P)
function H of the networks state S. This (3)
was discovered by Hopfield [3], whose ex- The assertion of Ackley, Hinton and Sej-
pression nowski, that 1/0 = T is the root mean in-

tensity of noise described by a logistic
N N-l N distribution, was not powerfully

H(S) = - F ZSiSjTij - SiU i  (1) motivated. Shaw et. al. (6] had earlier
j=i+l i=l il arrived at an expression like (3) in

which 0 is a "smearing factor" determined
for the computational energy of the net- from details of a stochastic model of the
work is analogous to the Hamiltonian of a chemical synapse.

collection of interacting magnetic di- It was over a hundred years ago that
poles. Here Si is the state of the i-th .I a vrahnrdyasaotas. H Gibbs sought time-invariant solutions to
neuron-like element--either firing at its a Liouville equation in which the inde-
peak rate (Si=l) or resting (Sf=0); andthe connectivity matrix INT.oit gives the pendent variables were the Hamiltonian

coordinates of a multiparticle system andstrength of the "synapse" tA ough which the dependent variable was the probabil-
the i-th unit excites (if Ti.>0) or in- ity of the system being in a given state.
hibits (if Ti<0) the j-th uAit. The He arrived at a canonical ensemble in
state of the l-th unit is decided by a which "the index of probability lie., the
threshold test applied to its input, log-probability] is a linear function of

N the energy" of the state. This result is

= iSjTji + U1 . (2.1) expressed by equation (3), called a
i = .Boltzmann distribution. Other functions

of the energy, however, will serve this
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purpose; and the fact that the linear de- F(y) = 1/(1 + e0y), - O< Y <C, (5)
pendence (of log-probability on energy)
maximizes the entropy of the system is gives the last equation a particularly
not necessarily germane to the question. simple form (3).
Belief in the possibility of a mathemati-
cal treatment of biological intelligence, Asymptotic Temperature
patterned after statistical thermo- With regard to (4), suppose that the
dynamics, goes back at least as far as root mean intensity of the noise is large
the works of John Von Neumann, published compared to each Ti = t. Then the first
posthumously. For this belief to find order Taylor series expansion of the
expression in contemporary neural network logarithm is
research is not surprising. The mathe-
matician who studies this work must be log(F(t)/[l-F(t)]) = 4tF'(0)
slightly bewildered by derivations which
appeal to analogies with statistical since F(O)=l/2. Defining the asymptotic
physics, some of which are complicated by temperature TC of the network in such a
psychological theory [5). The validity manner that 0=I/T in (3), we shall have
of the Boltzmann distribution, in the
context of the connectionist paradigm, is T, = i/[4f(0)] (6)
solely dependent on the existence of
models which give rise to it. As far as in terms of the probability density f(y)
real neuronal networks are concerned, the = F'(y). When (5) is assumed, the last
laboratory experiments which would verify equation is indeed valid for =l/T. If
the result have yet to be defined, the noise were normally distributed with

The Algorithm standard deviation a, then the asymptotic

The computational technique of simu- temperature would be

lated annealing traces its roots to the = (;a/2)1/2/2"
Metropolis [4) algorithm, which updates TNORMAL
the state of an N-particle system accord- If the noise had a Cauchy density f(y) =
ing to a stochastic model in which the (Z/r)c/(c +y2 ), the temperature would be
Boltzmann distribution is expressly

assumed beforehand. An alternative
derivation due to C. R. Darnafalski, the TCAUCHY = ,c/4.

amateur mathematician whose unpublished Clearly this asymptotic temperature is
essays have been cited elsewhere [2], not a function of the mean noise inten-
involves the following stochastic model: sity, since the variance of the Cauchy
Pick an integer i e(l,...,N) at random. random variable is undefined.
Compute Xi according to (2.1). Modify Xi
by the adAition of a real random vari- SIMULATIONS
able, call it YI, which is symmetrically Figure 1 represents a Hopfield nct of
distributed about a mean of zero. Com- four units in which the labeled segments
pute Si according to (2.2). These steps give the dimensionless strengths of the
are iterated indefinitely with indepen-dent, identically distributed random nun- symmetric interconnections. Let the in-

puts to units 1 and 2 be denoted A and B,
bers (Yk, k=l,2,...). It is not hard to respectively; and let S3 = C. We shall
see that this gives rise to a sequence consider only binary (0,1) inputs. The

(Sk, k= 1,2,...) of states which con- insets suggest that this small network
stitute a Markov chain. Nonzero prob- performs the NAND (Not-AND) logic func-
abilities are attributed to transitions tion C(AB) which the truth table (right)
which involve at most one component of defines. This would indeed be the case
the state vector. With no external input if the network always settled into the
(U = 0), these probabilities depend on state which gives the global or absolute
the Ti and the distribution of Y, as minimum energy. Table 1 uses the formula
descrt~ed in the Appendix. When
Hopfield's conditions are obeyed by the 4
former, the stationary distribution can m(s) = . si
be derived analytically. This distribu-
tion is

1to assign a natural number m to each of
Pr(S = s) = Z exp( the 16 states of the network; and it

(4) lists (-I times) the energies of the
N N-1 l states for each input condition AB E(00,
E sisilog(F(Tij)/[l-F(Tij) ]  01,10,11). With input AB=lI, the minimum

j=i+l i=l energy is -2.5 and it occurs in state m=3
for which C is zero. With the other in-in which F is the (cumulative) distribu- puts, the minimum energy is -2.0 and oc-

tion function of Y and the denominator Z puts te m 12 er is -2. This

is te su ovr al sttes hic noral- curs in state m=12 for which C=l. This
is the sum over all states which normal- motivates the truth table of Figure 1.
izes the discrete density. The assump- Figure 2 is a state transition map to
tion of logistic noise, as
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A B C

0 0 1

A0 1 1
C 1 0 1 I 3 11

B 1 1 0 PS 3 = C 0 0 2 1 0

12 4 6 14

-1/2 -1/2

/- 1 213 
5 7 15 *

S 1  S2

1/2 L
Ul =A U2 = B

Figure 1. A Hopfield net of four units, S1 S2 C 4  DECIMAL STATE

two of which receive binary inputs (A and
B) and one of which registers the output 0 0 0 0 0

(C). The T-matrix is specified by the 1 0 0 0 1

labels on the line segments linking the 0 1 0 0 2
units. This net is designed so that, for 0 0 1 0 4
given inputs, the global minimum energy 0 0 0 1 8
state gives a functional dependence ETC.
C(A,B) as shown in the truth table (inset
upper right), which defines the Not-AND
(NAND) logic functicn. Figure 2. The state transition map for

the network of Figure 1 uses the indi-
cated binary-to-decimal convention to as-

show which transitions are allowed, sign an integer (0 through 15) to each

Since units are interrogated in a random state of the net. Each square represents

serial order, only one unit can toggle at a state. Allowed transitions, which are

sal ime.rd e lloed ntranitiogg are of Hamming distance one, correspond toa time. Thus the allowed transitions are vertical or horizontal motion from one

of Hamming distance one. The 16 states

of the "NAND gate" correspond to squares square to one of four adjacent squares.

in the 4x4 array of the map. The squares
are labeled with the values m(s). Motion
is horizontal or vertical--never diagonal
--between adjacent squares. The map AB 00 AB 10

wraps around horizontally and vertically
as indicated by the connecting lines and -1,2 0 +1 2-3/2 0 1 - 1
arrows.

The interaction map of Figure 3 con- 0 0 1 0 0 -1

sists of four sub-maps each with the 10112,12-_0- 12-/

structure of the preceding Figure. Here

each square is labeled with -Hm(AB) =
-H(s[m],U[AB]). The four sub-maps cor-
respond to the four input conditions. If
the network begins in state m=3 with
AB=II, the energy is minimized and the 0 +1 +5/2 +1/-

state is stable. Now if the input 0 0 + 0 1- 0
changes, the network is unable to leave +2 0 +/2 :342
the initial state, because any allowed .3121+1/21+3/2 .3/2

transition will increase the energy.
Similarly, if the initial state is m=12, AR 11 AB 01

and the input is subsequently set to
AB=11, the state cannot assume the Figure 3. The interaction (negative
desired value (m=3) except by way of in- energy) maps for each of the four input
termediate states of higher energy. conditions have the same format as Figure

When noise is injected into the units 2; but the squares are labled with -1
of the network, the state can be dis- times the computational energies. Arrows
lodged from local (and global) energy emphasize the entrapment of the four unit
minima. The Boltzmann distribution of "HAND gate" in local energy minima.
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Table 1. Interaction values of the six- 1.0
teen states of the four unit NAND gate
indicating global maxima for each input
condition. 09 0 THEORETICAL

AB = 0.8 0 NORMAL
AB 00 LOGISTIC

STATE 00 10 01 11 0.7

0 0 0 0 0 A R
1 0 1 0 1 t 0.6
2 0 0 1 1

-. 1.5 1.5 2.55

co 0.3

4 0 - 0 0 0

5 -. 5 .5 -. 5 .5

12 2 2 20.1

6 -.5 -.5 .5 .5 0

14-.5 .5 .5 1.5 0.0
8 0 0 0 0
9 -. 5 0 -1 0 0.2

10 -. 5 -1 0 0

11 -1.5 -.5 -.5 .5
12 2 2 2 2 0.1

13 .5 1.5 .5 1.5 00
14 .5 .5 1.5 1.5 0.0 0.5 1.0 1.5 2.0 2.5
15 -,5 .5 .5 1.5 TEMPERATURE---.

Figure 5. Modal probability versus tem-
perature for the four unit "NAND gate"
with zero input using three kinds of

the network state is indeed observed in ncve.
Monte Carlo trials with the network of
Figure 1, to an accuracy consistent with
sample size. Figure 4 shows the results perature T=l.
of one such test in which 999 observa- When the noise is not logistic, devia-
tions of 8 were recorded at random inter- tions from the Boltzmann distribution are
vals in the course of ten thousand itera- apparent, especially at lower tempera-
tions of the algorithm described above. tures Figure 5 shows the variation of
Here the input is AB=00 so that the modal the modal probability with temperature
probability (ie., the probability of the for each of three noise distributions.
most likely state) is P12 = Pr(m(s]=12).
This test used logistic noise with tem- ANALYSIS AND CONCLUSION

One measure of the disparity of two
discrete probability densities, p and q,
is the directed divergence, or (Kullback)
information for discrimination against p

1 THEORETICAL in favor of q:
0 01SERVIED03 I(q,p) = 2qmlog(qm/pm).

It is well known that, if q is a sample
=!2- distribution, obtained from J independent

observations of a random variable with
0

discrete density p, pm > 0 for all mE
01 (0 .... M-l), then the product JI(q,p) is

chi-square with M-1 degrees of freedom in
Athe limit M/J-- 0. Then the mean value

of the product JI is approximately M-1
oL for large J; and values of JI in obvious0123456789,101112131415

STAT- excess of M-1 will tend to refute the
null hypothesis p.

Table 2 shows the product JI of the
Figure 4. Theoretical and observed dis- sample size and the discrimination infor-
tributions of the network state with mation with the Boltzmann distribution as
logistic noise at a temperature T=l. the null hypothesis. Each point repre-
Sample distribution is based on 999 ob- sents about a thousand observations of
servations. the state of the four unit "NAND gate" at
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random intervals in the course of runs of (I/N)Pr(Y+Xj > 0) if ds=dj
length 10,000. Three different noise Q(s+d/ls )
distributions are considered with the in- (I/N)Pr(Y+Xj < 0) if ds=-dj
put AB=00 at each of five temperatures.
The expected value of the statistic is M- in which X1 is determined by a as noted.
1 = 15 if the null hypothesis pertains. These stat ments are the same as
With logistic noise, the observations are
below this criterion value in every case. f (i/N)F(stTdj) if do = d
With Cauchy or with normal noise, the Q(s+dsls) =
null hypothesis is clearly rejected at I (!/N)(-F(stTdj)] if dS=-dj
T=1/2. The case AB=II is considered in

because of the symmetry of the distribu-
tion of Y. For transitions of zero Ham-
ming distance we shall have

Table 2. Divergence of the N-sample dis- Q(sI) = 1 - EQ(s+dsis).
tribution from the theoretical distri- do
bution of the states of the four-unit
NAND gate. For transitions of distance more than

one, the probability is zero, since the
algorithm specifies that the interroga-

input=(0,0) (1,i) tion of the units is one-at-a-time.
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The purpose of this Appendix is to Solution of a Neural Network Theory Based

derive the transition matrix of the on an Ising Spin System Analogy, Physics
Mtrkov chain (Sk, k=1,2,...). Let S and Letters, 74A(1979) 146-149.
S be the network state as a column and
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of no input (U = 0). Then X. = S Td.
where T is the connecti.ity Aatrix sab- 8. D.W. Tank and J.J. Hopfield, Collec-
ject to Hopfield's restrictions. The al- tive Computation in Neuronlike Networks,
gorithm selects a j at random and com- Scientific American, 257(1988) 104-114.
putes S. = l[X. + Y], where 1[.] is the
unit st4p and X has d.f. F(y) and density
f(y), which is symmetric about y=0.

We want the probability of a transi-
tion from state s to state a + ds, where
do = 8. = col(6ii) if s1=0 and do = -d =
col (-6J) if s= ) This probability, )
denoted Q(s+ds a), is proportional to
I/N, the probability that j is selected,
and is given by
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Parallel Optimization via the Block Lanc-. 's Method

Stephen G. Nash and Ariela Sofe:
George Mason University

Abstract.

Traditional optimization algorithms are not easily adap- so that f(-k+ ) < f(rk); techniques for computing a can
ted to parallel computers. Even though the linear alge- be found in [4]. Under mild assumptions (see [3]) this
bra operations can be programmed in parallel, the costs algorithm can be shown to converge to a point where the
associated with evaluating the objective function often gradient of f(x) is zero, i.e., the first-order conditions for
overwhelm the linear algebra costs, and so some paral- a minimum are satisfied. Our main interest here is the
lelism in the function evaluations is essential. This pa- computation of the direction p, since this is typically the
per describes how such parallelism can be obtained by most expensive aspect of the optimization algorithm.
using the block Lanczos algorithm within a truncated- The classical approach to this problem is to use New-
Newton method. This algorithm also admits parallelism ton's method. If we expand f(x) in a Taylor series about
in the linear algebra of the algorithm. The resulting algo- xk we obtain
rithms are suitable for coarse-grained parallel computers.
Details on arithmetic and communication costs are pro- f(xk + p) = f(xk) + pTgk + PTGkp + O(IpPII 3)
vided. f(-k) + pTk + 2pT(Gkp

1. Introduction. f(Xk) + Q(p),

This paper describes an algorithm for solving where gk -= Vf(xk) is the gradient of f(x) at xk, and

Gk - V 2 f(Xk) is the Hessian matrix. Q(p) is a quadratic
minimize f (x) (function in p, and it can be minimized by setting its

on a parallel computer. Here we assume that f(x) is a gradient with respect to p equal to zero, resulting in a set
smooth nonlinear real-valued function of n variables x. of linear equations for p, called the Newton equations:

A method for solving this problem was given in [101.
It is based on a truncated-Newton method [21: given some Gkp = -gk. (2)

initial guess x0 , at each iteration a search direction p iscomptedby pprximaelysolingthe ewtn eua- If Gk is positive definite, then the solution of (2) corre-c om pu ted by ap proxim ately solving the N ew ton eq ua- s o d o t e m n m m o ~ ) n s u e s a s a c
tions using a block Lanczos method; then a step is taken sponds to the minimum of Q(p), and p is used as a search
along that direction so that the function value decreases
(Xkj I= Xk f ap, wher e f (XkI ) < f (Xk)). f-x + pj~k a 2 g kgk,

As was shown in 1101, such an approach can lead to a 2

successful parallel algorithm. On a number of test prob- so that for small values of a we have f(xk +ap) < f(xk),
lems, effective use of parallelism was made, both in the whenever gk 4 0. Hence p is a local downhill direction
linear algebra operations, as well as in parallel function unless the first-order optimality conditions are satisfied.
evaluations. The purpose of this paper is to analyze more If Gk is not positive definite, then a "nearby" positive-
carefully the algorithm used to compute the search direc- definite approximation to Gk should be used in place of
tion, the block Lanczos method. We give here detailed Gk in (2) [51.
information on the arithmetic and communication costs The resulting optimization method has an asymp-
of that algorithm. Related discussions can be found in totic quadratic rate of convergence, and this rapid con-
[13]. Hvergence rate is enticing, but solving (2) can be expensive

Here is an outline of the paper: In Section 2 we give a for large-scale problems, since it involves computing the
general discussion of the nonlinear optimization method, matrix of second derivatives and solving a large system of
In Section 3, we show how parallel and vector computer linear equations at every iteration. As a result, we have
hardware can be used within the block Lanczos method, chosen to use a different technique to compute a search
and list its costs. Section 4 contains our conclusions, direction.

Other approaches to parallelism in optimization al- Truncated-Newton methods are more suitable than
gorithms are available; see, for example, [11 and 171. Newton's method for the solution of large-scale optimiza-

2. The Optimization Algorithm. tion problems. The search direction p is computed as an

approximate solution of (2), obtained using an iterative
The algorithm we have used to solve the problem (1) is a method for linear equations. Hence, a truncated-Newton
descent method based on a line search. If x, is the current method is a nested iterative method: there is an "outer"
approximation to a solution x*, then we set xk+ --- X- 4 iteration for minimizing the function f(x), and an "in-
ap, where p is a local downhill (descent) direction for ner" iteration for solving the Newton equations (2). Htere,
f(x) at rk, and a > 0. The scalar parameter a is chosen in order to introduce parallelism into the algorithm, we
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have chosen to use the block Lanczos method. A more
common choice is the linear conjugate-gradient algorithm 2181 . 0 2 012 0

Truncated- Newton methods are attractive since they T
can be programmed to have low storage and arithmetic T

costs, not require the computation of the Hessian matrix, 0

converge rapidly, and be applicable to large problems. /3,
Earlier examples of truncated-Newton methods (12], A method for solving (2) is obtained as follows: let

[9)), have been useful on vector computers 1 17), but have the first column of V, to be g/ [[g[]2, where g is the right-
not offered much scope for exploiting parallel computers. hand side in (2). Solve
By using a block Lanczos method for the inner iteration,
parallel computations are introduced, where the degree 7'= --(ig [g[[2 e, e- (I,(...

of parallelism corresponds to the block size chosen, and

hence can be adapted to the number of processors avail- for yi. Then p, the i-th approximation to the solution of
able. The block algorithms also retain a great many vec- (2), is obtained from pi = 1(i)y,. This is equivalent to the
tor operations, and thus can be effective on parallel com- block conjugate gradient method in [111; both algorithms
puters where each processor has vector hardware, such produce the same estimates of the solution of (2), if exact
as the Alliant and Intel iPSC/2 machines. arithmetic is used.

Such block methods for solving linear equations have This derivation is not suitable for computation since
been described in [11] and [13]. The method used here the resulting algorithm is not iterative. However, by
is based on the block Lanczos method (61; this is not adapting the derivation in [151, an iterative method can
the most straightforward choice, but it permits the nu- be developed. Assume now that G is positive definite;
merically stable treatement of non-convex optimization we will treat the indefinite case below. We use Gaussian
problems (cf. [91). (If the Hessian is not positive defi- elimination to factor the block tridiagonal matrix:
nite, the solution of the Newton equations may not be

descent direction; the Lanczos method allows the de- T(i) = L(i)D(i)L(i, (4)
tection and correction of this difficulty. In addition, this
approach is numerically stable for a non-positive-definite where D(i) is a block diagonal matrix whose blocks are

system of linear equations, unlike its theoretically equiv- themselves diagonal, and L(i) is a block lower bidiagonal

alent partner, the linear conjugate gradient method.) matrix, with blocks the same size as in T(i). Define

We now provide the formulas for the block Lanczos L.-T
method. The algorithm minimizes Q(p) as a function of U() W--  (i) , (5)

p over a sequence of subspaces of increasing dimension. D- L-1 -vT (6)
A more detailed discussion of the block Lanczos method 1() -(') (j) (1 g, 6

can be found in the references cited above. The specific both U(i) and s(i) can be generated iteratively. Then
formulation given here is taken from 10].

Let G be an n x n symmetric matrix. The block Pi = V(i)Yi = -(V(iL -)(D Li)1,(Tg ) = U(i)s('), (7)
Lanczos method with block-size m generates a sequence

of n x m orthogonal matrices { Vi } via: and so an iterative algorithm, referred to here as the
Pick V, so that ViTVI = I= . Set V0 =0.,m, block Lanczos/CG method, is obtained. The formulas
3 1 - Om,,m. for the algorithm and their associated costs are described
For i = 1,2,.. in more detail in the next section.

Set Minor adjustments to the algorithm are necessary if
(a) the algorithm converges early, (b) m does not divide

Vi+10i+l = GVi - ;f, -- Vi_0i ,  (3) n, or (c) there is loss of orthogonality due to rounding er-
where = VTGV anrors. In such circumstances, when 1i+1 is computed only
# i4.1and the me, matrix the first mi l rn columns may be linearly independent.
fi
3
4-1 is chosen so that V1+i+ I If this happens, then /A4 1 will be an m x rnl matrix and

Vi is computed as the result of a QR factorization applied Vi+l will be an n x ml matrix. The remaining matrices
to the columns of the right-hand side in (3). The matrix in the algorithm will also have to be adjusted, but the
Vecan be obtained using a random-number generator. formulas given above are still valid.
We will assume that m divides n, although this is not If f(x) is not convex, then G may not be positive
necessary, and that the algorithm proceeds as above for definite at every outer iteration. If this happens, then
the full n/rn iterations (see below for a further discus- at some iteration i the LDLT factorization of T(,) will
sion). not be numerically stable. Another factorization could

Define the block matrix Vw = V1lIV21 . Il/]; if exact be substituted (see [15] and 1131), but since we are more
arithmetic were used in the above algorithm, then we interested in obtaining a descent direction than in solv-
would have _V - I, and V(TIV(i) - T(i) where T(,)is ing (2), alternative techniques may make more sense. It
a block tridiagonal matrix with m x m blo ,s: would be possible to use a modified matrix factorization,
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as described in [41 and [91, or the algorithm could be simultaneously by sending the columns of the matrix
stopped at the iteration where indefiniteness appears. Ei- Vi cyclically around the hypercube, considered as a
ther approach will produce a descent direction, ring. At the j-th step of this procedure, processor

I computes (aj)y where j = [(1 - j - 1) mod m] +
3. Parallel and Vector Operations. 1. Processor I then computes (V )(cs~) 3 . Note that

The block Lanczos method permits us to exploit parallel (t) = -(V)(Oi)jl"

and vector capabilities in nearly every aspect of the com- Communication-Each processor sends/receives

putation of a search direction. In this section, we describe m vectors of size n.

in detail one way of implementing the algorithm, the one * Arithmetic (per processor)-Coinputation of the

used in [101, showing the arithmetic and communcation two matrices requires 2mn nultiplicatiois and

costs associated with each step of the algorithm. To sim- 2(m - I)n additions.
plify the discussion, we assume that the block size m is 3. Forming l1,4_.137-This matrix is formed in the same
equal to the number of processors. this is not essential way as Visti above.
to the algorithm. o Communication-Each processor sends/receives

to te agorihm.m vectors of size n.
We shall consider each of the steps of the block Lanc- Arithmetic (per processor)-Forming the matrix

zos/COG algorithm in turn. We have implemented the al- requires n multiplications and (j -- h)n additions
gorithm on an Intel iPSC/2 which has no global memory; rues j .m icatins a triangIlar atin
each processor has its own local memoy. We tacitly as- the arithmetic costs are slightly lower than be-
sume that that n will be much larger than m, although fore.
the algorithm is valid without this assumption. Because 4. Forming the right-hand side in (3)-involves rn inde-
of this, each processor stores only a small number of vec-
tors of length n (one column of each of the n x m ma- pendent vector additions.

trices 1,, Vi-1, GVi, Ui, Wi, plus one work vector), but * Communication--None, after the previous steps

stores complete copies of the m x m matrices a, 0, Li, have been completed.
and Li,i 1-. If the number of processors were large, and ( Arithmetic (per processor)- 2 vector additions
hence rn was large, then other approaches would be rec- (2n operations).ommended; see the comments at the end of this section. 5. Determining Vi+l and 13 i-consists of a QR fac-

ommeded, se th comens attheendof tis ecton.torization of the right-hand side in (3), and can also
In the following discussion, we will number the pro- toin ofrthe right-Adie d cnilsbe done in parallel [141. A modified Cram-Schmidt

cessors from 1 to m, rather than the more usual 0 to algorithm is used [61.
M 1. 9 Commun icat ion-Processor j sends one n-vector

1. The Lanczos iteration-For nonlinear optimization, to n-j processors, and receives (j - 1) n-vectors.
and particularly when the objective function f(x) Arithmetic (per processor)-Foring of the fac-
is expensive to evaluation, this will typically be the toritmtic (eressort- ong of t -
most expensive step in the method, and the place torization requires 2n multiplications, (2jn--j -

where effective use of parallelism will be most essen- n) additions, and one square root on processor j.
tial. This step involves m independent matrix-vector 6. Factorization (4) of T-The matrix L ) is block
products, one for each column of 17. If the Hessian lower bi-diagonal with diagonal blocks L1, and with
G is available, G14 can be computed using tradi- subdiagonal blocks Li,i 1 . Let Di (diagonal) be the
tional techniques. However, more often a matrix- i-th diagonal block of D(i). Then the factors of To
vector product will be approximated using 1121 can be determined via

Gv g(x hv) - g(x) a LDIL T,
Gv - - h ... i L i-!D -1 T

7'

where g(r) is the gradient and h is a finite-difference a= LiDiL7± L,,lD-, .2 , 1>

parameter. Since g(x) is the right-hand side of (2), it These formulas correspond to LDL T factorizations
is already available, and so a matrix-vector product or back substitutions. These operations only involve
can be approximated using a single gradient evalua- m x m matrices. We have computed them on a sin-
tion, and GV, can be approximated by m indepen- gle processor since m is small (at most 16) in our
dent gradient evaluations, one per processor. Thus case. They can be performed simultaneously on all
we can make effective use of parallel gradient evalu- processors, as suggested in [131.
ations. If the gradient were not available, it could be * Communication-None.
approximated using a further level of finite differenc- * Arithmetic (per processor)- Ignoring lower-order
ing, without losing the parallelism discussed here. terms, formation of the new factors costs m 3/2

" Communication-This step requires that the gra- multiplications and additions.
dient be sent to each processor (n real numbers). 7. Forming U(,) in (5)- -Write U(,) - 11U1.. IJd as

" Arithmetic (per processor)- One gradient evalu- was done with V1 ). Then U, can be computed by
ation, two vector additions (2n operations), and solving (via back substitution)
two vector scalings (2n operations). U,LT  -  1,; U, I L,, -1, :-0

2. Forming ai and Vei-These matrices are computed - 0
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The second term on the right-hand side is formed in theses is computed simultaneously on all processors,
the same way as in step 3 above; combining the two and the result is the linear combination of n-vectors,
terms involves m independent vector additions. To one per processor. The more obvious formula for cal-
finish computing Ui requires repeated back substitu- culating the residual was not used, to avoid an addi-
tion to solve for the rows of Ui. tional matrix-vector product. The resulting compu-

* Communication-In forming the right-hand side, tations are almost the same as in the previous step.
each processor sends/receives m vectors of size * Communication-As in step 9.
n. To solve for Ui, processor j sends n (m - j)- * Arithmetic (per processor)-Each processor per-
vectors and receives n (rn-j- 1)-vectors (except forms n + m 2 /2 multiplications and m 2 /2 addi-
processor 1). tions. Processor 1 in addition performs n(m - 1)

" Arithmetic (per processor)-To form the right- additions.
hand side requires jn multiplications and addi- The above discussion shows that all the major steps

tions on processor j. Solving for Ui costs n(rn-j) (that is, all the 0(n) steps) in the block Lanczos/CG
multiplications and additions. algorithm can exploit parallelism. In addition, many of

8. Forming s(i) in (6)--Divide up s(i) conforrnally to tlese steps correspond to basic linear algebra subroutines

U(i): sT [s f.. Is. Then (BLAS); for example, the inner products, linear combina-

tions of vectors, and multiplications of vectors by scalars.
= -D 1-1 Li'ITg; These operations can be carried out using vector hard-

note that l/'Tg has only one non-zero component. At ware or assembly-language instructions on many comput-

later iterations, we compute si from ers, in particular the Intel hypercubes and the Alliant. As
a result, this algorithm should be well suited to parallel

LiDisi1 and parallel/vector computers.

These operations only involve vectors and matrices The description above represents a coiumn-wise or-

of order m, and we have chosen to do them simulta- ganization of the algorithm. This is appropriate in this

neously on all processors. application because the matrix-vector products are pro-

* Communication--None. duced one column per processor. Row-wise organizations

" Arithmetic (per processor)--This step requires are described in [131, where each processor stores a group

m 2 4r2m multiplications and m(m- 1) additions. of rows from each n x m matrix.

9. Forming p--Divide up U(i) and s(i ) as above. Then
(7) can be written in the form 4. Conclusions,

p, = pi I . Usi, We have presented a truncated-Newton method for min-

and the right-hand side can be formed as the linear imization of a nonlinear function suitable for a parallel
of m vectors, with in our case one on computer. It is based on a block Lanczos inner algorithm

each processor. The Intel hypercube has a built-in that can exploit parallel gradient evaluations. We believe
ea n pcor. th ntypel that a successful parallel optimization algorithm for gen-

o Communication -Except for processor 1, each of eral use must be able to use parallel function/gradient
the processors sends one nvector. Processor o evaluations, as this algorithm does. It should be es-
receives r n-vectors, pecially useful when function/gradient evaluations are

" Arithmetic (per processor) There are multi- costly, and when the number of variables is larger than
* Arithmetic (perbprocesor) Thererarevai multi

plications per processor. Processor 1 performs the number of processors available.
rnn additions. The algorithm is made up of steps that provide many

1(0. Compute the residual p, fg (for the convergence opportunities for exploiting parallelism. The costs of

test) -The formulas for the block Lanczos algorithm these steps, both arithmetic and communication, have
been described in detail. In addition, the lower level op-
erations offer the possibility of further improvements in

Gpi GU(,)s() performance when the processors on the parallel com-

( T 1 .-.. W)L,'o puter in addition have vector capabilities.

where It', GV, 1- ., 1,. 1.3 Since 5. Acknowledgments.
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A TOOL TO GENERATE FORTRAN PARALLEL CODE FOR THE INTEL IPSC/2 HYPERCUBE
C. Gonzalez, J. Chen, and J. Sarma., George Mason University

ABSTRACT loop interchanging [Davi-86, Huso-86, Mack-86 i .
This paper reports on a software tool (pre- An important difference with our work is that the

compiler) for translating sequential Fortran code KAPs' underlaying machines (ST -100, S-I, and
to parallel form. We investigated and implemented Cyber 205) have a tightly coupled architecture,
a methodology for detecting data dependencies. A and our work was done for an Intel IPSC/2

code generator was designed and implemented for hypercube, which is a loosely coupled
the Intel IPSC/2 hypercube. This research architecture. Padua (Padu-861 made a
concentrated on parallelizing do-loop structures, comprehensive discussion on two types of parallel
by dividing the data among the nodes. An outline codes for compiler optimization: vector and

and examples of the code generated for the cube concurrent. We Combined the above techniques,
manager and the nodes is presented. We discover adding some source code optimization in front of
that the use of this precompiler could the compiler. Our precompiler assumes error-

potentially be an essential tool to use the free" FORTRAN programs as input, and proceeds to
hypercube effectively and efficiently. parallelize the data for the do loops (SINID

model), but not the code.

Key Words: Pre-compiler, software tool, Fortran,

hypercube, data dependence, code generation, 2. SYSTEM MODEL
supercomputer, parallelizing software. The functional decomposition of the model

used for translating sequential code to

I. INTRODUCTION executable code has five modules: the lexical

Modern supercomputers (i.e. parallel analyser, the data d,,pendence detector, the

computers) provide hardware capabilites for parallel code generator, the vectorizer, and the
parallel processing, but lack the software tools compiler. The lroduced final object code is
to support this parallelism. These supercomputer composed of two (,'fferent sets of code; onc to be
systems consist of a variety of multiprocessors, executed in the cube manager, and the other to be
vectors-processors or multicomputers executed in each node of the hypercube.
interconnected together in some fashion.

Parallel computers are most effectively used when
executing parallel object code. Unfortunately,
most compilers for such systems can only process

sequential source code. The parallelism is I

obtained by the use of explicit instructions r 7
inserted in the code. This restriction requires i r I -.
from the user to explore and detect the

parallelism inside the problem and insert the

commands for the concurrent programming [Seit-

851. This paper reports on the design and

implementation of techniques for translating I-

sequeiitial code to parallel code. Our long term
goal objectives is the construction of a tool

that could -onvert valuable "old" sequential code Figure. I System Model
to run on supercomputers.

In this research we design and implemented the

Allen and Kennedy (Alle-821 preprocessed first three modules of the model described above

FORTRAN source code into FORTRAN 8x code in three (i.e. lexical analizer, data detector and code

steps: program normalization, dependence testing, generator). We used the Fortran compiler from

and parallel code generation. This is the same Green Hill Software Inc., for generating

general approach used in this research. Another executable object code. We did not used the

related work is the family of vectorizers (KAPs) available vectorizer software and hardware in

designed by Kuck and Associates. Inc which use this project.

This research was supported by the Center fo r

Inovative Technology, contra t No. SPC-87 005, 2.1 The Lexical Analyzer

and by the Army Research Office, contract OAALO3 The lexical analyzer translates Fortran source

87 K-0087. code into a sequence of tokens, fills in a symbol
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table, and an array description table. A B3NF of
the simplified grammar subset of Fortran that we.m

used, is presented in (Fig.2).

<prog> ::= PROGRAM <id> ( <arredec> )n
<statement> STOP END

<arredec> ::- DIMIENSION <id> <index> <id> <index> .- - --_
<index> ::= ( <integer> ( , <integer> )n ) (where n=2)
<id> ::= <letter> ( <letter> I <digit>
<letter> ::=A I ... I Z
<integer> ::= <digit> { <digit> )n Figure.3 Code Generator and Tables
<digit> 0 I ... I 9
<statement> ::= <dostatement> I <simplestatement> )n
<dostatement> ::= DO <label> <id> = <doindex> , <doindex> 2.4 Vectorizer

( , <doindex> ) ( <statement> )n <label> CONTINUE The propose of the vectorizer software is to
<doindex> ::= <id> 1 <integer> generate code that will use the vectorizer
<label> ::= <digit> { <digit> )n (where n=4) hardware board. The code produced by the code
<simplestatement> ::= A string of characters not generator could be the input for this software.

having a DO as first characters. Hlence, it also does data dependence checking and
modifies the -ode by adding vector calls. The
vector calls are supported by vector library and

Figure.2 Subset of FORTRAN Grammar a vector pr"cessor attached to each node. The
available software vectorizer is VAST-2 which

2.2 Data Dependence Detector (DDD) according to user directives, changes program to

The DDD performs semantic analysis f the code expose array operation (Fig.4).

to check for parallel do-loops. The input for
this module are the tokens, symbol table, and
array dependence table generated by the Lexical c, -. --= ,,s,. _
Analyzer. The semantic information is stored in a
dependence table. This information includes: the
line number where the read-, write-, ard do-
statements were found; also included is
information about the variables and arrays on the
left and right hand side of the corresponding DO 20 I=I,N DO 20 I=I,N
statements. The DDD also outputs the array S=0.0 Y(I)=DDOT(N,A(I,I),LNAX(I).I)
indexes and loop control variables, which are DO 10 J=I,N 20 CONTINUE
especially important for multi-dimension and S=S+A(IJ)*X(J)
multi-level do-statements. 10 CONTINUE

Y(I)=S

20 CONTINUE
2.3 Code Generator

The code generator makes use of information %ource code veCior cot, oulpia
generatLd by the Lexical Analyzer, and the data
depedence tables generated by the DDD (see Figure.4 V'AST-2 Program Development Sequence
figure 3.). If the current line generated is a
no-parallelizable statement (i.e with not data
dependence implications), the code generator 2.5 FORTRAN Compiler
simply gets the information directly from the The iPSC/2 FORTRAN compiler used for this
lexical analyzer output (step I). If the current project was from Green Hills Software, Inc. The
statement analyzed is a read-, write-, or do- files host.f and node.f were compiled and linked
st,.tement, the code generator uses information to produce files: host and node, which are
from both the lexical analyzer and the depedence executable code.
detector (steps I and 2). The next step
synthesizes the information and writes it to a 3. DETECTION OF DATA DEPENDENCIES
buffer. A final step produces the source for the The data dependencies among the statements
host (file name: host.f) and the source fur the were the deciding factors whether the "do loop"
node (file name: nodef). could be processed in parallel or not.
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3.1 Basic Assumptions example of this type of dependence.
We made certain assumptions in order to

implement the data dependence analyzer. These SI A(I) = B(I) + C(l)

assumptions were necessary so that we could S2 : D(I) = A(I) * 3
handle simple loops before we added more S3 A(I) = E(l) + F(l)

complexities to it. The assumptions made were as

follows: Statement SI will contain a wrong value in

I) There was only one level of do loops, i.e. A() if it is executed after statement S3.

no nesting of do loops was considered. These statements have to be executed in the

2) There were no equivalence statements in the sequence they appear so that all the left

source program, hand side variables contain the correct

3) The do loop was a very simple one (i.e. only value.

arithmetic operations were performed inside

the loop). There were no logical statements d) Control dependence: is the dependence which

inside the loop (i.e. no transfer of flow occurs from an "if" statement to the

statements), for which more complex analysis statements which are within the "if.

would be required. statement block.

4) The array indices were not greater than two.

The DDD can be easily extended to include In the impler.ientation of the precompiler, we

indices greater than two, without much considered only the first three types of

problem. dependencies. Control dependency was not

analyzed because of the assumption that there
3.2 Types of Dependencies were no logical statements inside the do loop.

Data dependence relations between two

statements determine if they can be executed in 3.3 Direction of the Dependencies

parallel. There are different types of The direction of the data dependence relations

dependencies between statements [Padu-86]. also has to be analyzed inside the do loop. The

a) Flow dependence: can exist between two data dependencies inside the do loop is found by

statements SI and S2, if the data value in analyzing the arrays and their subscripts. The
SI is used in S2. Since statement S2 needs following are the types of data dependence

the value from SI, it cannot be executed direction:

unless statement SI has finished executing, a) Equal flow dependence:

The following statements are an example of DO 100 I = 1, K

this type of dependence. SI: A(I) = B(I) + C(l)

S2: D() = A(I) * 3
SI: A(I) = B(I) + C(I) 100 CONTINUE

S2 : D() = A() * 3

b) Antidependence: exists between two There is flow dependence between statements

statements SI and S2, if SI SI and S2, but this dependence relation

uses a variable which is assigned a new stays within the same iteration of the do

value in statement S2. The following loop. By which we mean that for any

statements are an example of this type of iteration, the value assigned to A(I) in

dependence. statement SI is used by statement S2 in the
same iteration. Therefore we can say that

SI : A(l) = B(I) + C(l) there exists equal flow dependence between

S2 : B(1)= D(l) * 3 SI and S2.

As can be seen from this example the two b) Less than flow dependence:

statements SI and S2 cannot be executed in DO 100 I = 2. K

parallel as SI uses the old value of B(l) SI: A(l) = B(I) + C(I)

which is later assigned a new value in S2. S2 D(I) = A(l-I) * 3

100 CONTINUE

c) Output dependence: between two statements

can exist if a variable which is Statement S2 uses a value of the array

assigned a value in one statement and is variable A which was assigned during the

later assigned a new value in another previous iteration of the do loop, i.e. it

statement. The following statements are an uses an old value of the array %ariable A.
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The flow dependence does not stay within the board. Each node has a pair of 16 MHz 80386 and

same iteration instead it flows from 80387 coprocessors, 1-8 Mbytes RAM, and a DCM

iteration i-I to iteration i. board. The nodes communicate through message

passing. The topology of the network is a

c) Less than antidependence: hypercube. The cube we worked on has 16 nodes

DO 100 1 = I, K-I numbered 0 to 15.

SI: A(I) = B(I) + C(l)

S2: D(I) = A(I+I) 3 3

100 CONTINUE

Here statement S2 uses an old value of the
CUBE

array variable A which is assigned a new

value in the next iteration by statement SI.

Since S2 uses an old value there exists

antidependence relation between the two

statements SI and S2. The dependency flow is

from iteration i to iteration i+l.

The DO loop is parallelizahle only if the

statements inside the do loop block have an

equal flow dependence relation.
Figure 5. ISPC/2 configuration.

3.4 Semantic Information

The data dependerky analyzer generates the

information needed by the code generator. The Communication Routines:

information required was the line number of the Our model uses the routines csend and crecv to

"do loop". Special treatment was required if communicate between the host and the nodes.

there were any "read", "write", or "print"

statements in the source program. These a) csend(MSGTYPE, BUF, NtSGLEN, NODEID, NODEPID)

statements had to be processed by the cube Sends a message between the nodes and the

manager, because the nodes can not access files, host, and waits until the whole message goes

The dependency table was implemented by using out.

arrays. The four statements: 'read', 'write', -- MSGTYPE is the type of message. Used as

'print', and 'do loop', are assigned integer message identifier. -- BUF is a one

values (0 to 3) and this is stored in the data dimension array of integers or reals,

dependency table, along with the line number of containing the message sent Out.

the statement in the source program. In -- MSGLEN is the number of bytes in BUF (from I

addition information about the viriables on the to MSGLEN) that will be sent out.

right hand side and left hand side of the -- NODEID is the destination node/host id.

assignment statement are also stored in arrays. -- NODEPID is the process id at the destination

node/host.

4. CODEGENERATION

The code generator produces parallel do loops It is important to point out that the network

for the nodes. The following sections describe path for communication is handled at the

some key issues, such as the format used by our operating system level, thus, hidden at the

model, communication overhead, buffer size, and FORTRAN level. Because of the hypercube topology

work load for each node. we know the paths followed by each message, and

we could use this information to minimize

4.1 Communication Between Ilost and Nodes communication delays.

A typical iPSC/2 hardware configuration is

shown in Fig.5. The SRM functions are: support b)crecv(NISGTYPE, BUF, NISGLEN)

for program development, cube management, I/O Receives the message from other nodes or

interface, and gateway to host machines. The SRM from the host, and waits until the whole

hardware consists of a processor mother board (16 message is received.

M~lz 80386, 80387 coprocessor, and console -- MSGTYPE is the type of message, used as

terminal port), 8 Mbytes of 32-bit RANI, a )( N1 message identifier. If the MS(;TYPF. matches

board, and an Ethernet TCP/IP communications with that of the csend, the message arri'es
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at its destination. source: READ(I, 110) NI

BUF is one dimension array of integer or READ(I, 11) (A(l), I = 1, NI)

real, containing the message received.

MSGLEN is the upper bound number of bytes in

BUF (from I to MSGLEN) will be received. END

Following is an example for sending the first host: READ(I, 110) NI

100 real elements of an array from the host to READ(I, I11) (A(I), I = 1, NI)
LENOUT = NI * 4 + 1 4all the nodes. BFOT
BUFFOUT(I) = NI

host: REAL*4 BUFFOUT(2000), A(1000) DO 301 1 = 1, NI

INTEGER*4 TYPEOUT, ALLNODES, NPID, LENOUT BUFFOUT(I) = A(l)
301 CONTINUE

DATA ALLNODES /-I/, NPID /1/, TYPEOUT /1/ 31 CNIU
DAT ALL0 NCALL CSEND(TYPEOUT, BUFFOUT, LENOUT,
LENOUT = 400

DO 301 1 = 1, 100 ALLNODES, NPID)

BUFFOUT(I) = A(I)

301 CONTINUE
CALL CSEND(TYPEOUT, BUFFOUT, LENOUT, END

ALLNODES, NPID) node: LENIN = 2000 * 4 + 1 * 4

CALL CRECV(TYPEIN, BUFFIN, LENIN)
NI = BUFFIN(l)

DO 301 1 = 2, NI + I

node: REAL*4 BUFFIN(2000), A(1000) A() = BUFFIN(i)

INTEGER*4 TYPEIN, HOST, LENIN

DATA TYPEIN /]/, NPID /I/

HOST = MYHOSTOE

LENIN = 4000

CALL CRECV(TYPEIN, BUFFIN, LENIN)
DO 301 1 = 1, 100 Figure.7 Read-Statements

A(I) = BUFFIN(l) code described in figure 7. This code will be

301 CONTINUE inserted whenever the read statement is

recognized by the code generator.

END 4.4 The Nodes
All nodes will run concurrently the same copy

To reduce communication time, we made the of the node program, but they will execute on

message transferred as long as possible, instead different data (SIMD model). We use message

of passing several short messages. passing between host and nodes, but not node to

node. The message passing routines, csend and

4.2 Disk I/O crecv were used to synchronizes the operations

In the iPSC/2 only the host can da a read or a between host and nodes. Each node receives all

write to disk. For a read-statement in the source the data. The data was not partitioned (i.e., all

code, we generate the following code (Fig.7). For nodes get all the data) in order to maintain the

a write-statement in the source code, we just simplicity of the code generated. Part of the

simply copy the statement to the host. continuation of this project will be the analysis
of sending to every node only the data it will

4.3 The [lost need to perform its computation.

The host manages the computations of each

node, handles I/O, and communicates with other Each node receives from the host the right

hosts. Our host code has features for supporting hand side values of statements inside the do

the above functions. For example, we set the do- loop, and the do loop control values. It then

loop control variables for handling workload of calculates its own ceiling", or upper bound of

each node at run time. The host sends messages to iterations for the loop. Then, calculates its

all nodes concurrently, and waits to receive the inloop (initial value of the loop) and endloop

results from all the nodes (Fig.8). A set of read (final value of the loop) values. Hence,

statements in the source code will generate the different nodes will have different endloop and

218



inloop values. After each do loop is completed in factors which complicates this project are the
the node, its results (i.e. the left hand side number of nested do loop levels and any operation

values) and the loop control values are sent back done with the indexes of the arrays.

to the host. When the host receives these values,
proceeds to load the values into its We are working on a tutorial aid for directing
corresponding destinations. FORTRAN programmer while using our FORTRAN pre-

PROGRAM header, compiler to generate concurrent program. We plan

buffer declaration, to work on a model that supports stochastic loop

normal array and variable declaration, assignment. This model will require flexible

special constant declaration, formats, and node to node communication. Another

special variable declaration. future research will consider complex statements,

equivalence-statements for control variables such as equivalence- and if-statements. A final

and buffers, future research is the implementation of the MIMD

data-statement for initializing special constants. model in which the program is divided into

CALL SETPID(HOSTPID). segments (either subroutines or functions),

NNODES= NUMNODES(. download each of them to different node, and run

CALL LOAD ('node', ALLNODES, NODEPID). them with their different data. We will include

OPEN data files, in all of our future models performance

assign control variables, measurement and comparison with other models

compute message length (LENOUT) from control variables. (hardware and software).

load output buffer (BUFFOUT) with data from right 7. REFERENCES
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in parallel form can re-use most of the "old" [NVolf-861 Wolfe M., "Advanced Loop
FORTRAN programs to run on a supercomputer Interchanging", Proc. of the 1986 International
without redesigning and rewriting them. Some key Conf. on Parallel Processing, Aug., 1986.
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MULTIPLY TWISTED N-CUBES FOR PARALLEL COMPUTING

T.-H. Shiau, Paul Blackwell and Kemal Efe, University of Missouri-Columbia

Abstract It is known that by twisting one pair of edges node of 0(n) is a processing element, usually with
of the N dimensional cube, the resulting graph local memory, and the edges of Q(n) are the physical
denoted by TQ(N) has diameter N-1 instead of N. In communication-links. For example, the Cosmic Cube
this work, we show that by twisting multiple pairs of in Seitz (1985), iPSC of Intel Corporation (1985),
edges as well as pairs of buses (a bus is defined as a NCUBE/10 of NCUBE Corporation (1986) and the
set of edges with certain common properties), the Connection Machine in Hillis 1985) are all

diameter becomes [2N/31. The resulting mul:iply hypercube parallel computers, although the scales
twisted N-cube, denoted by MTQ(N), preserves most and granularities of parallelism of those computers
of the desirable topological properties of the ordinary very widely.
N-cube for parallel computing. A simple routing The popularity of the hypercube for
method is presented which can easily be interconnection networks stems from many of its nice
implemented. Finally we discuss generalizations of topological properties. To name a few, the graph is
MTQ(N) for which the diameters can be made even regular, that is, each node has the same number n of
smaller at the expense of more complicated routing. adjacent nodes, has relatively small diameter which
The smallest diameter which can be achieved by this grows only logarithmically with respect to the total

approach is (N+i)/21, number of nodes, and has large minimum-bisection
width (MBW) N/2. The MBW is the minimum number

', WORDS: Interconnection networks, Hypercube, of edges which must be removed from the graph to
aRalll proc nesg nseparate it into two disconnected graphs with equal

Parallel processing numbers of nodes (or different by 1 if the total number
is odd). Small MBW implies severe limitations of
parallel data routing between two parts of the system,

An n-dimensional hypercube 0(n) =(,E) is the while large diameter would mean large propagation

graph with N=2n nodes each of which can be labeled delay in communication. Other properties of Q(n) cangrap wih N2n odeseac ofwhih ca belabled be found in Erdos and Spencer (1979), Folds (1977),
by a unique n-bit binary number such that two nodes H ard 18,nd Sa7d and (chu7t,

are adjacent if and only if their labels differ in exactly (1985).

one bit position. The graph Q(3) is depicted in Figure Although 0(n) has many desirable properties, it is

1. shown in Esfahanian, Ni and Sagan (1987) that the
Many multiprocessor computer systems use the diameter can be reduced by 1 by twisting any single

hypercube as the interconnection network, i.e. each pair of edges in any shortest cycle. For example

Figure 2 shows the twisted cube with diameter 2. The

100 110 twisted n-cube denoted by TQ(n), preserves most of
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the nice properties of 0(n). In addition, it contains the

2n-1 node complete binary tree as a subgraph which G10
is not a subgraph of 0(n). Independently, Blackwell

et al. (1988) show that by properly twisting pairs of
bundles of edges as a whole and pairs of edges
within the bundles, the diameter can be reduced to

[(n+1)/21 and most of those properties are still q01 I 11

retained. This reduces by almost fifty percent the
diameter of 0(n).

Although the fifty percent reduction of the diameter
provides the potential for the same amount of Go11 q11
reduction of the propogation delay of interprocessor
communications, the routing is more complicated
which would offset some of the advantages in
practical applications. In this work, we show a much
simpler way to construct a class of twisted Gq0o Go

hypercubes with diameter F2n/31 for which a simple G MTQ(3k)
routing method exists. k

In general, we can construct twisted cubes with 3k

diameter F(2+k) n / (3+2k )1. The greater tile k, the - Straight bus of width 2

more complicated the graph and the routing , and the

closer the diameter is to the [(n+l)/21 of the graph

in Blackwell et al. (1988)]. Figur3 MTQ(3k+3)

2. DEFINITION OF THE MULTIPLY TWISTED
N-CUBES Otherwise, assume ueG 0 , v eG 1 and let u'= f3k(u)

Definition: A recursive definition is given as follows E G1 where f3k is the isomorphism. Then d(u,v) _<

for multiply twisted n-cubes, MTQ(n), with diameter d(uu') + d(u',v) 5 1+2k.
V2n/3 1. So the diameter of MTQ(n) _< l2n/31 . To show
0. MTQ(0) = Q(0) which consists of a single node.
1. MTQ(3k+l) for k_>0, consists of two copies of that equality holds, let again u eG o , v EG, , but

MTQ(3k), Go and G1 , and 2 3k (=G 0 f) additional also dG(u',v)=2k. Let m=d(u,v), it suffices to show

edges, called level 3k links, between Go and G1  m=2k+l. Let p=(u=s 0 , si,..,sm=V) be any

which defines an isomorphism f3k: Go -> G1 by v1 = shortest path between them. There must be a

f3k(vO) it and only if (v0 , vl) is a level 3k link. In level 3k link (si , Si~l) for some i, 0i<m. By

short, MTQ(3k+1) is constructed by linking two isomorphism

MTQ(3k) by a "straight bus" of 2 3k lines. The straight P'=(u'=s 0 ,sl . ",si'=Si+l,si+2.....Sm=v),

bus, in contrast to the twisted bus of Blackwell et al. where sj'=f3k(Sj), is a shortest path with length m-1

(1988), makes the topology and routing very simple. between u and v. So 2k=m-1,
2. MTQ(3k+2) is similarly defined by two copies of Case 2. n=3k+2. Similar to the previous case, we
MTQ(3k+I) and a straight bus of 2 3k+1 level -(3k+1) can show that diameter(MTQ(n)) = 2k+2 = [2n/31.links (edges).
leof MTQ(3k+2) Case 3. n=3k+3. Because of the twisting of the
3. MT0(3(k+1)) consists of two copies oftween them two buses, we can go from any copy of MTQ(3k) to
and a twisted bus of level 3ke-2 links between them ante by omrehntw lik.S
such that the eight copies of MTQ(3k) form a TQ(3), another by no more than two links. So
see FigurI. More specifically MTQ(3k+3) = TQ(3) x diameter(MTQ(3k+3)) _ 2+diameter(MTQ(3k)) = 2 +
MTQ(3k). 2k. By similar argument as in Case 1, the equality

holds again. Q.E.D.

3. THE DIAMETER AND ROUTING 4. THE ROUTING METHOD

Theorem 1, The diameter of MTQ(n) is [2n/31. The

diameters of MTQ(3k+2) and MTQ(3k+3) are both Routing on TQ(3) is straightforward since it
2k+2. consists of only eight nodes. The routing algorithm

Proof: Induction on n. can either be directly hard-wired or by a lookup table

Case 1. n=3k+l. Let Go and G1 be the two copies of eight entries showing the outgoing link for each

of MTQ(3k) in MTO(n). Given any two nodes u,v, in destination.The routing of MTO(n) is simply a

MT0(n), if they belong to the same copy of MTQ(3k), multi-level TQ(3) routing. Using the n-bit binary

d(u,v) [(2/3) 3k1 = 2k by the induction hypothesis. number labeling with the less significant bits for lower
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level links, we can carry out the routing either q00 q10
bottom-up or top-down. By bottom up, we try to
correct earlier the less significant bits, i.e. route the
package to the intermediate node of which the label
has the same less significant bits as that of the
destination. Note that every three bits can be q 01  q11
corrected in two steps by applying the same lookup
table as that for TQ(3). So after [2n/31 steps all the
bits are correct. The top-down routing corrects the
most significant bits first. The detail is omitted. G011  qj k: TQ(2)

5. GENERALIZATION - Twisted bus
of width 4

Using basic modules other than TQ(3), we can q00 q10

construct different multiply twisted hypercubes with
even smaller diameters. In Blackwell et al. (1988), a
family of twisted cubes is given with diameter
[(n+l)/21 where n is the dimension. For n=3, the TQ(5)with diameter 3
graphi is the same as TQ(n). To make this paper more
self-contained, we shall describe the case for n=5 only [(n+1)121 and a more complicated routing
and thereby construct the multiply twisted hypercubes algorithm. The detail is in Blackwell et al. (1988).
using it as the basic module. Using TQ(5) as the basic module, which has diameter

We shall use the same notation TQ(n) for the new 3, we can construct MTQ(n) similarly to Section II, so
family of twisted cubes.
Definition: that diameter MTQ(n)= r3n/5.

(1) For n=2, TQ(n) is the same as Q(n). Formal definition is given as follows.
(2) For n=3, TQ(n) is as in Figure 2. Definition.
(3) For n=4, TQ(4) is constructed from four copies of 0. MTQ(O) is a single node.
TQ(2), denoted by G0 0 , G0 1 , G1 0 and G1 1 1. MTQ(5k+i)=TQ(i)xMTQ(5k),fori=1,2,...,5.The routing is done by correcting 5 consecutive bits
connected by four buses of width four as in Figure 4. as roupins he s routing lgorit

Eachbusis tistd s tha th bu andthetwo as a group by 3 links. The same routing algorithm for
Each bus twisted so that the bus and the two TQ(5) is used at each node after the active 5 bits are
copies of TQ(2) at its ends form a TQ(3). selected. Note that a lookup table for TQ(5) has 32
(4) For n=5, T(5) is constructed from eight copies of entries instead of 8 as in Section I1, in which the
TO(2), Gb b b bi=0 or 1 for 0 _< i < 2, connected by dimtrslag.

2 1 0 diameter is larger.

(twelve) twisted buses of width four as shown in By choosing yet bigger but more compact basic

modules from Blackwell et al. (1988), we can defineFigure 5. Again, each bus is twisted so that the two mr opc T ihmr opiae otn
copis o TQ2) nd he bs frm TQ3).more compact MTQ with more complicated routing

copies of TQ(2) and the bus form a TQ(3). algorithms (or bigger lookup tables).

Remarks. The definition can be extended to 6. CONCLUSION

arbitrarily large n. The resulting graph TO(n) retains
most of the nice topological properties such as We show that by constructing the twisted cube
regularity and strong connectivity, but with diameter hierarchically, one can reduce the diameter of Q(n)

by a constant factor, such as 2/3 , and still keep the
4 routing very simple. Theoretically, the constant factor

can be made arbitrarily close to 1/2, although the
additional complication of routing may make it
undesirable.

It is interesting to note that in any hypercube
machine such as The Connection Machine where the

orouting is done in parallel by correcting 1 bit at a time
on the hypercube, if we reconnect the physical links
to make it a MTQ(n) such that the bit positions which
are corrected earlier correspond to higher level links,
then the computer would work as usual without

Giio modifying the routing. The resulting routing algorithm
would be able to route 2 n packages in parallel in n
steps ,assuming no contention, on a twisted cube

Figure TQ(4) with diameter 3 with diameter r2n/31.
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All-Subsets Regression on a Hypercube Multiprocessor

Peter Wollan, Michigan Technological University

Introduction. Parallel multiprocessor computers vertices are denoted by d-coordinate vectors of 0's

have been hailed as the next dramatic improvement and 1's, then a communication link exists between
in computing power. The object of this paper is to two vertices if the corresponding vectors differ in
explore the use of one type of parallel computer (a only one coordinate. Often, the vectors are thought
distributed-memory system) in data analysis. of as d-bit binary integers, so that processor number
All-subsets regression was chosen as a suitable 8 in a 4-dimensional hypercube, for example, is at
vehicle with which to gain experience: it is a vertex (1,0,0,0), and its neighbors, with which it can

data-analysis procedure that is implemented in most directly communicate, are processors 9, 10, 12, and

statistical packages, yet it requires enough 0.

computation that standard mainframe computers may The Intel iPSO has an additional processor, with
not provide enough power even for reasonably small its own memory, called the host. The host can

problems; moreover, it appeared, in advance, to be communicate directly with all the other processors,
inherently parallelizable. which are called nodes. While communication

Parallel computers come in essentially two between nodes is relatively fast, communication

varieties: shared memory, in which each processor between host and nodes is relatively slow, and
has access to all of a common memory, and communication from the uspr to a node must pass

distributed memory, in which each processor has its through the host.

own separate memory and sends messages to the As noted above, it is necessary for the user to

other processors. In both cases, the goal has been to explicitly apportion computations among the nodes.

provide greater computational speed by dividing a Ideally, this will be done in such a way that all
problem into pieces which can be computed processors are kept busy the same amount of time,

simultaneously, and then recombined into a solution. and so that no processor is forced to wait for

The shared memory systems have been found to be another to complete an intermediate result. The
difficult to implement, both in hardware and system procedure described here is not optimal, but is
software, but once implemented they can be used, at reasonably close, and uses the parallel nature of the
least at some level, with comparative ease. Most machine in an acceptably efficient way.
users of Cray systems, for example, treat the system Regressions were computed with the Sweep

as if it were a single processor, and the effect of algorithm, which is well-known and widely used
having several processors is to increase the number (see, for example, Weisberg (1987), p 60). Any

of users that can be serviced. Distributed memory implementation of the Sweep must use some method

systems, on the other hand, are comparatively easy of checking for collinearity, if only to avoid dividing

and cheap to build, but require the user to explicitly by zero. Largely out of curiosity, the method chosen
parcel out computations to the separate processors, was that proposed by Berk (1977); the behavior of
and to explicitly send messages among them to keep this portion of the program turned out to be, in many
the computations coordinated, ways, more interesting than the parallel part.

The particular machine used here was an Intel Section 2 describes the program, and gives some
iPSC-d4, which is a 16-processor hypercube. details about its components. Section 3 describes
"Hypercube" refers to the communication links among its performance, and includes a comparison with SAS
the processors. Because of hardware limitations, it Proc Rsquare. Section 4 concludes with some
is not possible to connect every processor with every comments about using distributed memory computers
other. Several communication patterns have been for all-subsets regression, and some more tentative
tried, and have acquired names; the hypercube comments about using them for data analysis in
architecture seems to be the most common at this general.
point. It can be thought of as placing 2d processors
at the vertices of a d-dimensional cube, with 2. The Algorithm. AII-subsuts regression is often
communication links provided only along the edges of used to find the best set of predictor variables for a
the cube. Hence, each processor can directly regression model. Given k predictors and a response,
communicate with d other processors, and messages the linear regression is computed for each subset of
to any other processor must be relayed. If the predictors, and the best model is chosen by some
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criterion. Since there are 2k_1 non-trivial subsets, as follows: a vertex of the cube is mapped onto a
the number of models to be computed is very large point in a 2d x 2k 'd rectangular grid. The row is
even for reasonably small data sets. determined by applying the Gray code to the first d

The Sweep is an in-place matrix inversion coordinates, and the column by applying the Gray
algorithm; starting from a correlation matrix, it code to the remaining k-d coordinates. (The grid is
produces both standardized regression coefficients a torus in the sense that the Gray code "wraps
and (1 -R2). It is attractive for regression for a around" in both rows and columns) Each processor,
number of reasons: it is easy to program, uses then, is assigned a row of the grid. In order to get
relatively little memory, and is numerically to the beginning of its row, the processor must
reasonably stable. It has two other features that are introduce some variables, so there will be some
important for certain procedures such as stepwise duplication of effort among the processors; but no
regression and all-subsets regression: sweeping on a more than d variables need be introduced, so that
set of pivots produces the same result, no matter the longest path is only d steps longer than the
what order is used; and sweeping on a pivot a second shortest.
time has the effect of deleting the corresponding The parallelization of all-subsets regression,
variable from the model. Consequently, a predictor then, can be described as follows: Each node is
can be introduced into a model or deleted from a provided with the correlation matrix of the data. It
model in essentially the same amount of time. This introduces a set of predictors, to get to its row of
feature allows the following approach to all-subsets the torus, then computes the models on its row,
regression: let the 2 k regression models correspond saving appropriate statistics from each model.
to vertices of a k-dimensional hypercube, where a When the node is done, it sends the collected
model is described by a vector of O's and 1Vs, with 1 statistics to the host for output. Communication
in the ith coordinate indicating the ith predictor is among nodes is involved only at the beginning, when
present in the model. Then, the Sweep allows moving the data is being passed out, and at the end, when
from one model to another along an edge of the results are collected. The program uses recursive
hypercube, and a sequence of models determines a doubling to broadcast thA correlation matrix to the
path along edges. nodes: the host sends the matrix to one node. The

Using one processor, an efficient sequence of node sends the matrix to another; both nodes then
models corresponds to a path that passes through send it to others, and so on, with the number of
each vertex of the k-dimensional hypercube and does nodes receiving the matrix doubling at each step.

not pass through any vertex twice; if we add the This procedure uses both the inter-node

requirement that the last model be one step away communication links, which are very fast, and the

from the first (null) model, the path is a Hamiltonian parallel communication features of the hypercube

circuit. There are many Hamiltonian circuits for the architecture. Recursive halving could have been
hypercube. One is given by the well-known Gray code used to collect the results in one node for output,

(see, for example, Kohavi, 1978, p. 13), which allows but this was found to be inefficient: the amount of

computing the ith vertex of the path from the binary output was fairly large, and there is a limit on the

representation of the integer i, using simple binary size of each message. Collecting all the output in

arithmetic, one node, and sending it in smaller parcels to the

Using 2d processors, an optimal sequence of host, was less efficient than simply having each

models corresponds to a set of 2d paths, passing node send its results to the host directly.
The computation of the regression models

through every vertex, all starting at the origin required checking for singularity of the matrix at
(corresponding to the null model), which do not cross each stage. Berk (1977) proposed a procedure in
each other, and which are all nearly the same length which the model is rejected (the predictor is not
(since they all start at the origin, they can't be allowed to be introduced) if the trace of the

exactly the same length). For certain k and d, such submatrix corresponding to the model is greater

sets exist; however, there seems to be no way to than the tolerance divided by p, where p is the

extend solutions for small cubes to larger ones, and number of predictors introduced and the tolerance
for some k and d there may be no solution.nubropedcrsitdcdadthtlrneroeve, an arlthere ma be of olt n bis chosen by the user (here, 1000). This was

However, a nearly optimal set of paths can be justified by an inequality involving the condition
obtained from the Gray code mapping of the number. It is quite different from, and seems to be
k-dimensional hypercube into the 2 d x 2 kd torus, substantially more conservative than, the
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procedures proposed by Stewart (1987) and Beaton, the time of 1.37 seconds is unfair to Intel: our
Rubin, and Barone (1976). Implementing Berk's particular machine has been running 20 to 30 times
procedure within the all-subsets regression slower than than it should be, probably because of
program required some bookkeepping: it was some undiscovered mis-specification in the
necessary to keep track of the "official" model, installation of the operating system. In addition, the
given by the Gray code, and also the "actual" model, new version of the machine is a great deal faster.
those predictors that were allowed to be However, SAS (and BMDP, and IMSL) use the
introduced. Moreover, deleting variables often Furnival-Wilson Branch and Bound algorithm for
required recomputing the model from scratch, since all-subsets regression (see, for example, Hocking
a predictor that had been refused admittance 1976) which computes only the best models of each
earlier might be allowable in the smaller model. size. For the best 5 models of each size, for the

The program was written in Intel's version of 10-predictor problem described above, SAS Proc
FORTRAN 77, which has a number of extensions to Rsquare required only .43 seconds.
provide for communication between nodes. Each Another feature of the program, Berk's
manufacturer has chosen its own set of extensions singularity check, behaves in an interesting way: in
for this purpose, and Intel even changed the syntax effect, it gives a means of finding the best
substantially when it released the second version acceptable model. Even though the output, in its
of the iPSC. Consequently, the code will not run on present form, displays only R2 and two coded
any other machine, and is not reproduced here; it is integers describing the models, one can easily scan
available from the author on request. The the output and find those models which both have
program's structure is as follows: the host high Rand pass the tolerance test. For example, for
program reads a correlation matrix from a file, the Longley data (see, for example, Beaton, Rubin and
sends it to one node, and then waits for output. As Barone, 1976) one can quickly see that the best
it receives output from each node, it writes it to a acceptable three-variable model is obtained by
file. The same program executes on each node; the fitting the variables Unemployment, Size of Armed
program can ask which node it is running on, and Forces, and Year, where "best" is in the sense of
take different action depending on the answer. The greatest R2, and "acceptable" is in the sense of
node program begins by receiving the correlation passing Berk's tolerance test, with tolerance equal
matrix, then sends it on to others, using recursive to 1000. One also sees that adding a fourth variable,
doubling. The main program computes the variable Noninstitutional Population, yields a slightly higher
to be introduced or deleted for the next model, R2 and still passes the test. It should be noted that
using the Gray code algorithm; a subroutine these models are quite different from the ones
computes the Sweep, and another subroutine Beaton, Rubin, and Barone suggested; furthermore, it
recomputes the model when necessary. As models is difficult or impossible to obtain qualitatively
are computed, the program saves R2 and two similar results from SAS, BMDP, or IMSL. SAS Proc
numbers describing which variables have been Rsquare apparently does not check for collinearity or
introduced; when all models have been computed, tolerance in any way at all; IMSL subroutine RLEAP
the collected results are sent to the host. does check for singularity, but the manual does not

describe what method is used: and BMDP-9R carries3.Results, The parallelization works well. The out a tolerance check, but terminates when a model
speedup factor is about .95 (that is, the time faiis the test.
required for 1 processor, divided by the time
required for n processors, is approximately .95n), 4. Conclusions. All-subsets regression is a large
for problems in the range of 8 to 15 predictors and enough computing problem for parallel computers to
up to 16 processors. In other words, a be potentially useful. However, the experience
16-processor machine takes slightly more than gained here indicates that distributed-memory
1/16 of the time needed by a 1-processor machine systems, as they are presently designed, have
for the same problem. This is not surprising, since serious shortcomings which make their use for this
it is generally communication overhead that problem doubtful in spite of their speed.
matters as getting the output in readable form to the The Furnival-Wilson algorithm is clearly the
user, one could conclude that the Intel iPSC offers best way to screen a large number of models, which
computing speed roughly comparable to an IBM is generally what people want to do when they use an
mainframe, and at substantially lower cost. In fact, all-subsets regression program. The advantage of
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computing only the good models is already the Gray code, needed to describe which nodes are
substantial for 10 predictors, and it increases adjacent to which others; another is the recursive
dramatically as the problem gets larger. It may be doubling communication algorithm. These, and
possible to code this algorithm for a others, are part of the basic language of the program,
distributed-memory system, but it is not at all clear just like arrays and Do loops. In addition, parallel
how to do it. In fact, the algorithms that have been algorithms require a substantially different way of
successfully parallelized for these systems have thinking about problems.
tended either to assign distinct, essentially Accumulated experience will improve both the
independent computations to each processor, as was programming tools and the programmer's knowledge
done here, or to implement large matrix methods and and skill, but there appears to be a fairly large class
(roughly speaking) give a portion of the matrix to of problems that simply aren't suited for
each processor. The Furnival-Wilson algorithm is of distributed-memory systems. One example seems to
a different form altogether: its efficiency derives be the Furnival-Wilson algorithm. Another is the
from eliminating potential cases, and at any given computation of a correlation matrix: covariances can
time there is not a great deal of computing to be be computed in parallel by giving each node a set of
done. cases, and computing partial sums, first for means

Computing every regression model, as is done and then for cross products, and exchanging the
here, is not likely ever to be very attractive, partial sums among the nodes so that each node ends
However, it does allow multiple, conflicting up with the full covariance matrix. However, the
screening criteria. In particular, Berk's tolerance final step, going from covariances to correlations, is
check is potentially interesting as a means of difficult to paralellize efficiently.
diagnosing and handling multicollinearity. It may be Distributed memory parallel computers are very
possible to include multiple criteria in the fast and powerful; but programming them requires
Furnival-Wilson algorithm; this would achieve the new techniques and unfamiliar tricks, and their full
best of both worlds. power may be usable only for certain kinds of

Regarding the general use of problems. Overall, they appear to be special-purpose
distributed-memory systems for data analysis, machines, whose capabilities satisfy only some of
several limiting features have become apparent. the needs of data analysis.
First, input and output are severely restricted. As References

they are designed now, these machines are
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in traditional programming courses. One example is ed. Wiley, New York.
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Testing Parallel Random Number Generators

Mark J. Durst, Lawrence Livermore National Laboratory

As multiprocessor computers and networked com- generated using different randomly selected vectors
putations become more common, there is a need for of seeds, the two resulting time series samples... are
parallel pseudo-random number generation. This can typically observed to be uncorrelated." Past work has
be thought of as the provision of many streams of focused on providing a very small number of streams;
pseudo-random numbers, which should appear to be current computing demands many more. Relatively
independent within each stream and across streams. inexpensive computers are now available with a thou-
Some ways of constructing tests for parallel random sand processors, and the ability to create logical tasks
number generators are discussed, along with the corn- % hich do not necessarily correspond to physical pro-
putational limits on them. Experience using these cessors creates programs with a need for even more
tests to construct parallel random number genera- streams; a production code at LLNL demands the
tors for the Cray X-MP has failed to produce a par- availability of seventy million (short) streams.
ticularly powerful set of tests, and so the importance Without ad hoc modifications (see Durst (1988)),
of constructing computation-specific tests is stressed; the most promising techniques for parallel random
some guidance is offered for these constructions. number generation involve splitting up the cyclic

stream of a given random number generator into
substrearns. This provides substreams of sufficient

1 Introduction size for most current applications (particularly if one
splits the stream from a generalized feedback-shift

The use of multiprocessor computers and networks register or lagged-Fibonacci generator), but strains
of computers to solve serious problems with parallel the discrepancies of current RNG's. Few applications
computations is becoming more common. Since these of standard RNG's use the independence of more
computers are in general asynchronous, standard sys- than about a dozen dimensions; good discrepancies
tem pseudo-random number generators (RNG's) are at these dimensions are provided by the above gener-
insufficient, as they lack reproducibility: a guaran- ators, as well as by large-modulus (48 bits and above)
tee that different runs of a program will give the congruentials. However, parallel computations may
same result. Non-reproducible runs should only vary require that some dozens of streams appear indepen-
at the statistical level, d so production runs of dent in a dozen or so dimensions; the required dis-
a simulation or Monte ,rlo calculation can often crepancies in hundreds of dimensions are far beyond
relinquish reproducibility and use standard system the discrepancies of congruential RNG's (CRNG's),
RNG's. However, for debugging purposes and for and are at or beyond those for generalized feedback
complex Monte Carlo calculations requiring intricate register generators (GFSR's).
traces (for instance, where one wishes to target spe- While conceding the theoretical shortcomings of
cific histories for future variance reduction). one must rurrent methods, though, it should be pointed out
be able to reproduce computations exactly, and so that many-perhaps most-Monte Carlo calculations
parallel random number generators (PRNG's) are re- and simulations do not have sophisticated indepen-
quired. dence requirements, and can even succeed by appro-

A PRNG can be viewed as a method for pro- priately splitting a CRNG. Empirical tests should be
ducing multiple streams of pseudo-random numbers, used to verify minimally good properties of PRNG's.
an(d there is experience with such methods: some to provide simplified paradigms of complex calcula-
discussion occurs in Frederickson el al. (198.1), and lions, and to check for the necessity and efficacy of
Schruben and Margolin (1978, p. 507) comment: modifications to PIING methods. WVhile such tests
"When two sets of pseudorandom number streamrs are are well-known for standard RNG's (see, for exam-
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ple, Knuth (1981) and Marsaglia (1985)) they gen- may be a natural stream ordering, which should be
erally focus on testing a single stream; here tests incorporated into tests. In small dimensions, equidis-
are required of the interdependence of many different tribution tests on unit hypercubes can be used. For
streams (it is assumed that standard RNG tests will somewhat larger dimensions, permutation and parti-
be used to check the quality of individual streams). tion tests can detect some bad deficiencies. For still
In this paper a few basic ways of constructing tests larger dimensions, most tests have been designed ad
are discussed, with some recommendations and com- hoc and have not been very useful in testing PRNG's,
ments on computational constraints, but should probably be considered: examples are col-

lisions tests and tests based on transforming the max-
imum of a number of uniforms to uniformity (Knuth

2 Some PRNG Tests (1981), pp. 68-70), and the "Birthday Spacings" test
of Marsaglia (1985).

Correlation tests are not very powerful, working only Given the insensitivity of high-dimensional latitu-
with pairwise behavior and detecting only the most dinal tests, one would ideally compute tests for all
serious dependencies. However, they are an impor- possible subsets in low dimensions. With m streams,
tant class of tests, since (as will be seen) no other a test of dimensionality j, and k lags under considera-
testing regimen used here can verify much about cor- tion, this would involve 2k(') tests. This is infeasible
relations at many lags. The desire with correlatioa unless either m is small (a dozen or two) or j is very
tests is to guarantee, for m streams, each of length n, small (2, 3, or 4). Since uniformity in the lowest i-
that correlations of lag k or less arm under control. For mensions is always desired, it is recommended to use
many applications, k can be on the order of one or an equidistribution test in dimension 2 (and 3 if fea-
two dozen, while sensitive applications may require sible) on all pairs (triplets) of streams. For formal
that k be on the order of several hundred. There testing, Bonferroni tests should be used until infor-
are omnibus tests for the independence of multivari- mation on the joint distribution of the (7) possible
ate normals (see Anderson (1958), Chapter 9) which p-values is available.
can be used asymptotically. One can also test the Another possibility is to compute a small random
correlation coefficients with a Bonferroni test. If the sample of the possibT ile tests. If m > j, then all
correlations are computed directly, the coptto sapl ofte()psibetss fm ,te lcomputation these tests should be effectively independent. Note,
time is O(km 2n), but Fourier techniques can bring h,'wever, that, the probabilistic guarantees afforded
this down to O(m'n log(n)). These tests are most ef- by such a test are only useful if streams with a small
fective at finding streams which are exact duplicates fraction of dependencies will result in a successful
or antithetic variates at relatively small lags. computation.

Latitudinal tests are a general way of constructing
tests for PRNG's. Ordinary RNG tests split a se-
quence longitudinally, with a short sequence provid- 3 Experience
ing the numbers needed to compute one observation,
and adjacent short sequences used to provide repeat We Ltave done empirical testing in the course of con-
observations. In a latitudinal test. one number from structing three parallel random number generators:
each of a fixed number of streams is used to provide e A default vectorized PRNG, intended for sim-
one observation: repeated observations are then oh- pie use with a moderate number of tasks (up to
tained by proceeding longitudinally. Of course, lat- several hundred) on a Cray X-MP computer:
itudinal and longitudinal testing can be combined.
For instance, a four-dimensional equidistribution test. e A scalar PRNG for a physics simulation using
can be used to compare two longitudinal dimensions up to many millions of short (at most several
of two streams. Latitudinal tests can be constructed thousand) streams on a Cray X-MP computer,
from any test which always generates an observation and
from the same size set of numbers. It is not obvious
how to adapt other tests, such as gap tests and runs A specal- ros for iantl coptita
tfets. for latitudinal use. Tests for latitudinal use
usually should not depend on the order in which the For the first two generators. we chose to splitt l.,
uimbe-rs appear: however, in sone applications, there sequence from the default (Cray RNG RANI. a niul-
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tiplicative congruential generator with modulus 248 to 1/2.
and multiplier 44485709377909. This choice was The tests were very effective at discovering the
made for three reasons: compatibility with results straw men. with the exception of the Birthday Spac-
from older codes: availability of the spectral test ings test. The low-dimensional tests differed from the
(which can be derived, for splitting use, from the null hypotheses most spectacularly. Of course, the
work of Percus and Kalos (in press)): and, for the sec- unlagged tests did not uncover the problem with the
ond generator, small state space (one word). For the small-lag streams; those were most reliably detected
first generator, which requires initialization to select by the correlations tests, which worked surprisingly
a maximum possible number of streams, we consid- well, even at detecting the straw men involving even
ered forcing an odd number of streams and evenly (or splits. For even splits with e above 10. the strongest
nearly evenly) splitting the sequence, evenly splitting interstream dependencies involve only a small frac-
the sequence and then backing off a fixed amount, and tion of the streams; still, as long as several hundred
evenly splitting the sequence and then backing off a randomly chosen tests were performed, the deficien-
fixed fraction. Testing was intended to compare these cies were noticed.
three schemes. For the second generator, where the The tests did not discover deficiencies in the
number of streams was only bounded by 70,000,000, schemes under serious consideration: whether this in-
we decided to provide a default, even jump between dicates lack of power in the tests or good parallel
streams, and so wanted to use testing to help select random number generators is unclear. We lacked ex-
that jump. The third generator required that either act joint distributions when testing all subsets, but
very long streams or very many streams be avail- no values ever exceeded the Bonferroni limits. Tests
able, which strained the congruential; we decided to were iterated and analyzed as in Fishman and Moore
split the sequence from a lagged-Fibonacci. In the (1982), but still no clear pattern of failure emerged.
absence of deterministic testing, we decided not to The testing did twice uncover what turned out to be
risk even sequence spacing, and so generated starting programming errors which generated bad or badly
points with a congruential generator, in the hope of dependent streams, so there may be some hope for
distributing starting points at random through the these specific tests.
sequence of the lagged-Fibonacci. We used testing
to check for overall interstream quality and to insure
that the starting point mechanism was not too bad. 4 Recommendations

We also tested various straw men. One was an even While congruential schemes have severely limited
split of the aforementioned RANF into 2' streams for discrepancies (the same limits first described by
c from 1 up to 16. Another was a split which either Marsaglia (1968) apply), they survive tests like these.
used very small lags (we tested 1, 5, and 40) or used This indicates that passing such tests is a minimal
small lags to an even split as above. A final set of requirement for parallel random number generators.
straw men were generators which generated duplicate Better tests in large dimensions remain of interest., as
streams (both a small number and a small fraction) the power of existing tests in hundreds of dimensions
and streams which were mixtures of other streams. leaves much to be desired.

The tests used were correlation tests, a two- For specific computations, three recommendations
dimensional equidistribution test (five bits), a four- can be made. The first is that tests should be tailored
dimensional equidistribution test (three bits), permu- to the application, as recommended by Marsaglia
tation tests up to dimension six, a collisions test in (1985). Poor results from bad ordinary RNG's may
dimension 20 (which tested only the top bit), and the provide some guidance in finding specific tests to turn
Birthday Spacings test in dimension 256. The two- into latitudinal tests. The second recommendation is
and four-dimensional tests were used on all subsets that specific streams with crucial independence re-
for up to 32 and 16 streams respectively, and all lat- quirements should be identified and tested heavily.
itudinal tests wer used in random combinations for For instance, if streams are used spatially. then each
2' streams with e up to 16. For the random combina- stream should be tested against all nearby streanis.
lions, some tests were done with a randomly chosen A final recommendation is that users of parallel ran-
lag on each stream. Lags were chosen with a geomet- dom number generators should have available an ad-
rif distribution, with the probability of zero lag equal hoc scheme for improving PRNG's, using shuffling or
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combination (see Durst (1988)). Suspicious simula- Frederickson, P.O., Iliromoto, R., Jordan, T.L.,
tion or Monte Carlo results can then be submitted to Smith, B., and Warnock, T. (1984), "Pseudo-
the improved scheme for validation. Of course, the Random Trees in Monte Carlo," Parallel Comput-
improvement scheme should be submitted to testing ing, 1. 175-180.
to ensure that it at least does not degrade the PRNG.

Knuth, D.E. (1981), The Art of Computer Program-
ming, vol. 2: Seminumerical Algorithms, 2nd edi-
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Interactive Smoothing Techniques

Wolfgang Hfirdle, Universitiit Bonn

Abstract

For effective implementation of smoothing techni- thers is extremely slow for large dimensions d, see Ibra-

ques a conditio sine qua non is an interactive computing gimov and Hasminski (1982) and Stone (1982).) Addi.
environment. We describe some of the logical structu- tive models reduce this dimensionality problem but re-

res that we find convenient for interactive smoothing. quire quite a bit of machine power e.g. the Projection

These structures are implemented in XploRe - a com- Pursuit Regression (PPR) algorithm by Friedman and

puting environment for parameter free regression and Stuetzle (1981). Interactive control of such an additive
density smoothing in high and low dimensions. model comes into conside-ation, where one would like to

0. The Smoothing Analysis Cycle see slightly different projections and corresponding al-
ternative smooth fits in a small neighborhood of some

currently favored fit.
Smoothing means parameterfree estimation of re-

gression and density curves. If X E Rd, Y E lR de- Even if a single smoothing method is preferred the
choice of smoothing parameter is rather delicate. A

note a pair of random variables, it is the task of regres- wide variety of algorithms yield (asymptotically) "op-

sion smoothing to estimate the mean function m(.) = timal curves" but these can be quite different for finite

E(YIX = -) from an independent sample {(Xi, Yi)}i! 1 . sample size, see Marron (1986).
Density smoothing consists of finding good approximati-

ons to the density function f() of X from an i.i.d. sam- Summarizing the above situations we can state that

ple {X 1}Z.=. If no parametric restrictions are imposed the applied scientist will experiment with different smooth

on these curves the smoothing technique is nonparame- fits and try several alternatives in an iterative way. The

tric or parameterfree and is typically based on "pooling typical scenario might be described as follows. The scien-
neighboring information", see Stone (1977). tist starts with some initial smooth curve and then ez-

amines the graph and perhaps residuals. In a further
There exists a wide variety of methods for parame- step he evaluates this information perhaps using prior

terfree estimation, see e.g. Silverman (1986). These me- information on forms or structure of the current curve,

thods have more or less the same asymptotic sharpness then he may want to compare this current curve with

but behave quite differently for finite sample Qize. This an alternative. This iteration procedure can be called a

is a situation where the computer can be a very good as- smoothing analysis cycle as depicted in Figure 0.1.

sistant: smoothing means function estimation and the-

refore different results can only be studied in the form of
comparing graphs or tables of values. Another scenario Smooth

in this setting is to form residuals and to examine them in

an iterative way for non-fitted or overfitted structure, see
e.g. the backfitting procedure of Ilastie and Tibshirani

(1987). Here again the computer is agreat assistant in

trying several alternatives. Compare Examne

Smoothing in dimensions of X bigger than two crea-

tes difficulties on the computational and on the statisti-

cal side. First of ill one cannot study the full fit function

without additional "artificial dimensions". Scott (1986)

proposes to use time as this dimension and presents Evaluat.

changing density contours for dimension d = 4. Se-

condly, in data sets with moderate sample size there is

not enough data to perform the "local data pooling" in

an effective way. (Theoretically 1 speaking, this ieans Figire (1.1. The smoothing alilysis cycle

that the rate of convergenc of irnlnrain-tric stnoo-

235



This cycle might be performed several times in an vector,
improvisional way before one or several satisfactory re- workunit,
suits are obtained (McDonald and Pederson, 1986). It picture,
is obvious that one needs a highly interactive computing tezt.

environment to go effectively around this cycle. Vectors are the simplest objects, they contain an alpha-

numeric data array of variable length. Workunits are
collection of pointers to vectors and may include display

and mask attributes. Picture objects are viewports, de-
The computing environment necessary to perform fining the location and tic marks of the axes in 2D or

such experimental smoothing falls into three layers 3D views. Text objects are sequences of text lines with
(Chambers, 1986): variable length.

a) the individual computer; In order to fulfill (1.4) and (1.5) we defined the fol-
lowing basic operations on these objects. Objects can

,3) the operating system; be

r) the special logical structures for smoothing. created/deleted;
activated/deactivated;

All three parts interact with each other. Since hardware read/, itten;

a) and the system software /3) that goes along with it has manipulated;

become affordable even for small institutions the discus- displayed.

sion of what to choose for optimization of a) and 3) does The concept of the workunit object meets requirement
not seem too relevant to us. In fact we will present the (1.1). In its simplest form a workunit object can be
system XploRe as it was developed on a "relatively sim- thought of as a data matrix, but the actual realization
ple" machine, an IBM AT. The data and program struc- as a record of pointers to existing vector objects ma-
tures -) for data smoothing and handling seem to be kes it storage space economic. The additional feature
more important to achieve a high degree of interactiven- of this object to include mask and display information
ess. They should fulfill the following basic requirements. makes exploratory techniques like brushing (Becker and

(1.1) The interactive system should allow convenient Cleveland, 1986) easy to program. The display informa-
tion as part of a workunit object makes it convenient to

comparison of different fits, preferably in a gra- distinguish different functions: Whenever the workunit
phical way. object is displayed (in a picture object) the correspon-

(1.2) Certain viewpoints or snapshots (from different ding display style information (part of this workunit)
"angles") of the data and - s smooth should be is used. This makes it easy to remember different cur-

recordable. ves. The mask part of this data object can be inherited
to children objects (e.g. smooths) of a workunit and

(1.3) Results, summary statistics or verbalized impres- makes thus tracing of interesting points through seve-
sions should be storable on the spot and visible ral steps of an analysis possible, see Oldford and Peters
at convenience. (1986) for more information on this inheritance princi-

ple and this object oriented approach. A graphical de-
(1.4) Intermediate stages of a smoothing analysis should cl ti o or ieted elow i gre1.1.

be dletble r eocabe. nputoutut t orvia scription of workunits is depicted below in Figure 1.1.
be deletable or evocable. Input/Output to or via

other layers of the computing environment must

be po' ible.

(1.5) A dump and a reloading of the current stage of
analysis should be possible.

In order to fulfill the above reqluiremnents we defined ill
Xplolte the following basic objects:
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x

Workunits 

Tu-onc

Fcyc poin

i-is tic inarks

[t =i c )I lt

wFigure 1.2. A picture object

Different workunits may be displayed in different

picture objects. Figure 1.3 below shows a workunit (poin-

NO ting to the raw data) as a pointcloud together with

GLASS anoLher workuiiit showing the smooth regression curve

both in one picture object. A density estimate of the

marginal density of X is displayed in another picture

Figure 1.1. Two workunits with mask and object (viewport "picture 2") at the upper right corner of

display information the screen.

Figure 1.1 shows the situation where one wants to

analyse a three dimensional data set consisting of vec- , ,,,,,,I

tors X,YZ. Workunit wu-one consists of the vectors is i

X, Y, another wu-two points to all three vectors. When

displaying wu-one one could have detected some inter- -oil M I

esting points, which one interactively has marked with

the mask "7". Other observations might have been gi-

ven the mask "invisible". Earlier one might have decided ,,,

to see the remaining points as stars" * (except those ,,, .... . . ' I"

th at h ave m ask "7" ). W u -tw o is sh ow n w ith sq u are " U" I??_is,_ oilIII____ _ I'll ___ ___ __

and needles "I" pointing into the (X,Z) plane with no

additional mask options. Figure 1.3. Two different picture objects

Picture objects are designed to meet requirement

(1.2) and certain information about the location of the Text objects are defined according to (1.3). They

2D or 3D viewpart on the screen, the scaling of all the contain ASCII text lines of variable column length. If

axes and the location of the axes on the physical screen. such an object is displayed scrolling forward and back-

This object type is resident until its parts are changed. ward in the actual text are possible. If a text object con-

If one displays a workunit object and has found a reaso- tains columns of data vectors (as ASCII information) it

nable scaling, this current picture object is evokable at can be converted into a workunit object (with standard

later stages. A picture object can be graphically repre- display and mask part) and vice versa.

sented as in Figure 1.2.
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Figure 2.1. The mask information will be inherited by

2. Snmoothig Technliqucs the currently displayed workunit object. By clicking the

"label" field the cursor can be moved to any point on the

The basic operations on tile four objects have been screen. After pressing ENTER a window pops up that

defined above. All these operations are more or less self- shows the index of the observation (closest in Euklidean

explaining so that we concentrate in this section on the distaqice) together with the coordinate of the workunit.

manipulation of workunit and picture objects. The diffe- This feature enables the user to see all coordinates of a

rent smoothing techniques entered via this manipulation high dimensional workunit although he might be looking

of an active workunit are described below. The following only at one "interesting" point in a two or three dimen-

lists are by no means exhaustive. XploRe (1987) is an sional projection. The "mask" field allows the user to

open system, more soft work can be included, see section interactively define a rectangle of points which he would

3. like to classify into groups 1-9 or invisible. The "un-

mask" option reverses this action. the edit field allows
2.1 Regression Smoothing to change the ticmarks and the scaling of the axis and

also the display style of the workunit currently shown.

- Regressogram (Tukey, 1961). The movoff is a switch to movon which means that all

- k-nearest neighbor estimation (Mack, 1981). screen information is stored in a movie fashion to disk.

- Supersmoothing (Friedman, 1984). By pressing movie the saved screens will be shown, this
Kernel smoothing (Nadaraya, 1964; Watson, 1964). feature allows tracking of past ac.ons.

- WARPing (Hirdle and Scott, 1988).

- Isotonic Regression (Barlow et al., 1972).

Running Median (Tukey, 1977).

- Polynomial Regression (Shibata, 1981). 11,( .... . .

Cross-validation (Clark, 1980). . "

2.2 Density Smoothing

- Histogram.
k-nearest neighbor estimation (Cover and Hart, 1967). , .

- Kernel smoothing (Rosenblatt, 1956).

- (Log)Normal fitting.
- L 2 and Kullbach Leibler crossvalidation (Marron, 1987). Figure 2.1. The interactive display

2.3 Additive Model The viewport option allows the user to map certain
sub-rec-
tangles of the screen to the whole screen. The defa-

- Alternating Conditional Expectations (ACE) (Breiman zorg field is for interactive definition of the axis origin.

and Friedman, 1985). Clicking ax on switches to az off which has the effect to

- Projection Pursuit Regression (PPR) (Friedman and display the data without the axis. The six fields above

Stuetzle, 1981). the axis control refer to rotations clock- and counter-
maRecurieartonin RegSonres 9 R ) Bclockwise around each of the three axis in 3D space. The

man, Friedman, Olshen and Stone, 1984). two fields in the upper left corner define the distance of

- Aver rivative Estimation (ADE) (Hrdleand Sto- the eyepoint relative to the pointcloud. Clicking suc-

cessively ">" gives the impression to come closer to the
2.4 The interactive display data, whereas "<" makes the distance bigger. The 3D

graphics have been programmed according to Newman

The interactive display features of XploRe allow ma- and Sproull (1981).

nipulation of both workunit and picture objects. Re- The edit field is for locally changing the display style
moval, identification and classification of points is per- and for inheriting the current picture object ticinarks

formed by pointing with a cursor to a group of points, and axis labelling. Figure 2.2 shows the screen just after

This technique is incorporated in XploRe by the label clicking "edit" in the situation of Figure 2.1.

and mask option of the graphics command menu, see
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I 3. Installing own procedures

, - .' .. The system XploRe can be enhanced by installing

,,,,,IJ -'-- .. user written procedures. As an example of how to install

, ..... ..... two own routines we describe how the running median primi-
, .0- 6'tive was implemented into XploRe. Assume that there

. is already a procedure runmed (y,n,k,s) with input

array y, length n, smoothing parameter k and output
array s (containing the running median sequence). An
optimal algorithm has been given by ll.rdle , Reinholz
and Steiger (1988). The user chooses this manipulation

Figure 2.2. Editing the picture object. by mouseclicks and by definition the manipulation refers

The sensitive fields, shown by rectangles, show the to the active workunit object. This workunit will then

current tics. By overwriting in these fields one changes be temporarily sorted by the first column (interpreted

the layout of the axis. The reset option gives a standard as the predictor variable x), then the response variable

view in the cube [0,maz(x, y, z)j 3. y has to stripped off to determine the running median
smooth s. It is convenient to build a vector object for this

output array a and to create a workunit containing links
(pointers) to the vector object containing the predictor

Help files can be attached by the system program- variable x. In XploRe (respectively TURBO PASCAL)
mer through a stack of "help windows". The designer these operations would read as follows.
of the computing environment determines at which ana-
lysis stage which "help windows" should appear. The p-ocedure dorunmed (wu);
help information is obtained by pressing Fl. Subsequent var
pressing of the help key guides through the stack of cur- xys: workarray;
rently attached help windows. The help windows are in n,k: integer;

fact internally handled as temporary text objects which xvec, yvec, svec, newwuobj: objectid;
are displayed as in Figure 2.3. begin

quicksort(wu);

getvector(wu, xvec, x, ni, 1);
19tilAL IMftINTI getvector(wu, yvec, y, n, 2);
.... ICE *I, .............. ... ..... ............ #,d .. getparam eter(k); { reads the window size k

, from the keyboard }
runmed(y, n, k, s);

......... i.ftt, createobj(svec, vectorparttyp, "smooth");

updatevector (svec, s, n);
.1110 1 - (M ), , tAI).

. ....... ... createobj(newwu, wuparttyp, "runmed");
ft *tftttft tl .00 ftI It Ut'It "Itt I 'l l's

inclink(newwu, xvec);
" inclink(newwu, svec);

end;
Figure 2.3. A help window

The help windows (and also text objects) can be The getvcctor procedure extracts from workunit tcu
scrolled backwards and forward by using the Pgel)own the x and y array. The creah;.-!-j procedure creates an
and Pge~lp key. All pulldown menus can be folded and object of the specified type (vectorparttyp, wuparttyp).
unfolded by successive pressing of the l10( key. The updat(veclor (inclink) )rocedure includes an -ra

(a link) into vector objects (workinit obJects).
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INTERACTIVE MULTIVARIATE DENSITY ESTIMATION IN THE S LANGUAGE

David W. Scott and Mark R. Hall, Rice University

Abstract
We have been developing experimental software on worksta- The advantages of using S are several. It is much easier to

tions to produce high quality color graphical representations of mul- prepare test data and input using the wide array of available S

tivariate density estimates via averaged shifted histograms. Some functions and data structures. The calling sequences for S func-

of our programs have been stand alone applications and some have tions are much shorter than the actual Fortran subroutines, since

been written in larger systems such as the S language. Part of our only the input variables need be specified (output variables are au-

experiment was implementing our algorithms in Becker and Chain- tomatically returned in a data structure) and many input variables
bers' S interface language. We discuss our experiences and try to can be given common default values. It is also very easy to create
illustrate the results. quick and dirty graphs for experimentation and then modify and

improve the graphs. But the most important reason is that coding

1. Introduction experimental routines in S minimizes software loss. Have you ever

We have been developing algorithms for data analysis with tried to run an "experimental" code after a six month layoff and

emphasis on graphical display, often innovative but non-standard get anything useful from it? In the summer of 1987, 1 developed a

in format. An example of this work has been the estimation and code in S for computing average derivative estimates (Hardle and

representation of nonparametric probability density estimates of Scott, 1988) while visiting Wolfgang Hiardle in Bonn. A year later,

data in Rd, 1 < d < 4 (Scott and Thompson, 1983; Scott, 1985, while Hardle was an invited lecturer at Rice, we were able to im-

1986). Other examples include nonparametric regression, additive mediately use those routines on iew data he brought "cold." I

models, and computationally intensive algorithms such as cross- have seldom had that experience in any other language. So a sig-

validation (Scott and Terrell, 1987; Scott, 1988; Hardle and Scott, nificant part of the advantage is that output can be well-organized

1988). All of the algorithms have been developed in Fortran (F77), by design to reside in S data structures that can be interactively

with custom programming of an AED512 terminal for graphical listed, graphed, or analyzed. Too often a directory with an exper-

output. However, in the past few years, we have increased our use of imental Fortran algorithm contains a bunch of files named fort. ,

the S language (Becker and Chambers, 1984) for data manipulation fort.2, etc. Another S tool that helps minimize lost work is the

and standard graphics. diary file, which contains a record of all S sessions. Thus the ad-

The question we asked was: "Would it be both feasible and vantages of using S relative to custom routines are significant for

effective to use the S language for development of experimental an experienced developer.

algorithms on a UNIX workstation?" Some of these algorithms Of course, S is not totally unique among languages with re-

would have standard graphical output, such as x-y plots of cross- spect to these capabilities. In fact, John McDonald and others

validation functions, while other algorithms would attempt to dis- prefer a totally unified environment such as that offered on a Sym-

play three-dimensional density contours. Becker and Chambers bolics workstation (McDonald and Pedersen, 1985). It is clear the

(1985) have provided a mechanism by which any working F77 sub- such a LISP platform is powerful but S provides more immedi-

routine may be installed into the kernel, effectively becoming a ate productivity gains since it has a feel more similar to classical

"new" S function. This task is accomplished by writing an inter- languages.

face routine using a C-like language and calling S-supplied graphics

calls inside the F77 routine. In fact, the built-in S functions them- 2. Data Analysis via Density Estimation
selves are written in the interface language with F77 subroutines The symmetric positive kernel estimate studied by Rosenblatt

for complex functions.

For anyone familiar with the S language (or other similar lan- (1956) and Parzen (1962) has been widely used to study data

guages such as GAUSS on the PC), it is obviously desirable to have z 1 , X2 . , Z:

one's "established" routines available as S functions (Chambers,

1980). The primary benefits are on-line document~ation, slkipli,iLy M__)_h

of input and output data handling, and device-independent graph- i=1

ics available both inside S functions or available for application on

output S data structures. However, the process of creating and This formula is easily extended to multivariate data by using a mul-

debugging interface routines can be more than a bit exciting even tivariate probability density function as the kernel. A much more

with established routines: does it make sense for experimental and convenient and computationally inexpensive form is the averaged

evolving code? shifted histogram (Scott, 1985):

After almost a year working with workstations, it seemed natu-

ral to evaluate that experience and plan the most productive strat- ( IEH(h;-h)(.),

egy for our work. In addition to using S, two other approaches were m =

considered. First, the "old way" of writing large custom Fortran

routines on a mainframe or workstation with output to an AED where H (h; t)(.) is an equally spaced histogram with bin width h

512 terminal with byte-level control or with output to an IRIS ter- and mesh location uniquely determined by having one mesh node

minal controlled by calls to high-level graphics libraries furnished at t. The ASH amounts to a weighted average of rounded points

by Silicon Graphics. The second approach is similar to the first (WARP) and is also easily extended into several dimensions. This

but uses an integrated platform such as a Sun 3/60 workstation or idea can also be applied to a wide array of nonparametric and

a Mac Ii and a language such as Fortran, Pascal, or C. The second additive models (Hiirdle and Scott, 1988).
approach was the only alternative seriously considered.

There are several advantages of writing high level language 2.1 Representation of Density Estimates

routines directly rather than using S. The codes tend to be smaller The most effective way to represent niultivariate density esti-

and a bit faster. S functions take much longer to compile during mates has been a source of many interesting discussions and much

the debugging phase. Moreover, there is less code to debug. In research. In the case of bivariate data, we have heard talks in which

particular, S programming creates intermediate Fortran files that perspective views of a three dimensional bivariate density surface

generate errors that must be traced back to the original interface have been severly criticized relative to contour plots. Such a po-

and Fortran routines. This traceback problem is familiar to users sition seems far too extreme lowever, for our purposes, contour
of the Unix Fortran preprocessor, Ratfor.
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plots are preferable because they extend naturally into higher di- idea may be found in Lorensen and Cline (1987). They call their

mensions. The display methodology we have advocated (Scott and method "marching cubes." A three dimensional triangularization
Thompson, 1983; Scott, 1983; and Scott, 1986) has been to draw is computed and then displayed using a false-color algorithm based

a-level contours where 0 < a < 1. Specifically, these contours, upon the direction of a unit normal. In the authors' application,
which we shall refer to as "a-shells", are defined by the sets a further color smoothing was desired and was accomplished by

a Gouraud shading technique. Such a technique on the averaged
S0 = {(x E Rd :1(x) = af(m)} shifted histogram might also be desirable, but we have chosen not

to do so to emphasize the piecewise linear nature of the estimator.

where m is the mode of f: In Figure 9, we show a screendump of the triangularization of
an exact trivariate normal density with covariance matrix

n = arg max f(x).
xER' 

( .8 .8)
For trivariate data, there is one degree of freedom, namely the E

"  
.8 1 .8

density level a, although the viewing angle might reasonably be .8 .8 1

considered another degree of freedom. For quadravariate data x = This is a 30 by 30 by 30 mesh and the display is at the 5%-level.
(x, y, z, t), we display the trivariate shell satisfying Notice the visual discontinuity is really rather small even with such

a relatively coarse binning. On advanced color hardware, these
S 0 (to) = {(z, y, z) E R3 

: f(x, y, z, tit = to) = of(m)}. surfaces can be rotated in near real time. However, the number of
triangles is so large that a 10-20 MIPS workstation is necessary for

Clearly there are two degrees of freedom, the contour level a and real time rotation.
the slice intercept to. For those interested in animation of algo- The data discussed in sections 2.2 and 2.3 were also examined
rithms, both parameters provide for interesting data views. We using this tool. The ASH estimates computed in the S functio
have in fact created movies of four-dimensional LANDSAT data were written to an ASCII file and then input to a C suntools pro-
using this technique (Scott and Jee, 1984). gram on a color Sun 3/260 workstation. While this was somewhat

cumbersome, it was very efficient from an experimental point of
view. In Figure 10, we show the triangularization of the 10%-level

2.2 Example with Particle Physics Data Set of the ASH of the untransformed particle physics data. In Figure
We begin by examining a four-dimensional particle physics 11, we show the 5%-level of the ASH of the transformed particle

data set provided with the S language (Friedman and Tukey, 1974). physics data. Such plots provide a great amount of detail at one
These data fall in a relatively narrow strip on the fourth variable, contour level, but not at several levels as before, lowever, sev-
as can be seen by examining all pairwise scatter diagrams of these eral advanced graphics workstations provide for transparent views
data in Figure 1. This plot was constructed by the pairs S com- of surfaces. Displaying and rotating several ASH contours levels
mand. This conclusion is strengthened by an examination of the simultaneously is the authors' dream.
four marginal histograms in Figure 2. Since there are 500 points in
each of the scatter diagrams, there is a great deal of overlap in the 4. Acknowledgments
plot. We can examine the "V" structure in the variable 2-3 plot by The research of the first author was supported in part by the
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SMOOTHING DATA WITH CORlRELATED ERRtORS

N. S. Altmtani

IBioitrics Cniit

Cornell U niversity

ABSTACTthe mean function in the nonparaiiietric regression model

Kerinel simoo thing is a commn on inet hod of estimnat ing y f Px ) + r (

!h. e i eaii fun c tion in thle non pa rane tri c regression mtodel w h re 1 (x) is a smnooth determniiis tic mean funiic tion, andc

is an error process with inean zero. T1he focus of this work
f W ~x + is oil estimating the unknown mean function when the de-

sign points are equally spaced onl [0, 1], and the errors come
%t.let-, fhr i i buiiioth Ii tomumibntic iiiezii function, and r fromi a stationary correlated process. The kernel estimiators

;iif .- r71'. r-" r' With nijean zero. lIi this paper. the meaii of 1'riestley and Chiao (1972) are used. These have the form

-prir- trcor of k"1r1iit est niators is COnPited for processe-s

!r'at- rr.. . . mid tlie etiniators are shown to be (,

1 "Ilt und idr res t nit 'i- suitipt 0-11b on tOe sequetir- of f.Ax = 2F wAXj)
J=O

*: F r- roh,- Ii t ;iiilard t-echitiqus for bandwidth se-

lL i As ,ross-- %validat ion and gene ralize-d where the weights art.

r \.d~l~it i-iL. ar n's % itw to pterhoriii very badly whieii tilt Kf
ar. 'rre t. St andI ad seltect iou techiiiques art Wx (X, i

a i toha~r ii~er~ii~oThii~whieii the co,-rrelations art,

I tiiian l~poit . ind Lversiiiothiig wvhti negativ. K< is called ie, kernel function, A is a smioothiing parameter.

hii.~e.th- selec:t ii ,L inarr :,ii be adjusted1 to -torrect for called the banidwidthi. and Yn is the saiipe sizt.

- It ,:-rr, lat i-ii Only kerniel., with thle following properties are: consid-

Met ii f -Iiii- estmiiat-, of the correlatioti fuiic 'ed
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model (1), with observations taken at design points X,, inenits, the MSE, defined by
'Fhe errors are assumied to come from a stationary pro-

cesIIS with covarianice function MSE(x,A,n) = E(f5 ,,,(x) _ f(xT))
2

E6.,c,)= 7
2p.~(Is _-j is often used as a goodness of fit criterion and as a means of

assessing the asymptotic properties of the estimators. The
where thle variance, a2 , is independenit of ns and p,.(k) is a optimal smoothing parameter is often considered to be the
correlation function depending onl III The variance matrix of one which minimizes the MSE totalled, or equivalently, aver-
the errors will be denoted by U. aged, over the design points (TSE and ASE, respectively).

The purpose of this paper is to explore 'he properties of The MSE(x, A, i) is
kernel smnoothers, and the use of model selection techniques,2
such as cross- validation (CV), (Allen,1974, Stone, 1974 and MSE(x, Aja) = B (x, A, n) + V (x, A,n).

ticisser, 1975), and generalized cross- validation (CCV) where the bias term is
(Craven and Waliba, 1979) when the errors are not indepen- B (X,A, II) = W,(X,0) (f (0) - f (X)) (3)
dent, but instead conie fromn a stationary correlated process. arid the variance term is

Figures la and lb show realizations of the process y V, (x, A~,-) = w'(,) wx(x,e).
cos(3.15xx) + e whieii the errors come from, respectively, a
Gaussian process'.-601 uiiit variance, and anl AR( 1) process 'Notice that the bias depends oii the samiple size only
with tie saine variance aiid p = .5. 'rie Gaussian process via. the Selectioii of design points aiid is not affected by the
used iii Figure la was used to generate the Shocks for the correlation structare. F"or inan funictions with at least p
ARlt1) process in Figure lb, so the resultinig samrple paths are dtrivatives, aiid keriiels of order p, Gjasser and Muller (1979)
Very siilar. Figures 2a aind 2b shiow kernel estiniates; of the,- coiiputed the asymiiptotic formr of the squared bias (when the
i nr f nttio four thiis data wheni tile bandwithI was choseni dsigii p oinits lic~je n denise onl thle initer val ) to h'e
oSilig CV. For tile real ization with irudependit errors, thel

estiuiate is quite siiiotu amid] captures thle miaiii feature s of B23~ 7,j) = (APsj,,-(if~ + o(A21') + o( -
the iiie a functJion 1F,r the re ahizatioii with corr.'hated errors. i

lie eStiiiate IS far too %ciggiv Figures 3a aiid i0b show thle wlwei A 0 C anid ,nA - ou anid x <- I - K-rruef esti-
cStIIII-AttS Oft( lie, iii'raile- 'ii fujr this data usinig th. oprilir;tI 2itra~isiidte~vuifisdue hs odtos
(illiniliun t'tAffed siur'f errr) value of the, bnidtfi. ia~ra, SIiwjal nisdu~ hs odtos

If''tii, u. fr Ill- iif.:p-iif-ui anid ARIh1) re alizaitiois Clorrefatiuu of thn: errors affects thle tile variance teriii
if, lwm quit- itl r. a Iuriid ., mauuin featur,So i n. srr-u Whi'' tfh 'rror., are, iOeei'-i.w variaiice,

tlii, ,;i:~ i , cli..I fI lllI 72 11 ito \ ) .T rei r, lollI, is llucfdeaii nurn As tfi.-

'I ~illt'. h, .i - l, %5 'ithrierraf. fitoi-i ,ra- zt

l~p'~~r ll:-,'II'Cimii %%511' rillf b -io :,r .r-r t', uir4if itc tiuult~t t-i''r' , ;

I jtr, I, i I ~, viuI, tCr I I, m-n k-r

I Il! ow E. j- [ -1. I. I I(AfIM 11-.ilh i n

2. ' (,a l Sq tar 1-1,11 r, I r'-- - I!!!

Figure 2: (~o'--1 o' f'//iit(/ iind vioarl/ fuotcleo fr y ii'1.',Cii(ro':s suictutoo) lv.'
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when p(I) < 0. Since the bandwidth controls MSE by trad- One consequence of this theorem is that kernel esti-

ing off variance for bias, this suggests that, compared to the miators canl be consistent only if Si,, is bounded as n -

independent case, larger bandwidths will be needed when the ou T[his condition is clearly not satisfied if the errors have

cor-relations are positive, and smaller bandwidths when thle been generated by a weakly continuous stochiastic process,

correlations are negative. This is also suggested by Figure 5, ifi(,,ei) = (l ). 'This process has been discussed by Hart

which shows a typical realization of a process from model (1) and kWehrley (1 986) arid Parzen (195'J and 1961). An inrpor-

when the errors are correlated. When the correlation is pos- tant result front these papers is that, if only a single realiza-

itive, nearby errors tend to have the same sign, and a large tion of the process has been) observed, there are no consistent

bandwidth is needed to average them out. When the correla- lincar estimiators of the mnean function as the design points are

tion is negative, the errors fluctuate rapidly in sign, and only sampled iniure and mnore densely onl tile unit initerval. Parzen's

a small bandwidth is needed. Since larger bandwidths lead to results, show that thle unIl unbiased linear estimator of f(x)

larger bias, this also implies that, at thle optimal bandwidth, is y,; (with variance o.). Hlart and Welirley compute thle bias

the MSE will be larger correlations are positive, and smaller and variance of kernel estiiiators, and show that, despite the:

whe,, the correlations are negative, lack of cousisteiic:y. considerable iimprovenients (in termns of

Explicit evaluation of V5(x,j,A),n) makes these ideas withi sjAr eror caib0iae yuigkreletitr
precise. The critical statistic is the sum of thle correlations wt
(wheny it exists) A second consequence of this theorenm it, that, if 5,

5,~ as n - o. kerinel estiiniatcrs behave as they would with
iitdepeidit errors, ivitfh a different variance terii Th'lis is

Z~ wepresserI in (iorollarN 1.1, btelow.

Corollary 1.1:- Suppose 5S, -S5, Let z, be the process

Theorein 1: If the correlations satisfys yvneratcd by

1 _ j IPn (J)1I = 00 ) u/iele the errors nr- aye inde;;enden t with tarian ce a- (1

W__ 2,5,), anid z has the sonitc inean function as y. Then, under

and the kernel function satisfies conditions A - C, then the th', condltions of Tho,orri 1, asymnptotically, as A\ -~ f and

correlations are absolutely surlnable and r A -- c,

Vi (~..,,~n) ~ IA!SEj,,_A,t) 1

V I
2

Xv.yA~ l + '25,,, +.u(,,I) AMS E (x,,. At

Ar, a *'isroicteavipiahoptiiiah
tihere Wi1, uas dcfined by (P),. .'rilrcjwhi. l t. 'c-eiiti f fntY is.th saut -t

ProofA of i i..t, oem involves replaing, ,. It Ihe. cr u- r. iii - Z, 7- h 
t  

jr o'_geneat bN

tilinut fit t ri.
/) fZr

'-~,~2J-~-I Ii- i~iI' ~I-' Ai I 1- . ujini rt _'jtuiul a urih Ic c-

n It. io - ft t - I ill l~i4 11'Ill.7 H tlw Almo Aot ot

a) NrrmaltOut) errors (b) Anti) ("iOfs I 5

Figure 3: Smo'othed estimate and mean function for y=cos(3. 15;,xr Minmumt (tlld/
squared error war used to pck the smoothing parameter

249



Corollary 1 also shows that the results of Gasser and prediction error (ESPE) is
M6ller (1979) about the shapes of optimal kernels continue2
to hold when the errors are correlated. ESPE(xn,j,A, n) = E (Y,.- (X.,i) -!A-(,i)

= 2+ MSE(X,, A, n).

3. Selecting a Smoothing Parameter The residual at Xn,~,

For a given, finite set of observations, choice of anl ef- r(X,.,i, A, n) = , - 1,.(Xvi,s)

fective smoothing parameter is of considerable interest. A is a natural estimator of prediction error, but the squared
good" value of the smoothring paranmeter will result ili asmnall residual is biased as an estimator of ESPE(z,1 ,,,A, n) as it

value of MSE(x,,,, A, n) .has expectation

Several criteria based onl the data have been used for E(r'(Xn,i, A, n)) = a 2 + MSE(X,i, A, TI) (4)
bandwidth selection. Those most commuonly used are CV, -2 WA(ni t 2(,i ,)
(Alleni,1974, Stone, 1974 and Geisser, 1975), GCV (Craven -2

2 Ax 1 ~i 2 xAv)
anid Wahiba, 1979), and Mallows CL, (Mallows, 1973). TheThtem2W ,Xii)assbcueV..isoha
properties of these criteria, including convergence of the Tetr aw~nj )aie eas , sbt
sinoothing parameter chosen by one of the selection criteria term in the estimator, f(x,,) and the estimator Ofn(X,)

to the truly optimal value, and the asymptotic equivalence 'rhe additional variance term,

of the the criteria, have been explored in some detail for the Vzj n)=2a2 YW(,, + i)PnU).
independent case. As F~igure 2 clemnst rates, these criteria V2 x,,3i)= L60 Z,,,
perform well when the errors are independent, but perform
very poorly when the errors are correlated. arises because of the correlation between C,,,, and the other

errors.-
('V is based on the 'deleted" residuals, fA,,- X CL, CV arid CCV can all be viewed as adjustments to

where () is the estimator which does niot use y,,,. F ig- the squared residual which correct for 2c 2w\(x,9). Mal-
lire 6 prov ides a heuristic arguiiierit for the failure of CV whenl low's C1, is defined b~y
the, errors are positively correlate'd- in this case, the errors
fur dlata near x,,are tend to have the samne sign as the error 2 &,r) r(,,A )+2 2

W(z,,)
of 9i,,, . As a result, fA1 ,J;X) lies closer to yo,,, than f(x) and
the "deleted" residual is too small as ari estimrator of thre true whlere L 2 is some unbiased estimator of ar2. (fii Mfallow s'
error. As a result, ('V uniderestirmates thre variance of the es- original paper, the criterion is divided by 72.) For band-
timrator. arid] tenids to pick band widths which are too smnall. widt h selection, thre criterion is usually totalled over all the

As Theioremi 2 dermonistrates, the converse is also true. If the ''iiipoints arid thle value of the siriot lung 'ararneter whu':li

':orre latiorrs are negative, (V overestiriates thne variance, arid uiiionz'' this surn is s'-l''cted. Hlowever, the th-i'-oical -omi
tends to pick bandwidths which are too large. Iutann i is s- tioti are Ion"w piitittt

Mallows' C1 , CN arid GCV ,ani all be viewed as estirna- I ~ P r "~)alI
tors of square'i pre-diction error, based oin a correction to i>tiliihd rlS' Iwer j 1 I.. An ;r '

observed squared residual. The prediction error at a point.,* : ii'df' S'El.,,A u fV,, \i

a-,.,. is tHef differenice between, a putative niew re-alizatiori of Mth,ll tk (> CI ,u ~i, 1,,( kidi ulth

thre process, arid thre smroothi based )in the actual ob)Iserva.- 1'i, tir, id i 1 t% li-ii t-i r'a tor ''rr'l itL I~ ti- I

tirons. 'I li errors ti the new observations aire iridepeicerit of .11h ' dl 1: fm li :, tc''dJ -cI 1111:0,.l d' 0 A 11- A,~ t'

e rrors ti thne original oIs-rai ,ic s the t-xpeirt-l .quare. ptitt i- ' i-''-dhit tii' p~t- oli iI

*0

span

Figure 4: Variance term, V1(xni.,A~fl)/ n2. for the unifornm kernel

with AR(1) errors, various values of ;)(1)
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the same asymptotic expectation as rCL and do not require The details of the proof of Lemma 2 are in Altman, 1988.
an estimate of the variance. Theorem 2 follows simply. Theorem 2 is also true for suitable

Algebraic manipulation shows that the CV criterion is boundary kernels.

Most kernel estimators commonly in use have K(O)

r .2 r 2 (x.,n) K(x), so that K(O) > Wl,. Let A'(y) be the bandwidth,A,n) (I. chosen by one of the selection criteria for estimating f from

y. and t'(Z) be the bandwidth chosen when estimating from
GCV was proposed by Craven and Wahba (1978) as an ad- Z of Corollary 1. (Recall that Z is a process with the same
justment to cross-validation that is more nearly unbiased for meali and variance as y and independent errors.) Theorem 2
ESPE in the case of unequally spaced points, if the design suggests that if S, < 0, then A(y) < A(Z) ; A(Z) < t'(y).
points are considered to be fixed. The _CV criterion is If S, > Othen A(y) > A(Z) - A(Z) > A'(). In fact.

2( Y,) if 2S,(1 - 2 . ) < 0, then the criteria tend to be strictly

'CV(z,,An) ) increasming with A, and so they will favor interpolation. This
; " ) (I- .trW\.,) 2  is supported by the simulatiqn results reported in Altman1987 aiid 1988.

where W,\,, is the matrix [w. (x ,,,, j)) and 1

trWx\.n Z 0 W\ (...i). If A is small, F- I. 4. Correcting for Correlation
w (x.. ' so CV and GCV differ very little.

Theorem 2 establishes that bandwidth selectors perform
For A 0 aiid niA -- o, MSE(x ....,n) --O(-) + poorly because they do not fully correct the residual sum of

O(N2P), while Lemma 2. below, shows that V2 (x,,.. A,rn) = squares. In this section, two methods are suggested for cor-
0(,-). Using a Taylor series expansion for CV or GCV. the recting the selection criteria wiei the corre ition function is

expectation of the criteria are: known. The direct method adjusts the criteria to make them
more nearly unbiased for ESPE. The indirect method trans-

Eir r;).v(xG,, A, n) = o2 + MSE(x.. ,i) (5) forms the residuals to produce transformed residuals which

- V2( ... A,n) + O(
2p) + (1A are less correlated.

If the correlation function p,, is known, with correspond-

So. asymptotically, CL , CV, and GCV have the same expec- inmg correlation matrix R,. Mallow's C, can be corrected to

tation for equal,:.' spaced design points. Theorem 2 describes b, an unbiased estiiator vf ESPE.

the behavior of this expectation. From equation (4) an appropriate adjustment for Mal-

[,,w's CL criterion is
Lemna 2;]f the errielfunction satisfies conditions A-C, and
the correlation function satisfies condition D, then for F (1 j (x_., A. n) =rr, , n)

X< - k
2 ~+ 2C" SfX" ...*+))P,,W-)

A, K(O). + o(I).
Ili corresponding adju-tinlits for ('V and GCV are in-

Theorem 2 Under the conditions of Theoecrn 1, the ta iancej t<,nded to match the low order terms mii the -lavlor series
ITheor Under h Conditon Vheor, he tdGCVexpaiision in equation (5) to the adjusted CI. criterion i1
term for C,. , CV, ind GCV ia equ'atioi (U) One way to do thi Is t set

V1 .r,,,.,,,l-- V2( r" r ._ 0,(-- '25 .... -,) = r2(., ,, n )

l-:~,~_~,~VA\(.r. ,I + j)p,(j) 2

Positively correlated errors Negatively correlated errors

Figure 5: Positively correlated erro's require lOrge oardwidths to average to zero, while
negatively correlated errors require only small ones.
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and 5' . Estimating the Correlation Function
rGCVp(Xf,i, A, n) =( -r,,

n1~rx~,) Usually the correlation function is unknown and must

We will call this the direct method of correcting for correla- be estimated from the data. Theorem 3 below, shows that
tion, and denote the corresponding bandwidth selection cri- the method of moments (MM) estimator of p,i(s) is consistent
teria by CV, and GCV, respectively under mldd regularity conditions on the errors. The corollar-

Another approach to the problem when the correlation ies explore the nature of the has for finite samples.

matrix is known, is to compute the transformed residuals: Theorem 3: Suppose the mean function has pu derivative

rl(,A )= R. 'r(*.A, n). This has been used with some which is Lipschitz of order y, and the kernel and correlation
success in the context of spline smoothing with normal AR(1) functions satisfy the conditions of Theorem 1. For fixed s,

errors, (Diggle 1985, Diggle and Hlutchinson, 1985, and Engle define the method of moments estimator of p,(s) by
et al., 1986). The goodness of fit criterion is then the total i'l ,nfx,+,A,)
weighted MSE, (X(sA)A, -lr-l rix,,,A,

TSE0 -i (A, n) = E(f 5 ,.(*)-f*)&(ne ())ifjs~l A2x , i)
= trB(o,A,n)B(.,A,n)R'1 + o2 trW,, WA,i hn s . ndn .o

where B(s, Ain) is the vector of biases defined by (3). E jj s A)) \ +n(s + C(A, n) +- o(A 2P) + o(-Q

The totalled C1, criterion based on the transformed residuals, I+CA i

where

i=1 +A ! 0 -2 (7)

is then unbiased for liie expected value of TSE,-i (A, n). + 0I + 2 SP)(WK - 2K(0)).
The CV anid GCV criteria based on the transformned YiA

residuals can also he readily defined. They are Suppose in addition, the errors are fourth order stationary,.

2r 5 - i (x,,,,A,vi Ye4o,(,s) le thiefourthl'ioint curnaulant of the disti'ution

W (A (X" 9)) of 6s.,C ,i.,t+, ,t+) and assume that, for ni suffi-
(1 ll)) clevtly large, and for all r arid s, 'Z r 1&I4,,(r, s, )j < oo.

(A ) r
2 (x,,.,, A, n) Th e n af, A)=0 1

r~;1 t ., i- tr WA, )2 ,A)j:,l,)
Ili LiI\ liiiitt. soi ill,- estjimato~r is biased Sini, tie iii-

Wi'- will ;I!] I ,i I ho, jii r, ct it lid of corr,-cting for cor- !1iwmn:tiof aloulO It urrtlaItiji is ill the, errors, it , i-t Sur-

k~~l 1,, 17 of 7% ),,i

fQX)

Figure 6: When Ite errors are positively correlated, the
cross- validation esitimratot lies too close to the
da ta As a result, the 'deleted* residuals aic too
smaifl, and CV is biased down
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6) If 2K(O) < WK,, the bias of A,a (1, A) is positive. Stanford Universityj. Te author would like to thank fain John stone

c) If 2K(O) : WK, pnl )has bias which is Increasing in~ for his valuable guidance in supervising the dissertation from which

A, and is decreasing In S, this article was taken. Discussions with Brad Efron, Jerome Fried.
man, and Peter Lewis also contributed substantially to the ideas in

P o f ( n( 1 A ) z;P (1 ) + C (A , ) th is a rticle.
1 + C(A, n)

whrre C(A,n) is defined by, (7). Eop,A(1,A)) Is an Increasing References
function of C(A,n). If 2K(O) < WK~, then C(A,rs) > 0. If Allen, D.M. (1974) Thle relationship betweeni variable selec-
2K(O) ! WVI, then C(A,rs) Is on increasing function of A, tion and data augmentation and a method for prediction.
and of the signal to noise ratio and a decreasing function of Tcnrerc 610-35

sp.onerc 1 37-35
S.From these computations, it is possible to comipute tile Altmni N. S. (19187) Smiootiig Data with Correlated Er-

bandwidth which is asymptotically optimal for minimizing Nor. StnodDprteto8ttitc9.hiclfePr

the bias of the MMl estimator. For kernels which have a N.20

maximum at K(O), this bandwidth is not thme asymptotically Altmn, N. S. ( 1968) Kernel Smoothing of Data with Corre-

optimal bandwidth for estimating the mean function. This lated Errors. Cornell Biomietrics Unit Report BU-981-M.
leads to thme tentative conclusion that techniques which iter- Bartlett. M.. S. (19,16) Onl the theoretical specification anid
atively compute the meani and correlation function may not samplinig properties, of autocorrelated time series Suppi.
converge to thle true mean and correlation function. However, J. Roy. Statist. Soc. 8 27-41
bimodal kernels may have some promise for this situation.

Ilipratic, coic ofbanwidh des ot pper t be Becker, R.A., Chambers, J.M. (1984) S An Interactive

very sensitive to the estimated correlation (Altman, 1987 and Wadsrith Sttstcrobtaaly seis.adGalb

198S8, Engle et al, 19,6). Ini consequence, a simple two step WdwrhSai~c/rbblt eis

procedure often performns wvell. F~irst, estimate the correla- Benedetti.] JK. (1977) Oim the -Nomiparaimetric Estimat ion of

tiomis fromi the residuals fromi a moderate bandwidth smooth. Regression FLunctionIs. J. S. Statist. Soc. B3 39 2418-253.

Thmen use thle estimated correlations to pick a bandwidth for Box. G.EL'. and Jeikinms, G.M. (1976) Timne Series Analy-
estimatintg the mneani function f. sis: Forecasting and Control. Ilolden-Day. Inic. San

For comparison purposes, Table 1 shows aim example of Francisco.

thme results From thle simulation at udy inl Altman, 19,87. 1"iftY (Colloiid. G. (1 'J5) .\otmparamnecric iersso Ant p-to-
rleAlizatiotis wvere tak-im of a sample of size 128 front thme pro- Date BIbliography S5ctistIcs 16 309-321,

es"s y cos(:3.l15rx) + e wvhere- the thme errors e was a Nor- Cat.1.adW~bG(171Snohn NiDt %t
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a,,erage, squared e-rror (ASE) losat thle baiidwidthi iiiiniz- Siiooting Apjpruaci to V_,ii-paraii-trit: liegress! ion
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muli (A- is the ieiii-a 4l the ratto of ASL al (lt bandwidth B -17 1-52

seete . (V to thl' nniiiII1in ASE for that realization. 'Ill! Diggle. h'.Jl. aind hiutdhiiislcn, MTl. (1'1'5) Sphiivesi.o
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\aiiqic (-,f Nci-hmaitr l1.gestioi. Wt S I (11 -.

Tfable I Alii~traliai ).~iii

PMl 1ii 1111mlii CV C111 V"K CV,, LLtp ~oni. (1.1K. Hisia.I \\ Ijiickl-'s M .1 191,71 IHit
1 15 2 03 1.12 1 . A Ls'tiiii1al iii,: -I II- .cic V? 1 1,1\a il"II j;ii iwt in, on r lit I,.

I IOs1.19 1 12 16G7Il,1 it
110 7 .1 iLW PI 1.11

,I (if) IT I(: 2 13 1.17 L.11-n. BI ( Il~ Iz" 1 o.% lit. ,, tI l ji lit Li 'r Rait ll

al l'r-1hotiii ((III,- .1S.1 81 1. 1 ITO

l~p r'iit' ier %-r!, -iii r f-r aill tOw ke-rnetls u-h I i.1.1 ti i'i (' \% . I Pi .1 \,i-~ A I lo 6 S-,iij ari

iiiIisii'~ l~ciI~ cral,.sev g. wo-m i. icl ill till hIti .It ((liii1 lis.,ii \\It iiil

iv,is.- ratil, wvas, vry lr'(-errr l;triii l,,ilt ),,eiit iii i It lI,, t i. -,S d, ..181 S :1Il

~\kmoieigii'ii:hi oik t,imi siippoot, tIb a 'salurcl Sri. -Ini ,NI..ii i I it, 1. hill 11 16 1 I NP .is

rncrr, and flnn~~rrmn lsfatr0,h ( otoo-o of ( ariada Jpostgraduatll, i

i,holat-ship. anmd lath (;ratf 11,i4!(' N)/ V /1oh of thii iork uall hli In .1 11 1 1- 11 .\1, I .~ IL. 1. 1

';ciP~nt, d tkg.' fi,. a,.ho, tic a ll, t P atiint of Statisticr at .. I I.

252



Gasser, T., Mulller, II-G. (1979) Kernel estimation of regres- Reinscls, C.11. (1967) Smootiig by Spline Functions. Nu-
sion functions Smoothing Techniques for Curve Estima- rene,:sche Matheinatik 10 177-18:3.
lion 23-67 Lecture Notes in Math. 757. Springer- Rlice, J. (1984) Bandwidth Choice for Nojiparanietric Regres-

Verla, Belin.sion. Ann. of Stat. 12 1215-1230.
Gasser, T., M6ller, 1-0., K6hiler, W., Molinari, L. and RcJ n otbat .(93 notigSlns e

Prader, A. (1984) Nonparainetric Regression Analysis of I~cj ic oebat .(93 mohn piis e
Growth Curves. Ann. of Stat. 12 210-229. gression, Derivatives and Deconvolution. Ann. of Slat.

Geisser, S. (1975) The predictive sample reuse method with114156

applications JASA TO 320-328. Shibata, 11. (1981) An optimral selection of regression vari-

Greblicki, W., Krzyzak, A., 1Pawlak, M. (1984) Distribution- als irerk 81-4

Free Pointwise Consistency of Kernel Regression Esti- Silverman, 13.W. (19841) Spline Smioothing; The Equivalenti

mate. Ann. of Stat. 12 1570-1575. Variable Kernel Method. Anti. of Stat. 12 898-916.

iirdle, WV. and Kelly, G. (1983) Nonparametric Kernel Re- Silverman, 13W. (1965) Soitie Aspects of the Spliiie Smioothi-
gression Estimation - Optimal Choice of Bandwidth. Di- ing Approach to

vision of Biostatistics, Stanford University Technical Re- Noii-paramineti-ic Regressioni Curve Fitting. J.R. Statist.

port 100. Soc. B-17 1-52.

ll~rdle, WV. Hall, P., Marron, J.S. (1988) Htow Far are Au- Stoine. C... (1977) Conisistent Nojniparainetric tgressioti.

tomnatically Chosen Regression Smoothing Parameters Ann. of Stat. 5 595-6,15.
fromn their Optimum'? JASA 83 86-95. Stone, M. (1971) Cross-validatorN choice amid asesimtof

llirdleW. and Marron, J .S. (1985) Asymptotic nonequiva- statistical predictions. J.R. Statist. Soc. B 36 111-1-17.
lence of sonie bandwidth selectors in nonparainetric re- Stone, M. (1977) An asymptotic equivalence of choice of
gression. Biomnetrika 72 4181-484. model by cross- validation and Akaike's criterion. J.R.

Hlart, J.D. (1987) Kernel Regression with Time Series Errors Statist. Soc. B 39 44-47.
(preprint) Stute, WV. (1984) Asymptotic Normality of Nearest Neighbor

Ilart, .1.D. and Wehirly, Y.E. (1986) Kernel Regression Esti- Regression Function Estimates. Ann. of Stat. 12 917-
ination Using Riepeated Nleasuceiiients Data. JASA 81 926.
10180-1088. Wahiba, 0. (1977) Practical Approximate Solutions to Linear

luber 1P. J (1985) Projection Pursuit. Ann. of Stat. 13 Operator Equations when the Data are Noisy. SIAM J.
135-175. Namner. Anal. 14 65 1-667.

VISL lIcorporated (19641) IMSL Library Reference Li- Wahba, G. (1978) Improper Priors, Spline Smoothing and
brary Hloustoin. the Problem of Guarding Against Model Errors in Re-

Li. K-C. (1985) Consisttncy for Cross-Validated Nearest gression. J.R. Statist. Soc. B 40 364-372.

.Neighbor Estiimates in Nonparainietric Retgression. Ann. Wahiba, G. (1983) Bayesian "Confidence Intervals" for the
of Stat. 12 230-2410. Cross-validated Smoothing Spline. J.R. Statist. Soc. B

Li. K-C. (1985) From Stein's Unbiased Hisk Estimates to the 45 133-150.

Method of Gjeneralized Cross Validation. Ann. of Stat. Wahba, G. (1984) Cross-Validated Spline Methods for the Es-
13 1352-1377. timation of Multivariate Functions from Data on Func-

Li, K-C. (1986) Asymptotic Optiiality of CtL and Gemneral- tionals. Proceedings 50th Anniversary Conference Iowa
izedCros Vlidaionin idgeRegesson wth pplca-State Statistical Labmoratory,, hIA. David and I.T. David,

tiomi to Spline Simoot hinig. Ann. of Stat. 14 1101i-Ill2 2.trTeIoaSaeUivriyPes

Mallows, ('.L. (197:3) Soiie oinniemits oin Cp'. Technometchics WVatsonm, (IG.S. (1964) Siiooth Regression Analysis. 5anhhya,
15 WA675.Series A 26 359-372.

.Nl:D~iiad. .A.(193) moohin (AI iie ~ri ,. Whmittaker, E. (1923) On a new iietliod of graduation. Pro-
P~o ject. .~ (19O N ) S'tia iifu tierigy of limh Sica . cedi'ngs of the Edinburgh M athematical Society, 4 1 63-

Report 017.
Nadaaya L.. (961)On stiatig rgreswj. Teor of Yanig S-S. (19M1) Liiiear Func tioiis of Commicomiitiit sof Ordetr

Prodaa ilit Lad (10)it Appliatn 9u regesion Teor o Statistics with App.jlicat ion to Nonparaietric Estiimat ion
Pro ahiit~ nd ts Apliatios 9141.42.of a lt'!gr"5 sion Fmmict ioi. JASA 76 658-662.

1'arzen, E. (I1959) Statistical Imfere.nce on J im" Series tby
Ililbert Space Methods, I Departieit of Siatist os, St an-
ford U iiversity '1ecmimal lieport No. 2:1 (N 13(12-991).

l'are, E. (1t961) Regression Analysis o.f Comntiinuous I'arai
oAter 'Iimmie Se ris Fouirthi Ilerkehey Symitoium i

Priestly, .1, 13 and Chlo,. M 'I ( 1972) Non-paranetrm' fiuil,
tiomi fitting. J. R. Statist. Soc. 13 341 35-3192,

253



D)ERIVATIVE ESTIIMATION BY I'0OLYNOMIAI,-TIUG(ONOM E'I IIXi IfElSSION

Randy Lohank. Soitherin Methiodlist Ilniversit V anid Paul Speckiiian. I ~iivcrsit v of \lj~siij

ABISTRACT A initural estimiator of the nitli deriaive (if p call be
obt aiined by different ating (1.1) intlins W\e will

Let p he a sm oot h fu nction defined onl anl int er val iblI~ rsil1 (11 )(t i) emitaplomilt
la,b], and suippose that v . n are uncorrelated al h eut 1 A t)an emi oviiia- i

obiservatioris wVithi E(.) = liltj), I < i < n., where the t. iioitet ic regression ( lTlH) estilittor of p (t). Tist
ri fxed quallv ss the estimlator to be stutdied inl the present pepr.arfxdeul, paced po((in ts inl La, b]. 1Est i ilia til of it Thle prooe inidi oi vat ed by thefolwnand its derivatives by regress ion onl t r i onometii ati i Iois~ titaoi tltfloI

liwo (erpovtonaltem i (tiidre. hel)l observat ions. It is known (see Fuhank. I lart, and
noiiial termis are shown to adjust for the boundary bias5 Speckiai( 8) o xmle htetba o i

prblemi s tiowni to besufee breression oilh ioo t rignotioiietric series alone (i.e. with nio polyniomial pal
k be fferd by regri got Iill (1I.1I) ) hias oplt imanl (011 v(.rget lie proj ir ies if p flits dill(iii( n terils alotie. As a result, thle estimiator oif It and( (till (11

its derivatives obtainedl by this met hod is shown to ie( derivatives withI p (0) =/Ii 1(1 I K to < Il . Thie
coiipet itive wit Ii other utiparatnet nc est imiators. llie p~rObleml Withi thle pureF( trigolilitli c Series is t lie fact
toviieod is illuist rated by est itliat iii" two gri w il ciir yes that lie fit is necessari lv periodic whlile th e trite re-
itild t heir iderivatives. sIto I Ise futictol /I ptined [lot be. T[his (.li -,esult ill Seri-

iius lbils piroiblems ait thle boundaries. Hlowever . suppose
1. INTROU)IICTIION Ilhtlilt )() is the liliqie piolynoimlial of (ligree di suc

.A iriiblein t hat arises inl tionpariiin regressiotn
ttal ,vis is t lii estimiat iii of fiitctiotials (if a regre'ssion(i) (ii ) - (iii( ) 11 M - 1(11(Oitie part iciilarl ,v impilortatit exampille is est i- P <I In < (til1 1  I(t.2)Illittig" it iheri ive iif sonlic order. 'Ililt., iti this paperKii i 1

we itivist igate i tlie hirlilie s of a sitmple niew initliodan cpt pI+/()I Ilitp hsIoreuiefur ilirivat ye estimat ion. It will be shiiwni that ileri- aillt1~ ~ )~plt Iit 4  a i'nqlst
yeli~ i mat iuiti by regressionloi iittibintio oiiif bouridary juropert ies fur gooid sitliatioli Iv aIi

pilytiiiii aitid t rigiit0iiktn fuiittiits provideis opt i- sutiitni S -is Ilurist icallv i ihiiuiilla i
il's ;ii( f (oitiverutvitli with Ii nsptct toi average iieai PIllt i'Stittiates 1i. anid thle t rigiutloiutietc part effi'i-

Hfir ro. lIi'Si' resultl s xtetid work oil fulctil I i vel , iiiils/1 o0 ' We iiake Iluese observatiotis precise
's tilliaitiou liv hFliaiik anii Speckitati (1988)~ to deni- ill th litlext sectiotis.

vat vi'etiliit Liiiittder t lie atssulilut iou of equally I lie perfiitiiatice oif tile, detivat ive estimiatiir oibtaineiid.iuacd ohservat iotis. aeaeinaiS iir
,sljwiiii't obulservatiotis ;lit lakin muiccng to th homiti (1.11 will be tievasitred b li(,aeaemensul-

iiodel I Orir of ("st m lat ioti.

[p (11 ( Ili.) (I i)12 I K.

liii' .ituill spuceul. %ari:1ul72 wiiliiiii his 111 0i1i,11ait Our niniiuli rusult abouit the' urulierties iif p i\1 is thec

-ik I I /li I < i <in. .\ti e'stinuatir for /I halliliiliug

pa ~iipii eil bY I'i atik atiul1pv Su ckii;m ( ltl- is l'iiiolli. If 11 hasil ( I alusouliii'lv o iut li

M ln le 1 k 111Sk-Iw kbale hid ,\--iizti- V s ." A iti 00ilu 2way that) V/ti

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I kii "1( kI1( 1"11 'tl(iki o

I.

l~ ii t u l u il A 1' 't u iiik .si i i i- Iii foi ( Il it I 1 ' Iil iilioll S i ll I (las (:

ti j, I i oo lu )t %v the user. A worit h str;ito v is k Ii fix I i It'l 1i, ;I liix fI u lil' 1ml,,1ie I
d it I 'atuaill vailue ( I i ll v ui 3) itid ;illuuw A ii c--iniiiuir .
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points canl be weakened substantially. In Eubank arid (nuaetasoe)Nwltp p~ ) ,jt
Specrkman (1988), we were able to obtain the results of co1gt/r2poe)Nwltp~=(~t ~ ~ I
th e theorem for the case rn = 0 assuming only, that the arid define PjnA - Ai 1/-2 ,A)j (The reason
ts were a sample from a dIistrib~ution with positive1/

bounded density, onl [0,11. We have been able to extend for the normalization by AJ - /2will becoume clear in
the methods usedl there to obtain goodI bias bounds for Section :3.) '[he Pjn are ort hogonal to the x k. N~t
derivative estimation, but at present we are unable to X~n = ~iu ' nV "Pdn 1\} thle n (1 matrix with coliuiins
get a satisfactory estimate of the variance in the general
case. However, we conjecture that. the hypothesis of PJ11,\. it. follows that TnA i ld 11nA
equally ,paced points is not necessary for derivative -1 *ac ith Ioa.adteouint
est inliation. 29 1 91  X9 ) 2n ~ aret ni uoa n ouint

lin the next sect ion we discuss some p~relimliniaries. Ilie least squares problem giving 12.1) c'aii be expressed
establish fiirt her notation. and defi ne at part icuilar hasis a
for thle polynomnial part of the regression. 'The proof of

lie m ai n resul~t is thlen s ket ch ed in Sect ion :3. A ii t )
examlple is presentedl iii Section 1. PMA = (/'A(' I). '/'A(',,)) =

1 nA + )iAY

2. PRELIMNIIN ARI ES '1' examnie tilie bhlavior of the derivative est iniate.

To begin, note that 1A1 t nma\- he obtainied by using we nieedl a represenitation of fte funmf ion itA1 (t (efi ned

OLS to fit oi l0.Let a = =a- 'a A 1x1)yadefn

(I A InAy ' t I = Jkj<A a k x)2-iki F or a function f( t
I 'b ).t + : ak l).kt onl [1. 1[, If( li e ct ionT ( ) will hi dcfined by taking

11P) l)ljt +k--\ f2
(2.1) y =ft). .~ ) With thlistiotatiotip t)=

Where {li. )= .l} d is any.\ linearlyv indlependenit A1- 12(1 '- Iii ) lI Se.IiI dig = .1 1 i1 (1

'lti fpovoiils spanniing { . . h} lis repr('- (XI X, )t . 1Y efi
sent ation is useful hic-aiise it is easier to work with12i2 ~ .w Itsiltat
iii -si call ' , and wo will freely.\ use t lie fact liat lie left d
ha'nd ,ide of (2.1 ) is real . AlaticiilarlY c01onlvint /IItI 2.. I(

hi or hepolilonfial termi is ohiaiiied by definiiii "C"(Xl~7i~
1) J(t). I < < d. to be thle iniqil pol'Itomtial of degqrefe I I

sa.it isfvnnll, ltva;tlid differntiat ion then ie

f Ijlt0=I. ' it '< 2~ k)1 1 iep

fill) (0) (n 11 ( 1  0 < li 2 fli 2. +~ V: f lill (2 2

.1,p)(s 1)Nw>iili~'I is the lpol.itiiIl of dogni' I 1 I

It ciol be sliowii thalt lj(IY - lijl )!. wlatIv I I) I i 12 If- I'l i hod . Belli'iist, ( I[ it , ) A > I i ptl-

1 1 /. f oli k a n, l i/ 0 (1ti l i I i a i I Ait I i / [ ) Itt'

2i -I Ii kt- i I r I. )/Ili, If xvi' l(t 'I' ,\ \jellft '

()I of I hel xi k iili. 111

ht I ' . i : I l l liill Ii w \' k-t Io 'I t l l 111 ii po ill 1 Ii'll tIll' Ii . 11 till I li d If c

IH Ilm 1-tc,"~~~~II lit" ihl f d O ,,-1"
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Finally, to get a matrix representation for jiin It cmn be shown (see Eubank (1988)) that

(1,\ (tI) in) (t t) and for the bias, let 0k E a k±i

y (27ik) nexp(27rk *-k ~'ITl(! proof of the( ma in theorem rests oil fihe foillowling
In dtI)Il<rii;-~< etmate for tilie convergence of the discrete Fourier

and coefficient Th,, 'Pe proofs wvill he det ailed elsewhere.

_,I = n dU~~~lj d L (m 1 . I I(ler the paSSiti1li on o f1 i lie llieoreiii,

Equations (2.2) and (2.3) then becoiie or+On-)fr1i n/.)

P(11= I Y1 X1  + Y 11 X 211X ) , *2 y okii = 
0k O(n 1 foki i/.:4

(in 11 11-i -
(2.1) '1 lie lug ohI" lerili holds uniformilv ill it over I111'

and speIcifiedl rainge oif k.

Y, )I(x.)IlX - t)X11t 1 . (2.5) t-l piti- v- '(-lt% it.\ V evn

3. ASYMPTPOTIIC RESULT'SOr

Thie piroof of the th'Yoren dlependls hecavily' vT olie an I it i 01(1(,2H
Foiurier series represenitat ion of p0 . Nttioni andi level- ;1 Tit I ill VT1 ). I - i .1 dl p)j

opmi lihere are, adlaptedl fromt EllIbank (I!988). hri (Ik IT TlmowI to IITTff litpofo TI IITo, ItlTiiiTTITT. I ito
bI l ie k ilt Fouie coefflc ien t of p11 (1 ne it s

\\h~~~IK \ 11 Ti ITl

(k= f ex 1{1-2r-,k I})/1 0 (IpIt.

I -I va tl II ptI )I.

llieii p 1 has t(le series represen tat ion I

Fi m (2 7) e% (-;ITI dell m p s fill TI 1 i ;., miT I WI( T TI -

/10 (1 (k k (. Xhi{127ikt pwcw. T''TT A( .x y' Y11 x 1 J ]ITTI il )

lBothI sides oIf this expremnion cin be' TiffIetIiated - Y1 (XI I X~l I X.)I t~- lit, SITiTITTlI TI'dT b ill

f foiiliall, I) toi IuS IIob illi Ilic Seriv.s cxIpiTII.iTT .\ISF, is Ow I 1eTI (h 1  + I bh.,\ 0 ± 21) l1 b.I, . o

o t ii Ili dcIIirIT ratIP ofi f'TITi1 i ll T ITiT ITi . it

I his <Ijow: lh~il theT kill l~I-o ivr TIIIhtiiTii of it(()ill) I. W*\e beiT2I wiT Ii b)1 , liT) I ( I I T A i H

I HTkTT I -ot II < ill TId. Ow&illill ..ITI Itt (d r I. (:1..11 ;ItIl IIII To I~TIIij~,olltv (If the I (Ixp{2 -ni/j 1't
k- T0 I2 I T -- ill)

I I I, T

IT( I . (i TI )/2" (~T T .it (.

I li tkI I IIIIIT v T lffii t i b'w T ( it R'' I.- 1(-l i TI I o( kl k I (Il , 1\h 2-710

0 i IT T (I/11) I~i T 37I 3T) .1 fil

1k i \ i 1 k 1
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The notation F in the last line above denotes sum-
* 1 (-2 ri u)I .(27riv)' v exp{f2wi(u - v)r/n}

mation over the range A < jkl S (n - 1)/2. Fron (3.4) r=O

applied to I 1) and the fact that it"')has kth Fourier= 0 1 v

coefficient (2rik) 0  k we have ) (27ik)mok + (2n)2t v.

O(n-( ). Hence using (3.4) in (3.6), we obtain Consequeit ly, tr(Y Y - - k= (2 rk)2m
tilebounds9112 +1 In nkI

2(2z)2 n21 + 1/(2m + 1). This completes the proof

N-Iilb l 112 = (2,ilk)ro (k + O(n-(d - 11)) of the theorem.
kI<A 4. A GROWTIH CURVE APPLICATION

-(27k)' .(a k + 0(nd) N 2  One application of nonparametric derivative esti-
(( d -1m) 2mation has been to the study of growth curves. The

Vl(27rik) 0 k + ()(11 fl (lerivative of the growth curve, called velocity, is of

special interest in analyzing growth spurts. An example
using growth data supplied by Dr. J. Molinari on a boy

Ilhe first sum on the right is houndcd bY and a girl is reported in Eubank (088. pp. 156 ff., p.
2(d ~ ~ - m -r1 2 -

0(\n-d - M A) + ( io -r I ) . (j A 186). Figure 1 shows plots of the raw data and the

A .) / 0 ' seiil soil is bll growth curve estimates using PTI?. In this example,
the parameters (I and A were both chosen using Gener-

2 alized Cross Validation ((M'V). The procedure, dis-

2 . k - ( ) cussed in Eubank and Speckman (1988). is a data-based
estimate of the parameters d an(1 A which would

)2-2d, 2k - 2,. k 2theoretically minimize AMISE. ((' selected d = :3 and
A<'kl k A = 8 for the boy and d = :3 and A = .1 for the girl. Ilhe

+s 0)-2(d i)) + I residlals for these fits are plotte(d in Figure 2.
-2(d -i) (t-2(1 -') I T'le PTR derivative estimates are )lott(ed in Figure

+0 1 3. 3.ecauise lhe itilhod tses a projection. there ii iav be

sn tgisoa spurious local maximum in tIh estinate of thle bov's
. I' A /n - 0 ageain slis that velo(il curve around 12 years,. lowever growth spurts

-,( -Ii ,,. . ' at ages 7 and 14 art clearly visihle ant appear

Jib JJ= 01)(A- -) (3.7) to be "real". This analysis agrees With lle results from
kernel smoothing reported in Eubank ( 1988). T'w

Next. lquatitol (:l.5a) iihlies t hat veoci!\ estimate for toe g i i> ,miuia with two appar-
ent growti spurts.

-l This analysis demuonstrates tHie simijlicitv and useful-
X . X.-. (3.) hess oflPT1. Tle tlIl models caii be fit with virtually

any regression pdckago. Thus good derivaliv est i nat( s
where G is a d l positke defilnite latrix. I'>ing tile as in Figurfe 2 ('all be obtaineuld with no specialized

1 s(fl wre. Ili(Tause there are IIissili1 observations in
.) Mat ri. ntiormiH 11Ai" supixjj>() JAx II/ xl a td the both data sets, the assumption (if iquiallv spaced poitts

2 does not hold. aid the results of the It'lini do iot
fact that J[AJJ2 < tr A-A. it can IW sInoWtII t hat direct v applv. IHowever. we believe I hat t he est iates

-b., h is ,h iounded Obtaied in Ilise ('xam)pl( lstrate Ihal PI (a

u j"'2\ i ) (' y Ih ywork inl practi(e (vii for imcqually sia(ced data.

n1 t r(Y. _ Y', )
11 )JI -2 2tr ( 1)(n 1 I(I 'l ,) I ."I' IFI ' SN '

But n-l - 'r )iA , O(A 1 ).% (3.7) wilh Ii -ubank, H I (1988.) S71-whin/ n d Non

1). anud 1l I tr(Y2 Y) - 0)(A u) hv .3.5hl hen((- iramtri lgrt.O.i. New York: Mar(cl l)ekker.
0 1 Vl laik, it. and Spe(ktian. P. (1988). "('urve litting

ii I 2 - -2(d h lMly u tial-lrig bt inetri' le gression . m a tii1)1" -o, , 0) +( d . I ift:- ('(>l~ l s I he proof
" -. script.

foIn 1whbias I',rl. ";Stone. (C. (19S2). Optimal (,llal Hates of voergetnie

lo ist inatI lhi' variatuie. ri',all that X In mld X.u for NOInuparamet cHri er,rssion.'' 1 lnuarl , of .Shil.',t:.S.
I0, 10 10--1053,+

;i, ort lhiiiOtial and I hat X nX ill. 'I ihni froni (2.1)

anl (3.8).

I I Var ( (T2 11-l I I~ I ( i~ Y y
t atrIYn~~n;

Ilme' sii,'ril l+in Iii thin righlt i:' aga;lii ()u 21n I -lo hi'

first le'rnni.tit( tialt Iy. "y has (ni ,\ ,hltittiA I nh
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EFFICIENT ALGORihM FOR SMOOTHING SPLINE ESTIMATION OF
FUNCTIONS WITH Oft WlITHlOUT )ISCONTIINIJITIES

Jyh-Jen Horng Shiau, University of Missouri-Colum. ia

ABSTRACT "closeness" to the data as measured by the first term
and "roughness' of the solution as ml~easured by the

Efficient algorithms are developed for GCV smlooth- second term. As is well known, the choice of the
ing spline estimation of a function which is smooth smoothing parameter is crucial to spline estimates. We
except for some "break points" where discon tin u ities will adopt the Generalized Cross Validation method
occur either in the function itself or its lower order which was introduced by Craven and \Vahba. (1979) to
derivatives. For a problem with I) observations, these estimate A since GCV method has been proven to
algorithms require 0(n) operations for the equally provide a nice estimate of A theoretically and

2 numerically. For theoretical results onl the efficiency of
spaced knots case and 0(n ) operations for thle un- CCV estimiate of A, see Craven and Wahba (1979),
equally spaced knots case. Sim-ilar algorithms are also Speckmian (1982) and Li (1985,19S6).
dlerived for ordinary smoothing splines, that is, without For problems with discontinuit ies, by choosing 11 to

discotinuiies.be the Sobolev space Wil2 augmented by a jump space
KEY WORDS: Smoothing splines, partial splines, consisting of some appropriate truincatedl polynomnials
dliscontinuities, efficient algorithms, generalized cross wih drvtesdfielamteeyhrte

vaiatoestimate g.of g canl be s. to be

1. INTRODUCTION n
gA E c C + k 'K k' (1)To solve thle problem of estimating anl unknown A = -= ik'i

function which is smnoor I except for break points (or where thle ('s. d's and Os arc real numbers. andI
urves or surfaces) where disconitinuities occur either in I um-l (t_)In-]

the( function itself or its lower ordler dlerivat ives, Shiarit ~ ~ tu ti-i ii=,.n(1)
19S5) proposed a Ipal ~ial spline approach to extend jmt 10 2

sliloot hirig sp~line estimnation method ryagmning it ((rn-i)!)
withI jump functions to reflect the discontinuities. t-
Shiaui (1987) proposed some met hods for inference on .(t) j j=l2In (1.5)
lie magnitude of the jumps based onl the mecan square (j-l0!

error of the estjimate. Sliiu Waliba. andl Johnson (t I k
1986) emrployed the method to provide models to (t o k)( 12., (16

include specified dlisconitinuhities in ortherwise smooth V5k d I ,= 2.. q 16
two or three dimensional objective analyses andl V
dlemo(nstratedl t hat the( model is appropiriate for with (X), = inawx (.x, 0). Note that thle junip function
including t ropopause height information in temoperatuore+
analysis. Ini this plaper. we p~resenit, some efficient 7(d(t is. discontinuous at ak Furthuermrore. the
algori r Inns for this plarticiular problem in tilie univariato e 'k kkt'i
case which litilize a special st ructure of tlite (-ovarian(-( break points ok's nleed' not be distinct. See Shiaui (1985)
martrix of smoothing splines, and we show that the rSiu(97oo ltis

Generalized Cross Validation (CV ) method (If Let !Y be thle ii by nt martrix withI ( i.))-th ein'lt ry (tj
choosing tilie smnoot hinrg p~aramiet er as well as thle TI be lie it by titn at rix withI ( i.j )-tii en try o .(t.) ja id
smoothling spline estimiate (,all be achieved in 0(n) ) ii

oltlrations for equally sp~acedl data ( (n) operatioiis (Ibil e ii by (I matrix withl (i~k)-tli entry Vkti).
fon unequall *v spaced (hat a. where ii is t~r it( nmher oif Note thIiat thle polynomii al hasi s { c'1 arid thle tru ncat ed
oblservat ions iii the chat a. .

(;iveni noisy (Jar a v .i =1.2 i ob~servedl fromt al po~lynomnial basis f 1k Iare all Iiii the null space of thle

unikniown function g at {nit 12. i lte interval siilOOthing functional .1(f) = I1 (f(ln)( 1 ))2 It . Letting
[0, 11. we con sidler thle filllowing non pa ra Iict ric 0
regressionr mode~h(l: T T11 IT pc andl 3 (1 (1d 0. )t a

y = g~ ) + ti i , - 1.(1 )1 " 'Il 1..0 t tc l

whr h.saeucreae ihivnzr n olnl e shown t hat (1.2) is equiivalenit I(o

min Il~y - ( C+ T AlIK+ A C C, (1.7)
va rianice or2 For orinia ry sp i ne sii lthi mug, thle C j3 It

(St innate 9Ais rliet riirinuizer of thle following variat ionial which is equiivalenit toi sllvinig t ie followig linear

plrolem(': SYSt ('li oIf eqtrions:

i (v.-f(t1.) 2 + \'k f(rni)l)2(i (1.2) (+i l)c=y-U(S
f CII "iz I Jf I I( (,)=O .

whiire 11 is t he Sobolev space (f~~ (I ft 'ale absoluitely This is tlihe saille formr as fer ordinary sin~ol lung sp~linies.
2 il)It is well known t hat Ihle solut ion' is uiiuie providedl

conltinuious for vi n I E2..i- 011ii I..,(O1t. the that T is (If frill rank. Nowtehat g is a liinear elnit

smootllhing paraietver A con~trols Ililt I reloff tirweeii since it c-all hbe exprv.ssed liv g, = A(A~) y. where
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The source code of the software package implementingg= (gA(t 1 ), gA(t). gA(tn)) and the "hat natrix this algorithm, called heKPACK, and the report on its
A(A) = ) performance can be found in Gu (1988).

Note that these fast O(n) algorithms involve some
+ T(TtMT-TtM-1  kind of approximation. They either approximate the

with M = E + nA 1. solutions from a subspace of lower dimension, truncate
Numerous algorithms are available for ordinary some smaller eigenvalues, or approximate the trace of

smoothing splines and partial splines. Reinsch's A(A). In the following sections, based on the special
algorithm (Reinsch, 1967) is an 0(n) algorithm for structure of the covariance matrix E , we propose
computing the spline estimate gA if A is fixed. The efficient algorithms for the one dimensional case to

compute spline estimates and VDA) for the functionsdifficulty of computing the GCV function with or without discontinuities.ii9
II (1 -A\))y Recently, Hutchinson and de Iloog (1985) developed

V(A) - 1.9) a linear time procedure to compute the ordinary CCV
t r(iA(A )))2 smoothing spline based on Reinsch's algorithm for

computing the trace of A(A) in the general, not
lies in the computation of the trace in the denominator, necessarily equally spaced or uniformly weighted case.

We note that their approach, althoughl quit- differentWendelberger (1981) developed a numerical from ours, is actually based on a very similar structure.
algorithm for obtaining the GCV estimate A and spline In Section 2, we describe the special structure of the
estimates of functions of several variables. This matrix E whic'i inspired the construction of algorithms.
algorithm is practical for moderate data set problems, In Section 3, a linear time algorithm for smoothing
but is not practical for large data set problems. The splines with jumps is derived for the equally spaced
reason is that it involves an eigenvalue-cigenvector knots case; also a quadratic time algorithm is
decomposition of an n-d by n---d matrix. where d is the mentioned for the unequally spaced knots case. A
fixed dimension of the null space of the smoothing simpler algorithm for ordinary smoothing splines, i.e.,
functional. The coml)lexity of the algorithm is O(n) without, jumps, is given in Section 4.
due to that costly decomposition.

Bates and Wahha (19831) suggested some methods to
reduce the computing burden, including using basis 2. SPECIAL STRUCTURE OF Em
functions (e.g. B-splines) of a subspace of smaller
dimension or a truncated singular value decomposition Inspired by a manuscript of Wthba (1969) where a
to handle large data set problems. Recently, Bates et spi r a ma ri to be (9ere aal. (1986) have dlevelopedl a public domain software special structure of matrices to be inverted for

Tchebychev splines in their most general form ispackage called GCVPACK for computing smoothing exhibited, we observe that Em , the covariance matrix E
splines and partial splines for the multivariate case.

3 (defined in Section t) corresponding to m, can beThe procedures require 0(n ) operations. transformed to a symmetric (2m-l)-band matrix. This
Utreras (1980) proposed an approximation to the special structure of E will be used to develop efficient

trace of A(A) in the case of equally spaced data. This
approximation requires 0(n) operations for its algorithms in Section 3 as well as in Section 4. To
calculation, so the GCV can be obtained cheaply. describe the transformation, we first define an n-m by n
Utreras (1981) considered the case of not necessarily matrix A which transforms g=(g(tl), g(t,).g(tn))t
equally spaced data and obtained an approximation An 0
that has an initial overhead of finding the lowest n to an (n-m)-vector corresponding to the second divided
cigenvalues of a 2n by 2n band matrix of bandwidth 5 difference of g. Ilere we adopt the definition andr 2n notation in deBoor (1978). Denote the m-th divided(for In = 2) which requires 0(n 2 ) operations. difference of a funct ion g at points t I t ,..ti~

Based on the special structure of cubic splines, a i t+.t +.
Silverman (1984) modified Utreras' approximation and by (ti,...,ti+m]g. Assume that ti's are all distinct (the
developed a linear time procedure called "Asymptotic problem of repeated observations can be resolved by
Generalized Cross-Validation" to obtain the smoothing averaging repeated observations and assigning
parameter. appropriate weights to data points), and let A be the

Elden (1984) modified the method of computing an
GCV function. Instead of computing the singular value (tn+l)-band (n-ni) by i matrix with (ij)-th entry
decomposition (SVD) of an n by p matrix, he used a +m -
bidiagonalization which in fact is the first part of a II (t -tk) for i < j < i+i,
singular value decomposition. lie then showed that i k= istarting out from the bidiagonal de0composition, the (min k j
GCV function can be computed in 0(n) operations. lie

claimed that if n and p are close, then the computation 0 otherwise.
of this algorithm usually requires less than one third of (2.1)
the work for the full SVD. However, the Then
bidiagonalization for an n by p matrix still needs g(t 1  It.... tl + g
0(np2 ) operations. A g(t, ) ..... 2 +11 g (2.2)

Recently, for computing the GCV function for the
general regularization/smoothing problem, Gu et al.

1988) developed an algorithm which is based on the .
Householder tridiagonalization similar to Elden'R g(t , tn-111- t n
(1984) bidiagonalization This speeds up the algorunm For example, letting m=2, n=5 and t /5, we have
used in GCVPACK by a factor of 6 for n large (> 500).
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5 2 1 -2 I 0 0S' iii constant time afler I linear lime overhead.
A 9 - ' - 1 1)This leads to the linear lime alorith1 for the equally)0 1 -2 1 0 spaced knots case.

0 0 1 -2 1 For t.i = i/n, i=1,2 ..... it, and I_ I I PI I0 o 0.1>~v

\We remark here thalt Reinsch(1967.l 171) and Siillerori
( 1981) also used this niatrix ili the spline coitext. Theni (2:), A.) can lbe expressed (Nt)I it lY as
the covariance matrix Y can be transformed into a 10

(2ni--l )-hand malrix as stat ed in t(he fol lowing -2 1 0
prolx)sit ion. 1 2 1 -2 1 0I sasmerc2 () 0 -2 I(I

Proposition 2.!. A m A is a svnniet 2-

(2m-1)-band matrix. L 0 1 -2 1

A proof of Proposition 2.1 is in lhe Appendix. and
We can expand A to an n Iy N iinvertible matrix 1 -2 1 0..II ' -2 5 -1 10

Ay by addiig in rows on the lop of A .We choose thle At 1 -1 6 -1 1 0
I = -- 0 1 -I 6 -1 1

following setup to make new rows consistent with the ,
others in A . Let t0 = 0, t I = I . -111+1 = t -I 0 1 -1 6 1

and deftine 0 1 - 6 -1
I 1 ( t j t k ) I f o r i - -n < j 5 i , 1 -t)

(A III It (anl he shown that N) has thle samo 5-iatid striuctiure
kijo as in (:1.1) with M111 = n(2+L)/2., MI1 2 = n(l-2L)/24,

(2.3) .. 2 =n(.1+5L)/2.l. Mii = n(.A+6L)/2.1, for i > :3,

Then Ai H is a I.,m- tbiangular matrix with noiizero .ii = 1(l-11.)/21, for i >2 and q iii+2 = nL,/2l. for

diagonals, hence invert il)Ie. all i > I. where I = 6n4 A. {ecall that the (j,i)-th entry

Proposition 2.2. In A 1 1 l is a syninetric of M-1 can he computed as the ratio of the cofact or of

(2m-I)-band matrix. lIhe eleniet .ij and the determinant of M1. Utilizing the
A proo~f of Proposit iou 2.2 is in tlie A\ppendix. 1

band pattern of the matrix .we are able to compute

3. NUMERICAL ALGORI'iMS FOR SMOOTIlNG each enlry of 1-1 efficienllv' by the following procedure
SPLINES WITH JUMPS which is (lescribed in a mor , geoneral form.

For siroplicit v., lie susrp.o A wilhek
o suhsrit o will Let. k be a k ly k symmei ric 5-1hand iiatrix (of the

sippressed if no confusion cati occur. l)eiote saie form as Dnt with .11  a, A2 1 =b. A.

-t-he foma-)wtt I=aA1 ) J2=C
- (At)-c, T = Al, = Ay, and q = A( +nAl)A' for 1 < i < k -2, A 2 = d. Ai,i+ 1 = e, for 2 < i < k-I

M A". Then the syst l it of equations (is) i and Aii = f, for :3 < i < k. Let Itk he the k by k malrix

eqivale t to of the lower block of A k +2, that is. the 5-band

Z + T() svrinctric matrix with ii = f, for I < i < k, Bi. - e.{51.±Tl=i- i,i+I=
Tt .= 0, for I ( i < k- I andl I. =c, for I <i<k-2. Also

and the solut ion (an he exp~resse(d explicit ly as define I, k and f1k to be lIe k )v k matrices o)itained i
removing the last row aiid the J-Icl Coltumitn of A kI

( iand I k r(sp((tively. L(t 1 k (j) ie the k-I by k-I

: = -t ( I - T(TmattT)iTi-I).. tatrix obtained by- ret oving, the First row an(t lhe j-tli

Note that by the constrlio) of the mtat rix A atid (olumn of Itk. )enole I.\ k , k' ' i k' ? k and ,kI lie

Proposition 2.2, M" is a symmetric (2m+l)-I-and detenrminants of matrices Ak, (k k, k and kj)

matrix. Therefore the iniverse of q1 can Ibe compi)ited if) reslehct ivel y. We also need Io c pnu l ,ke ,. t lie
2( 1 n2 )operaions (e.i.I)oinmarra et al., 1979). Moroover, determinant of thle matrix Fk (I lk+l(k+ )) whih is

(he k by k mani. obtainedn Ity deleting the first row and

note also that ri = k' is a very sparse niatrix (t Io k ky i
lernmm a A .I. Therefore, /P ca ihe ('I he ) uted witho t lIeh last column of i e ii lie it tat ri-x ofA.

involving niany entries of .- I for he equally spa(ed I .icOdC( l I. (('olti iiil ig allv etiry (f) (A)-I)

knots case. Step I R{ecursively coniiputte 1 0 k= .. i} and
We only consider the (ase of ii=2. 1ii the following,

we develop a proce(lure whih coinliutes ea ci try if {0 k' k= 1,2 ... i -I} as follows:
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= fk_1 - + Ce -fc 2 + d0 (3) To show that the GCV function V(A) can be
tkk- 3  computed in linear time, we first note that

ak= e ok1 - ec 'k- 2 + ' k-2  I-A(A) = nA M-1 (I -T Iqt-1-ItM -1)

with initial conditions a b cA 2tS-l (I - T(itSQ-T)-I 1), (3.5)

10 = 1,( =aa 9 = ad - b- , 613 = det  b de ,and that the numerator and the denominator of V(A)
Sc e f are

0 = 0, °l = b, .2 = ae - be. I(I-A(A)yll 2  H nA - H2 
= 11 nAc 11 (3.6)

Step 2. Recursively compute {3 k, k=l,2 .... n} and tr (I-A(A)) = nA [ tr ( ,-s

k~ n- as follows: tr( At.%)-IT(TtM-1T)-ITt,A-IA)]. (3.7)

f3k = f:3- -e:\_ + ceAk-2 - fc 2 3 k-3 + c 3k-l To compute the trace of AtMl ( - tr (M-1l t)

,k = e I ec ;k we a tuaily only need dw ckUitIidi 
2

IL-Ti bU1.d V l

with initial conditions since only the central 2m+1 bands of t are nonzero.

-3 =-2 3-1 = 0' = , Also the (n+l) by n matrix TtM-l can be computed

- = 0=0. in O(n) operations again by the sparsity of T and M.
0 which shows that the second tracc term can also be

Step 3. Recursively compute ' k=.2... n-I } by obtained in linear time. Thus V(A) can be computed in_v 
0(n) operations.

^,k = 2e k -I Cf--2 +c -c I 4k- Remar-k. For the case of the unequally spaced data

with initial conditions points problem, S1 does not have the regular form of

1-3 = 1'-2 T-1 = 0, 10 (3. 4). Although we still do not need the whole I-1
S . p (A) for j > i, we first compute matrix, we do not have a linear time algorithm to

j - compute the required entries. lowever can be
th oatro i lm n Ai Cf "athe cofactor of the element j, (of a ja computed in 0(n-) operations by tne band structure of

Cof An = 3 1- (f - d) 3 M, . Also, T = AT is still sparse. Therefore. for1 i unequally spaced data points problems, we have a
Cf An I .-- - quadratic algorithm which is still more efficient than1 J the existing cubic time algorithm in the partial spline

f n- d)c 3n2j-2, forj_ 2, setup.
_i An-i C 2 n-i-" for 2 < i < n, 4. EFFICIENT ALGORITHMS FOR ORI)INARY

Cof A'. = 1 -1)+ , SMOOTHING SPLINES
' ij { 0i-I '3n-i+l.j-i+l

- t l nij + c 3 As a byproduct of develo)ing the linear time

i- n-i j- i-n-i-l -i-I }algorithm described in Section 3. a linear timefor 2 < i < j < , algorithm for ordinary smoothing splines for equallY

w¥here _1k - c; j + spaced data is available. To describe the algorithm, we
r3 kj Ij l3k-j 1j- k-j - kc j-1 first note that AT = 0. Since Ttc = 0, we can express c

, -Ifor I<j k as At y, for some (n-mo)-vector 7. Then the system of

[henl (Al) 1
- (('of A'' )/a. 1equations (1.8) can be rewritten as %\- = _y with

The complexity of this procedure is easily seen to be W = AEA t + nA AA I, which again is a synunetric
O(n) in step I t hrouigh step 3. aId ('onputing one ent ry (2m+1)-band matrix. Thus y can be solved in linear
in stel) .1 is 0(1). Therefore, if we want to get, the time and then the solution of (.)is

inverse of MI the hst, we can (10) from this procedure is

( 2) since M' is in general a full nIatrix even if .1 is C At W 1  
' = At 7

banded. But T is a very sparse matrix in this f= (Tt IT-v T(y- c).
application. If to = 2. there are only 3 + 2(I nonzero
entries where q is fhe nn tiber of break points. Based oil AIso we have
that, we shall show that V(A). c, and ' can be I - A(A) = niA t \.- A
tomlpuled in O(n) operations, and

(I) The solution q = (Tt-I '1 .I-I.l takes at V(A) 1 c
iliost. (3+q)n entries of (W-I ( A I I-A))2'

(2) Since M is a hand natrix, . - 1 /1 can be The pattern of Wv is even iore regular than the .i
sok-ed inI liniear tinli0, e.g., see l)oniIarra et al. (1979). mlatrix desc ribed il sectlion 3. In tact W has lietaii.

Theli Z (-an be t ransforiied hack to c in linear t im iy pattern as the In matrix described in the previous
c: (,. s(eciit. By rl)lm iu,, li,)k by 'i) and ( k I ) Y fw k
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in the Procedure 1, we canl obtain a procedure for 1 i +m I_,j+mmI
computing any entry of the inverse of W in constant I A ik (tk-u)+ 1l S A. (t,-u)m du.
time once a linear time overhead for recursively + k5= .s= j
computing three sequences of determinants is done. Then by Lemma A. the second sum in the integrand is

Procedure 2. (Computing any entry of (B n) -1) 0 ro fPooiin22 e etei ynmti
Step 1. Recursively compute 13 k' k=l,2 PofofPoos o .2 e 1 ete nb nmti

i,,k=l,2,...,n-l} and ,~k k=I,2,.n-li s l formed by the top m rows of A M*Note that IL. 0 for
k'k i <j n, i 1, 2.in. Then

Procedure 1. 1U~ V
Step 2. To compute (j,i)-th entry of (Bn)l for j > i, we 2SY-2 = J. 1.A

first conmpute the cofactor of the element fllii (of filAEtM
as Since AEA t is a syrnmetric 2ni-I band matrix, it

Cof B? i- i i~ u~ - c' . 3 1-i-1, for I < i < suffices to show that ( -J ,t)j=0, for i < j 5 n-ni,
('of B?) H )I~ {3 j3 i = 1,2,.mn. By the same argument as in the proof of

3inil-~ Proposition 2.t, we have ( U A). equals to
- 13'h - + c1 3 i2n-- Iji- 9

for I ( i n, I<(i~h times

where 0 _, 1A4~ j- J2"k-j + -~3'kjl' nE- j-mA (t -i d

for I1< jS k < n. 0 k=1 s= jt-) -) ]u
Then(Br~.. Cof ').)3 .again, which isO0 if j ? i.
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ON THE CONSISTENCY OF A REGRESSION FUNCTION
WITH LOCAL BANDWIDTH SELECTION

'ING YANG. University of Cincinnati

This paper studies the kernel estimators of an---In 1 xX 1 , (14)
unknown regression function with data-based local MrJx'ho)= ]
bandwidth (LB) selection. Under the weak conditions, we
discuss the uniformly strong convergence and is determined by a sample (X1 . Y) ...... (Xn,
convergence rate of kernel estimators with a local Y,) of independent observations from the
bandwidth (or an automatic local bandwidth), population. by a kernel function K(x) and a

bandwidth hn. in (1.4). h, is a sequence of
I.INTRODUCTION bandwidths with ho$ 0 and nhn-4 - as n -

-, and f, (x, h ) is an estimate of the
Let X . X 2 ..... X n be identically marginal density fix) of X. See Watson

independently distributed random variables (1964). Nadaraya (1964) for the original
with unknown density function fix). We definition, and Hdirdle and Marron (1985) for
consider the kernel estimator f4x) of the recent developments.
density fQx) defined by the following form When sampling independently, uniform
(Rosenblatt-Parzen type) consistency results such as:

1 1-X1 supVn(x, hn-f (x)l -f 0 a. s. or
f,_(x, I)= - K 1) A -- (1.5)

sup IMnx~hn )-r(x It -. 0 a. s.

where K(x) is a real-valued Borel measurable
function on R and h n (> 0) is the bandwidth were obtained under certain restrictions
which is assumed to satisfy hn- 0 and nhn-  imposed on K and f. and under the

as n -* -. If K(x) is chosen to be a density restriction
function, i.e.. n h n a oo

lagn
f K(x)dx--l and K(x) -? 0, (1.2)

These results can be found in papers by
Deheuvels (1974). Silverman (1978), Collomb.fr(x) itself will be a probability density(1 7 ) De r e ( 98 . an H ide a d

function. 99)Dery (18,an Htrean

Assume that (X, Y) is a pair of random Marron (1985).
In practice. the choice of the bandwidth Iivariables. If E I Y I) < o, there exists a

regression function given by is one of the crucial points in applying Mn (x.h). The estimator (1.4) exhibits a large

f yvariance if h is chosen small, but it has large
m(x)=E(YIX=xj= f y g~x, _' (1.3) bias if a large It is used. For this situation

f (x f W . methods of a global selection of h was studied

by 1I-irdle and Kelly (1987).
where flx) Is the marginal density of X, However, when data are quite nonlinear.
r(x)=Jyg(x, y)dy, and g(x. yj) is the joint heteroscedastic. and nonhomogeneous. using a
density of (X, Y). Let (X 1 , Ylj, (X2 , Y2 ). . . . global bandwidth h may not be efficient. This
be independent random observations with the situation motivates the study of the keinc'
same distribution as (X, Y). The kernel estimators with data-based locally varying
estimate M,,(x. It) of mx) defined by bandwidth. The corresponding kernel

266



estimator is qx yj 4 xydy

m (x.h (x))=r ,(x.h (x)) f (x.h (x)) (1.6)

Assume G (x), j=O, I ... , k+ 1. exists for all x.whereJ
2

and Gk(x) is integrable and bounded.

l__h__ K , x-X ,( (C.4) Y is a. s. bounded, i. e., there is a
n (X) constant C. such that

IYI C a.s.

fIxKhh (J). (1.8) We can show that the larger k is in the

nh n (X) i=1 [1 -X)) condition (C.2), the higher is the convergence

rate of the estimator rmn(x. hn(x)) with

and h(x) denotes that the bandwidth is a optimal LB w. r. t. MSE(mn). For example.

function of x. If the density fix) is known. Epanechnikov's (1969) kernel

the estim ate of m (x) is sim plified as 3 (1-u ) Ii -11(U)

m (x. h , (M))= r,,(x.h W))/f (A) (1.9)

is in 9To 2" The kernel
For a non-random variable X, this type of 0. 2

estimator was studied by Mtiller and 91 5 2'

Stadtmfiller (1987). K(u)= -1- - u2 I, 1 (u) is in 7Mo.4.

In the following, the notion of optimality

always refers to minimization of the mean
squared error (MSE) of the estimate for local In this section. we discuss the convergence

bandwidth (LB) selection, or of the integrated of regression estimation with LB. We define

mean squared error (IMSE) of the estimate for that hn=h (,)=rn -  
. where is a function

global bandwidth (GB) selection, of x and 0<a < x!< b < Both a and b are
In Section 2, we present several results

about the uniformly strong consistency of the constant here. First we consider the case rx is

kernel estimators with LB and we also point non-random variable. But because r.x will be

out the rate of this convergence. Mention that estimated from the data, secondly. we study the

the conditions we use are weaker than in properties of the estimators in case that r, is
Ikirdle and Marron (1985) and Mack andMiller (1987). chosen as random variable. For simplifying our

local bandwidth considerations, we assume

2. UNIFORMLY STRONG CONSISTENCY that fix) >£ > 0 on finite interval I=[-M. Ml.

M >0. and the value ris always contained in [a.

In the following sections. we make several bl. From now on we will write mn(r). r(r ) . and
restrictions on the kernel and the joint f,,(r) in place of m,,(xh n(r)), r,,(x.h (r)). and

probability density of (X. YJ : f,(x.h (r)). respectively, to relieve the burden

(C.l) K is bounded, continuous, symmetric, of notation.

and has finite total variation. Central to our study is the error process

(C.2) Assume that K(x)E IMO.k (defination of m "(r)-m (Ax. for a!5 r,b.

Mo k is in Mfiller and Stadtmfiller It can be rewritten as

(1987)) for k > 2 and K 2(x) is integrable.
(C.3) The probability density g(x. y) of (X. Y1

has up to (k+I)th partial derivatives w. r.

t. x. Define
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1 [rn( )-r (x)]- W1 - () r,(r)-r (x)=a n(x)+p3 (x),

if,(r)-f Wl where a(x)=Er (T)-r (x) is non-random, and
-1m,(x )-rfxj ) f (2.1) #3,(x)=r n(T-Er n(r) is random.

Let F(x, y) be a distribution function of (X,

In order to facilitate our main discussions in Y). and Fn(x, y) its empirical distribution
this section, we state the following result function based on an . i. d. sample (XIY 1 ).
which is established in Yang (1988). Define (Xr Y, i. e.,

(n)=n 1 k (log logn/n)12  (2.2) F (x. y)= y _I('* ×l .'iX iY'n

n=1

LEMMA 2.1. (Uniform strong convergency
of LB density estimators). Suppose that the where I is an indicator function. We rewrite
property in (C.3) is true for density fix)
instead of for g(x, y). Condition (C.1) and
(C.2) hold in both (i) and (ii): Er n(r) = 1 '. I x-u \(x y)dudty

(i) If r, is non-random, then hn(r) hr(r) f"

sufn(r)-f x<l 5(n)] a s (2.3) x )Fux.y).

(ii) If r x is random then and

r-fa()= ff_ = q, In)) s.. .

Let r be in Ia. b]. According to Lemma 2. 1.
(2.1) can be simplified as According to (C.1)-(C.4) and Taylor's

~ (z)-m(xl+oIm n (r)-m(xil=F Ira (r) cxpaiisi,n. we easily derive thatmn ()MX+ln()mx1 r r

(2.5)( ) (2.-k5 
2k+i1 k

-r (x)Wj f(z-f W)j. sup sup I an(x)I<-C ln b . (2.6)
f(x)

and

In the case of fix) unknown, we replace
fix) by its estimator f, in (1.9). In other SLP Sup 1]nx) -< SuIFP(x, y)-F(x, y)1, (2.7)
words, we have to consider the problem of the -lab] n (a) Ia x.(
estimator mntn (1.6) which has a random
denominator. From a mathematically deductive
point of view, this is a difficult feature in our whe ta ion of K F Io and r is
studying process. Applying (2.5). the problem the total variation of K. From the result of
of convergence of m,, is simplified as the Kiefer (1961)for F continuous.
problem of convergence of r,, and f,, . The
problem of convergence of f, is done in PrgIimn supIF,,(x.yl-F(x.yll/(log logn/2) =l1

Lemma 2.1.

Now we discuss the convergence of r,. We =1. (2.81

state the following facts which are either
established by traditional techniques or in From (2.8). we obtain that there is constant
literature. (For a good reference . see Prakasa C. such that
Rao (1983. p.33-48)). We write
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stT1F,(x Y)-P (, 11 1! C 1 1/2SuSUPI r,,(r 1) -r ,1(r 2) 1=0((5(n)) a. s

s-p IFn-X.y)-Fjx.y) I<C a. s. (2.9) TT2

Relations (2.7) and (2.9) prove that Proof. According to (2.!1). we have

su p s C 2  lg lgn a( . sup sup rn(r 1)-r n(r 2) < 2C3 (n) a . s

UP iu bp J, (X ) I - h n(a ) 1o a .s . (2 .10) b

COROLARY 2.2. Assume that r, is a random

Comparing (2.6) and (2.10). we get the
following result variable ard r, E [a, b] a.s ..r, is afunction of x

ard rE la, bi. Suppose (C. 1)-(C.4) hold . then

sup sup Irn(r)-r(x)<_C5 (n) a.s. (2.11)

sup I r (rj-r n(r) l =O(6 (n)) a. s.
X

where 3(n) is in (2.2). Therefore, we have
proved Proof. By applying the following inequality

THEOREM 2.1. Assume that the conditions rfor any r and r 2

(C.1)-(C.4) hold. then rri(.)-r n(r) k sup r (r 1)-r fr a

suIr,,(r r (W) 1=0(8 (n)) a. s. - [a, bi and for any x. and Corollary 2. 1. this

lemma is done immediately. I

In the situation of fix) known, under our Under the conditions of Corollary 2.2. we

conditions, it is easily implied that the have the following important fact.

convergence of mn(r) is the same as of rn(r). THEOREM 2.2.

We know that the optimal LB choice requires

knowledge at the point x of unknown sT I r(rj-r(x)I=0(6 (n)) a.s.

functions, and is thus not available in practice.

(see Yang (1988)) Some people study whether
l Proof. For any fixed x. and r, E [a. b]. we

one can use a pilot estimate rx of rxto form a have

data-driven bandwidth sequence h(r) in such a

Ir,(rX)-rix)l < sup Irnlr)-rjx)I.
way that m (r) is as efficient as m r(r,). For the rTIojb

kernel estlniidtijn case. Krieger and Pands
(1981) and Abramson (1982) answered in the Ilence. we imply the following inLquality
positive. Mack and Muller (1987) proved
similar results for the kernel regression case. s r r [a p b
Their methods of attack involved tightness and
weak convergence of some error process. In

this article, we will present strong consistency According to (2.11). the proof is done. I
results on the more generally data-driven LB

Recalling relation (2.5) and applying Lemma
estimator m~v.l under simpler conditions. We 2.1. Theorem 2.1 and 2.2. we complete the
state proof of the uniformly strong convergence of

COROLLARY 2.1. Suppose that conditions regression estimator mn  for the case flx)

(C. 1) - (C. 4) hold . Then for ag r, and r2  unknown. The results are stated as following.

contained in [a. b]. THEOREM 2.3. (Uniform strong
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Software for Bayesian Analysis: Current Status and Additional Needs -H

Prem K. Goel
The Ohio State University

Abstract few people have devoted their energy in developing
Bayesian analysis software.

This article provides fairly comprehensive The available software is listed according to the
information about the existing software for Bayesian data following categories: general purpose data monitor
analysis. An earlier version of this article is published in (Section 2); Regression, Time Series & Econometric
Goel(1988). Even though new software is being developed modeling (Section 3); Computation/Approximation of
at a reasonable pace, the Bayesian software available for posterior distribution features (Section 4); Elicitation of
widespread usage is still in its infancy. Thus the goal of a prior information (Section 5); Reliability Analysis
general purpose Bayesian Statistical Analysis Package is a (Section 6) and Miscellaneous (Section 7). Our views on
long way to go. Two avenues for quickly reaching this developing a general purpose Bayesian Analysis Package
goal are discussed in the concluding section. are given in Section 8.

1. Introduction. 2. General purpose data analysis

In May 1986, a workshop on Bayesian computing, Program Name: CADA [Computer Assisted Data
to discuss various issues in an open forum, was organized Analysis Monitor, 1983 (CADA Group)]
at The Ohio State University. The two main issues Function: CADA, a conversational language for Bayesian
discussed were (1) desirable computing environments for analysis, is a hierarchically structured system with severa!
Bayesian statistical analysis, and (2) potentials for a component groups.
Bayesian Analysis package. Although almost all the Input: On-line raw data entry or data files to be loaded.
participants believed that wide-spread use of Bayesian Output: Analysis for beta, two-parameter normal, and
methodology will not become a reality without an multinomial models based on conjugate priors;
interactive Bayesian statistical analysis package, most assessment of conjugate priors and utility functions; full
agreed that it is too early to push for one. Diverse points rank Model I ANOVA and MANOVA for multifactor
of view also existed about the environment suitable for a designs using conjugate or noninformative priors;
future package. simultaneous estimation of regression in m-groups;

However, it was suggested that future development psychometric methods; EDA; probability distribution and
of a package will become easy if new Bayesian software is actuarial functions.
compatible with an existing statistical package with Language: BASIC Compiler or interpreter required.
excellent data handling and graphics capabilities, e.g.,S©'. Machines: DEC-PDP-I I(RSTS); DEC-VAX-I I(VMS),
Development of a Bayesian 'Bulletin Board' and 'Software PRIME, HP-3000. IBM PC version to be released soon.
Database' accessible via networks for news and file Documentation: Novick, M.L.et al.(1983), Manual for

transfers, was also suggested. These task have not been the Computer-Assisted Data Analysis (CADA) Monitor,
initiated as of now. Hopefully, such an initiative may be Iowa City, IA: CADA Group, Inc..
taken in the Fall '88. Availability: Available for $600 per copy from The

The information compiled in this article was CADA Group, Inc., 306 Mullin Ave., Iowa City, IA
provided by the individuals listed within the parenthesis 52240, Tel. # (319) 351-7200
after the program name. We did not have access to any
mailing list for the engineers involved in risk assessment Program Name: BAYES PAK(Barlow)
and reliability, who have developed several special purpose Function: A menu driven collection of programs for
Bayesian analysis programs which could be adapted for teaching simple Bayesian analysis concepts. It provides
general reliability applications. Thus the listing of plotting capability for data and for various densities as
reliability programs is rather incomplete. On comparing well as analysis and simulation. It is used at UC
similar listings in Press(19V), it is clear that impressive Berkeley for an engineering statistics course.
gains have been made in the development of software for Input: Menu driven interactive environment prompts for
implementing Bayesian paradigm, based on realistic input parameters.
specifications of prior information, via approximations, Output: The program provides plotting capability for
numerical analysis, and Monte Carlo integration densities involved in the conjugate Bayesian analysis of
techniques. On the other hand, it is also clear that only a Binomial and Normal data. It can also plot two densities

for different parameter specifications simultaneously.
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Some simulation capability using Uniform and White Program Name: BRAP [Bayesian Regression Analysis
noise random variables is also available. Program, Ver. 2.0 (Abowd/ Zellner)]
Language: BASIC Function: Provides a unified package for the Bayesian
Machines: IBM PC-AT or compatibles, IBM EGA or analyses of the normal linear multiple regression model
CGA graphics card (MRM) with multivariate normal errors under a
Documentation: Barlow, R.E, BAYES PAK, Users noninformative prior, a g-prior or a natural conjugate
Manual, Berkeley, CA: University of California prior distribution. Some data transformations are built-in
Availability: Diskette available from Prof. Richard E. and IMSL© could be used for others.
Barlow, Department of I.E. & O.R., University of Input: Control cards in JCL format. Data files loaded
California, Berkeley, CA 94720 thru JCL.

Output: Updates the prior parameters; provides standard
posterior information; Plots raw data and residuals,

3. Normal Linear Regression, Time Series & marginal and bivariate contours of the prior and the
Econometric models, posterior distributions of the regression coefficients,

posterior distribution of the realized errors, posterior
Program Name: BATS [Bayesian Analysis of Time distribution of linear functions of coefficients; quantiles
Series, Release 1.1, June 1987(West)] of posterior distribution for nonstandard models can be
Function: This software package provides a completely obtained via numerical integration and Monte-Carlo
menu driven collection of functions that can be used for a routines.
variety of activities in data management, analysis and Language: FORTRAN-IV
graphical displays. Bayesian approach to time series Machine: IBM-MVS (may need some modifications for
modeling and forecasting is based on a wide class of recent IBM compilers)
dynamic linear, and non-linear, models suitable for many Documentation: Abowd, J.M., Moulton, B. R. and
types of time series data arising in industrial , economic Zellner, A.(1985) The Bayesian Regression Analysis
and scientific investigations. The program allows data Package, BRAP user's Manual ,Version 2.0, H.G.B.
transformations and dynamic model definition, specifying Alexander Research Foundation, Graduate School of
components for smooth trends, described by polynomial Business, University of Chicago
functions over time, regression effects of independent Availability: Package available from Prof. Arnold
variables, additive or multiplicative seasonal components Zellner, University of Chicago, Graduate SL hool of
and error terms as well as interactive specification of prior Business 1101 East 58th Street, Chicago IL 600 7 at a
distributions on model components.. very nominal cost.
Input: Menu Driven interactive environment prompts for Remarks: Other contributors to the developn ,:nt of
input parameters. No knowledge of APL is necessary. BRAP include F. Finnegan, S. Grossman, C. Pits. c , P.
Output: Interactive mode for data description and Rossi, A. Siow, J. Stafford, and W. Vandaele.
summaries and displays in numerical and graphical forms;
sequential model estimation; numerical and graphical Program Name: BRAP-PC [Bayesian Regress on
displays of features of fitted model, smoothed estimates of Analysis Package for the IBM PC(de Alba/ Rocha)]
components including trend, growth, seasonal effects and Function: This enhancement of BRAP also includes
factors, regression effects and parameters, residuals, and subroutines for Bayesian disaggregation and constrained
error variances. In addition, retrospective fit of time series forecasting.
and step-ahead forecasts are also available. The numerical Language: FORTRAN 77
summaries and model information can be saved on disk Machines: IBM PC and PC compatibles.
file or printed. Interactive manipulation of graphic Availability: Available from Prof. Enrique de Alba,
displays for report production is also possible. Instituto Technologico Autonomo De Mexico (ITAM),
Language: APL*PLUS/PC© Release 6.3 or later (user Rio Hondo, No. 1, Mexico, D.F. 01000 at a nominal
must have the interpreter) mailing & diskette charges.
Machines: IBM PC, AT&T and compatibles with a
minimum of 520K RAM Program Name: SEARCH [Seeks Extreme and Average
Documentation: West, M., Harrison, J. and Pole, Regression Coefficient Hypothesis (Leamer/Leonard))
A.(1987) BATS: A User Guide, Coventry, England: Function: A user-oriented package for Bayesian inference
University of Warwick and sensitivity analysis that pools prior beliefs about the
Availability: Available for private or academic use for a regression coefficients with evidence embodied in a given
nominal charge of 30 Pounds Sterling from the Bayesian data set. Prior beliefs are assumed to be equivalent to a
Forecasting Group, Department of Statistics, University previous, but possibly fictitious data set. SEARCH
of Warwick, Coventry CV4 7AL, England. offers a study of the sensitivity of the posterior estimates
Remarks: Some of the theoretical developments and to changes in features of the prior beliefs expressed in
applications are discussed in West, Harrison & terms of a ficitious data set.
Migon(1985) and West & Harrison(1986), Harrison & Input: Formatted or free-format card-image files or on-
West(1987). line CRT input. Input files can be prepared on SAS©,

274



BMDP©, TSP©, and SPSS©. SEARCH requires a conditional posterior with given precision, conditional
double precision version of IMSL© library. posteriors of some regression coefficients given the
Output: Diagnostic messages for debugging syntax errors others, marginalized over the precision.
are available. Program reports summary of prior and data Language: FORTRAN 77
information received and computes the approximate Machine: IBM 370/158 at the University of Louvain. In
posterior mode for the regression coefficients when the near term, a PC version is possible.
prior beliefs are modeled as Rp3 having a normal Documentation: Bauwens, L. and Tompa, H. (1977)

distribution with a prior mean r and a prior covariance Bayesian Regression Program (BRP), CORE User's

matrix V. It also reports the sensitivity of the modal Manual Set # A-5, and Tompa, H.(1977) Poly-t

estimate to changes in r and V in the form of extreme Distributions (PTD), CORE User's Manual Set # C-9.

bounds for any linear function of the parameters specified Availability: Available for 5,000 Belgium Francs from

by the user. Prof. Luc Bauwens, CORE, 34 Voie Du Roman Paays,

Language: FORTRAN IV. The manual for Version 6 B-1348 Louvain-La-Neuve, Belgium.

states that SEARCH is not completely in FORTRAN Remarks: These programs have been developed by H.

source code. Several of the subroutines for performing Tompa under the guidance of Profs. Jacques Dreze and

high precision arithmetic are object code modules (written Jean-Francois Richard and with assistance from Luc
in IBM 370 machine code). Bulk of the SEARCH is Bauwens, Jean-Paul Bulteau and Philippe Gille.

written in FORTRAN IV that is compiled at UCLA on
the IBM G I Compiler. Program Name: BARMA [Fully Bayesian Analysis of
Machine: IBM 370/3033. ARMA Time Series Models(Monahan)]
Documentation: Learner, E.E. and Leonard, H. B. (1985) Function: A collection of main program and subroutines

User's Manual for SEARCH- A software package for carries out the Bayesian Analysis for ARMA time series
Bayesian inference and sensitivity analysis, Version 6. models using natural conjugate priors as described in

Availability: Available for $100 per copy from Prof. E. Monahan(1983).
E. Learner, Department of Economics, UCLA, 405 Output: Programs compute the posterior and predictive
Hilgard Av., Los Angeles, CA 90024, (213) 825-1011, distributions of parameters for a given set of ARMA

on an IBM OS standard label 9 track 1600 BPI tape models using the natural conjugate prior. Graphical

containing four card-image files. displays are obtained via SAS/GRAPH.
Remarks: This version, programmed by Arvin Stidick, Language: FORTRAN 66

differs from Version 5 in efficiency of computation and Machine: Portable

economy of input/output The Manual was largely Documentation: Monahan, J.(1980) 'A Structured

rewritten by Thomas E. Wolff. A latest example of how Bayesian Approach to ARMA time series models,
SEARCH can be used is given in Learner, E. E. and IIIIII', Technical Reports, Department of Statistics,

Leonard, H.B.(1983) Reporting the fragility of Regression North Carolina State University, Raleigh, NC.
Estimates, The Review of Economics and Statistics. Availability: The package available on tape from Prof.

John Monahan, Department of Statistics, North Carolina
Program Name: MICRO EBA [ Micro computer version State University, P.O. Box 8203, Raleigh , NC 27695

of SEARCH(Fowles)] at a nominal charge.

Function: This main program is the micro computer
version of the above program SEARCH Program Name: Sampling the Future (Thompson)
Language: GAUSS Function: This program simulates the predictive

Machine: Any personal computer running GAUSS distribution of a set of future observations via Monte

software package Version 1.46 or higher. Carlo methods as discussed in Thompson (1986).

Availability: Available free of charge from Prof. Richard Output: The main program and subroutines provide a

Fowles, Department of Economics, Rutgers University, Monte-Carlo histogram for the predictive distribution of a

Newark, NJ 07102. future observation or a scattergram of samples from the
predictive distribution of a pair of future observations.

Program Name: BRP [ Bayesian Regression Program The program allows as many as 10 ARMA parameters in

(Bauwens)] up to 3 AR factors and up to 3 MA factors. Thus

Function: This main program performs Bayesian multiplicative seasonal factors and the difference factors

regression analysis for various standard econometric may be used in the model. Estimation step allows either

models, discussed in Dreze(1977). The prior beliefs are a diffuse or a conjugate normal/ gamma prior distribution.

modeled as Poly-t densities evaluated via the program Language: FORTRAN 77 ANSI standard.

PTD. Machine:The program runs on any machine with standard

Input: Raw data as card-image files. Input is echoed as FORTRAN 77 compiler and IMSL© library. Future

output. extensions will requires a graphics terminal. The program

Output: Posterior parameters, precision & standard will run on a PC with a math co-processor. A PC-AT

deviations, and marginals of regression coefficieiits; type machine with a hard disk is recommended.

classical regression analysis, posterior residuals and Availability: Diskette available for $10 from Prof.

predictive density function of the dependent variable; Patrick Thompson, Faculty of Maiiagement Sciences, The
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Ohio State University, 1775 S. College Road, Columbus Program Name: PROC SEQ [Sequential Scoring
OH 43210. Algorithm(Blattenberger)j
Remarks: Future enhancement plans include a graphic Function: The function performs iterative computation of
display of predictive distributions and to add the algorithm forecasting distribution for the dependent variable of a
for prediction from a set of ARMA models given in normal linear model with a normal-gamma prior
Monahan (1983). distribution or optional g-priors. Scores for five different

scoring rules are also computed.
Program Name: Bayes & Empirical Bayes Shrinkage Language: STAT80 Procedure; being converted to SAS©
Estimation of Regression Coefficients (Nebebe) PROC MATRIX.
Function: The program computes Bayes and empirical Availability: Available free of charge from Prof. Gail
Bayes Estimates for a multiple normal linear regression Blattenberger, Department of Economics, University of
model in which the prior for the regression coefficients Utah, Salt Lake City, UT.
and the precision is modeled as a hierarchical normal with
mean I and precision r2 . The hyperparameters are Program Name: MAXENT [Data Analysis by Maximum
assumed to have various diffuse distributions.[see Nebebe, Entropy Principle Version 1.17 (Jaynes)]
F. and Stroud, T.W. F.(1986).] Function: This beta version of MAXENT provides
Language: FORTRAN, requires access to NAG© library. fitting of an incompletely specified linear model of the
Documentation: No separate documentation is available. form Y=X F, where the data vector is Y, the 'smearing
The details are given in Nebebe, F. (1984) Ph.D. thesis, matrix' X is known but not of full rank and the elements
Department of Mathematics and Statistics, Queen's of the vector F are non-negative adding to 1. The
University, Kingston, Canada. Maximum Entropy Principle, see Jaynes(1983) finds the
Availability: Available from Prof. F. Nebebe, Dept. of solution which maximizes the entropy of the probability
Decision Sc. and MIS, Concordia University, 1455 De distribution of F.
Maisonnevue Blvd. West, Montreal, Quebec H3GlM8, Input: This interactive program requires the input of
Canada accuracy level for constraints satisfaction.
Remarks: This program provides no extra capability Output: The optimal solution is obtained iteratively,
beyond BRAP, SEARCH or BAP. But it may be useful with access to the output for each iteration.
for individuals who do not.have access to IMSL package. Language: BASIC

Machines: IBM PC and compatibles. An ASCII source
Program Name: SHAZAM [General Econometrics code file is also on the diskette for transporting the
program (White)] program to other micro computers.
Function: The program provides a portable FORTRAN Documentation: Help file and Manual on diskette.
program for general econometric modeling. PC version Availability: Available free from Prof. Ed T. Jaynes,
for $250, main frame version for $500-900. The author Department of Physics, Washington University, St.
promises that the next version will include a Bayesian Louis, MO 63130.
Inequality regression.
Availability: Available from Prof. Kenneth J. White, The programs briefly discussed below have been written
Economics Department, University of British Columbia, for specific applications of linear models.
Vancouver, B.C. Canada. Program Name: RECONDA (Braithwait, Steven)
Program Name: BTS [Bayesian Time series Function: This C program incorporates engineering prior
(Carlin/Dcmpster)] estimates of appliance level electricity consumption into a
Function: This program package carries out statistical analysis of household hourly consumption via
computations for Bayesian estimation of unobserved a hierarchical linear model. The modeling details are
components('seasonal'/'nonseasonal') in monthly time given in Caves, HCrriges,Train, Windle(987).
series under a class of Gaussian Mixed models as described Machines: IBM PC and PC compatibles
in Carlin, Dempster and Jonas(1985). It uses likelihood Availability: The program will be distributed free of
based methods for estimation of model parameters. charge by EPRI, P.O. Box 10412, Palo Alto, CA 94303
Output: The program provides posterior estimates of to EPRI member utilities, government and academic
model parameters. A non-portable version for the Apollo institutions.
DN600 workstation has many graphics capabilities. Program Name: Statistical Cost Allocation (Wright,
Language: FORTRAN 77 (Standard ANSI) Rogr)
Documentation: Description of the program is available Roger)
in Carlin, J. B.(1987) Ph.D. Thesis, Department of Function: This FORTRAN 77 program implements the

Statistics, Harvard University indirect cost allocation methodology based on a multiple
Availability: Available free of charge from Prof. A.P. linear model as described in Wright(1983).
Dempster, Department of Statistics, Harvard University, Documentation: The program description and listing are

Science Center, I Oxford Street, Cambridge, MA 02138. given in Wright, R. and Oberg, K.(1983) The 1979-80
University of Michigan Heating Plant and Utilities Cost
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Allocation Study, Working Paper #352, Graduate School Language: FORTRAN 77
of Business Administration, The University of Michigan. Documentation: The algorithm, program listing and
Availability: Available free of charge from Prof. Roger some examples are given in van Dijk, H. K., Hop, J. P.
Wright, Graduate School of Business Administration, and Louter, A. S.(1986) An algorithm for the
The University of Michigan, Ann Arbor, MI 48109. computation of Posterior moments and densities using

simple importance sampling. Econometric Institute
Report 8625/A, Erasmus University, Rotterdam.

4. Computation/Approximation of Posterior Distribution Availability: Available from Prof. Herman K. Van Dijk,
Features. Econometric Institute, Erasmus University Rotterdam,

P.O. Box 1738- 3000 Dr., Rotterdam, The Netherlands.
Program Names: BAYES FOUR & gr ( Smith, A.F.M.) Remarks: Some standard programs for the method of
Function: The Bayes Four system consists of a library of mixed integration [see, van Dijk, Kloek and
subroutines, primarily intended for numerical Boender(1985)] are under preparation by Prof. van DijkL
computation of multiple integrals in interactive mode.
Posterior distribution's features can be evaluated for a Program Name: Monte Carlo Integration (Geweke)
practical implementation of the Bayesian paradigm for up Function: A collection of programs using some
to 6 parameters using numerical integration procedures interesting methods for constructing Importance Sampling
and up to 20 parameters using Monte Carlo integration, density derived from the asymptotic sampling theoretic
The gr library consists of subroutines for an interactive densities of the m.l.e., which are more flexible than the
color graphics system which can be used to reconstruct multivariate Student-t density used in van Dijk program.
and display output of the Bayes Four system. For It has built in diagnostics for the convergence of the
reference, see Smith, Skene, Shaw, Naylor, and numerical approximation to the true values almost surely.
Dransfield(1985). Some applications of this methodology are also give on
Input: Solving an inference problem requires writing the diskette.
main program for calling Bayes Four and gr subroutines. Language: FORTRAN 77 with a double precision
Output: The posterior moments and marginals can be version of IMSL©.
evaluated by calling these menu driven subroutines. The Machines: VAX-VMS or any other machine with
gr package can be used to provide graphical displays of FORTRAN compiler.
the univariate and bivariate marginal posterior densities Availability: Available on diskettes from Prof. John
and predictive densities from outputs of Bayes Four. Geweke, Institute of Statistics and Decision Sciences,
Language: Bayes Four in FORTRAN 77; gr in 68000 Duke University, Durham, NC 27706.
assembler, C and FORTRAN77.
Machines: BAYES FOUR for SUNIII or APPOLO Program Name: BAYES3/3D [Multiparameter Univariate
workstations However gr has not been configured for Bayesian Analysis using Monte Carlo Integration
any standard graphics system or workstation yet (Stewart)]
Documentation: Naylor, J. C. and Shaw, J. E. H.(1985) Function: Bayesian inference for univariate response
BAYES FOUR- User Guide; Naylor, J. C. and Shaw, J. variable using Monte-Carlo integration. Up to nine
E. H.(1985) BAYES FOUR- Implementation Guide ; parameters allowed. Can handle usual random sampling
Shaw, J. E. H. (1985) gr User Guide. All these are data, interval data, censored data, binomial data at different
technical reports from the Nottingham Statistics Group, stresses or times.
Department of Mathematics; University of Nottingham. Input: Data and control cards as card-image files.
Availability: Available from.Prof. Adrian Smith, Output: Displays posterior means and percentile curves,
Department of Mathematics, University of Nottingham, hazard rate functions, or probability of failure(response)
Nottingham, U.K.NG7 2RD(cost for academic use $200) versus stress (dose) or time. (References: Stewart, L.
Remarks: (i) For application of this system to some (1979, 83, 85).
interesting applied problems in pharmaceutical industry, Language: FORTRAN 77
see Racine, Grieve, Fluhler, and Smith (1986) . (ii) An Machines: A graphics terminal is highly desirable but
enhanced version of BAYES 3.5 is available from Prof. not absolutely necessary. Need DISPLA graphics
L.D. Perrichi, Department of Mathematics and Computer software. GKS and DI-3000 versions are being written.
Science, Simon Bolivar University, Apartado 80659, Documentation: Stewart, L. (1987) User's Manual for
Caracas 1080A, Venezuela. BAYES3/3D, A program for multiparameter univariate

Bayesian analysis using Monte Carlo integration.
Program Name: Simple Importance Sampling Availability: The program was developed under various
[Computation of Posterior moments and densities via Federal contracts at Lockheed-Palo Alto Research
Monte Carlo Integration (van Dijk)] Laboratory, Palo Alto CA 94304. Dr. Leland Stewart,
Function: This program approximates multiple integrals will provide the tape in individual cases, on permission
that arise in the posterior moments and marginal densities from Lockheed.
of parameters of interest in econometric and statistical
modeling, via importance sampling Monte Carlo Program Name: LINDLEY.BAS (Sloan)
integration.
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Function: This BASIC subroutine performs algebraic
manipulation and constructs the expanded formula for use 6. Reliability Analysis.
of approximating the ratio of two integrals, required in
the evaluations of the posterior distribution's features, as Program Name: BASS [Bayesian Analysis for Series
discussed in Lindley(1980). Systems (Martz)]
Input: The program prompts for the number of Function: This program performs a Bayesian reliability
parameters to be estimated. analysis of series systems of independent binomial
Output: The printout gives the complete algebraic subsystems and components for either prior or test data at
equation needed to approximate the ratio of integrals, the component, subsystem and overall system level. It
Language: MS BASIC uses a beta prior for the survival probabilities.
Machine: IBM PC or compatibles. Special printing Language: FORTRAN 77
customized for EPSON series of printers. Machines: Portable. Requires DISPLA© software
Availability: Available free of charge from Prof. Jeff A. package for graphics.
Sloan, Department of Statistics, University of Manitoba, Availability: Free of charge from Dr. Harry F. Martz,
Winipeg, Manitoba, Canada R3T 2N2. Group S-I, MS F600, Los Alamos National Laboratory,

Los Alamos, NM 87545.
Program Name: SBAYES (Tierney)
Function: The system consists of S©-functions to Program Name: BURD [ Bayesian Updating of
compute approximations of posterior means, variances Reliability Data (Martz)]
and marginal densities that are generally more accurate Function: The program performs Bayesian updating of
than Lindley's Method mentioned above [see for reference: Binomial and Poisson likelihood with a natural conjugate
Tiemey and Kadane(1986)]. prior or a lognormal prior for the parameter. The
Language: FORTRAN 77 and C. Requires access to the updating for lognormal prior is done via Monte Carlo
S@ package for implementation. integration. These models are used in nuclear industry.
Availability: Available free of charge from Prof. Luke The program is a proprietary of Babcox and Wilcox Inc.
Tierney, School of Statistics, University of Minnesota, Documentation: Ahmed,S., Metcalf, D.R., Clark, R.E.
Minneapolis, MN 55113. and Jacobsen J.A. (1981) BURD- A Computer program

for Bayesian updating of reliability data, NPGD-TM-582,
Babcox and Wilcox Inc., Lynchburg, VA.

5. Elicitation of Prior Information.
Program Name: IPRA [An Interactive Procedure for

Program Name: BAYES (Schervish) Reliability Assessment, Release 2.1, (Singpurwala)]
Function: This program elicits priors and finds posterior Function: A menu driven program performs a prior
and predictive distributions for samples from normal or assessment based on expert opinion or informed
binomial data with natural conjugate priors or mixed judgement and the posterior analysis for Weibull
conjugate plus point mass priors. It also handles flat distributed life length data in a highly interactive manner
priors over bounded regions for normal data. [Se- Singpurwalla(1988)]. It also allows the
Language: FORTRAN IV, requires access to IMSL©. incorporation of the analyst's opinion on the expertise of
Machine: DEC-2060. Graphics are good for GIGI© the experts.
terminals only. Input: On-line data entry or use of menu option to store
Availability: Available on request from Prof. Mark data in a file for later use.
Schervish, Department of Statistics, Carnegie Mellon Output: The program computes the marginal and joint
University, Pittsburgh, PA 15213. posterior densities of the Weibull parameters. The prior

and posterior reliability functions for a specified time
Program Name: [B/D! [ Beliefs adjusted by Data interval as well as distributions of reliability for specified
(Goldstein/Wooff)] mission times can be computed. These quantities can be
Function: This program provides an interactive, displayed in a tabular or 2-d/3-d graphics form or saved
interpretive subjectivist analysis of general (partially on disk.
specified, exchangeable) beliefs as described in Language: IBM BASIC
Goldstein(1987a, b, 1988). Machines: IBM PC-XT or AT or compatibles with math

Output: Provides summaries of as to how and why co-processor and IBM enhanced or color graphics adapters.
beliefs are (i) expected to change and (ii) actually change, Documentation: Aboura, K. N. and Soyer, R.(1986) 'A

as well as system diagnostics based on comparison of (i) User's msnualfor an Interactive PC-Based Procedure for

and (ii). Reliability Assessment., Tech. Report GWU/IRRA/
Language: PASCAL Serial TR-86-14, George Washington University,

Availability: Available at cost of mailing and manual Washington, D.C.
production from Prof. Michael Goldstein, Department of Availability: The program diskette and user's manual are

Statistics, University of Hull, Cottingham Road, Hull, available from Prof. Nozer Singpurwalla, The Institute of

U.K. Reliability & Risk Analysis, George Washington
University, Washington, D.C. 20052 for $95.
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discrimination procedure or a semi-diffuse limit of
Program Name: IPND[An Interactive PC-Based System conjugate priors.
for Predicting the number of defects due to fatigue in Language: Requires access to SAS© package and SASO
Railroad Tracks(Singpurwalla)] PROC MATRIX.
Function: A menu driven program performs a Bayesian Availability: Available free of charge from Prof. Thomas
analysis of a non-homogeneous Poisson process with a W.F.Stroud, Department of Mathematics and Statistics,
Weibull intensity function in which the assessment of the Queen's University, Kingston, Ontario K7L3N6.
prior information about the parameters is induced via an
engineering model based on S-N curves, Program Name: BPC [Bayesian Probabilistic
Singpurwalla(1986). The procedure is applied to Classification (Bernardo)]
prediction of the number of defects due to fatigue in Function: This is a main program for implementing
railroad tracks. Bayesian linear probabilistic classification, as discussed in
Input: On-line data entry or use of menu option to store Bernardo(1988) . It is written to run on APPLE
data in a file for later use. Macintosh. It will be supported in the future.
Output: The program computes the marginal and joint Language: MS FORTRAN 77
posterior densities of the parameters in the Weibull Availability: Available free of charge from Prof. Jose M.
intensity function. The prior and posterior distribution of Bernardo, Department of Statistics, Faculty of
the number of defects due to fatigue over a time period is Mathematics, 46071 Valencia, Spain
also computed. These quantities can be displayed in a
tabular or 2-d/3-d graphics form or saved on disk. Program Name: Generalized Hypergeometric Function
Language: IBM BASIC (Chib)
Machines: IBM PC or compatibles with math co- Function: This program computes the generalized
processor and CGA or EGA graphics board. hypergeometric funci3n, which arise in the Bayes and
Documentation: Choksy, M. and Daryanani, S.(1987) empirical Bayes estimation of the multiple correlation
'An interactive PC-Based System for Predicting the coefficient with a beta prior, [see Tiwari, Jammalamadaka
Number of Defects due to Fatigue in Railroad Tracks: and Chib(1987)].
User's manual "Tech. Report GWU/IRRA/ Serial TR- Language: Gauss
87-3, George Washington University, Washington, D.C. Machines: IBM PC and compatibiles with Math 8087
Availability: Program diskette and user's manual are Co-processor and at least 512K RAM.
available from Prof. Nozer Singpurwalla, The Institute of Availability: Available for $5 from Prof. Siddartha Chib,
Reliability & Risk Analysis, George Washington Department of Economics, 125 Professional Building,
University, Washington, D.C. 20052 at a nominal University of Missouri, Columbia, MO 65211.
charge.
Remarks: This procedure and the program has been
adopted by The Association of American Railroads for the 8. Concluding Remarks.
analysis of fatigue defects data in railroad tracks. It is just
one indication that availability of appropriate software The CADA monitor was the first and the only
would lead to a widespread use of Bayesian methodology, general purpose program for Bayesian data analysis. It

has gone through several enhancements. Even though
Program Name: PREDSIM [Prediction and Simulation CADA was demonstrated at several SBIE seminars and is
for mixtures of exponentials(Sloan)] available in various machine versions, it has not been
Function: This PL/I program performs a Monte-Carlo accepted as 'the package' for Bayesian data analysis. This
simulation of sampling from a mixtures of exponentials is mainly because all analyses in CADA are carried out
model using a method proposed by Marsaglia. It under a noninformative or a simplistic conjugate prior
computes Bayes estimates of the systematic parameters framework. It has no numerical integration.capability,
and reliability function & predictive intervals for future thus it precludes analysis for realistic prior specifications.
observations. Furthermore, the BASIC language does not provide
Machine: Portable. Requires access to IMSL©. today's state of the art computing environment. The
Availability: Available free of charge from Prof. Jeff A. graphical interfaces in CADA is almost non-existent.
Sloan, Department of Statistics, University of Manitoba, The package was probably installed at almost all US
Winipeg, Manitoba, Canada R3T 2N2. universities with Bayesian faculty, but has not been used

extensively for teaching courses. Thus CADA has been
used to a quite limited extant.

7. Miscellaneous. Among the participants of the Bayesian
Computing Workshop at OSU, there was no interest to

Program Name: DISCBDIF (Stroud) choose CADA as the base for the future development of a
Function: This SAS© program classifies an input record suitable Bayesian Package. The current version of CADA
into one of the two normal populations, based on monitor seems to be quite obsolete to us as the basic
training samples from each one. It uses either Geisser's computing environment has not changed. On the other

hand, the package is now being marketed by a private
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company. Depending on their future development Institute of Statistics and Decision Sciences, Duke
strategy, the algorithms in CADA could become a vehicle University.
for an acceptable system. The future plans of the CADA Goel, P.K. (1988) 'Software for Bayesian analysis:
group should be explored before deciding on a strategy. Current status and additional needs', in Bayesian Statistics

The implementation of the Bayesian paradigm for a 3 (Eds: J.M. Bernardo, M.H.DeGroot, and A.F.M.Smith),
realistic data analysis requires a variety of numerical Oxford, England: Oxford University Press.
integration and approximation routines. The growth of Goldstein, M. (1987a) 'Systemic analysis of limited belief
the methodology and software for this has been specifications', The Statistician, 36
phenomenal. But there is a long way to go for Goldstein, M. (1987b) 'Can we build a subjectivist
approximation and numerical integration procedures and statistical package?', in Proc. Symposium in memoriam
useful graphical displays for high dimensional problems. of Bruno de Finetti, To appear.

The only way to develop a quickly acceptable Goldstein, M. (1988) 'The data trajectory', in Bayesian
Interactive Bayesian Software Package is to adopt some of Statistics 3 (Eds: J.M. Bernardo, M.H.DeGroot, and
the existing main programs and subroutines as modules in A.F.M.Smith), Oxford, England: Oxford University
some widely used statistics package which is available for Press.
mini and micro computers and add more modules to it as Harrison, P.J. & West, M. (1987) 'Practical Bayesian
the new methodologies and its software are developed. Forecasting' The Statistician 36
Thus one does not have to develop data management and Jaynes, E.T. (1983) 'Prior information and ambiguity in
graphics capabilities. In addition, the students and data inverse problems' Proc. AMS-SIAM Symposium on
analysts will not have to learn yet another system. It is Inverse Problems, New York.
also wise to develop all new Bayesian software so that it Lindley, D.V. (1980) 'Approximate Bayesian methods', in
could be incorporated in an already existing and widely Bayesian Statistics (Eds: J.M. Bernardo, M.H.DeGroot,
acceptable computing environment. D.V.Lindley and A.F.M.Smith), Valencia, Spain:

The strategy of writing all Bayesian software in S© University Prcsz.
compatible routines sounds appealing from the point of Monahan, John F. (1983) 'Fully Bayesian analysis of
view of researchers in Statistics departments, where UNIX ARMA time Series models', Jour. of Econometrics 31
is slowly becoming a de facto operating system. This 307-331.
was the dominant choice of the participants in the Nebebe, F. and Stroud, T.W.F. (1986) 'Bayes and
Bayesian Computing workshop. However, SO in not empirical Bayes estimation of regression coefficients',
accessible to a large group of statisticians and other Canadian Jour. of Statist. 14 267-280.
researchers in Business schools, Economics and Press, S. James (1980) 'Bayesian computer programs' in
Engineering departments. Thus this option will limit the Bayesian Analysis in Econometrics and Statistics (ed. A.
accessibility of the proposed system. On the other hand, Zellner), Amsterdam: North Holland.
it is about time that most of us agree on one option. Racine, A., Grieve, A.P., Fluhler, H., and Smith,

We believe that a suitable package for this purpose A.F.M. (1986) 'Bayesian methods in practice: Experiences
is SO-Version II, if it is supported. Otherwise, the most in pharmaceutical industry (with discussion), Applied
appropriate choice is MINITAB, since it is supported and Statistics 35 93-150.
is very widely used for teaching and data analysis. We can Singpurwalla, Nozer D. (1986) 'An interactive PC-Based
expect to receive some cooperation from Minitab Inc. system for predicting the number of defects due to fatigue
with a suitable proposal , specially since there are in railroad tracks' GWU/IRRA/Serial TR-86/7, Institute
tremendous prospects for additional sales. We need to of Reliability and Risk Analysis, The George Washington
quickly settle this issue if one wants to see the 'Bayesian University.
21st Century'. Singpurwalla, Nozer D. (1988) 'An interactive PC-Based

procedure for reliability assessment incorporating expert
opinion and survival data' Jour. American Statist. Assoc.,
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An outline of Arizona. *

John Alan McDonald, Dept. of Statistics, U. of Washington

July 29, 1988

1 Introduction Arizona can be found in [22,23,18,21,24,32].
Briefly, the design is motivated by our belief

This paper outlines a system called Arizona, that an ideal system for scientific computing
now under development at the U. of Wash- and data analysis should have:
ington. Arizona is intended to be a portable,
public-domain collection of tools supporting e One language that can be used for both
scientific computing, quantitative graphics, for line-by-line interaction or defining
and data analysis, implemented in Common compiled procedures.
Lisp. 3l and CLOS (the Common Lisp Ob-
ject System)[4]. Minimal overhead in adding new con-

Although there is substantial implementa- piled procedures (or other definitions).
tion of some of the modules described below, 9 A language that supports a wide variety
this paper is more a description of a design of abstractions and the definition of new
than of an actual program. One excuse for kinds of abstractions.
writing a paper on not-yet existing software
is that Arizona is intended primarily as a re- * Programming tools (editor, debugger,
search vehicle- it is hard to predict when, if browsers, metering and monitoring
ever, it will mature and stabilize to the point tools).
of robust production-quality code. However,
we hope that the ideas embodied in its design * Automatic memory management (dy-
are of interest in themselves and of use in fu- namic space allocation and garbage col-
ture scientific computing and data analysis lection).
systems (eg. a "New New S"[2]).

Disussonof the philosophy underlying * Portability over many types of worksta-
Discussion otions and operating .ystems.
*This research was supported by the Office of

Naval Research under Young Investigator award * A community of users and developers.
N00014-86-K-0069, the Dept. of Energy under con-
tract FG0685-ER2500. (The system has benefited * Access to traditional Fortran scientific
from ideas (and sometimes code) contributed by subroutine libraries or equivalents.
many people, including Rick Becker, Andrew Bruce,
Andreas Buja, Pat Burns, John Chambers, Bill Dun-
lap, Robert Gentleman, Peter Huber, Catherine Hur- * A representation of scientifc data di-
ley, John Michalak, Wayne Oldford, Jan Pedersen, rectly in the data structures of the lan-
Steve Peters, Werner Stuetzle, and Alan Wilks.) guage.
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* Comprehensive numerical, graphical, * Collections, which requires Common
and statistical functionality. Lisp and CLOS,

" Device independent static output graph- * Linear Algebra, which requires Basic

ics. Math and Collections,

* Window based interactive graphics. e Probability, which requires Linear Alge-

bra,

* Support for efficient and concurrent ac-
cess to large databases. * Database, which requires Collections,and

* Documentation and tutorials, both pa- e Statistics, which requires Database and
per and on-line. Probability.

The first nine points (through "access to For- The current design for the graphics part
tran") come for free with standard Common is fairly tentative. Implementation of a
Lisp environments. The remaining six are portable scientific grPhics tolkit requires
the research aspects of Arizona. a standardized interface between Common

Because of limitations of space, for the rest Lisp/CLOS and the large variety of pro-
of this paper we are assuming that the reader prietary or proposed standard window sys-
is familiar with Common Lisp and CLOS or, tems for workstations and personal comput-
at least, Lisp and object-oriented program- ers (eg. Symbolics Genera [36], NeWS[33],
ming in general. Others who wish to read X[29], etc.). This standard (sometimes called
this paper should review some of the refer- Common Windows) is the subject of intense
ences first. activity in the Common Lisp community[13,

28). I have identified three modules:

1.1 The modules * Constraints, which requires Common

Arizona is divided into a number of mod- Lisp and CLOS. (This module might

ules, with limited interdependencies, to per- very well be part of the non-graphical

mit individual modules to stabilize and be kernel, but most of the applications we
"released" before the whole system is com- have in mind at present are in graphics.)

plete. e Quantitative Graphics, which requires

The modules are divided into two groups: Common Windows, Collections. Con-
a numerical, quantitative kernel and an in- straints, and Linear Algebra.
teractive, window-based, scientific graphics
part. e Data Analysis Graphics, which requires

The non-graphical quantitative kernel is Quantitative Graphics and Statistics

more developed at present, because it can be

implemented in an efficient, portable way us- 2 The quantitative kernel
ing existing standards for Common Lisp and
CLOS. The quantitative kernel consists of: 2.1 Basic Math

* Basic Math, which requires Common Basic Math consists of things that can be

Lisp, reasonably implemented with Common Lisp
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functions and primitive Common Lisp data functionality as Linpack[8] and Eispack[30].
structures; it does not use CLOS. Included in However, CLOS allows Cactus to operate at
Basic Math are: machine constants, special a level of abstraction chosen to match the
functions (eg. beta, gamma) extended vector initial, high-level, geometric descriptions of
operations (analogous to the BLAS[15] used algorithms given in standard numerical anal-
in Linpack[8]), evaluation and interpolation ysis texts[111. The use of object-oriented
(eg. generic continued fractions) ld numer- programming makes the implementation of
ical integration, and basic random number standard algorithms (eg. a QR decomposi-
generators. ti )n) easier to understand and modify than

the versions in the best Fortran libraries-

2.2 Collections without sacrificing efficiency in either space
or time. In addition, it is much easier to

The Collections module has two parts: Ab- use information about regular structure, pat-
stract Sets and Enumerated Collections. terns of sparsity, etc., to get improved per-

Instances of an Abstract Set class are used formance in special problems. Also, the
to represent one of the sets or spaces that higher level of abstraction permits extensions
arise in mathematical computing. Examples to, for example, computations on Hilbert
are Integer-Interval, Float-Interval, spaces[14].
and Vector-Space, which are used in the The Linear Algebra module provides:
Probability and Linear-Algebra modules. class definitions for Vector-Spaces, class

The Enumerated Collection classes are in definitions for Vector-Transformations
part modeled on the Collection classes in (Matrix, Positive-Definite-Matrix,
Smalltalk-80[10]; instances are used for tradi- Householder, Product, etc.), methods for
tional compound data structures. eg. Trees, the protocol corresponding to the alge-
Queues, Enumerated Sets, Dictionaries, In- bra of linear transformations (transform,
dexes, etc. Enumerated Collections are heav- compose, scale, add), methods for "ma-
ily used by the Database module. trix" decompositions (LU, QR, LQ, SVD,

An Enumerated Collection basically serves eigen, etc.), and the ability to solve systems
as a framework for iterating over its ele- of linear equations and least squares prob-
ments. A simple collection might be repre- lems using a generic pseudo-inverse func-
sented by a list; more complex collections tion that can be applied to any linear trans-
permit more efficiency for specialized ac- formation.
cess. (Eg. a time series might use a doubly
linked list to give efficient access to lagged 2.4 Probability
observations; discrete data might use an n-
dimensional array for quick access to th' cells Inference and Monte Carlo simulation (in-
of a contingency table.) cluding Bootstrapping) are supported in a

unified framework through a protocol for

2.;s Linear Algebra Probability-Measure classes. Probability
measure objects are responsible for gener-

The Linear Algebra module is discussed in ating samples from themselves, computing
detail in [21], where it is referred to as Cac- their quantiles, and computing the prob-

tus. It provides approximately the same abilities of appropriate sets, including tail
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probabilities. The defined probability mea- the row 17 in the array of subsurface coal
sure classes includes the standard one- and producers represents the same company as
higher-dimensional parametric densities and row 25 in the array of all coal producers and
discrete distributions, and non-parametric average sulfur content is column 3 in subsur-
measures, either resulting from density es- face coal producers and column 5 in all coal
timates or the empirical measure of a data producers.
set. (It's worth noting that simple descrip- In Arizona, statistical data is represented
tive statistics like mean, median, etc., are by collections of objects. The advantages
generic functions in the probability measure of this are discussed in detail in [18]. Indi-
protocol and are applied to data sets by view- viduals are represented by objects, instances
ing them as empirical distributions.) of CLOS classes. Variables are represented

by generic functions. A dataset is repre-

2.5 Database sented by a collection, typically a list or one-
dimensional array.

The Database module has to parts. The

statisti- For example, in analyzing energy con-
first concerns the representation of airly sumption data for cities in the US, the datacal data by collections of objects and is fairly on each city would be collected into an in-

well developed. The second is concerned

with providing true database facilities: ef- stance of the City class. A particular in-
stance might look like:

ficient concurrent access to large (gigabyte) {City Seattle :population 450000

collections of objects whose identities per- cingdee-da 300 000

sist beyond the lifetime of a-particular Lisp :cooling-degree-days 300 ..

address space. The second part is a major Statistical variables are represented by

research topic in the database and object- generic functions. To get at the values in the

oriented programming communities[25,26}. slots we use automatically defined accessor
functions: (population {City Seattle}).
The use of generic accessor functions gives
a unified way to refer to slots or arbi-

In most statistical packages, data sets are trary functions of slots; we can ask for

represented as 2 dimensional arrays of float- (log-population {City Seattle}), where

ing point numbers. Each row represents an log-population is the obvious Lisp func-

individual and each column represents a vari- tion.

able. This is an awkward representation, for This might seem inefficient, compared to
example, for categorical data, and for data conventional systems, where defining a new
sets with more complicated structure, such variable means adding a column to an ar-
as clustering trees. It is impossible to repre- ray, because it looks as if we would have
sent simple, but important, contextual infor- to call a procedure every time we wanted a
mation, such as the fact the a negative value value of the log-population variable. How-
for height must be an error or that height at ever, standard Lisp programming techniques
age 2 should be greater than height at age 1. (lazy evaluation and memo-ization [1)) make
An array representation makes it difficult to it possible to represent variables by func-
sort and select subsets without losing track of tions, hide the additional complexity from
important correspondences, such as the fact the user, and so that the log-population
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procedure is not called any more often than 5. Objects that can recover some number

is absolutely necessary. of previous states.

Each object has an identity and existence
independent of any collection. So the same 6 tthr
object can be in many collections; the -unique state.
object {City Seattle} would be a member 7. Object identities that persist beyond a
of both All-Cities and Northwest-Cities. particular address space (rebooting).
Similarly, generic functions are defined in-
dependently of any collection and can be S. Objects that can recover a valid state

applied to any object (for which there is a after catastrophic hardware or software

method). The independent identities main- failure[35].

tain the important correspondences that can 9 Sharing objects by more than one
be hard to keep track of in an array based user/address space.
system.

Also, a collection may contain objects of 10. Efficient, concurrent access to large. per-
more than one type. For example, in en- sistent, shared databases.
ergy production data, it might prov- use-

ful to analyze coal and oil producers to- 2.6 Statistics
gether, but to define separate coal and
oil producer classes-to allow for the fact The Statistics module represents the usual

that acres-strip-mined is not a rele- descriptive statistics by generic functions

vant slot for oil producers. In that case, that are thought of as functionals on mea-

all-energy-producers would contain in- sures. (All the usual descriptive statistics

stances of at least two different classes, can be thought of as functionals on measures
if we consider a dataset to be a measure wit 11

2.5.2 Persistent Objects total mass N.)
Simple statistical functionals take a collc-

A true database requires objects that per- tion and one or more variables (Lisp fiinc-
sist beyond the lifetime of the address space tions) as arguments. For example: (median
in which they were created. Arizona will be All-Cities #'log-population),

used for research into a hierarchy of function- where All-Cities is a Collection of ('it"

ality relating to persistent objects: objects and also an Empirical-Measure.
Median returns a number: more comp lex

1. Making a copy of the current state of statistical functional return instances of a
an object, in the same address space. Description class. A Description object

(There are some non-intuitive difficul- remembers its training sample and can up-
ties in this seemingly trivial task; see date itself in response to changes in the train-

[27).) ing sample. Of particular interest are Model

objects. which are Description's that are
2. Saving objects to dlisk.alofnins also functions.

3. Automatic checkpointing For example, least squares linear regres-
sion takes as arguments a collection in-

.1. Objects that can undo certain changes. tended as the training sample. a generic
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function representing the response, and a the window (viewing constraints).
list of generic functions representing the
predictors. The result of the regres- 3.1 Hierarchical Display Objects
sion is a Regression-Model object. The
Regression-Model object fits itself to the We represent a plot as a tree of Display-Node
training sample by 1) extracting a linear objects. Every Display-Node has:
transformation by applying the predictor . a parent Display-Node. The root of the
functions to each object in the training sam- display has no parent.
ple, 2) extracting a response vector by ap-
plying the response function, 3) computing . a list of children Display-Nodes, which
a generalized inverse of the transformation
via QR or SVD, and 4) applying the gener- * a local coordinate system, chosen to be
alized inverse to the response vector. The re- convenient for describing the appear-
gression model is also a function in the sense ance or position of the node. For exam-
that it can be applied to any appropriate ob- ple, the local coordinate system might
ject (whether or not in the training sample) consist of xyz position coordinates, rgb
to predict a value for the response. In addi- color coordinates, a size coordinate, a
tion, the regression object is able to compute theta orientation coordinate, and so on.
and report appropriate diagnostics and up- The coordinate system is represented
date its fit in reaction to inserting or deleting by an instance of an abstract set class,
objects in the training sample or functions in something like the vector spaces used in
the predictor list. the Linear Algebra module.

* appearance and position parameters that
3 Scientific Graphics allow the node to be treated as an ele-

ment of the local coordinate system.
The kernel dc.cribed in the previous sectionis ueles a a ataanaysi sytem-beaus a local viewing transformation, which
is useless as a data analysis system-because takes local coordinates to the local co-
it lacks any graphics. An important reason ordinates of the parent. For the root
for the popularity of systems like S is their node, it take local coordinates to screen
convenience and flexibility in showing pic- coordinates-that is, pixels and pixel-
tures of data. values representing color. The relation-

Our primary goal is to make it easy to im- ship between the local viewing transfor-
provise new kinds of plots without losing the mation and the coordinate systems is
performance needed for interactive and mo-tiongrapics TheQuatitaiveGrapics like the relationship of the linear trans-tion graphics. The Quantitative Graphics formations and vector spaces in the Lin-

module supports this goal in two major ways: ea a moa

a defining a protocol for the representation of

plots by hierarchical display objects and im- * a list of layout constraints which make
plementing mechanisms for maintaining ccn- assertions about relations between the
straints between the components of a dis- sizes, shapes, viewing transformations,
play object (layout constraints) and between or local coordinate systems of descen-
a window and the object(s) being shown in dants of the current node.
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For efficiency in motion graphics, Display- loosely related to the concept of presenta-
Nodes may add: tion given in [9] and used in the Symbolics

Genera system[36] and on the Model-View-
a total viewing transformation, which Controller user interface architecture used in
is obtained by composing all the local Smalltalk[7].) For example, a point in a scat-
transformations between the node and terplot is a presentation of a record in a data
the root of the tree. set.

" a factoring of the total viewing transfor- A presentation is related its subject by a

mation into time-varying and constant viewing constraint, discussed in the next sec-

parts. tion.

* a cache holding the result of applying 3.2 Constraints
the constant factor.

Constraints are abstractions that arise natu-
For example, many implementations of ro- rally in many statistical, scientific, or graph-

tating scatterplots implicitly factor the view- ics problems[1,17,16]. A constraint lan-
ing transformation into constant translation guage allows the programmer to make as-
and scaling and a time-varying rotation. If sertions whose truth is automatically main-
the scaling is chosen carefully, the rotation tained in the course of subsequent compu-
can be computed in integer arithmetic and tation. Spreadsheets are a widely used, if
produce exact screen coordinates, increas- limited, form of constraint language. A full-
ing the speed of rotation by as much as 100 fledged constraint language is a major re-
times-at the cost of non-modular, machine search undertaking in itself [6,34,16]. We in-
specific drawing routines. However, we can tend to implement at least two less ambitious
implement the basic idea in a modular way, constraints systems:
by providing methods for factoring viewing
transformations analogous to the matrix de-
compositions provided by the Linear Algebra 3.2.1 The Viewing Constraint

module. The same paradigm has been used The basic idea is that a window is a view
in higher dimensional graphics[12] and is also of one or more objects and should always
applicable when color or shape is changing show the current state of those objects. We
over time (rather than just position). have a fairly good understanding of how

For efficient handling of input (decid- to implement this type of constraint. The
ing which node the mouse is pointing at) basic technique is similar to Active Values
Display-Nodes may pre-compute and cache in LOOPS[5]. The system automatically
screen coordinates-sometimes of a single triggers appropriate computation whenever
pixel, but more frequently of one or more some presentation's subject is modified, The
rectangular regions. triggered computation may take place imme-

Some Display-Nodes are Presentations, diately or may be put off until a valid state
which means that they serve as a visible of the presentation is needed (eg. until the
representation of some other object in the window is exposed).
programming environment--the subject of The viewing constraint between a presen-
the presentation. (This discussion is very tation and its subject determines (1) how
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the state of the subject is reflected in the tomatically which in turn causes the display
presentation and (2) how input received by styles of all other presentations of that sub-
the node affects the subject. For example, ject to be updated. A consequence of this
if the subject is a city object in an energy design is that all exposed plots are automat-
consumption database and the presentation ically involved in painting. No plot needs to
is a point in a scatterplot, the viewing con- know what other plots are on the screen.
straint is responsible for supplying the pre- Extensions to other types of plots are rea-
sentation with, for example, population as sonably straightforward.
the x coordinate, altitude as the y coordinate
and average particulate ppm as a color vari- 3.2.2 Layout constraints
able. When the user selects the point withable Whn te usr slecs th pont ithPlot layout is a more open-ended and diffi-
the mouse, the viewing constraint is respon-
sible for performing the appropriate action cult constraint problem. The idea is to pro-

on the subject, such as producing an editor vide the data analyst with a language for

window that lets the user inspect and possi- making and enforcing assertions about the

bly alter the slots and values for that partic- relative sizes, shapes, or positions of the com-

ular city. ponents of a plot.
A typical example-conceptually trivial

In a simple case, the presentation and sub- but difficult to program-is centering labels
ject share a display style object. The display around the sides of a scatterplot. The source
style has parameters like color, size, orienta- of programming difficulty is conflicting co-
tion, etc. The presentation takes its appear- ordinate systems. The center of the data

ance directly from the display style. When- od.iaesses h etro h aa

ever the subject changes its display style, the region is naturally expressed in data coor-eve th sujec chnge it dipla stlethedinates. Heights and widths of label strings

presentation is automatically notified to re- ca u s on bedti in pielsrfor
draw itself. can usually only be determined in pixels, for

a given font. The mapping of the data re-
Support for the viewing constraint makes gion into pixels cannot, be determined until

it easy to implement and generalize brushing we know how much room is left by the la-
scatterplots[20,19,3,32]. Earlier versions of bels, but we can't position the labels, choose
brushing were based on a special plot that a font, and determine the labi widths and
contained several scatterplots, each showing heights until we know where the data region
different variables. The basic design could is in device coordinates.
not be easily extended for use in a window What we will need to support layout con-
system where arbitrary scatterplots might be straints is:
visible at any time, or to other kinds of plots
besides simple scatterplots. * a specification language.

In Arizona, brushing is implemented in the * internal representation.
following way: as the cursor (or brush) moves
over a point in a scatterplot, the presenta- 9 general purpose satisfier.
tion is "painted" with the display style that * hooks for user supplied satisfier code.
was loaded on the brush. The constraint sys-
tem causes the display style of the subject (a * fast specialized satisfiers that respond to
record in the database) to be updated au- common perturbations from a solution.
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* effective ways of identifying and report- [9] Ciccarelli E.C. Presentation Based User

ing under/over constrained problems. Interfaces. Technical Report 794, MIT
Al Lab, 1984.
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AN ILLUSTRATION OF USING MACSYMA FOR OPTIMAL
EXPERIMENTAL DESIGN

Kathryn Chaloner, University of Minnesota

ABSTRACT observations with ni observations at xi , with Efni=n.
MACSYMA is a symbolic manipulation program which then the proportion TI(xi) is ni/n.
can solve many algebraic problems. The feature of The Fisher information matrix is the matrix of
MACSYMA that is especially useful in optimal design minus the expected value of the second derivative of
problems is its ability to manipulate matrices with the log likelihood, with the expectation taken over the
symbolic entries. This paper will illustrate, by an samDling distribution of the data. For a design Tl we
example, how it can be used in the particular problem denote this information matrix as nl(e,Tl), so that
of designing a logistic regression experiment. i(eTl) is a normalized information matrix.

We can think of the design problem as choosing a
1. INTRODUCTION measure T which optimizes some function of the
This paper will not attempt to review all that information matrix. In Chaloner and Larntz (1988)
MACSYMA can do. The purpose of this paper is to give designs are found which maximize the expectation,
some indication of its usefulness by showing its use over a prior distribution on e, of a function of the
explicitly in a particular problem. The illustration I(, Tl). In particular the following two criteria are
uses simple commands and shows how a naive user of maximized:
MACSYMA can utilize some of its very basic
capabilities. The algebra in the recent papers Chaloner 9 1 (TI) = E log det Ie9Tl) (1)
(1987a, b) and Chaloner and Larntz (1988) was
obtained using MACSYMA and it is some of these and
applications which will be described.

MACSYMA is documented comprehensively in the 92(rl = - E tr ALe) (C8.Tl) - 1 . (2)
MACSYMA reference manual. More effectiveintrctin regene inal ook bei Rand(19The criterion C1) is to maximize the expected value of

the log of the determinant of the information matrixan excellent collection of worked examples by and the criterion (2) is to minimize (by maximizing
Drinkard and Sulinski (1981). Statistical applications its negative) the expected value of the weighted trace
are described by Gong (1983), Steele (1985, 1988),Rand(198) nd Caloer 1988. I Chlone (188) of the information matrix, where the weights may
Rand0 adepend on e. These critera can be justified asthe use of MACSYMA is illustrated in the problem of approximate Bayesian criteria. For the criterion of
design for estimating the point at which a quadratic maximizing (2) the choice of Ae) depends on what isregression is a maximum or a minimum. The optimal mxmzn 2 h hieo ~)dpnso hti

to be estimated or predicted. Several choices of A~e)
Bayesian design is derived and examined, using will be discussed in Section 4.
MACSYMA. In this paper MACSYMA will be used in ChaLoner and Larntz (1988) show how to find
another, similar, problem of design for logistic optimal, or close to optimal, designs. The criterion

MArsYMAn. cnmust be evaluated using numerical integration andM A C SY MA can do m any things. The aspects o fop i ze us n n m r ca o t m z t o .
MACSYMA described in this paper are some of its optimized using numerical optimization.simpest apailites.The numerical optimization appears to be dealt
simplest capabilities. with best by fixing the number of design points, kand

finding the best design for that number of design
2. OPTIMAL DESIGN FOR LOGISTIC REGRESSION points. The values of xi and Ti are found numerically.
A logistic regression model corresponds to a binomial A search over several values of the number of design
sampling distribution for data y. Specifically, for ni  points, k, can then be done. As k is increased the
observations taken at a value xi of an explanatory maximized criterion should become larger until, if
variable, the response yi is binomial with ni trials there is an optimal design on a finite number of
and probability of success p(xi,e). where a = (00,1 )T design points, it stays constant.
and the probability p(x.e) is related to x by If a design is found, by numerically optimizing the

criterion and searching over a number of design
p(xi,8) = [1 exp(-D o - , lxi) 1-1 points, it is possible to verify that the design found

corresponds to a global optimum of the criterion over
We think of a design as a probability measure on a all possible design measures l, A necessary and

compact design space X which puts a proportion TI(xi) sufficient condition for a design T) to be optimal is
of the observations at xi. If there are a total of n that the Frechet directional derivative of the criterion
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function, in the direction of all one point designs, is In the (c3) command the matrices i and iinv are
non-positive. These derivatives will be defined in multiplied together to verify that they are inverses
Section 4 where it is demonstrated how MACSYMA can (the symbol "." denotes matrix multiplication and """
be used to find the criteria and their derivatives, denotes scalar multiplication). Without the expand

command the resulting matrix Would not be so easily
3. THE INFORMATION MATRIX identified as the identity matrix. The save command
For a design measure Tr on k points, xl,. .. Xk. define was used in (c4) to save the expressions i and iinv in
the function w(x,e) as p(e,x){1-p(x,e)}. Further define filel.
the following for i=1 .J

wi = w(e,xi )  4. DIRECTIONAL DERIVATIVES
The directional derivatives, as derived in Chaloner and

l-i = -q Nxj)  Larntz (1988), are as follows. The derivatives for
li~x,(T C) and P2CT), in the direction of the design which

k is point mass at x, are denoted by dl(Tx) and d2 (TLx)
t = Z iwi respectively. Recall that w(x.e) is p(e,x){1 -p(x.e)l and

i~ 1 define vTas (- x-ji), then:

k
xbar= t -1  lw ix i  

dl(L.x) = E w(ex) vTl(e,r)-1v- 2 (4)
i~1

k and

s = " niwi(xi-xbar)
2

i=1 d2 (.lx) =

Note that w i. t, xbar and s all depend on e but this

dependence has been dropped to simplify the notation.
We further define u to be the ratio 0/, and * 92(). (5)

reparameterize the problem in terms of jp and 0= 1 .

The parameter jp is the value of x at which For a design 71o to be (p-optimal the function
p(x,e) z 1/2. Redefine eT=(.p, ) then with this dl(To.x) must be non-positive for all x in X and for
notation and parametrization the matrix I(e,r1 ) is: Tlo to be 9 2 -optimal for a particular choice of A(e)

the function d2 (Tlx) must be non-positive for all x.

(2t - t(xbar - p)

l(er) = (3) 4.1 THE DERIVATIVE FOR._ 1

- t(xbar - .) s - t(xbar - 0) We demonstrate using MACSYMA to find the criterion
qI(TI) and the derivative di(rTx). A record of using

We will use MACSYMA to show that the inverse of MACSYMA to do this is given as Figure 2. The

this matrix. 1(e,Tl)-i, can be expressed as: matrices i and iinv are read in using the loadfile
command, reading in from the file created in Figure 1.

I{s - t ( xbar-jp) 2 1/ ( st0 2 ) (xbar-p)/( s) et is seen in expression (d2) that the criterion, the

1/s , expected value of the log determinant of the
Cxbar-p)/( s) I/sinformation matrix, can be expressed as:

9i(T) = E log ( 2 ts)
Figure 1 is a record of a MACSYMA session to show
that this is indeed I(E,Tl) - l . In the UNIX system that Only the part of the derivative that is multiplied by
I use to run MACSYMA it is run by typing "macsyma' w(xe) and then integrated numerically is calculated
and this is shown in the first line of Figure 1 at the % as expression (d4), that is vT (eqT)-1v. The expand
prompt. Instructions typed in are labelled as (cl), command simplifies the resulting expression and,
(c2).... and end with a semi-colon; corresponding recognizing the expansion of (xbar-x) 2 , the derivative
output is labelled as (dl), (d2) ..... A name followed by IS:
a colon at the beginning of a command assigns the
name to the resulting expression. For example, the dI(Tj x)
matrix I(e,-1) is denoted as i in (cl) and its inverse as E [w(x,e) {1/t - (xbar-x) 2 /s 1] - 2.
tinv in (c2). As MACSYMA does not recognize Greek
lett-s. the symbols b a,,, m are used to denote 0 and The matrices i and iinv and the vector v are saved in
p respectively. file2 for use later.
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% macsyma
This is UNIX MACSYMA Release 309.1.
(c) 1976,1984 Massachusetts Institute of Technology.
All Rights Reserved.
Enhancements (c) 1984 Symbolics, Inc. All Rights Reserved.

Type describe(trade secret); to see Trade Secret notice.
Type exec("man macsyma"); for help.

(cl) i:entermatrix(2,2);

Is the matrix 1. Diagonal 2. Symmetiic 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
2;

Row 1 Column 1: b^2*t;
Row 1 Column 2: -b*t*(xbar-m);
Row 2 Column 2: s+t*(xbar-m)^2;
:Iatrix entered.

2
b t - b t (xbar - m)

(dl)
2

[-b t (xbar - m) t (xbar - m) + s

(c2) iinv:factor(invert(i))

Batching the file /usr/macsyma.309/share/invert.mac
Batching done.

2 2
t xbar - 2 m t xbar + m t + s xbar - mn
-------------------------------..........

2 b s
(d2) [ b s t

xbar- m 1

b s s

[1 0)
(d3) [

[0 1]
(c4) save([filel],i,iinv);

(d4) [filel, i, iinv]

(c5) quit();

FIGURE 1

(cl) loadfile(filel):

filel being loaded.

(dl) done

(c2) expand(determinant (it);
2

(d2) b s t

(c3) v:matrix([-bj, [x-ml);
-b

(d3) [x-mn)

(c4) expand (t ranpue (v) iinv.v);
2 2

xbar 2 x xbar x I

(d4) - -- -
s S S t

(c5) save ([f i le2[ ,i,iinv, v);

(dS) [file2, i, iinv, v]

(c6) quit();

FIGURE 2
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4.2 THE DERIVATIVE FOR t 2 Suppose alternatively that we want to estimate
The weighted trace criterion of 9 2 -optimality xo =p'P - for a known value of b . For example in
corresponds, approximately, to squared error loss of engineering and reliability experiments it is
estimation. The criterion therefore requires that the sometimes of interest to estimate an extreme
quantities to be estimated, or predicted, are percentile response point, such as the point at which
carefullly specified by the experimenter. p(xe) =0.95. In this case the functions defined in

If, for example, the only parameter of interest is MACSYMA could be used, with an appropriate choice of
u, then A(e) can be written as c gT with gT= (1, 0 )T .  A(e), to show that the criterion and derivative can be
If both ji and , are of equal interest then Ae) is the expressed as:

identity matrix. if the only quantities of interest are
linear combinations of Li and fl then the matrix A(e) P2(Cn) - E [-,-2{t-l . (a - ,(xbar-jj)) 2 ,- 2 s-,)]
will not depend on the unknown parameters.

Alternatively, if a nonlinear function of ji and P is and
of interest then the matrix A(e) will depend on the
unknown parameters. For example it is often of
interest to estimate the value of x at which the d2 (Tl,x)
probability of success, p(x,e), is a particular value.
Suppose that we want to estimate xo  where = E [w(x,e) (, 2 st)- 2{t(xbar-x)( (xbar-p)-b) s} 2 1

logit{p(xoe)) = 7, then xO  = p + '6A- 1 , which is a + P2(70)
nonlinear function. Standard asymptotic arguments
give A(e) = c(e) c(e)T , where c(e) is a vector of
derivatives, c() = - . Finally suppose that we are interested in

A distribution could be put on a" to represent estimating several percentile response points. We can
interest in estimating several percentile response put a distribution over 75 to represent this interest, as
points xo . This is a standard way of using the some points can be of more interest than others.

weighted trace criterion in a Bayesian framework. Then the matrix A(e) becomes:

Figure 3 shows how functions can be created in
MACSYMA that calculates iP2 C") and d2 (x,TI) for any
choice of A(e). These functions are called criterion
and deriv respectively and their use is illustrated, in A~e) ( 1 -EG))I 2

Figure 3, for finding expressions for cP2(r 1 ) and d2 (x,e)_E / 2  E(.2)/4
when ji is the only parameter of interest. These
functions are created in (c2) and (c3). The matrix
A(e) for estimating p alone is entered and used to
find 9 2 C0i) and d2 (x,e) in (d5) and Cd7) respectively.
The dispfun command is used to display all userdefiedfunciomn i ucsead thn dinlay Cl ter For illustration, suppose we put a uniform distribution
defined functions in (c8)ald fin)t over [-1.1] on 1. This represents an interest incalibrating the central part of the response curve.

Then EMa') = 0 and E(;52 ) = 1/3. The use of the two
4.3 EXAMPLES OF 2 -OPTIMALITY MACSYMA functions easily leads to the following
The example in Figure 3 is the criterion where we expressions:
suppose that interest is in estimation of j alone.
Then, as discusses earlier, A(e) is ¢ ¢T with
q= (1,0) T . As shown in the MACSYMA output we have: ') 2Cl)

92() =
- E [,- 2 {t- I (xbar - jp) 2 s-l - E [A- 2 {t- 1 + (xbar-p)2 /s (3, 2 s)- 1 }]

and and

d2 (Tl ,x) d2 (Tl ,x)

* E [w(x.e) (,st)-2{t(xbar-x)(xbar-p) - s12] E~w(x,e)(C 2 st) - 2

92(l-. {2(t(xbar-x)(xbar-ji) + s)2 + t 2 (xbar-x) 2 /31]

292()
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(cl) loadfiv,(file2);

file2 being loaded.

(dl) done

(c2) criterion(a) := (a.iinv) [1,11 + (a.iinv) [2,2];

(d2) criterion(a) := (a . iinv) + (a iinv)
1, 1 2, 2

(c3) deriv(a) := transpose(v). (iinv.a.iinv).v;

(d3) deriv(a) .= transpose(v) . ((iinv . (a iinv)) v)

(c4) a:matrix([l,0], [0,0]); [1 0]
(d4)

1[0 0]1

(c5) criterion(a);
2 2

t xbar - 2 m t xbar + m t + s
(d5)

2
b s t

(c6) deriv(a);

2
(x - m) (xbar - m)

(d6) (x - m) (-------------------
2 2

b s

2 2
(xbar - m) (t xbar - 2 m t xbar + in t + s)

2 2
b s t

2 2
(x - m) (xbar - m) (t xbr - 2 m t xbar + m t + s)

-b (----------------------------------------------------
3 2

b st

2 2 2

(t xbar 2 m t xoar + m t + s)

3 2 2
b s t

(c7) factor(expand(d6));

2 2
(t xbar - t x xbar - m t xbar + m t x + s)

(d7)
2 2 2

b s t
(c8) dispfun(all);

(e8) criterion(a) := (a . iinv) + (a iinv)
1, 1 2, 2

(e9) deriv(a) := transpose(v) . ((iinv . (a iinv)) v)

(d9) done

(clO) save([file3],i,iinv,v,criterion,dcriv);

(dIO) [file3, i, iinv, v, criterion, deriv]

(cl ) Pjit (

FIGURE 3
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S. DISCUSSION Drinkard. R.D. Jr.. and Sulinski, N.K. (1981).

I have also used MACSYMA in studying optimal designs MACSYMA: A program ^cr c,,aputcr algebraic

for other problems. Chaloner (1988) aescribes using inanipulation, (den,o,'strations and analysis).

MACSYMA to examine the problem of designing an Naval Underwater Systems Center, New London.

experiment to estimate the point, in a quadratic Connecticut, Technical Document 6401.

regression, at which the response is maximized or Gong, G. (1983). Letting MACSYMA help. Computer

minimized. This problem is studied in, for example, Science and Statistics: Proceedings of the 15th

Buonaccorsi and Iyer (1986) and relevant results are Symposium on the Interface, edited J.E. Gentle,

given in Murty and Studden (1972). Both Bayesian and North-Holland, 237-244.

locally optimal designs are found and described in Murty, V.N. and Studden, W.J. (1972). Optimal designs

Chaloner (1987a) and the use of MACSYMA for the for estimating the slope of a polynomial

proof of these results are described in Chaloner regression. Jour. Amer. Statist. Assoc. 67,

(1988). Aspects of MACSYMA that are used in this 869-873.

problem include: finding a generalized inverse of a Rand, R.H. (1984). Computer Algebra in Applied

singular matrix, finding the roots of a quartic Mathematics: An Introduction to MACSYMA.

polynomial, taking derivatives of functions and Research notes in mathematics number 94,

plotting functions with symbolic arguments. Other Pitman.

features of MACSYMA that I have used in design and Rand. R.H. (1988). Computer algebra applications using

other problems are: writing a FORTRAN expression for MACSYMA. Computer Science and Statistics:

inclusion in a program, taking a Taylor series Proceedings of the 19th Symposium on the

expansion, finding integrals and taking limits. Interface, 231-236.

MACSYMA is clearly a useful tool for these kinds Steele, J.M. (1985). MACSYMA as a tool for

of algebraic manipulations. Although I have not statisticians. Proceedings of the Statistical

solved any problems that could I not otherwise have Computing Section of the American Statistical

solved by careful, time consuming hand calculations, I Association, 1 -4.

have found MACSYMA extremely useful, fast and Steele, J.M. (1988). An Application of Symbolic

accurate. I believe that the initial effort in learning Computation to a Gibbs Measure Model. Computer

how to use MACSYMA to its fullest capabilities is Science and Statistics: Proceedings of the 19th

well worth it. It is also fun to use. Symposium on the Interface, 237-240.
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AN INTRODUCTION TO CARTTNt CLASSIFICATION AND REGRESSION TREES

Gerard T. LaVarnway, Norwich University

1. Introduction is a variable that takes on real
numbered values. A categorical variable

The use of binary trees to perform is a variable that assumes a value from
classification provides an interesting a discrete set, (e.g. {red, blue,alternative tiMclassical parametric green)). The vector x is known to
methods. CART is a fascinating belong to one of j classes j = 1, 2,
mathematical theory that was developed J.
by Leo Breiman (UC Berkeley), Jerome H. In performing classification, an
Friedman (Stanford), Richard A. Olshen analyst records the observation vector,
(UC San Diego) and Charles J. Stone (UC x, of an object and predicts the class,
Berkeley/UCLA) culminating in the j, to which the object belongs.
monograph CART: CLassica/ ion and Sample classification problems are as
Regression Trees Areiman, et. al.) . follows:
In addition, CART' was developed into a o At the University of California
powerful software package that applies a at San Diego (UCSD) Medical Center,
nonparametric approach to classification incoming heart attack patients are
and regression problems. Specifically, monitored on 17 different variables
the software arrives at prediction rules (blood pressure, age, etc.). The medical
in the form of binary decision kees. staff would like to predict if the

This paper will discuss CART patient is in a high or low risk of
methodology as a tool in death (Breiman, et al. 1984).
analyzing/solving classificaion o Determine a ships class
problems. In addition, CART performs (destroyer, cruiser, submarine,
regression. However, this paper will battleship, aircraft carrier, etc.) from
focus solely on the classification surveillance observations.
problem. The procedure which performs o Predict a college freshman's
regression is similar, but slightly success or failure in his/her first
different. mathematics course from various previous

An appendix is providedT hich test measurements (e.g. SAT scores,
contains the complete CART processing etc.).
and output on data from Mclassification TX
problem. The entire CART output is 3. CART METHODOLOGY
provided for completeness. ThisTAection provides a brief summary

2. Statement of the Problem c i. n For a compiete
description of CART and its supporting

The general classification problem may theory, the reader should consult the
be described as follows: Given a monogra?, Breiman, et. al. (1984).
multivariate observation z which is CART arrives at its classification
known to belong to (emanate from) rule(s) by producing a binary decision
one of n possible populations tree which partitions a set into
(platforms), determine which population disjoint subsets. This partition hac
is most likely. The analyst who is the property, that for any element of a
performing this classification has an given subset, a class can be assigned.
historic data base of observations, A sample classification tree might
for each of which the actual population look as follows:
is known, and has suspicions - in
the form of prior probabilities -
regarding the likely population of z.

For clarity, let us define our
measurement vector x to be an
N-dimensional vector x = (xI , x2.x3 ,

Xn). CARTTM allows for the variables

Xn, to be of continuous and/or

categorical type. A continuous variable
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Sample Classification Tree continuous variables:is c x. + c. x

+ C x <C, C a fixed real number

3) splits on a categorical
variable: is x is an element of an
finite set S, then ask the question, "Is
X n c S", where S ranges over all

possible subsets of s.
.. ARther natural question is "How does

CART decide on a particular split for a
given nooe?" The choice of a split i M
made on the notion of impurity. CART
chooses the split that minimizes the

.. ."impurity. "What is meant by impurity?"
Definition 3.1: Call e = p(Pl, P2 '

Pk), a function of non-negative
figure 2-1 k

arguments with E pj= l,an impurity
To construct a binary decision tree, j=1

a learning sample is required. A function if
learning sample is a set of measurement 1) 0 >0
observations, for which the true class 2) 0 is maximum when p, = P2
of each measurement observation is
known. It is desired to include in the Pk
measurement vector, all variables wnich 3) @ = 0 when p. = 1 for some j
are believed to have some predictive
power in determining the c4ssification where k is equal to the number of
of the measurements. CART uses the classes.
learning sample to construct a decision Example 3.1: The entropy measure of
tree that can then be used to classify impurity is given y
an observation whose class is unknown. = - j p logpj

In the sample decison tree (figure ]=1
2-1), we observe CART 's partitioning With OlogO 0
of the space into descendant nodes Example 3.2: The Gini measure of
(subsets). The square boxes indicated impurity is given by
ter.ninal nodes. A terminal node is a k
node at which a class assignment can be = 1 pj2
made. The circular nodes indicate ji2
nonterminal nodes, where a class Once an impurity function has been
determination cannot be made. At each defined and selected, we ultimately
nonterminal node, a binary (yes/no) define the impurity of a node and the
question is asked, "splitting" that node impurity of a tree.
into two descendant sub - nodes, which Definition 3.2: The impurity (t) of a
may or may not be terminal nodes.

The concept of s itting is node t is
fund hental to CART processing. i (t) = O(p(llt), p(2 1t), ... p(kit))
CART allows for three different types where p(j t) is the estimated
of splits: probability of a class j object at node

t.2) univariate splits on a Definition 3.3: The impurity I (T) of a
continuous variable: is x <C , C an - tree Tis
fixed real number.

2) linear combination splits on I (T) : E (t)p(t)
t T
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where T denotes the set of terminal minimum misclassification cost.
nodes of T and p(t) is an estimate of However, there is some uncertainty
the probability that a case falls into associated with 4e misclassification
node t. TM estimates. CART resolves this

With the above definitions, CART uncertainty by calculating their
selects the split that minimizes the standard errors (SE) (see Breiman, et.
overall tree impurity. al. 198 pp 78 - 81).

We now have established the pr zedure CART then selects the subtree with
for splitting a nonterminal node into the least number of terminal nodes,
descendant gbnodes. However, the issue within one (1) standard error. The
of how CART selects the optimal decision to select the subtree with the
decision tree for classification has not minimum number of terminal nodes, is due
been addessed. to the fact thatTA simpler tree is

CART continues splitting preferred. CART allows the user, as
(partitioning) until an overly large an option during execution, to vary the
tree, Tmax is grown. That is, a tree SE rule. For example, if the userhaxl desires the tree with the absolute
with all terminal nodes pure or have a minimum misclassification, set the SE
count less than or equal tu some small rule to O.OSE. Any variation of this SE
number (default 5). A process known as rule is allowed, 2SE, 1.5SE, etc.
"pruning" generates a nested sequence of Once an optimal subtree has been
subtrees. A subtree is created by selected, objects whose class is unknown
pruning off a branch or branches irom may be passed down the decision tree for
the previous subtree. Selection of the classification.
branch to be pruned is done by a cost The final issue of importance is "how
complexity measure. is the class assignment performed?"

The cost complexity measure is a This is done in the most natural way.
measure of the resubstitution estimate If the misclassification costs are
of misclassification and a "penalty" for equal, the assignment at each terminal
the complexity of the tree. node is the most populous class of the
Definition 3.4: For a given tree T let learning set in that node. If the
M (T), misc+Assification costs are not equal,

(T) R(T) CART assigns class j* to node where j*
M RTi, minimizes

be the cost complexity of T with 1 C(jlm)p(mlt)
complexity parameter o, a > 0. R(T) is where C(jlm) is the cost for classifing

the resubstitution estimate for a class m object as a class j object and
p(mit ) is the probability of class mmisclassification cost of tree T. ITI is object at node t.

the number of terminal nodes in tree T. To summarize, CART constructs aWe see from the above definition that binary decision tree in the following
by increasing the value of *, we manner:
increase the penalty for the complexity m ) Produce an overly large tree
of the tree. TM using binary questions, minimizing tree

By the pruning technique, CART impurity at each step.
generates a sequence of nested subtrees 2) Prune this large tree
T1, T2, ... T ma x . Associated with each generating a nested sequence of

tree in this sequence is an estimate of subtrees, each with an associated
the misclassification cost for that misclassification cost.
tree. Three methods for estimating this 3) Select the optimal tree for use
misclassification cost are available: as a classifier. TM
resubstitution, test sample, and cross Any discussion of CART would not be
validation. (see Breiman et ai. 1984, pp comp} te without mentioning some of
72-81). CART 's nonstandard features, that make

N%, rally, one wolld think that the software so attractive. A list of
CART selects the subtree with the the nonstandard features that I find
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useful are asTollows: Bibliography
1) CART is a nonparametric

approach. It is nonparametric in Breiman et al.
the sense that it places no restrictions Classification and Regression
on the distribution(s) of any Trees. Belmont: Wadsworth,
variable(s) (e.g. normality is not Inc., 1984
assumed). California SatisticalT oftware Inc..

2) More classical statistical "CART Output" CART Version 1.1
methods cannot deal 4th missing data in October 1986.
a natural way. CART handles missing
data by the use of "surrograte Tplits". Acknowledgemnts
When a split is selected, CART
measures the association of splits on My oginal research and introduction to
other variables to the chosen split. In CART occurred during a research
the event dataTAs missing for a split in appointment in the 1986 U.S. Navy -
the tree, CART would then split on the American Society for Engineering
variable with the greatest association. Education (ASEE) Summer Faculty Research
This associated split is called a Program. The research, conducted at the
surrogate split. Naval Ocean Systems Center (NOSC), San

3) Linear combination splits are Diego, CA 92152 was supported by the
allowed. If the structure for a given Tactical Information Correlation and
problem depended on a combination of Presentation (TICAP) project of the
variables, univariate splits would prove combat direction block program 62721N,
unsa)factory. As mentioned earlier, subproject N022C RX-242-4431.
CART allows for linear combination
splits. TM The assistance and support of Dr. Roger

4) Variable importance: CART Johnson, Code 421, Naval Ocean Systems
provides as part of its output a ranking Center was greatly appreciated while
of the variables. These may prove conducting research at NOSC.
useful in identifying variables with the
most predictive power. Permission to use selected portions of

the monograph Classification and
SUMMARY AND CONCLUSION Regression Trees by Breiman, et al.

(1984) was kindly granted by Carline
The reader has been introduced into Haga, Permissions Manager for

the classification problem and the use Brooks/Cole and Brooks/Cole Advanced
of binary tree classifiers. Books and Software.
Specifically, CART has proven to be a
procedure rich in mathematical theory, CARTTM FORTRAN source code Version 1.1
as well as, a powerful software package was purchased from California
that performs classification and Statistical Software Inc., 961
regression. Yorkshire Court, Lafayette, CA 94549.

T many nonstandard features that
CART supports nakes it appealing. In
addition to being a nonparametric
approach, it also provides an
interesting alternative to more
classic4 statistical methods.

CART 's decision rules are easy to
use, understand and interpret. It
provides interesting analysis of
problems from various disciplines
including, the social sciences,
medicine, physical science,
surveillance, etc..
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Generating Code for Partial Derivatives:
Some Principles and Applications to Statistics

John W. Sawyer, Ji.
Texas Tech

Abstract

The author re-examines his previous (1984). A brief review of the basis forresults on generating code for first (i) and (ii) above is useful, however,partial derivatives of a function using in that it suggests how relativelythe natural action of a compiler: Source efficient automatic generation of highercode for the function alone yields order partials might proceed. The nextobject code for its first partials, and section provides such a review, whilethis object code executes in a time at Section 3 discusses second partialmost proportional to the execution time generation.
for the original function. (Theproportionality constant does not depend 2. First Partial Generation: A Reviewon the function or the number of itsarguments.) Implications of these Consider the arbitrary functionresults for the generation of code for programmed in a high level language suchhigher order partials will be discussed, as FORTRAN:as will applications to some statisticalmethodologies. 

F=((X2**2)*COS(Xl))/ (Xl+2.*EXP(Xl/X2))

I. Introduction

A compiler will first scan this code toIn Sawyer (1984) the author presented identify variables, constants,a strategy for computation of first operators, and relations, translatingpartial derivatives of a function. This each into appropriate numeric codes.strategy can be integrated smoothly into This numeric translation will then bethe natural action of compiler. The parsed, resulting typically in a objectdevelopment of this strategy was code which is represented here inmotivated by a desire to streamline the high-level form for reader convenience:manner in which a function had to bespecified for Grizzle, Starmer, and Koch A1=X2; Bl=Al**2; A2=Xl; B2=COS(A2);(1969) analysis of categorical data, Cl=BI*B2; A3=XI; A4=2.; A5=Xl; A6=X2;though the applications of the strategyare much wider. A brief discussion of B3=A5/A6; C2=EXP(B3); Dl=A4*C2;applications of strategies for EI=A3+Dl; F=ClI/El; (2.2)efficient, transparent computation offirst and higher order partials will be The trivial statements "A=X2", "A2=X",found at the end of this paper, though etc., represent the recognition by thestatisticians should require little parser of constant or variable. Some ofconvincing of the value of a convenient the statements in (2.2), such asway to get efficiently computed "El=A3+Dl'", can be carried out readilyderivatives, 
in an arithmetic register, while aSubsequent discussions with statement such as C2=EXP(B3) willcolleagues have led the author to require a macro of some sort. Theconclude that there is some confusion important point, is, however, that asabout what is different in the Sawyer long as one is working with floating(1984) paper from other attacks on point numbers with mantissa and exponentautomatic differentiation such as the of a fixed maximum number of significantmonograph by Rall (1981). The answer to digits, there will be an upper and lowerthis is, that, to the best of the bound on the time needed to execute eachauthor's knowledge, it had not been of the primitive steps in (2.2).pointed out before that (i) without Let us associate algebraic variableschanging its scanner or parser, a x with Xl, a with Al, etc.compiler which is capable of producing 1 1object code to evaluate a Then Figure 1 gives a parse tree for theuser-programmed function can be modified function (2.1) in terms of theseto produce object code for first algebraic variables. The purpose ofpartials (no symbol mannipulation of labeling the edges of the tree withsource code is involved) (ii) this partials as shown becomes clear when wemodification will produce object code note that

which computes all partials in a timeproportional to the time which it takes lt l , (2.3)simply to evaluate the user function. , " --, .,,
It is not the intent of this paper toredevelop these ideas in detail, as theyare discussed at length in Sawyer
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DFDDI = DFDEI*DEIDDl; DFDA3 = DFDE1 *
DElDA3; DFDXI= DFDXl+DFDA3; DFDC2 =
DFDDl*DDIDC2; DFDB3 = DFDC2 * DC2DB3;
DFDA6 = DFDB3 * DB3DA6; DFDX2 =
DFDX2+DFDA6; DFDA5 = DFDB3 * DB3DA5;
DFDXl = DFDXI + DFDA5; ... (2.4)/

/Note that when (2.4) is actually
/ "executed that, according to the the way

the object code for (2.1) has been
generated, every variable on the right

I hand side of any statement in (2.4) is/ \. /already well defined. (Assume

accumulators have been zeroed.) Note
/ also that DFDB3 is computed only once,
7 ,and suffices to compute both DFDA6 and

DFDA5 in two more steps. Thus, while we
have, in effect, "multiplied down the
tree" to both the leaves A5 and A6, we
have not performed any redundant
multiplications.

A little thought shows that the above
FIGURE 1 approach yields object code which

performs a number of multiplications
As is discussed in Sawyer (1984), this "down the tree" which is less than the
derivative can be computed by simply number of edges in the tree. (The number
multiplying the partials found along the of such multiplications is in fact
edges from the root to the leaves of the exactly equal to the number of edges in
tree corresponding to x and summing up the tree less the number of arguments of
the products. 2 the root node.) Further, in the case of

Now what is the payoff in the nodes which represent binary or unary
"multiplying-down-the tree" trick from operations, as is the case for (2.1),
the point of view of object code? Why the time taken to evaluate all the
do we not simply, in effect, choose each partials along the edges of Figure 1
leaf in left to right sequence, multiply must be bounded by a time proportional
up the tree, and add to accumulators for to the number of edges in the tree.
the partials? The answer is that one (There must be some maximum time which
must be careful not to do redundant it takes to compute a partial of any of
multiplications. The strategy of doing a finite set of built-in unary or binary
multiplications from the top down leads operators). Finally, the time it takes
naturally to a code generation scheme to add the partials of the function with
which does avoid redundant respect to its leaves to the appropriate
multiplications, accumulator is certainly bounded by a

Code to compute first partials of a time proportional to the number of
function being parsed such as (2.1) may leaves in the tree. Since, as we have
be generated as follows. When the already noted above, there is a maximum
parser recognizes a node, code to time which it takes to evaluate any of a
evaluate the partials of that node finite set of unary or binary built-in
respect to its arguments is generated at operators, it follows that the time it
the same time as code to evaluate the takes simply to evaluate a function such
node. For instance, after the node C2 as (2.1) is also proportional to the
is recognized in the process of parsing number of edges in the tree. Hence,
(2.1), the code "DC2DB3=C2" will be since both the times needed to evaluate
generated as well as the statement the function and the to evaluate all its
"C2=EXP(B3)" already seen in (2.2) partials are proportional to the number
above. ("DC2DB3" is simply a readeL of edges in the parse tree, it follows
convenience representing a stotaqe that the partials of such functions can
location in which the partial of C2 with be evaluated in a time at most kt, where
respect to B3 is to be kept.) A t is the time in which the function is
statement of the form "DFDB3 = DFDC2 * evaluated and k depends only on the high
DC2DB2" will also be generated and level language and machine used.
pushed onto a special stack for such The reasoning above can also be used
statements. After an entire function to apply the kt result to functions
such as (2.1) is parsed and other object involving sum and product operators,
code generated, the elements of this though, as Sawyer(1984) points out, care
stack will be popped, causing them to must be taken so that computation time
enter the stream of object code in for product operators remains
reverse order. A portion of this code proportional to the number of edges in
popped from the stack for (2.1) would the function. The reader is referred to
look like this: that paper for details.
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It should be noted that the kt bound since each of these partials must
is attained for one relatively simple involve at least one arithmetic
function: the product of n distinct operation apiece to produce it, the
variables. The efficient way to proportional-to-time-squared bound
calculate its partial with respect to a cannot be beaten for products. (We can,
given variable is to divide the product of course, do much worse. Each second
by that variable (assuming none of the n partial of the product with respect to
variables are 0 when the product is two distinct variables is defined as the
evaluated). Both the time needed to product of the remaining n-2 variables.
calculate the product and the time If we compute all non-zero partials in
needed to calculate the partials by this manner, we perform (n-3)n(n-l)/2
division will be proportional to n for multiplications, so that our bound on
large n. Further, k should roughly be second partial computation time becomes
the ratio of the time it takes to do a proportional to product computation time
floating point division to that which it cubed.)
takes to do a floating point In principle, it should be possible
multiplication. to compute the second partials of a

function in a time proportional to the
3. Toward Automatic Generation of square of the evaluation time for the
Efficient Code for Second Partials function. Consider a function h which

is a can be programmed as a composite of
What follows is a brief verbal built-in and user supplied functions

description of how automatic generation (for which the user also supplies first
of efficient code for second partials of and second partials). Suppose we write
a user-programmed function might be h as
carried out. The attack is a extension
of the paradigm above and of Sawyer h=h[g (f ... .f ),...g (f .... f )] (3.1)
(1984). (An exhaustive treatment of 1 1 n m 1 n
this topic a bit involved to be
presented in a few Proceedings pages.) Now let us specify that for a user

We first note that there is a lower program which evaluates h that a
limit on how efficient computation of compiler will recognize the g's as
second partials of a function can be, either built-in or user specified
compared to the time it takes simply to functions with f's as arguments, that
evaluate the function. Return to the is, on recognizing the g's it will
example of the product of n distinct immediately be able to produce code for
variables discussed above. The second the first and second partials of the g's
partial of the product with respect to with respect to the f's. Formally, the
two of these n variables may be computed f's must be daughters of the g's in the
by dividing the product of all the parse tree with root h. On the other
variables by the product of the two hand, we make no restriction on how deep
variables in question. This means that, the g's may be in the parse tree. We
for a specified set of values of the ultimately want second partials of h
variables, n(n-3) operations are with respect to a certain set of
required to obtain the partials. (This variables; each of the f's will be roots
figure arises from the fact that two of parse trees which have these
operations are required to compute a variables and constants for leaves.
partial with respect to each combination Now by a double application of the
of variables, and that the second chain rule we get
partial of a product with respect to the
same variable taken twice is 0). Since 2
the time needed to compute the product d h =
is proportional to n, it follows that df df
the time needed to compute the second i j
partials as above should be proportional
to the square of the function evaluation 2
time. -- d h (dg /df )(dg /df )}

The reader should satisfy him- or __dg dg s i t j
herself that a bound proportional to the s t s t
square of product evaluation time cannot
be improved. Remember, each distinct
variable is free in general to take on 2
any value. In particular, the d g
respective values can be the first n + (dh/dg) s
primes. The (n(n-l)/2)-n non-zeros df df
second partials evaluated for these s i j
values of the variables will all be
distinct numbers. Since the number of (3.2)
distinct partials to be evaluated is
proportional to the square of the There is actually cuite a bit in the
product evaluation time for large n, and structure of (3.2) that we can take

304



advantage of for efficienct code right hand side of the equation will
generation, with a bit of massaging. involve only one term.
Note that there is a recursive structure In general, the contribution of any
to (3.2): given that we have the first two leaves in a parse tree to an
and second partials of h with respect to accumulator for second partials will be
the g's, and that we can generate code computed as follows: through iterative
to compute the first and second partials application of (3.2), compute the second
of the g's with respect to the f's, we partial of the root with respect to that
do indeed get the partials of h with node at which the paths up the tree from
respect to the f's. Repeated the leaves in question join. Each
application of (3.2) will, not iteration will involve only single terms
surprisingly, take us from the root of for each of the two sums on the right
the parse tree down to a point at which hand side of (3.2). One more iteration
the partials of h with respect to the is done to obtain the second partial of
variables of interest will be obtained, this node with respect to the arguments
Yet how we apply (3.2) in such a way as on the paths from this node to the
to insure that the partials will be leaves in question. The rest of the
obtained in a time proportional to computation is then simply a matter of
function execution time squared is not multiplying this second partial by the
immediately apparent. products of the first partials

The trick for obtaining the kt bound associated with the edges connecting
on first partial computation is to keep these arguments with their respective
the computation time for those partials leaves.
proportional to the number of edges in Now it should be evident that as the
the parse tree. Similarly, what we want contributions of pairs of leaves to
to do for second partials is to keep the accumultors for second partials are
execution time for second partial collectively computed that many
computation proportional to the number computations do not have to repeated for
of edges in the tree squared. One way every pair. Once we have computed (from
to do this is to traverse the tree in a the top down) the first and second
outer loop, from right to left, stopping partials of the root with respect to a
a. each leaf to traverse the tree from node in the tree, or the second partial
that leaf to the right. If this this of the root with respect to several
procedure computes the second partials arguments of a node within the tree, we
in such a way that there is some fixed, do not have to recompute these partials
maximum number of operations of maximum every time we want the contribution of
time duration for each edge traversed, pairs of leaves which have paths up to
then the second partials will be these arguments. All we need once these
computed in a time proportional to things are computed are the products of
function execution time squared. the first partials down the edges from

In fact, such a nesting of tree these arguments to the leaves. But the
traversals can be accomplished. In first partial computation process of
practice most of the terms in (3.2) drop Section 2 above provides the product of
out as one moves from the root to the first partials down the edges from the
leaves of the parse tree. For instance, root to the these arguments and from the
consider the contribution of the roots to the leaves. Thus the product
variables Al and A6 seen in (2.2) and from the appropriate argument down to a
the parse tree Figure 1 to an leaf can be obtained by a single
accumulator for the second partial of F division. If we now require that the
with respect to Xl and X2. In this second partials of the operation
instance (3.2) will reduce to twice the represented by any node with respect to
second partial of F with respect to Cl its arguments be computable in time
and El times the product of first proportional to the squared of the time
partials down the edges from Cl to Al it takes to evaluate the node, then all
times the product of the first partials the forgoing will fit together to
down the edges from El to A6. As produce a strategy for evaluation of
another example, to get the contribution second partials for which the
of the nodes A5 and A6 to the computation time is indeed proportional
appropriate accumulator, one applies to the number of edges in the parse tree
(3.2) iteratively to F[EI(Dl)], squared. Binary and unary operators
F[Dl(C2)], and F[C2(B3)], and then will meet the requirement, as will sum
multiplies the second partial of F with and product operators, if the latter is
respect to B3 by the first partials properly handled.
associated with the arguments of B3. Object code for second parcials is
Finally, the second partial of B3 with generated along the lines that code for
respect to A5 and A6 is multiplied by first partials is produced, including
the product of first partials down the the use of a stack of code to be output
edges from the root to B3, and the in reverse order after the root is
result added to the foregoing product. recognized. Each time a node in the
For each iteration (3.2) in this parse tree is recognized, code for
instance, each of the two sums on the second partials with respect to its
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arguments must be generated. Code from strategy of Section 2 for first partial
the stack relating to second partials code generation is given in Sawyer
mirrors the behavior of code in that (1984), and to some extent this carries
stack for computation of first partials, over to second partiA generation as
although (3.2) must now be appropriately well.
incorporated (Again, the exact To briefly carry the applications
particulars are beyond the scope of this idea further, consider the case in which
paper). As should be evident from the a likelihood is to be maximized over a
foregoing discussion, considerable large number of (say nuisance)
backtracking in the actual execution of variables. Even if the second partials
the object code popped from the stack matrix is not used in the search routine
will be involved, as the contribution of itself, that matrix may be preferable as
the combination of each leaf and every a source of asymptotic variances of
to its right to some accumulator for estimated parameters, or even as a
second partials must be computed. This criterion which can be checked for
would appear to necessitate a system of negative definiteness to verify that one
pointers not necessary for first partial is indeed at a maximum. Another
computation alone, application may be to biased estimates

Problems still remain with the second of a function of a large number of
partial computation scheme sketched nuisance parameters, if such estimates
above for which space does iot allow for are constructed from a set of reasonably
ample discussion. One problem is consistent, unbiased estimates of these
dangling nodes in the tree which are not nuisance parameters. The first term in
really proper leaves. These correspond a Taylor series expansion of the bias in
to variables in source code which appear the estimator of the function will
on the left hand side of an assignment involve second partials of the function.
statement once and on the right hand Ability to compute these partials
side of a statement more than once. readily may allow the construction of a
This problem is solved in Sawyer(1984) beneficial bias correction term.
for the first partial case, and the
second partial case is a generalization References
of that solution. Space complexity is
an issue even with first partial code GRIZZLE,J.E., STARMER, C.F., and KOCH,
generation, and will be even more so G.G. (1969), "Analysis of Categorical
with second partials. A certain amount Data by Linear Models," Biometrics, 25,
of recomputation of partials, rather 489-504.
than storing them indefinitely, may be
necessary for some functions as a proper RALL, L.B. (1981), "Automatic
tradeoff between space and time costs. Differentiation: Techniques and

Applications," Lecture Notes in Computer
4. Applications Science, No. 120, New York:

Springer-Verlag.
As stated above, the authors work on

first partials was motivated by a desire SAWYER, J.W., Jr. (1984), "First Partial
to streamline weighted least squares Differentiation with an Application to
analysis of categorical data. Some Categorical Data Analysis", The American
discussion of applications of the Statistician, 38, 300-308.
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NOISE APPRECIATION: ANALYZING RESIDUALS USING RS/EXPLORE
David A. Burn and Fanny L. O'Brien, BBN Software Products Corporation

The RS/Explore software is a statistical advisory environ- * a menu system which allows the program to be used
ment for performing analysis of general linear models. One effectively by nonstatisticians, especially industrial sci-
g,-al of ,latt aiayviq is tn find a "model" that adeauately entists and engineers
describes the variation in the data. Residual analysis is an
invaluable tool in selecting and validating a model. We will 9 statistical tools which help the data analyst avoid the
examine how RS/Explore provides convenient access to tra- most common pitfalls and inappropriate analyses in re-
ditional and innovative graphical displays useful in residual gression modelling

analysis.
2.2 Menu System for Building Models

KEY WORDS: Residual Analysis, Studentized Residual, In-

fluence, Leverage, Cook's Distance The menu system in RS/Explore encompasses the iterative
approach to building models. In particular, the activity of

1. INTRODUCTION model validation is simplified by the ability to explore resid-
uals through a variety of traditional and innovative graphical

A primary objective of data analysis is to find a model that displays.

adequately describes the variation in the data. The process Menu System for Building Models
of building models consists of the following steps:

1. Model Selection it MULREG

Mona"e DATAI
(a) Determine general class of models. unW MODELS

(b) Identify parsimonious subclass of models. FM .od..
0MTRPRET A

(c) Apply transformations to data. DIARY '

2. Model Examination ?ECNIA, F F7 .tI

(a) Fit model to data. s OOMEsEIMr

SCOMFS
(b) Compute estimates of parameters. s , oF,A....5A

3. Model Validation '"v

(a) Check model assumptions.

(b) Check model fit. 2.3 Screen Display for RS/Explore

4. Model Implementation The terminal screen in RS/Explore is partitioned into three

(a) Predict future values of the process. regions: graphics, menu, and dialogue. In the graphics re-
gion, RS/Explore displays graphical objects such as boxplots(b) Control future values of the process. and scatterplots, and nongraphical objects such as AOV ta-

bles and coefficients tables. In the menu region, RS/Explore
displays the list of currently available options, and highlights

Selection one or more of these options as appropriate next steps in the
Idata analysis. In the dialogue region, RS/Explore displays

Examination ] information regarding interpretation of statistical procedures
and echos keyboard input.

Validation ]Screen Display for Residual Analysis

Im plem entation * . ,..-" ,, . *. .,I ,t, RESPONSE

4 FT= V.J.-
Approach to Model Building s A .r VA'IABL

6 PROBA~sIa= PIW
7 LAC 5m G,.ph
- PARFLIm Rst
9 WTLUENCE Pi.,::; :;,:...,.0 DI SPLAY D-

2. RS/Explore Software 1 Add LOWAD.SS, ~~~~ I.,'.. SCALE P,.--6-
13 NEXT

2.1 Objectives of the Software "" "AI

The RS/Explore software provide# .

* an interactive computing environment for data analysis,
regression modelling, and interpretation of results MULREGCfM REFINt RESEs>
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2.4 Formulas for Regression Diagnostics 3.3 Least Squares Fit

The RS/Explore software defines formulas for regression di- The fitted model and the analysis of variance table are as
agnostics as follows: follows:

Residual Fitted Model
e= =Y,-1 .

Studen,. Rcsidual e= -k = 1.0175 + 0.1304X1 - 0.0403X 2 + 0.5210X3

ei Analysis of Variance

e( r) -4(1- h,))S' of M
Source df Squares Square F-Ratio p-valueMean Squared Error-- - - - - - - - --- - - - - - - - - - - - - - -

Regression 3 870.42 290.14 536.40 0.0000
2 - £ Residual 381 206.09 0.54

n-p Lack of fit 339 191,79 0.57 1.66 0.0232

Studentized Mean Squared Error Pure Error 42 14.29 0.34
Total 384 1076.51

n- p-1 R-squared = 0.8086

Cook's Distance Adjusted R-squared = 0.8070
Standard Error = 0.7355

Ci h kl- hi 3.4 Analysis of Residuals

Leverage Point Rule

Any observation such that hi > 2p/n The residuals from the fitted model are examined using a
variety of graphical displays. The scale of the residuals in

Influence Point Rule all displays may be specified as raw, studentized (default),
absolute raw, or absolute studentized. A lowess curve may

Any observation such that Ci > C.95  be added to all residual displays to identify trend.

3. Data Analysis Example

3.1 Description of Dataset

The Car Dataset consists of n = 385 observations on 8 char-
acteristics of automobiles.

Name Units Scale
MPG mi/gal Measurement
CYLINDERS 4, 6, 8 cyl Rank
DISPLACEMENT cu in Measurement
HORSEPOWER hp Measurement GPMIO0 versus WTI00
WEIGHT lbs Measurement
SLUGGISHNESS sec/(0.25mi) Measurement 12"-
YEAR 1969-1981 Rank
OI:,GIN continent Category t0" A A

A AA A
3.2 Identification of Model BPM,0-GPMtO0,O A f

Our objective is to determine the relationship between gaso- 6 A
line economy (response) and weight (predictor) and number
of cylinders (predictor). 4A

Model

Y = 0 +AX 1 +3 2 X 2 +)3 3 X3 + t0 20 30 40 50 60

NT100
Symbol Variable 0 CYLINDERS-4

Y GPMIO0 = 100/MPG 0 CYLINDERS-B
X, WTI00 = WEIGHT/100 A CYLINDERS-B
X, CYLINDERS, (C=6)-(C=4) CYLINDERS-4
X3 CYLINDERS, (C=8)-(C=4) ..--.... CYLINDERS-6

.......... CYLINDERS-8
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Histogram of Residuals ResidL'mls vs Fitted Values of GPMI0O
Using RAW Residuals Using STANDARDIZED Residuals

604 I
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40-
2 :

Frequency 30- Residual :? ~*
0 *.

20 E
1  

*1q%*

-2

.1 J.-

-4 -2 0 2 4 2 4 8 1

Residual Fitted Value

Case Order Graph of Residuals Residuals vs Fitted Values of GPMiOO
Using STANDARDIZED Residuals Using ABSOLUTE STUDENTIZED Residuals

6 * 6-

4- a

* 4'

2 .- * * Residual

Residual I~t*%B % ,*.**

2 sop 2-

-2-**0 *~.j~aa *I

* *2 4 6 8 10

-4 Fitted Value
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309



Residuals vs Predictor Values
UO~r; ~A~'. ~ ~qIi,,1. ~Residuals vs YEAR Values

Using STANDAMZEW. RFivle

0

0-"A A

Resesuaual

0 A

-4 *A-io

1 20 30 40 50 60

a 01
O CYLINDERS-A
* CYLINDERS-6
A CYLINDERS-B g7 17 37 7 a7 87 0a

YEAR

Residuals vs Predictor Values Normal Probability Plot of Residuals
Using STANDARDIZED Residuals Using STANDARDIZED Residuals

0 29 0.99-

0 26 0.95-

0.8-
Residual 0.7-

0.4-
0.3-
0.2-

T 356 0.1-
13 382 Y0.05-

CYLINDERS 4 a .0
0Pta 199 83 103 _______________

Mean 2e-16 2e-16 4e-16 -505
IOR 1.086974 1.249856 1.567577

Residual
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Lag-I Ser'ial Graph Of Residuals Influence Plot of Rusiduas of GPMIO
Using STANDARDIZED Residuals Using STUDENTIZED Residuals

65

4-

2* Residual 0 ~*
ith residual ** ~.

0-5

0.01 0.02 0.03

*Element of Hot Matrix Diagonal
-50 5 - 95% of Cook's Distance (C-0.iost)

-Leverage Point~ Cutoff (20/n-0.02081
(I - ) th residual

- (0.5) Smoothed Residuals

Partial Regression Plot of GPMiOO Influence Plot of Residuals of GPM1OO
for WTioo Using ABSOLUTE STUDENTIZED Residuals

5 *

4-

Parial 0a Residual
Y Residuals ..... J

2-

51 _____________ 0.01 0.02 0.03

-10 0 toElement of Hat Matrix Diagonal
Partial X Residuals - 95% of Cook's Distance (C-0.1061)

Cost - 0. 1304 - Leverage Point Cutoff (2p/n-0.02081
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4. SUMMARY REFERENCES

The RS/Explore computing environment BBN Software Products Corporation (1987). RS/Explore

* integrates numerical and graphical sunmnaries User's Guide. BBN Software Products Corporation, Cam-
bridge, MA.

" provides convenient storage of results Belsley, D. A., E. Kuh, and R. E. Welsch (1980). Regression

" maintains a diary of data aalysis Diagnostics. John Wiley, New York.
Cook, R. D. (1977). 'Detection of Influential Observation in

Linear Regression'. Technometrics, 19, 15-18.
The RS,'Expkre uenII Sy :I Cook, R. D. (1979). 'Influential Observations in Linear Re-

* organizes model-building process gression'. Journal of the American Statistical Associa-
tion, T4, 169-174.

" highlights appropriate steps Draper, N. R., and H. Smith (1981). Applied Regression

" requires no programming effort Analysis, second edition. John Wiley, New York.

The statistical tools for residual analysis in RS/Explore

* allow a variety of scaled residuals

" provide lowess smooth on all scatterplots

" give easy access to regression diagnostics
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SIGNAL PROCESSING AND DATA ANALYSIS

David A. Whitney
Olva Schiller

The Analyiic Science-~ Corporation
55 Walkers Brook D ris e

Reading. %IA (Iti7

ABlSTRACT arc des-elopedi by% si udyineia particular inudeiig prob~lem Willi
Widespread appl cat jotsi A RI MA modeling or a c lass uf nonst a

Tis paper describecs thle applictiton of expert 5si ter tehn 0011- t n yunkis ate ltne series. These ichniquics bev gi(a ftcer out icr
ogy to the deselopmnin of a software tool for processitig andf analy idlentificatiton. editing. dicire tfi ng. amid a na ice stabi lizing itranis
SiS of ltle Series Si Mials The systemn integrates Ldistinoct nuomerical fuji ]nations) Witlli lintear difflereic ing ope rat ions to trantsform af non
an 0(1 II tuble processinog cores to formn at. analysis emiiie n fl statitunary series to ai stajtuonai r>oiiL This is folluw ed by ant anialysis
where numeric and sytmbol ic processing tasks are performled as of thle a iiiocorre at ion (ACH anItd ptial a UtOcorre lai ol IPAC F
needed. ditritg flie anta l'sis. Sophistica ted off- the -shelf numjerical funoctionis to ide it if) patterinis tha Iilt r i e itic of diffe reint
anja lysis sohw arc is Coupled] %fillt a highi-enld expert systemi dleve lop- Mtodel St ructures an oi ris NI odeIc Pitra mete is are thlen fit to the
nie ot shell to formn thle integrated svstem . A knoowledge base of set ris. ujsintg atl ite ratise nj iiti j i likeIilihood estimatiiil schlte in
rtules for performimig A RI NiA (AutoReglessise Integrated Moving thle genieral ARINIA case. This .,ik slloweki by residual anal~sis to
As eritge) t~ ime se ries mtodeling is imple mene lie I the "systemi proto- score o01 ranok thle gooinelLss Lof the I iii~ lIetiI fur comtpa risoni Withi
ty'pe Tlie User iterface is presented iii a mutlti- windfow eiroii ti~ i:aiimldatc mtodeLls 1:o d1(etatiled des~ciions of file ARINIA
ilet oil at woLrkstaio fill i Iit ma pped ra piis. niodlin, techntiques ,i ilLf lill tis work. see Box itnci Jenkins

(176 r Bruckwell andI Ilais INl~S") Sectiont 6 of fill,; parer
1. INTRODUC-TioNs plsit s a ii examtple show injg se sel rtIof thlie modilin g sitages.

Thispitpr dscries aprootyp exert ystet fr sinalWhile Tile eitpha sis here is oil A RI NIA miodelIfingm as the'I'ivipapr tesribs i pito~pcexprt yscinforsigal Objectis Of tile signtal aiiltlvSIS. Such moirdels aite widely uised foirprocessing antd data a na lysis. catlied COST AR (COordintated Statlis- foirecaising. taid can alsoLtbe comitbinled withiii ite rsciiiion ana~tlysis to
iia Atnt) "lsis and Peasoiigl As illust ra ted ii Fig. 1 . tile pitiloso dfetect discrete chtaiges il pramters of ifmoelcase b -ipity ftch fLI tile sysiem di esi go is to itetcrate four key fuinctional il ~ L iOL,5~ yeoe

coiipontents oIf the data attalysis process: Uisers. Graphics. Syini-,i seis
bolic Rules. and~ Nuimerics. [hei system call be tise(] as af *black
box-. but it a llouws i iterseni OI f tile us~er at sCected Pounts Ill tile
tilalysis. Its objectime is ito serse ats ati example of low these tujic-
ititlil areas canjibe iiitegint lut comiplex signtal ailalysis. is "ell

as ito serVe ats af test bed for studiig issues of strategy developmteint ALLIANTSY B LC
antid rul e itine jit iii(ietlI re fe rences for cutrrenti work fi thle
aredt of artificial itelligenc e andi expert systemis ii statisitics airc
Gale (1 9,14t andI hiatix (19sb). Discussions of other specific sys-
tents cal iicb founi there in(In ti Gale aid 1'regiboti l 1984) . NIilIus 0 IMSL TCPIP 9 KEE

l )0,4t . Neltler I SI~S). andu Nit anid Feigeibaiil (I1918).

II guiie 2 liaridw ire anjid Soft",ua I ii egrit 1lit

3. SYSTEMN ARCHITECTURE

UJSERS RULES FIcc~ i als tiiiiiie(l sigiial processinig and datla ati,1.SISm le

(]linies thIiitegratiton of mi tmholl and mulomiel processinlg It tits
Ss stciti. ( lie S,;IibuliL prulLessitig buirdeni I rrL-ie N b tile ridle ba-sed
Cx pert5' SiC IIIt 11(1 ini I liiiite~ tinld ucu w' bly tIle uset.

NUMERhe Hit:nileric processitig is fhandled bs t N i nodcri "tnumtber crunichl
ijic s',steii A scijeiic of tile systemt ircljitctuic is sho~wni Ill
[ig - A ili -stiecNiiip)UICi. tile Allittit [N h rarallel processor
rjniinig jijder ( ujceiltri\ 3 (1. perfoirmjs tile tttieric pocessing
uising A cuileCIit1 (If I S 20 rOiuie fImo~til e -Oririmi baIsei IMSI.

I-igiirc I 'siclj I utmitiotil InltiLijitioi L) 2 Visir lN ISL. l954i [lie comlputationalroiieiitt for
11t\11-i11 in1ite tite seres itiodelintit) do t reilly Licit,1ditila sipercoi
putter. but IItis arC11ctCtUr wll mI tlike It Celii t u ed ss ii0i e2. STATJISTICA~L PROIII ENII ADDRE SSED :oitit'lliotia I V itietisis signal anialysis Withiti tis s.-sten frtame-
wui k Ill tile fjuure, Ss III blL' prucessitig is Itajimdieif [IN I S\ itibulcs

Otk of [Itle obietijtL (Ii this woi k is Io stud N tIit iuniitli/ 3t,40i niiitttiiig tinder Gener - I .1101 ising tile e\Isei ssiett lcfesl
a lysms sir ilLcii. for a itismit i l ati prui. ssiig and~ miinhg. opilem sti l (~FFKnolwled~ge F ig ice rinig fimi i m te it) 3 1 (Iii

I mIs wA1 isist) ,ii immomtjolI timlie dILs Llopmmejim uf pumiec ing trllicuip. 19's7)mi uI (mmmmim ILisp I iljiliuji0 IS ecltijiged
systems suchf is IlINDI lOldlimrd anid I deis. IS ) anld lAR I beiweej mitimem ic arid s',ittbulc prucsitg enities user .t itwurk
(1)(1110110 11 54)In ii lei i5I d copiti of CoS lAR. jij Icrejices opertilmiletr thle protocols oii 1(T1 l IP I I uttSilIissimi Cojiol
about geineral Qtitisimcs stai I'llfi sigmtitlssmjfitueii Pllo'LI' I liei li~ It Ofti I tlii.~v iis 1ci itttfi I, II ut I(ILc

313



thr-ough rimte SyIItbolICS work1stationl. which displays Ill tipped luc ScotrIng RUle III tile RCSiual. Riles ilfs it ile
grahics tin at mImlti windlow ensmroninmru. U~ser inputs arc prosttls'd ARINI1A \11odclimc Rules SLiIC pcIS lSINl IhIw In 1i- 51

mlmroigh a keybsimid or a 3-biionrmm olism'.
I isl iiiciIk~icl. k.miccmrric:ml stitICiic -sit iles mIn thle ksll

Thesytem relets n nmgrati.ri sit distinct hardwkare and edIOe bise sers ci eseraf pimr1POSev, It allOwS Imi strcturedC~ deelmp-

soirware funtions Fle 1Imiticitonal OmptS ire integrated. bumt tile till Of tile KB - pirtIiiIS Ot the oiserall analsmss %:mn tic steeloped
nuimieric anid symibolic elciemnts relliaili distinct, passing intiia idepe~iCIiity It rlso) pciI inSI aMnole Oltrciiikcd mietij mimg M tile
nion across the networks to each orie r Ads ant ages ol Suc at cotin kntowled ge ba se at anit) Il rmIC~iitiiC IC seI instead Of I alat mm c
tictiraiom ate that each ms-pc ot hidlitmi an sorm mmrlme ui i/r I\ ,mums each rule imidisitmallN. i saini time tial SNSllI ie i cIclusionIS
mm/m/romilmu, f/Won till I /l 011. rmsA is mippied. and existn bIIased on firinig all tile rules. r easoliitg :,Ill be mrs Oked miSInte a par
mterical signal amid datat analisis saltwaI!c canl hi. Used dlirec:tlv A OLIcmlar rile subiclass I is allowks tor:

dismad aimace is timl' need for tire sleselsper rl %&ork In mand iiitegiar:ii
two dittlemt hardware aInd sofhwiare cirsioiiiris -this has nor * AiiJil5 si t rie Iiiecriiet pertalimmiwlce a i smuLliser sir
prmmest to bec a major problem. imowem~ cm While tims (F ig 2) is *i tiles

lm1"gh- eimi" Iardsmk,Ire cOlntremntniir. It is nIow possible to buildI
Iot-c econoammical ssst -ili with s11111ri.n I'Mi minlNis . 1E mmd Scalirrg solow tile corniplexnil ori pmot'lcill dinacisii slgnut
I NISI. sim a 8tI3s, P'C ,Stemr RiI'li iirUndCsmer .m s.i sion it L NIX. Cimirl) -

4. THE KNO\% LEDGE BASE li ,msuii totc in i irrlsrietdiili .rt
iles iii ire Ki3 also rcilecr at 'mm.piim/ ismiciny mhai is derilkei

t1101i1 air Idea 01itrlie: gneiikc sivgimm I atnaly sis proccsin. Pie rumlIcs caml
['le k row ledge base (Isi misces sitructures thliat mire becom i mitg the jlibeCL ld inOne or r t-Ce "iNS

commorn ill Sophisicatecd expril systeli smrime . sfle toi their ccii
era limy mu ad po~w er These mire ra ties M md sObject -One mired prscgraII mu- Sitrategcic

meilt (cC[liLL . m 1 l~AC~Cbaei r~pascd a1thmree iii amam-
segiiemims: ilniiii 011j", .A. 1imrmmliimm mum/it arid grim/ilimim Oil um, it 1 -l.ical
. he KB tru nctmure is diefined so is to reflct te nrim sti mrsic rime ait
mire imidelings ploilemir addressedt b tile mimmlysis. 0 Nleclhinicil

Time ha sic objects iii the slsttm mire dmatma sets existinig mml itm par- Ihlese lmabels reflect rtme Ism ivs mm hich knowklesige Seemrs to he pra-
ti ilar Stage aft ilie m miNlSIS I-am examrmple. tile k raw ldge base Itim s idci I,, experts miiirin ril~e ' tow lemige emtgineliit4 . ie.. exper-
imliiiill) continm mm Single r*~a' dtam set object. The operatiim iif isc eximcrisin. phase of Kit ties elopirrr IFor examr~le. a stalmi/i.
dami edtlii will ct-Cemte mmit cine te t a set, ite aperamtion af t-mins ['ile rmiN diescribe am swhimt phmase af rime ainamilysis chiec ks to tn
fkrsrrrrime art tist-r~fImetl datmi scm. I t mItlrmitie limmmfoit', dire err stitiironirt) marc apprompriate. At-i massociated mimirsil rile could dcii-
temiami itti. to, exsampr~le . irmmltiplc trantsfsormed data sets tif irwiss to tesi for sti nat -is suich it ms exmin a mtionm or pmitterims in
car respoiirg to a Simgll, teidiist misb mitsirm kiwl AIs iriPLI s 1 /MIUiiim-il s w11 ruOlilsi base heuristics tar

edge ccbikse HeI-icmir 3 slrs s mIra grmenii r mm i iuermm c tic a tree sirsis idc rim iii pat tseris ill sriiipsied correlmatitin runictins. mas well as
jug sormei of te types sri objects inl te kntowledlge base (I' igs 3. n iggers rfrr imisokiim tisose mimitierical pracesisires ]recitemd rtr Caln
arc sIISPmIJNC es M tile endit f till'i iarit I I l itl CcOrre mIainsI i i had m[lii a Ire ald been c onpsir edi. Smich a

coircepmu um I: hi ris It is clemil umsceful ifir identtifying and lor-
Dor, mlrjr aJ t-c rpe I11seet bv flrmies. which hldts mist c,.is iii'liiiis Staistica ii imsis stralegies

time ntice series sit ctimra. butit mm mriety sif maddit ional Infi orrmtionii
aboutmir mm pmioitit kindi f dita ommsbject Fo- exammple. mmitmiat sobject The kirio%%Icctg bas micti iismiprmmmrmr I i rule
Ill tile resimitmi Clmiss tas mm trmte with iSlots thmar hld

1. infosrmion foi- r nrollint mlisr Rules tillr-tlie c remionr mand isplay sit different
absimn rite suriIIIN riaiStsimtist ic s Of tile reSi dmmIs~. tite mosdel usedtio s types sir ploits. mm 'liil i MImirmes. a il Icosns ort pmibmrttoms. are
tierie tile resist im is. Sceses lor goodmn ess sf itri tests. erc. I-i Cmi re 4 cmuritm ,mcI in mt i m Is sittge bmmse is well The object -sorienited

ShmiWSa iri Mii O1 tit e 1 mimil frmitie mtt riblmmesir r this si'stel mmrmic le sit Itsi si.rim ml lows prrcetdures foir germerminrg mmndl siis

KIB Ss errn cliasses sit sOmt ob sjects mire tie t t mmmie cuirren \ii sssll ii grn hmis mijesl is ri lie line1 tim sc IN to i te dl mia sibjects

mi io. frimi oisbject s ,mre sictinrct s mistemnbers mifpJrmimmi sjrm c Ii sse s .ilmim teirseIs c s as framie att ributmes Titus tielps tsr

inhlerit ati1RibitS mapproiprimate tsr tmat pmnImlmar clmiss. Tinorstionm ol 0 Orciie tile Kit
pmsroivc mi s meinremd im Aikmms II M3/ mimid hims also beeialie 11111L
tii tile RI'. \System for Ii e gressiomi mm misis (Gale I 98b Ir i I - l i .mil Remmimi tire knomis issge cenicer thua gritical slisplas
immim tsr helping foir-malize' anti siremmimline tile strumetmire sif time expert p1l,1 1 romle )Ii a it- wAith lirmerrsri mimit rim signal alirimI is

N r K-l i, [tire isiemi is usetul iml Strmategy Ilsrrmmmlmlmmrisr. imimY, ii di proiblemrs
ier, tim, ituhmma iiii ii hik mmmiii ihim il a/ho'miii

5. S'STENI CONTROL STRATEGIES
" lie mpcs sit obijectis tlhii iform ime aria lysis risk

\1it1 missr time sliffmciil ProbleII rIms iiisCs eIpi rig mmi iicc C tis e sorft
" 'mA. lm they rs m eete wars' roofl for cmimmpmtICm gIriled tiatJ 11MIlIs eSmCIm iii irmse mml mite

r f~ sri mm onvioutiml I'his is. mfte r all. trme mitca iii which at datai
* Ho sw Ite, ite .li/lc it)r sir sps'ci lie Irn O-ith iie r clamsscs sit alrii ssr show ks itisist ori Is cassriige xpermise w limit mnrc ricaI comin

miblcIs piur'Imiim shouildi lie' per Imirris-i mul ohail simme. ansi wimat shoulmmtibe
tuTic ieiC is a reslt sir tims' rimmitmet-mal csirtpmtitrmrntS perfonmet so

Flre pri rimrN re psilmry si sigimi Iamnmmilysis expertise is coii f i ' \kli IS' ertc isc ii imicerpretin rg time r esmi ts til a patiiculmar nimir
talimedsit mmmhe p,rm u rmimimmmmltu, tmi' segielit srf mme kirirwesigs' mnir cml prsrceimi is ieni ireemiesi. i/rw irm hit Cki/ilt 0#10 miim/Of

bise, - Ilis is mm set ofit m -'it rules rthat perisirrm mime s', iiblic rem i/ri -ctmi/i aiimi/irim mo dolriimrmrii Cmrrl stt-mteipes in this softwamre
stun1k tIg l mmtite 55mmcmii. mis well is cosntrsol linig the nmmiiici prorcessinrg s~si cm tic cmir ciii Is bir'mmm relrinietd /ris sectr in mumite s time
Ahiprrimmmitnt 5/i ruts's m i mplcemete ti mimi lit-st iseritmimi plimmism kumIrirol sirimegmes
COSTAR Ssteicrim. in itrie KnmiowI ldge bmase is mm ite miinrg reskisisim
mand time nmummber oif rulses mm te mmexi s''crml~tiiii Syste.m is e xp'ctetd As rmrentms'ioe ti time 1mmmri m-rsr T rdc t'l ime iser- plmmss a role Ill
tin itl least dmlibiC tire iles lie genesrmally mrse k tit iii m oiroid csrmi miltimig tims' sitstcmr li mimogir Im iimimemi rimimmibem oii irielacim op-
chmiumg procsess. consristernrt li rime '"dmata irisun* ii imre tii am pmnilmrtics presentedi bi rthe N5stelm liese Imipumis tmake te fsirmt t
cormmplex siiml anailysis I tie ruls's iil miii. KRt mt-i pirmies lmiii, eithmer miiiii-mtiimrmr1 suipplsm bs% rims' Mer mm Iitial prmlImtips. si by
i-rle clisses rthar cmiiresI ...mil pmvmi~ist to fiile Wi tirai (itli Mroilise tImmiiciis's cmrfiitirritiiim Ofi \ek 0ii mit o miitmi iC ledm bs- rite
subjects ire tii ted Initoi cliasse s, -- ir exammmple I class ofi ressidmual s Nsicl ri Ii ar st ages mut rime Aitmilsis I-or extammpte. Fig ( Showi
milss thamt air 'ippiipli ie mImiy fomi aihiillisiiimri tio lesimll mimmia 11-SiR 011 fick mooiiin tmire Cl.jRRI-S I ACIIi I'm windmisi

oibjects is diefined, Rries ire mdefinmed iiim ls it -hirrcN is shomwn ill iti imimi is-lie of \SIriice siiliuimlig tihai. 'imt are mismitible
Hig 5 Riule clisscs mire lis imles Into stibstisses. indl 'ci i sil inii rtem ss'mm lire irmimmsimtm hu ighrlightedi ii black inicaities the mNs
claisses ssritmii Specific Inistanlces mipt miicuilar Iitile.s (s m. time Itirs Iemus ms'sOImItIII)Ml,iimim sr a ti iiititiii. risemi Oni the rules in

314



thle KB. The uIser Ilay. hwsCi~e. uIse thle mIouse to highiliglt ati tie to b1C studiedi Aud eiiitiltted. ['his IS ail area Lit ouigoitig re
Other Choice Of transformI and oserride the systemn recomimetida search.
tiOnl The SyStCel ncont mlI Structiore invokes it brealt inl he forwar d
chinning acenld~a mimies Clt arte aispropriate for suIch it uIsel seleC 6. AN EXAMPLE OF THE SYSTEM
tion.

Figti is ti t hlmuch ", show4 display, flltS s e rcl of the latter
Fihe system must ltatsc strategies and conitrol structures lo tae afi typical signal tnaI~sis session. [hie atim is tol showk what

ze tert hIt~tikit tiitiipleilittltilsCiiotels tile user inriiefaie looks like and -Atat i tpes kit dta~ are displayed.
for the time series data. At eatchI stage in the analysis (%&here it F igite ic shows a Stag 'cAwle e e~dited LIMA m te be ing exained to
siage is definied as the generatioti of it particular inistanice of tI P Idiiiiiei aae -iblrt raisoni eqie.Te
totypical Object. e .g_ a Specific Set of edited data). otte Or titore ItekId la (fro0111i alltuIIl ARI MA (2.1m m,~iodel I are displayed
a liernat sei Objects (parts of it cantdidate mode ling hiypotheksis) iie atlong %kith ,t table of suimijut sttt isiIcs. A Possible first -order liou-
generated. T hese objects ate Scored atccord ing to it cc rtiltl ini statil ant li thle data calt 'ise seen is ile plot [he CL RR EN
thle facts or' rule coticlu1.siots thilt led to their creation. ot exatil ACllIIT inido% indicates that iso saritce- siblili/iiietratisfolni
Pic. anl edited data~ set created bly deleting at point that has i gn i is recoin ictided - An icoil appeal s iil the Ic h port ion of the witsl
tilde larger ithan fi\L timies the iirriitrtile ranige of thle r xx i0\ anid IreChms optionis Mhich thle -,cr can select by clicking onl
samlple mia) hatke t sets high ccii tinty score. Ani edited (lila set tilhe Ileft iJtI on oti le thrlee billiont Iniose . Fwo oilier windows arc
created by tfelctitig that poinst. pIlus allothlet rPoint itII Ii si-i cnit tieisible ii thle display. [hei 1LISPI' .STEFNE:R wtindoiw provide s a
exceeding twice thle 111iitierlilangLe. Inut) ble CXCldingi.t Ii i deeper lcxci of uaccess it) tle sysietil iliut Ilie its eruge user %ill eiii-
gisal I ulier rand so has .i lower ce rtainsty score. The ratsktd if td i IO-i.. ''lie AN Al'ISIS SC RIP II" ido" 1 irtides ut truce of the
thile, are plaice(] oi aj Stack. mtd the iteili ott the top of tilk Slack is Steps lit the utialysts thatt hatke been perlortied so lar. Such a trace
reilox id rid uisedf for the text stag oc(f i le ania lysis. Thsis stack is xIbcueliitieftirbrftt iidtteiittitiibadoi
conistructed its progress is ide throughs each staige of the amiulYSIS. dleduciotis froini applic atioiln specific dut a analysis sessions.

When a sinigle caiidinie model hats beeni fitted to Scored. FIetire 7 shIows atti latllySis Of tile iruitisOrineilI dla to chc~k
oilier catididate itt.1Ides a il tin StageC are atlso fitted iltid rutisked . for notistatiolurities. A simple set of pattenirecoilstos ue x

Deetdii o te liiyotlifitdtolesaop-hckt i a iiil tic ile AC F antd PAC F. classify the correlation patternis inito
earlier stage ol atnatlysis Inay ble reqIi rd For extamsple . if caiid i onte Olf Ile chlauCt eriSti Cicclsses. and isput i le reStiIts it. Isioulse-
(Late A RI NA (l). 1.0) it1OdIs for se e rut choices. of AR order P tit) setisiti eIconis. Plots tof thle ACF uind PACF lire also diisplaiyedfo
nott produce reSidiuais wills thle desiredl whiteness properties. theti a thle user to sew" 'iit atialyce. o
loop [lick to ut miodl Ist rtU tire eletikton phuase tiaty be seeded to)
conisidler A RI IA p.I.I)models. If fits still seeri in adeqiuate. *t Figo ic 8Sshow s it displts of the fill CO STAR systetti screensdeeper loop buick to at mocdel ditfereticitig, order sigalla be re afe_ toe usbesftai slae i.C RN CIV-
kilitiei. wlsete tile Stuack Cotiingii canidaute iliflerencitig orders is I' wN "1t41ow hs fise ilew Iconts w hlih dISplIa~ itfOrtttlitioli about

lsdt ban etcnite selettmu ii id in g iser t lie it thle fitted A RI NIA (I 1. 1. 1I n odelI (atii incorreci m i odelI structure wasclii iig towar mon iidel -i rite feeto n iligi hnrit t or i lust rution)I. Thiese iconis aire for displ ) onily. aid are nlot
sititeilsu~bjeCt tt Molise cm~IIto). these icoiss d iSpla isle fitted Mtodel pa.

Sescruil important issues liitise aboxe scheme iced to lie utdf rileters. a composite iiel goodne ss scor e IPOOR) and thle
dressed I-lie first is lii tile use of th lieicrut -cctity. I is is not1 tilOrIili teed) nuICtnic ill resuLlts of at Box I jun ticatgtsost ic test oil
tt be taikeni li aI for intt rbiiiii senise. or eve se i cessa ri I) iii thle restitia Is. Aisothe r plot huts been iitislilaNSt elIn tile INTI -
the senise of a belief funtctioin formaiulizations (Kanali e~t ill 195ti) GRATE l' SI) witidow. the initegraited poiwer Spectral denisity Lt
Here we itiait s-iiiI Sotme /liltoili Si tytu5 whit.hI ranks Choices il thle residiuis. [-lie limicurit of this cuirsc reflects the degree tif
a puirictilti stage. either b airenoth oif a numtlerical result (eg. hiie ness ofit lie residls Is Nariuis witidow s a nd d isplays iippear
obse rs d signiiificuance lce li or lutCk of o1ter %itable. a lie riat ises. and disuappeiir its appropriiate iii fixed locua tis ohil i fe sc reent its
Schtemtes for cotitbittiti these uiieerttlities 'ittoss Stages tius le thle aituil - sis ploisses. )'llis auitteif ut alin itg t[le clutter andu
QIiIre ti11l1isiot1 of Ji itiore elab"orate cailCUits Of ti..tCiiaiti. how coniftisioti that can) result from ilot itiill flexibillty ill witidow gets
es er 'tfis is pitrtic ula rly trtie when miiultiple canilate miodfels. e rulott andit rc~a u igemti
dIe kIs horf tn titiNtIl loopl hacks rut suti)Ig tie IIIS ife l icfito Ile
finuills raniked forl Presenltatioll to tile iuse 7. SUMiMARY AND FUTURE WORK

Atnothier issue is tile dfeterinationktf tle dfepith of t Itoop fliis paper huts described tiie imiplemettioni of COSI.AR. a
back friti a hiutlilir stage [lie sIItItilCSt heuristic reqlitites a prototype expert s selit signal utisulysis anituf dat processing tool
loopl buick Otf otic l to thle pres otis Sitge. whle re e loca . ruanikedl tow% linit deixc opin int TA SC. IDesc ripicons of tile sstcri ai
alic:ritiisCs arc ei sorted S f lfowes er. ruitikit-igs Of aliertiatis at clittecitire it-d kuiowletlge base . iaid extktmples of tile opertion of
all cuirlier stage 11.I 11% teed it, bie iip1dtiet. (iitdINOiiid oil wItult te cti etit SNstelii itse hCC ei glis enCicit xiiik focuIses ti1 ll i
fhad beets obse ris atf ithle Imi rStage s. For exuamlple. if resiufituls Isat1,CIicittetit of Ite SyIStIII klli"iw lefge bA nd titclabotation ft tili
110it1t flImimig a Ct-ileCiioii rut ARINI A (Ii 1110 itmodels show resitlts imodelinig Process conitrol si riKJitiiC to handlei flc ie complexRitis of
%it isitti chanige, lit miii lsl oxet fime series (it reliaittitie itiltiple . multi stage Itopl backs. liir works will focus rt tiie use
ntisiattot-a rity I .11 i Cxpe il nay ratnk a ii alie riatise A RI IA o-il a i~sis t rices Iftil ,t utotnlatd rulIc re fintemtient li fteldedt ems.

p.IIIstrtureIC sers low , andt wish to lotop back itt lcsels ito the applicatiiont intl feselopisetit tOf tilt-ie foi tialteed x ulitfatioti
counsitder A RI NIA p.2.0dt sirniciiires fly tiitg au seconditldrter kiif proticcii e, slor piodti ioil rule systemis, and tile "self. salldat tots
feremicimig operuator . Insteait of tie on i iut first orufer tiffc rence , kit ,a sNs(i ii - e g . procedu tres that allow& thle 5stemis~ to tell wfieli it

Ite expert hmopes toi rtini~otil e tibscler fIesiual nu-iustatiitl MAIN i li e lacedl xxi it cuclosttionaur\ pirocess. a itotistattotdirit

This nmay callI for tfilC e tic opint of tich m ore ciibtinat e v-irite ss w Ii cit caniinot ble atfijiateIV iC skribed b\ tile isailuible
Schieimes foir fhammilimig Iiccroit It it'Lie expeCrt aitlsis stitteetes muodel sititeito e.

315



flNT ARA.0 0 1

'Et~ffAIIIIIIA.2.0.4
117.1 4.~3-3L14A-F=TTTEl-.

ITD -# f1A..~ 
14-GESC-TATS-CA1-0

"TED::-IFIT.AIIIIIA.2.0.0 6. 1.1F101E1~TIEEATO

fITAIWC.2.O.4 tNIDJKJ.
fop. I~f4LSAI

/,ORCA3T. J3.3I-reuATIIII-COMPTE
fORAAlmIIA.Z.0.0 . .4-KgJET4A N

fcm.AlmA1.2.0.4 Ara TEDaLXES-::-.W~~E
COATA.L3SZCT ZWTOL MAIDLIA-6.JE415l"LA IIIIIEECM

.RAWAIII11.0.O. I

-RAW ARMA.Z.O.0 /9.I-1-0WACT-F1AT1K*W

--AWAIIA.2.0.4

9.3-AWIF-611I-CAY

,TFAL i ATTEIN'114PE110r.AI

JS.AlAO0 I SSpJ~

.6WSAII1A1.0.0AE.*

-WSAAMA.2.1.0

.2. 1 -AO~rrFE -a.TLM
TYEST.1

WILAES. -2- 2-K-S10MA-OJTLEN
IRAN. I

JRANR111A.0..f 2.3-A3K4.=3S-E1T

MFLNSFOAAWDi,. - TRAN.ARIMA.2.00 0 SIAL.MLES- -C ' '" L~d-

qRANWWA.2.0.4 -4. 1W -41SC.0PT10011 MT TOW.TRAMS0111

_____________________________________ RANSF0PWfl.MiIES- - . -4. 7F-ACF /PACF -CGIIT

Figuic S1 lDir Object Hlierarchy F-igure 5 Anafysis Rule ffieraichy

ACF-NAME

3..Mean -0.23862
ACF-YLABEL 2..Variance 2.457
ACF.ALWES! 1 Sind 0ev 1.5675

ACF.PACFI a .5
ACF.PACF.BOUNDS! i Mal 389

ACF.UPPEA 14 Mn-.4

ACF.VALUES CMedian 0.000
ACV.VALUES -2.7h N.0
AIC.SCOFIE 95)0.000

AMAXDELMAG QI (5 .0
ANEGSLOPES it 21 31 41 3 C 7 ' t Skewness 0.19905

ANSLOPES Time (sc) gurtosis -0.63306
A P0S SLO PISS

AR.PARMS I
AM% PAFIMSI

AM PARMS2
AM. MESIDUALSI Daatp snwTRANSFORMED

BASIC. STATISTICS1 ->Dt yp e-SQUARED

BOX - L UNG.. ME L
IOOSIUUNOSCORE -)Transform recommended is NONE LOG-V

DATA VALUES
EST. TEST

PTIEOVALUES INVERSE-V-SQUAILED
IPSO. VALUES
KURMTOSIS
LAB OUND

LAG.VALUES ->L-Mouse OPTIONS to CHANGE
LOWQUARTILf

LPBOUND
MA. OMOEM

MA WNV
MAX VALUE P ASSERTED)

MEAN Co,,,aCd: (aSse.E '(tEhe step of contr-ol is 3 "4.71- t-sf-5 t-fo- -s- isaz 12,5

MEDIAN I'deta.r.lTes nil :replace t) 10.6IEd.- od .b. ,t t. -- 86aI-n34

____________ VAU (0[ff THE STEP OF CONTPOL IS 3 4.IO . , S ,.t .. 6-7.001,11
M N V L U EA S S E R T E D ) . 1,- a X I I . . .: c I t~ t . -- - - 6 -7 - I l I 14 3 , 5

MIEL NAME Connend: 3 ' is-ng 1,39 3

316



-)Data type is TRANSFORMED CUT-OFF CT-r

I]---------------------------)Note CORRELATION plots MN-EA

iI lII IILIIIILIIII PERIOD-DECAY PER IOD-EAT

LaX > Correlation PATTERNS are shownCOSTN

-L-Mouse OPTIONS to CHANGE NSENOISE

0 -- - -- -- - - - -- -- - Command; (assert '(the steP of control is 5

III iS(1ff~' TE SE F CnRL I Re e5.-0F1.OPAC ps tt: d ---- 6-7- 184.46.j
2) 'dta rules nil zreplace t)ii8fC P ott" d e ---- 6-7-S 4,4414 3clo d R9.8-0F1PetF pld$C&I-.~ -- - : -- 0 14,3,3

(11 Cff TE STP OF CONTOL i 5 R.8-ACF wP QF O.,O5 d ----oI 6-7 -OS 14 O3 ,3
ale I I I II I ASSERTED) IRe:-Data t-.,f-rd bym trmafo ...-- 6-_O S.23I~~9 IIO6-Edited data be-' Itat. 6 -- - 08 4,42,5

1 20 Comm~and: Re 6-.Edt-ga o .St. -ot r.W,,.d---6-7-88 14j41,56

Lag SB5R ot P1occ'o ---- 6-7-OS 14o 806

Figure 7 Correlation Pattern Identification

OSA DAT ANLYI ENIRNMN

Mean -0.01575
a.@ Variance 1. 5438

VV Sind 0ev (.45

8.6 3.0785
u a. -06 Min -2.5535

2."Wm Median 0.000
Q(25) 0.000

Iji 1 111 jIli il Q(75) 0.000
418.2!.3 4. 8.5 51 2 1 S 1 61 71 at s Skewness 0.15653

Frequecy Time (sec) Kurtosis -0.50879

t -------- Data type is RESIDUALS(-423) PO

-> Residuals being CHECKED,

(0.0011132) 7.4535704
Lag) Note model GOODNESS score

-Note DIAGNOSTIC' PLOTS1

0 Command:1

14 ~ am lt -::;15::: 2121 09

S05.921- 3-13-OSd 21,23 25
RO 0.92-I,tf7 o 'e. 3*% v -- 5O-S 212,0T77 I D49-07 I (f-~ "",PAC' P1 . 0.It 5 -10 2.3.3 18 0

Lag 99Wf C CI t

iigUIe S ReSOIdI fl ital and111 Nindel F'\;lijatioi

317



R8EFERENCES S. -aux. R. (198o). ed.. Expert Sstenis in Statists. Gustav
Fischer. New York, NY.

1. Aikens. J.S. (1983). "Prototypical Knowledge for Expert
Systems". Artitficial Intelligence. No. 120. pp. 163-210. 9. IMSI, (1984). IAISL Librarv User's MAlnual Edition 9.2.

IMSL. Houston. TX.
2, Box, G.F.P.. and Jenkins. G.M. (1976). Time Series

Analysis. Forecasting. and Control. Holden-Day. Oakland. 10. Intellicorp (1987). KEE Software Development System Us-
CA. er's Mantal Version 3.1. hltellicorp. CA.

3, Brockwell. P.J., and Dayis. R.A. (1987). Time Series: 11. Kanal. L.N., and Lemier. J.F. (1986). Uncertainty in
Theory and Methods. Springer-Verlag. New York. NY. Artificial Intelligence. North Holland. New York. NY.

4. Donoho. D.L. (1984). DART: A Tool for Research ini 12. Nelder, J.A.. and Wolstenholme. D. (1986). "A Front-
Da ta AntlYsis. UnpuLblished Ph .D. Thesis. Harvard lniver- End for GLIM" . Proceedings of the 18th Symposin on
sity. Cambridge. NIA. the hitetijie, ASA. Washington. D.C.

5. Gale. W.A.. and Pregibon. D. (1984). "REX: An Expert 13. Nii. H.P.. and Feigenbaum. E.A. (1978). "Rule Based
System for Regression Analysis", COMPSTA T 1984: Pro- Understanding of Signals". in Patternt Directed Inference
tceedings in Compitatioiiial Statistics. Physica-Verlag. Systems. Waterman and Hayes-Roth. eds.. Academic
Vienna. Austria. pp. 242-248. Press. New York. NY.

t. Gale. W.A. (1986). ed.. Artificitl Intelligence and Statis 14. Oldford. R.W.. and Peters. S.C. (1988). "DINDE: To-
tics. Addison Wesley. Reading. MA. wards More Sophisticated Software Environments for Sta-

tistics". SIAM J. Sci. Stat. Comtput.. Vol. 9. No. 1. pp.
7. Gale. W.A. (1986a). REX Retiew, in Gale (1986). 191.211.

318



IX. ARTIFICIAL INTELLIGENCE, EXPERT SYSTEMS, AND STATISTICS

PITSSA-A Time Series Analysis System Embedded in LISP
Donald B. Percival, R. Keith Kerr, University of Washington

Inside a Statistical Expert System: Implementation of the ESTES System
Paula Hietala, University of Tampere, Finland

The Effect of Measurement Error in a Machine Learning System
David L. Rumpf, Mieczyslaw M. Kokar, Northeastern University, Boston

Knowledge-Based Project Management: Work Effort Estimation
Vijay Kanabar, University of Winnipeg

Combining Knowledge Acquisition and Classical Statistical Techniques in the
Development of a 'vtterinary Medicai Expert System

Mary McLeish, Matthew Cecile, University of Guelph; Larry Rendell,
University of Illinois; P. Pascoe, O.V.C., Guelph

Methods of Approximate Reasoning in Expert Systems: Computational
Requirements

Ambrose Goicoechea, George Mason University

Algorithms for Paired Comparison Belief Functions
David Tritchler, Ontario Cancer Institute and University of Toronto;
Gina Lockwood, Ontario Cancer Institute

Fusion and Propagation in Graphical Belief Models
Russell Almond, Harvard University

Variants of Tierney-Kadane
G. Weiss, H.A. Howlader, University of Winnipeg



PITSSA - A Time Series Analysis System Embedded in Lisp

Donald B. Percival and R. Keith Kerr
Applied Physics Laboratory, HN-10,

University of Washington
Seattle, Washington 98105-6698

We describe the design of PITSSA, a computer system for interactive time series and spectral analysis.
This system is written in Lisp, a language which has long been a favorite of researchers in computer
science but which has not been used extensively for data analysis. Some of its interesting features include
the use of object-oriented programming to break up PITSSA into a large number of separate modules;
a systematic way of defining interactions between the user and PITSSA via a graphical input device

("mouse"); and an implementation of a number of enhancements to a standard time series package
which leads to a qualitative improvement in interactive data analysis for time series.

1. INTRODUCTION Second, is is possible to design an interactive
data analysis system which is accessible by, and use-

We describe in this paper PITSSA- a computer ful for, users of many different levels of sophistica-
system which supports interactive time series and tion? Typically, "user friendly" systems can drive
spectral analysis and which is written in the lan- an expert user to distraction with their bulky use

guage Lisp. Our system is part of an effort by a of menus, while terse systems for an expert are in-
small number of investigators in recent years to im- comprehensible to novices. Two things are desir-
plement some of the ideas put forth in a series of able here: a system with a good support for novices

articles by McDonald and Pedersen (1985a, 1985b, but which can easily be "opened up" for fundamen-
1988). The basic thesis of their work is that inter- tal modifications by an expert; and a system which
active data analysis is best supported by hardware grows in usefulness as novices learn more and more
and software originally designed by computer sci- about both it and interactive data analysis and be-
entists to efficiently support experimental program- come experts themselves.
ming. These include, on the hardware side, a mod-
ern computer workstation with high-speed and high- Third, what new forms of interactive time se-

resolution bitmap graphics, and, on the software ries and spectral analysis are possil)le with modern

side, a computing environment such as is provided workstations? Time series analysis is a field which

by a modern programming environment for, say, the has been particularly influenced by available corn-

language Lisp. puting power. Much of the emphasis on lag win-

There are several research questions we are cur- dow (or Blackman-Tukey) spectral estimators in the
herenty inv estigatinrcwith T stiaonwi w ware - 1950's was due to computational issues: the lag win-rently investigating with PITSSA, among which we dew approach allowed spectral estimates to be cal-

will be concerned with three in this paper. First, dow aroach a spal eme to e al-
how can data analysts best take advantage of the culated from only a small number of sample auto-

covariance function values. With the advent of theopportunities afforded by the hardware andi software Fs ore rnfr n oepwru opt

supplied on modern computer workstations? Most

(but by no means all) of the widely used software ers in the 1960's, it b cauie possible to use spectral

systems for interactive data analysis are packages estimation techniques with a greater computational
overhead. The computationally intensive multiple

which were originally designed on a batch-processing taper approach to spectral analysis (Thoimson 1982)

system. These typically make limited use of the ca- would have been a theoretical curiosity if it, had been
pabilities of modern workstations (other than su-
perficial use of menus to replace typing of certain intro 1yeas ago. e avent of comptercommnds) A fw sytem (suh asS (Bckerandworkstations opens upl new avenues for quialitat ively
commands).improving interactive tinie series analysis.
Chambers 1984)) were originally developed in an in-

teractive computing environment (such as UNIX). PITSSA\ is a continually evolving experiment
These are a vast improvement over batch-oriented which seeks to address these (and other) issues. Our

systems, but it is necessary to be somewhat of a first working version was developed in 1981 on a
computer expert to augment thein to handle graph- Symbolics Lisp Machine, one of t he few workstat ions
ical interaction with a user. at, that time which could suppor t ie type of in ter-
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active system we were interested in designing. The for sophisticated systems, no such system is ever
rapid growth and development of computer hard- complete. It is impossible for designers to anticipate
ware in the past 4 years now makes it feasible to the needs of users (particularly since interactive data
make our work more widely available. For example, analysis is most often exploratory in nature). The
we are now in the process of porting a portion of question then arises as to how to let the user extend
PITSSA to an Apple Macintosh II, which is more the statistical system to met his or her needs.
than an order of magnitude less expensive than a A certain amount of flexibility is introduced by
Lisp Machine was four years ago. allowing the user to write macros. Macros greatly

PITSSA has been used in several graduate level decrease the amount of typing which a user must
classes in time series and spectral analysis over the do by packaging together commands into groups I
past four years, both for in-class demonstrations of a single macro command expands into many basic
data analysis techniques and for use by students in commands. However, macros have two problems.
class projects. It has also been demonstrated to First, the user is really using the command language
dozens of colleagues and groups of visitors. Discus- of the statistical system as a programming language.
sions with individuals who have either seen PITSSA This means that the design and complexity of the
demonstrated or used it extensively have lead to a tasks which can be accomplished by macros is usu-
number of fundamental changes in the underlying ally limited because the command language was de-
design of PITSSA. While we are fairly happy with signed to convey statistical instructions to the com-
its form as reported in this article, we plan to con- puter and not to be a general purpose programming
tinue to use it as a test bed for new ideas in the language (with support for loops, conditional execu-
future. tion, block structure, complicated data structures,

and so forth). This can be remedied, of course, if
2. WHY LISP? the system designer is willing to take the time to

The question posed in the heading is the one augment the macro facility to include many of these
most frequently asked by colleagues who have seen programming features.
demonstrations of PITSSA. Our rationale for em- A second problem with macros is that, after a
bedding a statistical system within Lisp is discussed user invokes a macro, the commands of which it is
in the subsections below. We remark here that there composed are interpreted and executed by the com-
are languages other than Lisp which have some (or mand processor one at a time. If the macro expands
all) of its desirable features and would be a rea- into a hundred commands, the command processor
sonable alternative choice (Smalltalk is a prime ex- must interpret and execute each of these commands.
ample). Lisp does enjoy considerable popularity in The overhead of command processors is usually not
the computer science community. It is available and negligible. This means that execution of macros can
supported efficiently on a number of different com- be quite slow. Again, there is solution to this prob-
puters (ranging from special workstations designed lem, but it means that the system designer must pro-
specifically to support Lisp - the so-called Lisp Ma- vide for compilation of macros into efficient machine
chines - to personal computers). This advantage is code instead of just interpretation of their contents.
offset somewhat by a profusion of different dialects More sophisticated statistical systems (such as
of Lisp - a problem which stimulated the recent S (Becker and Chambers (1985))) provide a second
definition of Common Lisp as a proposed standard (and more powerful) way for a user to deal with
(Steele 1984). problems which cannot be handled by the basic com-

mands. Here the user is allowed to augment the set
2.1 Interpretation and Compilation of basic commands by defining new ones. The code

The simplest systems for interactive data anal- which defines these new commands in written in a
ysis work in the following way. The user types in full-fledged programming language (such as Fortran
a command; a command processor (supplied by the or C), and the code for these commands is compiled
system designer) interprets the command and does (i.e., translated into efficient machine code) to allow
something - returns one or more computed values, rapid execution. Once defined, these new commands
assigns a value to a variable, or displays a plot; and enjoy the same status as the basic commands sup-
the user looks at the results and types in a new com- plied by the system designers.
mand. The designers of such systems supply the There are two problems with this way. First,
user with a certain number of basic commands with ideas for new commands are often inspired by the re-
which to work. Although this number is quite large suilts of interactive data analysis within the statisti-
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cal system. That means that the new command has ming language, ideas for new data analysis functions
in effect already been implemented once in the form which arise in the course of an interactive data anal-
of groups of commands and macros which have been ysis as small test functions can be readily repackaged
pieced together. The user must begin over again be- as new Lisp functions. Fourth, because Lisp is used
cause the command language of the statistical sys- so extensively in the computer science community,
tern and the programming language which is used to extensive debuggers have been built for it. These al-
define commands are different, low the user to quickly track down bugs in his or her

The second problem is the lack of extensive sup- program (or to detect errors in existing Lisp func-
port for debugging within a statistical system. The tions) -- all without having to ever leave the Lisp
designers of such systems usually assume that code system.
for commands has been thoroughly debugged. Un-
fortunately, subtle bugs often occur in supposedly 2.2 Cm e Dat a cures
well-tested routines. If this occurs in the code for mand processor of an ordinary statistical system, the
one of the commands in a statistical system, the user mand processor fta n a satIsi l sys
usually has to revert to writing a driver program in command processor returns a value. In simple sys-
the native language which is used to define the corn- tems, this value may be a single number or a array
mands and do the debugging entirely outside of the of numbers; in more complex systems, it may be astatistical system. This process can be quite time data structure, each slot of which contains a number
consuming. or an array. Command processors rarely deal withcowsu does. more complex data structures than these. In con-

use of Lisp improve tis situation? trast, the Lisp reader can return values which are
Lisp is an interpreted language. The user types a considerably more complex, allow greater flexibility,
Lisp expression, and the command processor for Lisp and correspond more closely to the way in which a
(known as the "reader") interprets it and returns a statistician thinks about a problem. The following
value. The value the reader returns can be as sim- simple example illustrates these ideas.
ple as a single number or as complex as an entire Suppose that we have a Lisp function which fits
function. By this means, the user can evoke various an autoregressive (AR) model to a time series. Now
defined functions and set (or, in Lisp terminology, a fitted AR model can be used to estimate the spec-
bind) the values of these functions to various sym- tral density function (sdf) of a series. What is the
bols for later reference. It is rather trivial to develop best way to represent this estimated function? The
the basic structure of an interactive statistical sys- usual approach is to express it as a vector of values
tern in Lisp. The Lisp reader plays the role of the computed over a grid of equally spaced frequencies.
command processor, and Lisp functions play the role In Lisp, however, we have the option of rep-
of basic commands. The equivalent of macros within resenting it actually as a function - the result of
Lisp is simply other Lisp functions, since any Lisp executing a Lisp function can be to return a new
function can make use of any other Lisp function, function. This means that we can treat the esti-
The real task is thus to design a set of functions mated sdf as a true function - it can be numeri-
useful for interactive data analysis. From the view- cally integrated and differentiated, and its peak val-
point of a potential user, learning enough Lisp to ues can be searched for to within any precision de-
make use of this system is no more difficult or time sired. This later capability is particularly important,
consuming than learning to use a command-driven since a common error in displaying an AR sdf is the
system such as S or MATLAB. failure to properly evaluate it around sharp peaks

A number of benefits immediately follow. First, (Burg 1975). Representation of the sdf as an actual
since Lisp is both a interpreted language and a corn- function makes its easier to design code to do this.
piled language, Lisp statistical "macros" can be ex-
ecuted as efficiently as any other function in Lisp. 2.3 Different Language Paradigms
Second, because Lisp is a full fledged programming The predominant language paradigm in use by
language, it has an extensive range of features for data analysts is called procedure-oriented program-
loops, conditionals, and handling quite complex data ming. This is the style of programming supported
structures. The user does not have to try to pro- by such languages as Fortran and C, where the ba-
gram in a command language designed primarily to sic module is a subroutine or function. Lisp can
facilitate interactive data analysis. Third, because support this style of programming, but it has also
a statistical system written in Lisp uses that lan- proven flexible enough to support many other differ-
guage both as a command language and a program- ent paradigms proposed in computer science over the
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years. Among these are object-oriented program- However, our experience also shows that there are
ming (discussed in greater detail in the next sec- subtlies in OOP that are not apparent to the novice
tion), constraint-oriented programming, and access- (at least to novices who were initially trained in the
oriented programming. Each of these paradigms is more traditional procedure-oriented programming).
useful in certain problem areas and, in particular, is
of potential use to support interactive data analysis 3: Classes
(see, in particular, McDonald (1986)). A key concept in OOP is that of a class of ob-

jects. All objects in a particular class share a par-

3. WHY OOP? ticular data structure. For example, one class in
PITSSA is called ordered-x-y-pairs. Every ob-

Object-oriented programming (OOP) has been ject in this class has three slots (sometimes called
the subject of considerable attention in recent years instance variables). The symbolic names for these
in the computer science community. Its use in the slots are ordered-x-values, y-values, and number-of-
statistical community has been fairly limited (for ex- pairs. Typically ordered-x-values and y-values are
amples, see Stuetzle (1987), McDonald (1986), and (pointers to) vectors of length number-of-pairs, and
Oldford and Peters (1986)), but we feel that it offers ordered-x-values is assumed to have its values or-
a number of advantages for constructing a statisti- dered. A real-valued irregularly sampled time series
cal systems over procedure-oriented programming. of length 100 could be (at least partially) represented
The specific features of OOP which have facilitated as a particular object of this class. We would need
our development of PITSSA are discussed in detail to bind (assign) the slot ordered-x-values to a vec-
in the subsections below, but first we make a few tor of length 100 with the times at which the time
subjective comments. series was sampled; the slot y-values to a similar vec-

OOP is somewhat like structured programming tor with the values of the time series at each of the
in that it gives systems designers a specific approach 100 times; and number-of-pairs to the value 100. A
for organizing, maintaining, modifying, and extend- second object of this class (used to represent, say,
ing large programs. For some problems, it seems a second time series) typically would have different
a more natural way to approach the programming bindings (assignments) for one or more its slots.
problem than structured programming, because it
allows progrnrn design to follow rather closely the 3.2 Generic Functions (Message Passing)
way a program applars from a user's point of view A second fundamental notion in OOP is that of
(as operations on various objects - entities with a a generic function. We illustrate the idea behind this
separate identity within a computer). This yields a concept with an example from PITSSA. Two of its
number of benefits. First, it allows a user more eas- classes are called real-time-series and complex-
ily to develop a mental model of how a program will time-series, which are used to represent real-valued
react to certain actions which her or she takes. Sec- and complex-valued time series, respectively (how
ond, it allows a system designer to go in and make they are related to the class ordered-x-y-pairs is
changes to existing code more quickly - if the code discussed in the next subsection). A popular way of
matches the way a program is perceived to work, it fitting an autoregressive model to a time series is by
is easier to know where to make changes. means of Burg's algorithm (Marple 1987). [here are

While OOP has enjoyed considerable success for two different univariate versions of this algorithm,
programming problems where there is a more or less one for real-valued time series, and one for complex-
natural decomposition of the problem into objects valued series. Suppose that we create a generic func-
(such as in the simulation of a paper mill, where the tion called "burg" which takes as input an object
objects correspond to physical entities such as paper of either the class real-time-series or complex-
rollers), it is less obvious how it can be used to con- time-series. If "burg" is a generic function, its def-
struct a statistical system. We hope that the reader inition depends upon the class of its input. Thus, if
is convinced of its usefulness by the end of this pa- we apply "burg" to an object belonging to the class
per. We can report, however, that we are now on our real-time-series (complex-time-series), its defi-
third major redesign of PITSSA in a four year period nition would be a routine which implements Burg's
and that the claims of advocates of objected-oriented algorithm for real-valued (complex-valued) series.
programming as to its benefits in terms of rnodifia- An equivalent way of expressing this idea is as
bility and maintainability are true. In fact, each of message passing. lere we conceptually send a rues-
the redesigns has lead to the definition of more ob- sage to an object, and the object responds in a par-
jects and a stronger use of the language paradigni. ticular way - the response de-pends on what class
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it belongs to. Thus, if we send the message "burg" real-time-series such that it inherits all of the slots
to an object belonging to the class real-time-series and ways of handling messages of the class ordered-
(complex-time-series), the object responds by ap- x-y-pairs. As an example, sending the message
plying Burg's algorithm to the real-valued (complex- "mean" to an object of the class real-time-series
valued) time series which it represents. would make use of the slots and message handling

There are two distinct advantages to this ap- inherited from ordered-x-y-pairs. We are free,
proach. First, we can reduce the number of corn- however, to define additional slots and way of han-
mands which we need to know. We need only re- dling both new and inherited messages for our new
member that "burg" is the proper message to pass class. These would express the difference between
to (or generic function to use with) a time series in the intended use for the two classes. For example,
order to evoke Burg's algorithm. There is no need to we could define the slots sampling time and first-
define functions with slightly different names (such time-value to replace the functionality of the slot
as "rburg" and "cburg") which essentially perform ordered-x-values in ordered-x-y-pairs. The values
the same operation but for different types of time of these two new slots can be used to generate all the
series, time values for a time series sampled over an equally

Second, message passing allows us to construct spaced grid of times - there is no need to use the
an abstraction barrier between usage and implemen- vector ordered-x-values explicitly. Likewise, we can
tation. For example, when we pass the message redefine how the message "mean-time" is handled
"burg" to a object belonging to the class real-time- by real-time-series so that it computes it using its
series in the course of a data analysis, we really two new slots and the slot number-of-pairs inherited
don't care about the implementation details. The from ordered-x-y- pairs.
system designer may well have implemented Burg's The advantage of using inheritance is that it al-
algorithm for real-valued series by making use of the lows us to construct rather complicated objects out
complex version of the algorithm, but this shouldn't of simplier one in a way that clearly expresses the
matter to the user. Conversely, if the system de- differences between related classes. This is a quite
signer decides that the use of the complex algorithm useful way of a modifying and extending a large soft-
for real-valued series is too inefficient, he 'r she can ware system.
change this implementation detail without disrupt-
ing users. This scheme guarantees the user a certain 4. DESIGN OF PITSSA
response from a certain message, yet gives the de- There are three major classes in PITSSA -
signer the option of changing the underlying details, data objects, graph objects, and frame objects. The

first represents various types of time series and the
3.3 Inheritance results of processing them; the second is used to con-

Inheritance is a mechanismn in OOP which al- struct the graphical output of PITSSA on a bitmap
lows us to construct new classes of objects based display; and the third handles the user interface.
upon modifications to existing classes. Again we Our discussion below of objects in these classes is far
use an example from PITSSA for illustration. The from exhaustive - we only describe a few of each
objects in the class ordered-x-y-pairs can be used kind to give the reader a feel for the organization of
to describe some of the properties of a time series PITSSA.
sampled at arbitrary points in time. Two messages
which can be sent to an object of the class ordered- 4.1 Data Objects
x-y-pairs are "mean" and "mean-time." The first We have already described briefly three classes
returns the average value of the time series (i.e., the of data objects in Sections 3.1 and 3.3 - ordered-
average of the values in the vector bound to the slot x-y-pairs, real-time-series, and complex-timie-
y-values), and the second, the average time at which series. There are many others which are used to
the observations were collected (i.e., the average of represent various other kinds of time series, such
the values in the vector bound to the slot ordered-x- as real-time-series-witl-missing-valuis (a real-
values), valued time series sampled regularly but with miss-

Now the class real-time-series is intended to ing observations) and vector-time-serics (a vector
represent real-valued time series sampled over an valued times series sampled regularly). Each of these
equally spaced grid. The class is obviously quite classes has slots (or inherits slots from component,
similar in some respects to ordered-x-y-pairs. We classes) for the actual values of the time series; the
may take advantage of this similarity by defining symbolic units for the time series va!ues; the sam-
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ling time and Nyquist frequency (for regularly sam- The basic way in which a bitmap graph is con-
pled series); the network name of an ASCII file from structed in PITSSA is by attaching drawable objects
which the values of the time series were read; var- (i.e., those which know how to respond to a "draw-
ious results from statistical computations (such as yourself" message) to an object of the class basic-
the sample autocovariance function); and so forth. graph-object. Once this has been done, the user

When a message is passed to a particular data sends a "draw-yourself" message to that object, and
object, the object responds by returning either a sin- it in turn sends "draw-yourself" messages to the ob-
gle value, a compound data structure, or another jects in its list of drawable objects. This makes it
object. Examples of these for the class real-time- relatively easy to extend PITSSA to create special-
series are the message "mean" (which returns the ized graphs - the user need only define an appro-
average of the values in the time series); "acvf' priate class of objects with slots to support the de-
(which returns a vector with the values of biased sired features and an appropriate definition for the
estimator of the autocovariance function and, at the "draw-yourself" message.
same time, caches them in a slot in real-time-series An important point to note is that drawable
for possible future use); and "burg" (which returns objects are truly separate entities in PITSSA. Thus
ail object of the class arima-model-object). In a drawable axis object can actually be on the list
the last case, the returned object can itself respond of drawable objects for several different objects of
to messages - for example, an object in the class the type basic-graph-object. This allows us to
arima-model-object can respond to the message maintain consistency in the visual representation of
"sdf" in order to re-turn to the user calculated values related graphs. For example, we might have several
(over a specified grid of frequencies) of the spectral plots of different spectral estimators for the same
density function for the ARIMA model described by time series. If the objects which represent these plots
the object. each has the same drawable axis object for the ver-

The various classes of data objects are intended tical axis, then changes to this object (say, in its
to provide basic support for the purely computa- maximum axis value) can be made to propagate au-
tional aspect of interactive time series and spectral tomatically to all graphs of which this axis object is
analysis. With just the classes and messages defined a component.
here, a user can carry out a data analysis by typing
in Lisp expressions for evaluation by the Lisp reader; 4.3 Frame Objects
the expression will result in various messages being Frame objects are designed to support the user
passed to various objects; and the user can assign
the resulting values (or returned objects) to various interface in PITSSA. An experienced user could
symbolic names for latter use. This mimics com- carry out an interactive data analysis by just cre-
pletely the interaction that typically occurs in a in- sning va s to them. Snc th rec ali
teractive data analysis system, with the additional sending messag, to them. Since these are all imple-

advantages of generic functions, support for compli- mented in Lisp, he or she could define "on the fly"

cated data structures, and a full-fledged program- tw functions (or messages) to investigate a data et
minglanuagesuportd bytheLis proraming thoroughly as new ideas for exploring data arise.

ming language supported1 by the Lisp programing However, there is also a need in a statistical
analysis system to carry out fairly routine proce-
dures (particularly for the novice user). Frame ob-

4.2 Graph Objects jects allow us to support these by defining a useful

Graph objects support two things: displays of user interface for particular procedures; by packag-
results of various computations on a bitmap termi- ing together sequences of calls to Lisp functions ap-
nal; and interaction of the user with these graphs propriate for a particular type of analysis; by storing
by means of a "mouse" and a keyboard. Slots in important values returned from these calls in slots
the class basic-graph-object provi(le for lists (or in the frame object for later use; and by causing
sets) of various other objects, each of which can re- the display of bitmap graphics to occur by attach-
sponse to the message "draw-yourself." These other ing appropriate drawable objects to objects of the
objects describe various portions of a graph - the class basic-graph-object and sending these latter
axes, the titles, mouse-sensitive regions (i.e., areas objects the message "draw-yourself." All of these
on the graph over which a click of the button on the actions occur when a frame ohj,-ct, receives t lie iics-
mouse causes something to happen), plots of data, sage "do-frame."
and so forth. Each class of frane objects thus supports only
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Figure 1. Screen dump of the bitmap of a monitor of a Symbolics Lisp Mfachine showing the results of
sending a "do-frame" message to an object of the class windowed-periodogram-frame. Th-- screen
dumps shows two distinct plots - the upper one shows a line plot of an estimate of the spectrum versus
frequency for some flow data from the Willamette River in Salem, Oregon, while the lower plot shows a
point plot of the corresponding time series.

on-9 type of statistical procedure. Some examples of the result of send,-.g a "do-frame" message to an ob-
these classes are windowed- periodogram-frame ject of the class winidowed-periodograii-franme
'described in the next section) and autoregressive- (eefe eerdt stefaeojc..Ti

(hrafe refrre to astefaeobet.Ti

sdf-frame. The code which handles the "do-frame" message comes with a single argument, which must
message for e'ach frame is in effect a small script of be an object of either the class real- t iie-series
actions for carrying out common procedures in time or the class complex- t ime-serios (hereafter called
series and spectral analysis. As such, they are good the time series object). In the present example, the
places to look for ideas on implementing new proce- time series object. represents the log of the average
dures. If a user has an idea for a particular type of monthly flow of the Willamette River at Salem, Ore-
procedure which is close to an existing frame proce- gon from 1951 to 1984 (the dots on the bottom plot
dure in P oTSSA, he or she can often modify that ex- of Figure I show a plot of this series versus tie).

isting frame (possibly by using the inheritance mech- Alass he fedrameie .the creen

frequenc fOr) omeae flow daafrm e aswhilmteh e i nSAlemregn wale eevthe werfplot"shows -

paisoin tO ta new r sage, it presents a menu of options to the user. These

tilon teof ta i procedure. Sconcern, among other things, prewhitening, data ta-
these cas areL pering, type of spectral window, and associated win-

5. A EXA PLEdow parameter (see IPriest ley (1981) for a discussion
In this section we give an example to clarify of the technical details of spectral analysis). Af-

some of the ideas in Section 4. The example centers ter the user specifies these options, the frame object
around Figure 1, which is a scret l dump of the moni- sends the necessary messages to the time series ob-
tor of a Symbolics Lisp Machine. This display shows ject to calculate a windowed perlodogra spectra
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estimate. The time series object returns one of the the scissors icon on the spectral plot), a mouse-state
class windowed-periodogram-spectral-object object is activated which allows the user to draw
(hereafter the spectral object) to the frame object the kernel K(.) associated with the windowed pe-
- the spectral object represents the spectral esti- riodogram spectral estimate h(.), where the kernel
mate and associated information (bandwidth, vari- appears by the relationship
ance, degrees of freedom, etc.) and is bound to a
slot in the frame object for future reference. E{h(w)} = [ K(w - A)h(A) dA;

The frame object next makes use of two ob- J-N 1
jects of the class basic-graph-object, which weherefter cal the tass iegraphobject a th spe- here N is the Nyquist frequency and h(.) is the truehereafter call the tim e graph object and the spec- s e t a e s t u c i n ( ( ) d p n s u o h
tralused spectral density function (K(.) depends upon theto create a bitmap plot of the time series associ- data taper and the spectral window). The user spec-toreate bit mapplotof the time series abjeescil ifies where K(.) is to be drawn by pointing and click-
ated with the time series object, while the spectral

graph object does the same for a plot of the win- ing the mouse button - this defines where the top of

dowed periodogram spectral estimate. To set this the central lobe of K(.) is to be plotted. (Internally,

up, the frame object attaches the time series object the drawing is accomplished by attaching a kernel

(spectral object) to the list of drawable objects in object to the list of drawable objects in the spec-

the time graph object (spectral graph object). The tral graph object and sending it a "draw-yourself'

frame object also attaches axis objects, title objects, message.) In Figure 1 we placed K(.) at the up-

and mouse-sensiti,, region objects to t" 'pprnpri- per right-hand part of the spectral plot (shown as

ate lists in each graph object. a dashed line). Subsequent clicks allow the user to
relocate K(.) anywhere else in the central plotting

After objects are attached, the frame object area of the spectral plot. This allows the user to
sends a "draw-yourself' message to both graph ob- visually assess two important aspects of the spectral
jects. Each graph object in turn sends a "draw- estimate. First, if there are sharp features in h(.),
yourself" message to each of the objects in its list of these will essentially cause the central lobe of K(.) to
drawable objects. The results are a large plot of the be traced out. This does occur in Figure 1 - there
spectral estimate versus frequency (the solid line in is a sharp feature located at I cycle per year (corre-
the upper part of Figure 1) and a smaller plot of the sponding to the annual flow cycle in the Willamette
time series versus time (the dots in the lower part). River), and the spectral estimate in that region has

When a graph object sends a "draw-yourself" the same shape as K(.) (as could be seen quickly
message to a mouse-sensitive region object, a small by relocating K(.) there). Second, the height of the
icon is drawn in the margin of the plot. For ex- sidelobes relative to the main peak as compared to
ample, the right margins of both plots in Figure 1 the observed dynamic range in h(.) is a good visual
each have a vertical stack of icons. The top four indication of whether there may be significant bias
icons in each stack are the same (a right arrow, a in h(.) due to window leakage. This is evidently not
graph icon, a pencil icon, and a scissors icon), as a problem in our example - the sidelobes of K(-)
nro th bottom two (an asterisk icon and a button decay rapidly compared to the dynamic range ob-

icon). The upper spectral plot has three additional served in h(.).
icons (a kernel icon, a harmonics icon, and a varl- For our second example, we describe the use of
ance/bandwidth crossbar icon), while the lower time the harmonics icon (the one below the kernel icon).
plot has only one (a shaded window icon). Once the This icon is used to mark (using the mouse) the
plots have been displayed on the bitmap screen, the location of a fundamental frequency and a certain
user can move the mouse cursor (an arrow pointing number of its harmonics. After the user clicks the
in the 11 o'clock direction) until it is over a par- mouse over this icon, a mouse state object is acti-
ticular icon and click the mouse button to cause a vated which first displays a small menu to query the
particular mouse state object to be activated on the user about the number of harmonics to be drawn. In
corresponding graph object. This mouse state ob- the example in Figure 1, we requested 2 harmonics.
ject is then used to interpret any mouse clicks the From then on, the mouse state object interprets a
user makes over any portion of the graph which is mouse click as being the location at which the user
not. part, of a mouse-sensitive region. wishes to have a marker drawn indicating a fimuda-

Three examples of the interactions possible via mental frequency. This is drawn in Figure 1 as a
these mouse-sensitive regions are shown in Figure 1. solid vertical line at. 1 cycle per year on the spec-
If the user clicks on the kernel icon (the one below tral plot; the corresponding first. two harmonics of
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this frequency are indicated by vertical dashed lives vinces us that this interface is useful for novices. Our
(again, this is accomplished internally by attaching hope is that the overall design of PITSSA is trans-
a drawable harmonics object to the spectral graph parent enough that more sophisticated users (other
object and sending it the message "draw-yourself). than ourselves) can augment and modify it at will
This allows the user to determine whether prominent (this level of usage remains to be tested). There
features on a spectral estimate are harmonically re- are really no constraints imposed on a sophisticated
lated and can thus be attributed to a periodic phe- user of the system other than those imposed by Lisp
nomenon in the time series. (If one or more the itself - in fact, PITSSA may be regarded as simply
harmonics is higher than the Nyquist frequency, its a nefarious plot to get innocent users interested in
alias in the interval (-N, N1 ) is drawn as a vertical the programming potential of the Lisp environment
dashed line with a smaller dash size.) itself!

Our third example shows how extracting a sub- Third, we hope that the three simple Lxam-
series from a time series can be done on PITSSA pies in Section 5 convince the user of the useiil-
(this can be useful to investigate whether any visual ness and power of interactive graphics in time series
differences in the time plots of various subseries map and spectral analysis (and other areas of data anal-
over into the frequency domain). This makes use of ysis). There are several other interesting examples
the shaded window icon immediately below the scis- from PITSSA which we plan to discuss in future ar-
sors icon on the lower plot. Once the user clicks tides. There is also much more work to be done
over this icon with the mouse, a mouse state oh- in this fruitful area before we exhdust the potentials
ject is activated which allows the user to place two for improving interactive data analysis pointed to by
vertical markers on the time series plot by point- McDonald and Pedersen (1985a, 1985b, 1988).
ing and clicking with the mouse. These markers are
shown in Figure 1 as a vertical solid (dashed) line 7. ACKNOWLEDGEMENTS
near 1957 (1974). Once these two markers are in This research was sponsored by the Office of
place, the user can request that the windowed pert- Naval Research under contract numbers N00014-87-
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mouse cursoi ovel the button icon either on the time frot the Naval Observatory and the Naval Research
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6. CONCLUSIONS though we know of no other I'ITSSA's in existence,
we have followed the example of the author of TI>X

We conclude by reconsidering the three ques- (Knuth 1984) and lere our vowels i i an aolenpt

tions posed in Section 1. First, PITSSA was speciti- to create a unique name this time around.)
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INSIDE A STATISTICAL EXPERT SYSTEM:

Implementation of the ESTES system

Paula Hietala, University of Tampere, Finland

ABSTRACT The ESTES system has been implemented on

Apple MacintoshTM personal microcomputers using
In this paper we describe the implementation of a Prolog and Pascal languages. In this paper we
statistical expert system called ESTES. The system is consider the overall implementation of the system.
intended to provide guidance for an inexperienced The design philosophy and user interface principles
time series analyst in the preliminary analysis of of the system are described in Hietala (1986). The
time series. The ESTES system has been organization of the knowledge base and the
implemented on Apple MacintoshTM micro- statistical methods employed in the system are given
computers using a combination of Prolog and Pascal a detailed treatment in Hietala (1988).
languages.

Keywords: Statistical expert systems; Rules; 2. STRUCTURE OF THE ESTES SYSTEM
Explanation capabilities

The structure of the ESTES system and the
communication between its principal modules is
illustrated in Figure 1. The system consists of:

1. INTRODUCTION - a main module which takes care of
communication between other modules,

Statistical expert systems are an interesting and - a statistical knowledge base which comprises

novel area of statistical computing today (see e.g. the knowledge about time series analysis,
Chambers (1981), Gale (1986a) and Hietala (1987)). - an inference engine which employs the

However, the implementations of these systems are knowledge in the statistical knowledge base,

often outlined very cursorily and the reader is left - a user interface module which interacts with

unaware or in doubt of the methods employed as the user,
well as of the inner structure of the systems. The - a graphics module which displays grap'ical
purpose of this paper, on the contrary, is to consider results,
in more detail one implementation (of a statistical - a time series generation module which

expert system called ESTES) in order to give a better generates example time series, and

insight into these popular systems. - numerical computation modules which
The ESTES (Expert System for TimE Series calculate all numerical results for the other

analysis) system is intended to provide guidance for modules of the system.
an inexperienced time series analyst in the The numerical computation modules have been
preliminary analysis of time series, i.e. in detecting implemented in Pascal, all the other modules in
and handling of seasonality, trend, outliers, level Prolog.
shifts and other essential properties of time series. Next we briefly describe each of the modules.
In the preliminary analysis of time series it is
usually the case that an expert time series analyst 2.1. User interface module and graphics module
detects the essential features of a time series just by
examining its graphical representation and The user interface of the ESTES system is
autocorrelation function, without any complicated especially designed for an inexperienced user (see
calculations. Even in the case of an inexperienced Hietala (1986)). The system is highly interactive: the
user he/she may have plenty of useful knowledge user interacts with the systenL using pull-down
concerning the environment of the problem in menus, dialog windows, overlapping and
question. With this in mind, the statistical transferable data windows, with a mouse as a
knowledge in the system is organized so that the pointing and selection device. Figure 2 illustrates
system tries to exploit as much as possible of the the Macintosh-like user interface of the system.
knowledge or experience that the user has about the Whenever possible both numerical and graphical
specific time series being considered. However, if displays of the data and statistics (for example,
there exists a conflict between the results computed autocorrelations and partial autocorrelations
by the system and the knowledge elicited from the calculated from the data) are offered to the user.
user, then the ESTES system sets out to carry out Also the shape parameter of graphical displays (the
more extensive analysis and apply more ratio of height and width of a figure) may be chosen
sophisticated statistical methods. With this kind of by the user. For example, in Figure 2 we have a
organization we strive for minimizing the number graphical display of data (see the window "Time
of unnecessary reasoning and calculation steps. Series: x"). If the user wants to change the shape
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parameter of this display, he/she activates the engine for inferring solutions and explaining
graphical window and chooses a new shape system's actions are at the very heart of any expert
parameter by using "Window details" command system: this is also the case with statistical expert
from the "Windows" menu. Also, the user may systems. Next we briefly describe the principles
activate with a mouse any individual point in the employed in the ESTES system in implementing
graphical display: the value of time series and and these two components. A more detailed account of
time point are shown in the display. Moreover, the these matters can be found in Hietala (1988).
numerical display of the data (see the window "Data: There are several ways of representing
x") is scrollable and editable. Changes and insertions knowledge in the knowledge base. We have selected
in the data window are immediately seen also in the if-then rules for representing knowledge concerning
graphics window. properties of time series and their handling. Rules

The visual lexicon of the system (see the in our system are either of form: RuleName: i f
Lexicon menu) gives support to the user during conditionA then conclusionB, or of form:
his/her work. This is similar to the lexicon concept RuleName: if conditionA then action c. This
of Gale (1986b); however, in our system the lexicon kind of rules are easily expressed in Prolog: they are
illustrates the definition of unknown statistical legal Prolog clauses provided we define appropriate
terms graphically and explains the meaning of the Prolog operators (e.g. ':', 'if', 'then'). The condition
terms used by the system. For example, if the user and action parts of a rule usually include also
asks for an explanation for the term "trend", the invisible calls to Pascal procedures (see Section 2.4
system produces both a graphical representation of a for a more detailed discussion of the interplay
time series with a trend and also a textual between Prolog and Pascal).
explanation of the term "trend". The visual lexicon The knowledge base of the ESTES system has
contains a rather small amount of precomputed been organized so that the selection of a class of
information for the graphical representation; the statistical methods will be determined using a
reason is that we strive for a dynamic lexicon. By hierarchy of criteria, i.e. according to
this we mean the ability of the system to produce (1) the property being considered,
several different examples of a phenomenon in (2) the granularity of analysis process (whether
question. We have implemented this feature by we are performing initial or more extensive
including generation rules to the lexicon instead of analysis),
example data sets. (3) the goal of the analysis process (detecting or

Let us consider our example situation in Figure handling the property in question), and
2 a little more closer. Let us assume that the user (4) the knowledge possessed by the user about
wants to remove trend from time series x by the specific property as well as on his/her
applying non-seasonal differencing. Therefore the general knowledge about time series (the
system has inquired about "the degree of background of the user may vary from a
differencing" (see the Differencing window: our student to an expert).
system's suggestion for the degree of differencing is Within the chosen class of statistical methods, the
1). Next, the user likes to know why the system asks final selection will be made according to the power
this fact (he/she chooses the soft button "why" in of the methods, i.e. the most powerful method
the Differencing window). After that, the user can available is selected first.
read the explanation from the Why explanation Although the Prolog language is itself an
window. However, the user wants still moreinformation about the term "degree of differencing", inference engine it is not sufficient for our
so he/she selects the term in question by marking purposes. We do not use Prolog's own trace facilityfrom t thWhy explanation window and then but have built an interpreter on top of Prolog. Thisfrm the shyt explatin thisdw te th h i interpreter manages the reasoning process of therequests the system to explain this term through its ESTES system: it interacts with the user during the
visual lexicon (the user chooses the corresponding reasoning process and also after it. For example,
action from the Lexicon menu). after the system has asked the user about some

The ESTES user interface module (e.g. graphics information concerning the time series the user can
windows and menus) has been implemented using ask a 'why' question ("Why does the system inquire
LPA MacPROLOG T compiler (see Clark et al. (1988)) this fact?"). Also, after the system has completed its
and its advanced graphics tools. Interestingly, Prolog reasoning process the user may ask 'how' questions
seems to be well-suited for this task; only a few ("Ho w ha s the se rea y a s o ncusion s
numerical calculations in the user interface module ("How has the system reached this conclusion?'),have been implemented in Pascal for the sake of see e.g. Bratko (1986). Our system's reply to why and
convenience. how questions consists of displaying a user-friendlyform of its inner inference chain with explanations

and justifications of those methods that are used
2.2. Knowledge baseandinferenceengine inside the chain. In addition to the textual

A knowledge base for storing the expert's explanation, the system's answer can contain
A nweg aefrsoigteepr' displays of graphical results.

knowledge of a problem domain and an inference
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2.3. Time series generation module he/she wants to be embedded in time series and the
system chooses the appropriate model. But if the

Graphical examples in time series analysis (as user wants, he/she can also define a precise model
well as in other branches of statistical analysis) can structure for the time series generation process.
be very illuminating and instructive fn aAi The artual computation in the time series
inexperienced analyst. Besides for this purpose the generation module is implemented in Pascal,
time series generation module of our system is also employing the numerical computation modules of

utilized by the lexicon mechanism when producing our system.
examples of graphical representation of statistical
issues inquired by the user. A third use of the time 2.4. Numerical computation modules

series generation module is in the development
phase of a statistical expert system: the developer can The ESTES system like other systems

generate various test series (that otherwise would be performing statistical calculations demands quite

difficult to obtain) and examine the system's heavy numerical computation power. Prolog is not

behaviour with respect to these test series, designed for numerical but for symbolic

So, the user first generates his/her own computation, so for efficiency reasons we have not

example data (for example, a specific time series with used Prolog for numerical computation.
a property he/she is interested in) using the Computational components of statistical expert

generation feature and then he/she can examine systems usually employ some existing statistical

this data (time series) with the help of the system. software package or are programmed in an ordinary
Thus the generation feature alleviates the learning procedural language, such as Pascal or C.
of prelimintary time series analysis: the user can very Unfortunately we did not find any sufficiently
easily get acquainted with typical time series and flexible existing statistical software package for the
their properties. implementation, so the use of a procedural language

The ESTES system applies ARIMA models in (in our case, Pascal) for all numerical computation
the generation process but the user does not was necessary.
necessarily need to have knowledge about ARIMA Figure 3 illustrates the interplay of Prolog and
models. He/she only describes the properties which Pascal languages. On the left we have a fragment of

PROLOG: lists PASCAL: arrays

Knowledge Base A Numerical Computation Module

rule-removetrend: function pascal-routine_n
if try-transformation (argc: integer): boolean;

is ok var x, dx: array [1.200] of real;
or t2, t3 : cellpo;
tryseasonal

differencing is ok begin
or t2 : get-arg(2);
trydifferencing is ok t3 := get-arg(3);

then remove trend. list-to-array(t2, x);

removetrend :- differencing(x, dx,
array-to-list(dx, t3....);

/* differencing is ok */ ipn

call_pascal(n, TSlist 0. pascal-routine-n
TSlist, DTSlist.... SUCCESS;

DTSlist end.

TSlist = list of time series x = array of time series values
values dx = array of differenced time

DTSlist = list of differenced series values
time series values

Figure 3. The interplay between Prolog and Pascal languages.
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the knowledge base, coded in Prolog and on the right
one of the numerical computation modules, coded REFERENCES:
in Pascal. Let us assume that in the knowledge base
the rule 'rule remove trend' is selected because the Bratko, I. (1986). Prolog Programming for Artificial
condition 'try.differencing is ok' is true. So the Intelligence. Addison-Wesley, Wokingham,
action 'remove trend' is executed next. The body of England.
this action contains a special Prolog predicate Chambers, J.M. (1981). Some thoughts on expert
'call-pascal' which has as one of its parameters the software. Computer Science and Statistics:
list of time series values. This list is passed to the Proceedings of the 13th Symposium on
corresponding Pascal function, which converts the Interface. Springer-Verlag, New York, NY, 36-
list to an array and then carries out the actual 40.
differencing. After that the results are returned as a Clark, K.L., McCabe, F.G., Johns, N., and Spenser, C.
list to Prolog. To the user of the system, however, (1988). LPA MacPROLOG Reference Manual.
the interplay of these two languages is hidden. Logic Programming Associates Ltd, London,

England.
Gale, W.A. (ed.), (1986a). Artificial Intelligence &

3. CONCLUDING REMARKS Statistics. Addison-Wesley, Reading, MA.
Gale, W.A. (1986b). REX Review. In Gale (1986a),

The ESTES system is an experimental research 173-227.
vehicle for studying the use of artificial intelligence Hietala, P. (1986). How to assist an inexperienced
(AI) techniques in producing statistical expert user in the preliminary analysis of time series:
systems. Our system has not yet been tested in real- First version of the ESTES expert system.
life situations, because its current knowledge base is Proceedings in Computational Statistics
too small. In the near future our main emphasis in (COMPSTAT) 1986, 7th Symposium held at
the development of the system will be in deepening Rome 1986, Physica Verlag, Heidelberg, 295-300.
its domain knowledge concerning preliminary time Hietala, P. (1987). Statistical expert systems for time
series analysis. series analysis. Paper presented at The First

However, we think that our system rather Conference on Statistical Computing (ICOSCO-
nicely embodies the two faces of statistical expert I), Cesme, Turkey, 30 March - 2 April, 1987.
systems, i.e. the deductive component (usually Hietala, P. (1988). Inside a statistical expert system:
programmed using an expert system shell or an Al Statistical methods employed in the ESTES
programming language, such as Lisp or Prolog) and expert system. Paper accepted to the
the computational knowledge component (which Computational Statistics (COMPSTAT) 1988, 8th
usually employs some existing statistical software Symposium, Copenhagen, Denmark, 29 August
package or procedures programmed in an ordinary - 2 September, 1988.
procedural language, such as Pascal or C). In our
opinion, this "dynamic knowledge base" (the
computational knowledge component outlined
above) is very typical for statistical expert systems.

In our case, the use of a combination of the
languages Prolog (in the deductive component) and
Pascal (in the computational knowledge component)
turned out to be a very suitable way of
implementing a statistical expert system.
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THE EFFECT OF MEASUREMENT ERROR IN A MACHINE LEARNING SYSTEM

David L. Rumpf Mieczyslaw M. Kokar
Department of Industrial Engineering and Information Systems

Northeastern University, Boston, MA

ABSTRACT

This paper deals with the problem of reasoning about We introduce some measure, which is the fundamen-
conceptualizations (sets of relevant parameters) of physical tal tool for making inferences in the global approach.
processes. The problem is discussed in the context of the Measures are functions which assign numeric values to sets
COPER discovery system. COPER conjectures parameters of observations. The measure we introduce in this paper
characterizing physical processes and the functional rela- assigns a numeric value to a conceptualization of a physical
tionships among them. The COPER system utilizes the process. It is based on the predictive power of a conceptu-
idea of changing representation base to determine the argu- alization - the better the prediction the lower the value of
ments of invariant functional descriptions. It must handle the measure. The utilization of such a measure in the pro-
two kinds of uncertainty - about relevance of parameters, cess of deriving a physical law from observational data is
and measurement error. A statistics/probability approach obvious - the system generates conceptualizations of a phy-
has been used to estimate the effect of measurement error sical process, applies the measure to them, and selects the
in the COPER system. The partially adequate results of conceptualization for which the value of this measure takes
this approach are presented. Alternative approaches to the its minimum.
measurement error problem will be suggested. Such a statement of the problem might suggest that

INTRODUCTION the system generates a model of the process and then tests
its predictive power. This could be called a "traditional

The process of discovery of a physical law involves approach". The drawback of such an approach is that we
reasoning based upon experimental data obtained from are not able to assess which part of the model is responsible
observations and measurements. The measurements are for the wrong predictions. In the approach presented in this
never perfect, they always include both the essential infor- paper we construct a measure which:
mation about the behavior of the physical system and some - is able to assign blame/credit to particular parameters
noise. A discovery system must be able to perform reason- in the model,
ing on such noisy data and extract the causal relationships.
The indication for existence of such a relationship is some - does not require postulating a functional dependency
regularity in the data. This regularity must be described on describing the model (due to the fact that the
at least two levels: some conceptualization (a set of con- definition of this measure utilizes the principle of
cepts) must be defined, and then a relationship should be similarity we call it the "similarity measure").
described in terms of these concepts. This is a very difficult
task. One of the reasons for this is that a discovery system THE SIMILARITY MEASURE
must deal with two kinds of uncertainty: In the process of constructing the similarity measure

related to the lack of knowledge on whether the we make use of some syntactic properties of physical laws.
parameters the system is measuring are all the We consider here the laws which are represented by somerelevant parameters, functional formulas (or algorithms). The arguments of

these functions are so called "dimensional quantities", i.e.,

- caused by noise in the input data. a numeral followed by several "units" with some
This paper reports how these two problems of uncertainty exponents. For instance, a physical quantity of "velocity" is
are handled by the discovery system called COPER [Kokar expressed as:
1986a, 1986bi. V =xvkgomIs -1 .

Two approaches to discovery of regularities in meas- The functions describing physical laws must fulfill some
urement data can be distinguished - let us call them piece- constraints. For instance the function Y = 3 m + 5 kg does
incremental and global. In the piece-incremental approach not have an interpretation in the language of physics, thus it
a conjecture is made after getting any single new piece of should be disallowed. The constraints guarantee that by
data. In the global approach a conjecture is made after all performing some syntactic operations on a representation
data has been collected. Between the boundaries delineated of a physical process we do not generate some objects
by these two approaches there is room for all kinds of which are not interpretable in the domain. The constraints
mixed strategies - repetitions of collecting of some amount are captured by the requirement of dimensional invariance
of data and drawing an inference. The mixed strategies can of functions representing physical laws with respect to the
be viewed as combinations of the two. After we collect change of the representation. Formally the invariance is
some amount of data we make some global reasoning, then represented as:
the conclusion can be treated as one piece of information
which can be input to the piece-incremental reasoning sys-
tem. In this paper we concentrate on the global reasoning F(TX1...,TXn) = TFtX1,.X,).
approach.
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where F is a functional formu!a, X1 . X are physical (4) For each similarity class calculate the mean value of f.
parameters (dimensional quantities), and T is a transforma-
tion of the representation. The discussion of the syntactic (5) SM(C,M) is the mean value of all absolute differences
properties of physical laws is beyond the scope of this between the calculated values of the function f and the

paper, an interested reader is asked to refer to the subject's mean values off for every similarity class.

literature (e.g., [Whitney, 19681, [Birkhoff, 19601, [Drobot, PROPERTIES OF THE SIMILARITY MEASURE AND ITS USE

19531, [Kokar, 1981, 19851). This problem falls into the IN REASONING
field of dimensional anlysis.

The similarity measure defined in the previous section
In the theory of dimensional analysis a theorem exists has some very useful properties. The most important pro-

(called sometimes the Pi- theorem), which says that any perty of this measure can be summarized in the following
statement.

Z = F (A ... Am,B 1.Br), If a physical process is fully characterized by the con-

which is dimensionally invariant, can be represented as a ceptuali'.'tinn C = (A.....Am,B1,.B,,Z}, i.e., Z
(new) function functionally depends on the remaining parameters,

Z = f (Q l 1 ..... a )A a a. ,
I "... A M , then for any set of instances M of this process the

where Q .. Qr are the new p'rameters constructed out of value of the function f (or Q,) is constant for any

the initial parameters according to the following formula: similarity class, and consequently, the value of the
Q.=B aj, similarity measure SM(C,M) is equal to zero.

•jB • ' Am •To prove this property of the similarity measure let us first

Dimensional analysis gives the rules for both the partition- notice that f(Q..Qr) must be constant on a similarity
ing of the set of arguments into the A- and B-arguments, class. This is a consequence of both functionality of the
and for calculating the values of all the exponents in the relation f, and of the definition of a similarity class (a cl. s
above formulas. is determined as a set of instances for which all the Q's al

Suppose a physical process is fully characterized by constant). In such a case the mean value of this function is
the physical parameters A 1,.A,,B i.Br, i.e., that the equal to the (constant) value of the function, and thus the
value of some characteristic of the process Z can be difference must be equal to zero. This is true for each sin-
uniquely determined by these parameters (functionality). gle similarity class. The similarity measure is defined as the

By an "instance" we will mean one measurement of mean value of the absolute difference from mean value of f
the physical process. Formally an instance R can be for all the classes, therefore the similarity measure must be
represented as an m+r+l-tuple: equal to zero.

R = <A t ..... Am,B. B, Z> The contraposition of this property says that if the
value of the similarity measure is not equal to zero then theof the values of the parameters. When carrying out experi- dependency of Z on the conceptualization C is not func-

ments with a physical process we obtain a collection of dione Ti m o m the paaters nt c-

instances usually represented as a table. For any instance tional. This means that some of the parameters in the con-
we cn clcuate he alus oftheQ-prameers QiR).ceptualization are missing. If a parameter Bt is missing

we can calculate the values of the Q-parameters, Q,(R). from our considerations, then as a consequence, a respec-

Two instances R' and R" are called "similar" when the tive Qk parameter is missing too. It means that in our
following relationship holds: definition of similarity classes one of the constraints,

Q(R')=QI (R "). Qr(R')=Q(R"). Qk = Bk/Al ... Am- =constant, is not taken into

The similarity relation is an equivalence relation on a set of account.

measurements M. Given a set of instances (measurements) The use of this measure is straightforward. The sys-
M, a conceptualization C = (A ,..., Am,B ....B,Z}, the tem can search for a conceptualization by adding one
similarity relation partitions the set M into equivalence parameter at a time to it and calculating the value of the
classes; we call these classes "similarity classes", similarity measure. If the value of the similarity measure

The formula for Z can be transformed into improves (significantly) then the theoretical parameter is
f (Q, .. Qr)=Z/A - A'"M=Q 7 . included into the conceptualization, otherwise it is ignored

Given a pand the search continues. The search stops when the value
Given a conceptualization, C, and a set of instances, M. the of the similarity measure is close (enough) to zero. One of
similarity measure SM(C,M) can be calculated in the fol- the very important features of this algorithm is that a physi-
lowing steps: cal parameter does not need to be varied in the set of meas-

(1) Using dimensional analysis determine the forms of the urements M in order to be judged.
monomials Qt ._ Q,-- The similarity measure gives us some means to handle

(2) Partition the set of instances M into similarity classes, uncertainty about the set of parameters characterizing a

(3) Using the above formula for f calculate the value of physical process under investigation. Even assuming no

thic fue'tilnm fnr each instance in M. Note, that to noise in the measurement data we face the problem of how

determine these values we do not need to make any much is enough. As was pointed out in the above para-

assumptions about the form of the function f, we cal- graph, at least two questions need to be answered: what

culate them using the right side of the above formula. does the similarity measure improves "significantly" mean,

and what is close "enough" to zero?
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A further complication is introduced by the presence APPROXIMATE STATISTICAL SOLUTION TECHNIQUE

of noise in the measurement data. Deciding if the We have designed an simulation approach to deter-
significance measure has improved "significantly" or if it is mine the error distribution of Q, under certain assumptions.
close "enough" to zero can be confounded by the presence For any particular analysis problem, there are a limited
of measurement error. A lower value of the similarity number of possible groupings of the A- and B-parameters
measure could mean that the theoretical parameter just into the Q- parameters. Each grouping imposes a particular
added should be included. Alternatively, it could indicate functional form for Q. We define a representative problem
improved precision in the measurement data. which has several functional forms for Q. We then ran-

To answer these questions requires use of one or more domly assign errors to the parameters, and analyze the sta-
of the models of approximate reasoning, e.g., tistical variation in Q,- If this statistical variation in Q, can
probability/statistics, rough sets, fuzzy sets, Dempster- be shown to fit a known distribution, we argue that func-
Shafer, and so forth. Our initial analysis, presented below, tional transformations of similar form will result in the
attempts to use the probability/statistics approach to evalu- same, known distribution of error variation.
ate the effect of noise in the measurement data. Given this premise, we assume that measurement

STATISTICAL INTRACTABILITY OF THE COPER DECISION errors are normally distributed with a mean of zero and a

PROBLEM known standard deviation which is a percent of the meas-
ured value. We simulate a large number of observations

For the COPER system described above, one knows (with random measurement errors) for each functional form
that a complete set of parameters has been found when the of Q. We hypothesize that the variation in Q, is normally
similarity measure is zero. In a world of exact measure- distributed with a mean of zero. The size of the standard
ments, such a result would be unambiguous. However, deviation of Qz will depend on both the Q,-form and on the
measurement errors exist for physically measured quanti- magnitude of the measurement errors.
ties. Thus, the parameters (variables) which COPER con-
siders as candidates for the physical law under investiga- We present results of the simulation for three func-

tion have uncertain value. It follows that the completeness tional forms of Q, The size of the measurement error will

decision is not necessarily straightforward. How constant be varied to determine the effect, if any, on the distribution

does Q, have to be? When is the observed non-zero value of Q.

of the similarity measure due to measurement error of the DESCRIPTION OF SIMULATION MODEL
parameters and when is it due to missing parameters?

Our application of probability/statistics to this prob- The simulation model assumes a complete representa-

lem attempts to answer the following question. Given tion of Q. That is, a representation for which the similarity

information on the distribution of errors for the physical measure would equal zero if no measurement error exists.

entities, what is the resulting error distribution for Q,. We Any variation we observe in Q, will, thus, be due toentiies wht i th reultng erordisribtio fo Qz We transmission of measurement errors of the parameters.

will assume that the measurement errors in the parameters

(A ,...Am,B ,...Br) are normally distributed with a mean of Newton's law, for example, has as one complete

zero and some known standard deviation. This is a com- representation, Q,=s/vt. We will describe the simulation

mon assumption for measurement error. Since Qz is a approach for this example. We similarly treat the additional

function of the measured parameters, we are concerned forms of Q, to be investigated. The user selects specific

with transmittal of variation through this functional values for a, v and t; s is calculated from Newton's Law

relationship. Mathematical statistics would describe the (s=O.5at2+vt). Likewise the true value for Q, is defined by

situation as a function of random variables problem. There s, v and t (Q,=s/vt). A set of measurements are simulated

are analytic solutions to many such problems. As many for these values of s, v and t by generating and adding nor-

readers might know, if one sums independent normal ran- mally distributed independent random errors. These
dom variables, the result is also normal [Mendenhall, instances belong to one similarity class. The user can

1986). If one multiplies independent random variables assign the standard deviation of the error as a fraction of
under conditions where no one random variable is dom- the measured value.

inant, the natural log of the result is a log normal distribu- The exact value of Q, is known. A "real" value of Q,
tion [Lewis, 19871. However, the COPER problem is not is calculated after the measurement errors are introduced

limited to simple sums or products of parameters. Many of into the data. Then the difference between the exact and
the transformations of interest require division. To describe the actual (with errors) value of Q, is determined. The pro-
the error distribution for Qz, we must determine the vari- cess is repeated for a large number of times (n=100 in our

ance of Q. However, it can be shown (see Appendix A) examples below). The mean and variance of Q, (that is, the

that the variance of (l/X), for X a normally distributed ran- function f above) are calculated for these 100 instances.

dom variable, can not be found analytically. Thus division, Note, the similarity measure is the sum of absolute differ-

one of the more common transformations used by COPER, ences between the mean of Q, and each instance divided by

immediately removes the problem from the realm of ana- the number of instances. The statistical distribution of Qy is

lytic solutions. We present below an approximate solution tested for fit to a Normal distribution using the chi-squared
to the problem. test.
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EXPERIMENTAL DESIGN ANALYSIS OF SIMULATION RESULTS

We are analyzing the effect of three factors. Both the We found strong support for the assumption that the

size of measurement error and the parameter with error errors in Q, are normally distributed if the measurement

may affect the resulting error in the similarity measure. The errors are small. For measurement errors with standard

third factor is the functional form of the relationship deviation of less than 5 percent, the distribution of errors

between Q, and the measured variables. In our case, the easily passes the chi-squared test. If the errors are larger

functional form is fixed for a particular situation. It is, one than 10 percent and if the variable appears only in the

might say, defined by the dimensional analysis being pur- numerator of Q, the normality assumption continues to

sued. Changing the size of measurement error within one pass the chi-squared goodness-of-fit test. However, for

functional form will provide a complete analysis for this errors of more than 10 percent for a term appearing in the

particular functional form. denominator of Qz, the normal assumption is rejected far

Thus our experimental design reduces to a two factor more frequently than would occur by chance. The results

design with replications for the different functional forms are even more non-normal if the variable is raised to a

of interest. A typical two-factor experiment measures the power in the denominator.

effect of two factors, say pressure and temperature, on The magnitude of the error in Q, is quite consistent if

yield. In such a case, the recommended procedure is to errors are small. For errors of less than 5 percent, the error

change the factors together and not one at a time. The in Q, is between 1.7 and 2.5 times the original measure-
'together" approach follows the response surface and ment error. The larger error transmission occurs when a

avoids false conclusions which might otherwise result. We variable is raised to a power in ihe denominator.

follow this approach in our experimental plan.

Each row in Table 1 summarizes twenty-five simula-
tion experiments for each of three functional forms. The
first five rows monitor the effect of increasing measurement
error in all variables simultaneously. The next twelve
measure the effect of one variable having much larger error
that the others. The chi-squared test for normal divides the
100 observations from each simulation into six cells.
Expected frequencies are calculated using sample mean

and sample standard as estimates for population

parameters. The calculated chi-squared test statistic is com-
pared to a rejection value for alpha = 0.01 and three

degrees of freedom (critical value = 11.343).

Measurement Error Variabilit in 0.
standard deviation of errors standard deviation of Q, number of 25 failing

percent of mean value chi-squared test
percent of mean o = 0.01

S V t a s/vt sa/v' slat s/vt sa/v, s/at

.01 .01 .01 .01 .017 .025 .025 0 0 0

.1 .I .1 .1 .17 .25 .24 0 0 0

1.0 1.0 1.0 1.0 1.7 2.5 2.4 0 0 0

5.0 5.0 5.0 5.0 8.7 12.4 12.6 1 1 0

10.0 10.0 10.0 10.0 17.4 25.7 25.8 1 4 10

1.0 1.0 5.0 1.0 5.2 2.4 10.0 0 1 0

1.0 1.0 10.0 1.0 10.3 2.5 21.6 0 0 5

1.0 1.0 15.0 1.0 16.1 2.4 35.0 6 2 19

1.0 1.0 20.0 1.0 22.0 2.5 53.0 14 0 23

10.0 1.0 1.0 1.0 10.2 10.4 10.4 1 0 0

30.0 1.0 1.0 1.0 30.4 29.8 29.2 0 0 0

90.0 1.0 1.0 1.0 87.1 89.0 92.6 0 1 0

1.0 5.0 1.0 1.0 5.1 10.1 2.5 0 0 1

1.0 10.0 1.0 1.0 10.3 21.5 2.4 3 4 0

1.0 1.0 1.0 10.0 1.7 10.3 10.3 0 0 3

1.0 1.0 1.0 15.0 1.7 15.2 16.3 0 1 6

1.0 1.0 1.0 20.0 1.7 20.2 22.9 0 0 12

Table 1
Results of Simulation Runs

Sample Size of 100 for Each Simulation
25 Simulations for Each Functional Form of Q,
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CONCLUSIONS Kokar, M., M., (1986b). Discovering functional formulas

Analysis of the COPER similarity measure using the through changing representation base. Proceedings of
probabilistic/statistical approach is helpful but in a limited the Fifth National Conference on Artificial Intellijeence,
way. One must assume that measurement errors (noise in Philadelphia, PA, pp.455-459.
the input data) are fairly small (as a percent of measured
value) and that the errors are themselves normally distri- Lewis E.E., (1987), Introduction to Reliability Engineer-
buted. In such a case, the uncertainty in Q, resulting from ing, Wiley, New York, N.Y., p. 61.
measurement error is normally distributed. In addition,
given these same assumptions, the standard deviation of Mendenhall, W., Scheaffer, R., L. and Wackerly, D., D.
this transmitted measurement error is between 1.7 and 2.5 (1986), Mathematical Statistics with Applications, PWS
times the original measurement error when defined as a Publishers, Boston, MA, p. 253.
percent of the "true" value. The 1.7 multiplier applies when
only linear functions of the parameters appear in the Whitney, H., (1968), The Mathematics of Physical Quanti-
denominator of Q. The 2.5 multiplier applies when the ties, part I and H, American Mathematical Monthly, pp.
squared value of a parameter appears in the denominator of 115-138 and 227-256.
Qz.

We plan to incorporate these results into COPER.
Given information about the size of the measurement
errors, the system can decide if the error in Q, is well APPENDIX A

defined. That is, if the situation fits the small error condi-
tions described in the simulation analysis above. The sys- Consider the variance of (1/7) where Z is a normal random

tem can further decide, based on the functional form of Q, variable with mean = 0 and standard deviation = 1. Note,

the approximate size and distribution of errors in Q. Thus, any normal random variable X, with mean = .t and standard

under the limited conditions defined above, COPER will deviation = a, can be transfornmed to a standard normal Z

incorporate analysis of uncertainty caused by noise in the using the relationship:

input data. Z=(X-I) /0.

However, a full resolution has not been attained. We
plan to evaluate alternative approaches such as fuzzy set Variance 1 /Z
theory and Dempster-Shafer belief functions for dealing E([I /Z-E (1/Z)12) = E(1/Z 2-2(l/Z)(E (I/Z)+[E (1/Z)]2)
with uncertainty in our attempts to expand the decision E (I/Z 2 )-[E (1/Z)] 2

rules for dealing with uncertainty within the COPER sys-
tem. Consider E(I/Z 2 )

4-oo o

E(1/Z 2) = f 1/z 2f(z)dz = f l/z21/2e-_2dz
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mXz-BASEH miia7Wr MANA MU: K EFFCR ESTIMMU

Vijay Kanabar
University of Winnipeg

Plami and estimtx work effort for a project is ne of the wet difficult
activities in Project Manageent. It is also a critical activity since
prelimnary etntes translate dirtly to estimated costs. Projects with lower
estimated costs end up with insufficient fuqding, uhile projects with high
estimates are simply not cosidered for development. To assist with estiuaticn a
strategy integrating knowledge-based tedmliqeo with procedural techniques is
proposed. An integrated Plamning Model (ri) based an this cxx3pt is dscribad
in this paper.

always broken down finely into tasks and
1.0 Introdutioxn to Project Management activities. Any new project will therefore

have some activity that was performed earlier
Managing a project using the critical path (e.g., all projects involve creating a users
method typically involves three main stages- manual). It is then possible to borrow such
Planning, Scheduling and Control. estimates for the new project. To quote

During the Planning stage the project is Meilir Page-Jones, "the best way to assign a
broken down into smaller more manageable cost to a given task is to identify the cost
components called activities. Work effort is for an identical task performed earlier in
estimated for each of these activities using the shop... 2
past experience as a guide. Formulas or
Models, and actual historical data are also Unfortunately few project managers have the
used. opportunity to do so, as no useful data about

previous attempts ever get recorded. Several
Once the work effort is completed a network explanations are offered for this lack of
is created to show the sequence of activities data by Meilir, including "My people have no
that make up the entire project. Several time to collect project data", and "Nobody in
project management tools are available for this shop has the statistical skills to
the above purpose. They range from powerful apply the collected data meaningfully."
mainframe based products such as IBM's
Application System to relatively smaller 2.1 Metrics Group
project management tools based on
microcomputers. To get around this problem some Data

Processing shops have established a Metrics
The next stage is Scheduling - here we map Group. 3  The members of this group are
the activities to a calendar, and determine specialists in measurement and estimating and
start and finish dates for each task. they acquire their skills over many projects.

They also function independently off the
The last stage is Control, and this ensures project manager and therefore are not subject
that the entire project is completed on time to political pressure and bias.
and within budget. GYod control also ensures
that the end products are of good quality. There are several advantages with this

approach:
a) Members acquire specialised estimation

2.0 Autoated Approach skills.
b) They will have acquired adequate

While several software tools are available statistical skills.
for project management, few provide c) Piject Managers and other developers can
assistance with estimating. Existing tools rely on this group to obtain better results.
assist project developers only after
activities have been defined and the work
effort estimated. Subsequently, useful
networks are drawn, the Critical Path traced, But there are also several disadvantages:
reports generated, and graphs such as GANIT a) Maintaining such an exclusive group can be
drawn. expensive.

b) Benefits will be seen only after the group
At the outset it would appear that it is is well established.
meaningless for any tool to support work c) High staff turnover in this group can be
effort estimation; after all, every project devastating.
is different from another! But on further d) Dividing authority between the Metrics
analysis, it is evident that this logic is group and the Project Manager can be tricky.
incorrect. As explained earlier, projects are
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2.2 Krwledge-Based Syst KNOWLEDGE-BASE

An alternative strategy would be to develop
knowledge-based systems to assist with
planning and estimation. Such systems FACTS RUILES
provide the following advantages, as stated
in Watenmn 4,

INTERFACE
a) Permanent resource available.
b) Expertise is easy to transfer.
c) Consistent procedures used.
d) Affordable.

Accordingly, a new Integrated Planning Model INFRENE ENGINE
(IPM) is proposed.
The model uses knowledge-based, procedural
and statistical techniques, and can integrate FIGURE 1. STRUCTURE OF A KNOWLEDGE-BASED SYSTEM
with existing software systems (e.g.,
project management tools, database systems, (projects just initiated and projects not yet
spreadsheets and other estimation models). completed.) On ccopletion of a project the

actual hours are transferred to the
3.0 IM Design Overview Historical Database.

The architecture of IPM is illustrated in The Iearning module updates the knowledge-
Figure 2. The heart of the system is the "IPM base with current information. It also acts
Kernel," which determines the reccmmended as an edit window to remove outdated
work effort. infoation, or delete incorrect files (that

is entire projects can be r~moved).
The Knowledge-base corponent is used to store

facts and rules. (Knowld ie-$-sed -.. F;sially, the Schedulor is :cZ-ponsible for
are made up of a knowledge-base and an receiving the reccwmnded estimates, and
inference engine). Up-to-date information for generating reports and charts, such as the
a given domain is stored in the knowledge- Project Schedule, Project Calendar, Resource
base. The inference engine is responsible for Table, Critical Path.
processing the information in the knowledge-
base and caning up with solutions. (See 3.1 Iw Eeczution
Figure 1 for more details). Two expert

Execution of IPM involves the following
phases:

NCKN ,-M ], 1. Identifying the project as belonging to aM!N -I6IN I atiallar category.

This decision is made manually by the project
manger on the basis of the Planning Document,

KNLD6,- . ,Requirements Analysis and estimated number ofL thou-3ands of Delivered Source Instructions
(DSI). For instance a popular model such as
Boehm's CX(fMD can be used5 . He considers
the development of a software system for a
company that has determined that their
prnjram will have roughly 32,000 DSI. The
following equations of the C0CXI model are

RS( used to estimate important characteristics of
such a software system.

Effort: MM = 2.4 (32)exp 1.05 = 91 man-
months

f \ H (One man-month = 152 hours of working time)

Schedule: Estimated Development = 2.5 (91)exp
systems reside here - the Monitoring System 0.38 = 14 months
and the Consultation System.

Average Staffing: 91 man-months/14 months =
The Historical Database -ontains actual data 6.5 Personnel
from previous projects (e.g., type of
project, time taken to ccmplete, activities, On the basis of such estimates, classify the
resources utilized). The Current Database project as belonging to either a) mnzll
stores information about existing projects Intermediate b) Intermediate c) Large.
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Table I:

Subphase 1.3 User Requirements SRWE
(Hours)

a. b. c. d. e. Min Max Ave

1.3.1 Set Up The Project 13 12 15 10 12 10 15 12

1.3.2 Review Existing System 15 2 19 25 12 2 25 15

1.3.3 Interview Users 3 4 4 3 2 2 4 3

1.3.4 Document User Requirements 14 12 15 11 13 11 15 13

1.3.5 Review Document with Users 0 0 0 0 0 0 0 0

2. Generation of a Work Break Down As indicated above SRWE numbers are simple
structure. statistical averages.

If the sample size for SRWE is less than 5,

The next step involves generation of the Work or if the variance is large, the SRWE value
Break Down Structure (WBS). This structure is will be flagged with an asterisk, (such as
a hierarchy that identifies all the end in 1.3.2.) Alternatively, three columns can
products. All project and development work be displayed, the Minimum SRWE, Average SRWE
are defined here as activities. IPM asks some and Maximum SRWE as illustrated in Table I.
more questions about the nature, scope and
size of the project and automatically
provides a default WBS. There is an unique
WBS for each of the following categories of
projects- Small, Intermediate and Large. (A
very reliable WBS can be generated if a
related project can be identified in the 4. Ilading Raw Work Effort

Historic Database). If the WBS supplies by If the SRWE values appeaL Lo be
IPM is not completely satiL3factory it has to Ifto te ayuchagealtelye
be mo)dified. This custmization is important unsatisfactory they my changed completely.
as every project is slightly different from This may came about after a consultation with
asovery pthe Knowledge-base system. Also at this
another. stage activities with null SRWE's are civen

Sample WBS generated for a small project is an estimated value (manually by the Project

shown below: Manager). For example, 1.3.5 is given a value
of 2 hours.

Subphase 1.3 User Requirements

1.3.1 Set Up The Project Subphase 1.3 User Requirements SRWE

1.3.2 Review Existing System RWE

1.3.3 Interview Users
1.3.4 Document User Requirements (Hours) (Hours)

1.3.5 Review Document with Users 1 .3.1 Set Up The Project 12
1.3.2 Review Existing System 1 5 *

3. Ling the WS with Raw Work Effort. 1.3.3 Interview Users 3
1.3.4 Document User Requirements 13

The above WBS is now ready for loading with 1.3.5 Review Document with Users 2

raw work effort. IPM supplies a Suggested Raw
Work Effort (SRWE) for each of the above Assumptions are noted down in the database as

activities. This is the simple mean of the to why a particular RWE value was given. This

previous estimates for a comparable project. will come in handy if the estimates have to

If data for any particular activity does not be revised again in the future.

exist in the database the SRWE field is
simply left blank. See activity 1.3.5 for an
example.

Subphase 1.3 User Requirements SRWE 5. Tnoking the Mmitoring System:

(Hours) The Monitoring System (which is an expert
1.3.1 Set Up The Project. 12 system) evaluates the estimated hours for the
1.3.2 Review Existing S)stem 15* entire project. It can also make selective
1.3.3 Interview Users 3 analysis of the different phases and

1.3.4 DocLuent User Requirements 13 subphases. A camment such as this might occur
1.3.5 Review Document with Users after the initial evaluation:
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7. Sdduler
The total tim allocated for System Testing

is too low. The following are historic At this stage the estimtes are passed to the
maximum, minimum and average values ... Scheduler. Several project management tools
The following rule of thumb for scheduling a assist with scheduling. Based on the
software task is recommended [Brooks] 6: 1/3 activity network cczpletion dates for all the
Planning, 1/6 Coding, 1/4 Component Test and activities are alloted.
Early System Test and 1/4 System Testing. You
want to revise the estimated figures for
Phase 4." 8. Iteration

Another general purpose comment such as this Needless to state, several iterations of the
might also occur: above will occur during the life of a
"Application Prototyping is strongly project. The first estimates will be revised
recom iended for small business applications, repeatedly as the project progresses.
This has to be done in Phase 2."

3.2 Learning in UM

The term "learn" is used here in the sense
6. loading Task Perfomezrs (invoking the that the IPM knowledge-base expands to
Consultation System): accommodate additional data and information.

The following examples serve to illustrate
The task performers have to be assigned at the point.
this stage. The RWE values are divided and
adjusted according to their individual
skills. The Consultation system (expert 3.2.1 Acing Strurai Information
system) is invoked at this stage. Unlike the
Monitoring System which can be classified as Information added to the knowledge-base can
a general purpose system, the Consultation be structured or unstructured. When the
System is a specialised knowledge-base based information .6 structured it is possible to
on the local environment (i.e., a particular use the inforation duriny estittion.
Data Processing shop. Consequently, each
organization has to have its own consultation For example, if a project manager acquires
system. This system best functions in the infonration about a new "faster and user-
interactive mode. The following queries can friendly" software package for application
be asked. prototyping, it would be helpful if the

knowledge-base had access to this new
"List the names of all CICS programmers." information. This can be implemented as

follows - consider this dialog
"If John Smith were to do the coding, how
long would it take him?" Do you want to add new information to the

knowledge base?
What is the D. P. shop policy on -Yes

Dcxunentation?"
To what database must this new information be

Inforation on individual software packages added to?
>>Sof tware Packages

can also be queried. For instance the

foll owing information my be helpful, Please enter the following intormation

' FA'TCODE is a good package for Report Name of package: 6GL
Writing, it can generate a simple report in Price: 650.00
10 minutes; it has a grxi training manual and Average Tine taken to complete tutorial: 4
takes appruxinately 8 hours to ctzIpet' the Hours
tutuz ial'. Est iuiated Prxi-uctivity 'actor (out of 10): 7

?ddi ti ona 1 nt ornition ]Ih)ut the software:
it is obious that thor Consulta3tion Syst.At

':1 act- as a ryx I training t(ool as 'ol 1. Whon all the qpuestions have been answored the
Vah ml Ie in tolut _ ion can to, extr,lc't<d f01 akxve infoniution is inserted into the
* 1:' ' r'p'ig, '-W]se. dat ase- ant i 1 will be considerl.d wen a flow

nh' 'dule is (-l'erat. t .

t",.',','.' t i,)n isata d p-ndnt )n the 3.2.2 Adding UrtLtnx-tured Infornmtion
: ' r~d : r o i -onimont. I,o(,al tc:hn 1 'a I

wit h k'l( frp' '01 n'jinr in Itnstnntuili tirtbon (a all t]lo 1A de to

,'- igJt'fl' ,'X IlOrt systris mulst I* '., ai! t, th ' 'dv-,,,I gt-t so.
1''-''' U.s (YruAn(t. will not be use-tl. 'IInis :s ni ly a noto-pad or a rmi) I I l.

. , . h , r 0', (',11Ihet,,I nr~ ',: 1> th. ' .]!,w~ing u(u11uts alh ut the
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(On invoking the Learning Module)
Do you have any comments about this
Activity?

- I have experienced considerable delay in
obtaining printed forms frcm the PiLLin Shop.
This has considerably delayed the
development process. it would help future
projects if printing requisitioning is done
in the preceding phase.

Such comments can be quite useful to a novice
Project Manager reviewing historical files.

4.0 C nclusion

The automated approach to planning and
estimating will provide benefits only if the
folloing criteria are satisfied:

1. Projects are consistent in size and scope.

2. Actual historical data are stored in the
Historical Database (ie., the completed
estimates not the initial estimates.)

3. Sincere attempt is made to document actual
experience (such as the preceeding example
about Print Shoop dclays) into the Monitoring
and Consultation systems.)

Finally, it appears that such an automated
system can also be a front end module in the
Computer Assisted Software Engineering
(CASE) system architecture. Integration of
management and development tools is one of
the main goals of the CASE system
architecture.

1. IPY, "Managing Projects with Application System ', Release 4,
Product Number 5767-001, 1986

2. Meilir Page-Jones, "Practical Project Monagarent', p 14,
Dorset House Publishing Co., New York, 1985.

3.De Marco, t., "Structured Analysis and System Specification",
Yourdon Press, Nkw York, 1978

4. atermran, Donald, "A Guide to Expaert Systems", p 12, Aldison-
Wesley, 1986

5. Boehm, Barry, "Software Engineering Economics",
Prentice Hall, 1981

6. Brooks, Frpdrick, "The Mythical Man-Month",
Addison Wesley, 1984
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temperature, heart rate, respiratory rate, temperature of Alf ough one tan iliaig ite levels of sigtiifii':rircr'
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tig because they flag situations which are more unusual. Two classes of data were given to the program J1
That is, methods which simpl/ find variables which are no surgery, 2:surgery) and 14 clinical pathology variables
usually the most predictive, carnot perform well on cases were processed according to the PLSI algorithm. The
which do not conform to thi normal pattern. Other results can be interpreted as rules and also flag the most
classes pinpoint cases ditficult i diagnose. Class 12 con- prominent variables. The current version of PI.SI
tains three cases which were all operated on, but only required that the data be sealed between 0 and 2.55. The
one out of three was actually found to have a surgical variable X1 represents total cell numbers, XS is
lesion. Two cases had a simp~le large colon obturation mnesothelial cells and X13 is inflammation. These were
and the third a large colon volvulus or torsion (requiring found to be thre most significant variables for the predic-
surgery). That is, two unnecessary an vsrgeries were per- tion of no surgery. For the purpose of predictinrg stir-
formed. A close study' of the influential variables andl gery, again X1 and X13 were significant. as well as X9,. a
their parameter values for this cl of cases -with very maueo eeeaecls 'ieti ue a lob
close but importantly dlifferent diagnoses -provides obtained fromn thel rcsults. Fuirt her work is being done to

extrenel aluabe inormaton .revise thle learning algorithm to be able to handle miiissinig

A significant question arises as to whether or riot (data wit honut losing en tire cases (i.e. all paramreter values

outcome information should b~e included mnitiallv in the when only one, is absent). The statistical mnethods lose

programn runi. If the dat a were highly predictive, it all case informat ion and it wonuId be a considerable

shion d riot matter. H owever. it was not clear fromt the advantage to em ploy a meth-i 'a less sensitive to th(is

on at t how t ruie t Iiis xv as. Tbhe data wvas runi tmx ce againi: p~rob Ici.
once with all ou tcome inforirat ion rcrnioved aind once '['Ii is techlni que prrilics diagnostic rules of tic
withI the dloctor's dlccisiotr infoiitiol deleterl. When all rormn
on tcornre informnation was removed, orne notes trhat some
interesting prognosis iformriat ion still remrains. (lass I Class 1.
indicated cases virtually all of' which lived and] whose [I < Xl < 1 [0 < x8 < 2f6

condfitioil, wrer Iir or not srirgf-rv was reqluired, was gen- [ 0 < x 13 0 ], p with a utility value of .8333

erallY good lTre quiiestion ofteni arises wkhet her or riot to Class 2.

opierate even given that the a itnal li:s alesioni if the 2 < xI < 255 3 < xi) < 2551
g-ricral ;icogiii.i is ba.d, This class woiulid indicate thfat [ < xH -1 2.55 %.kxithi ;I tiiil xv value of S 162.

surge-ry should lbe jierforricd Ili such cases. Clarss 2 (412 .*\tuallx', for each class there are- sexeral rules %%ill
'irseaf xvas ext retrielY wel.l discriminated with 91"''1 huavinug oi eyc uiiyfnto

a iig~i eso O herlniiiigca~ss ganthndiffereri it ilitx' functios Avrl~,uiiyfnto
a -ljri~a 1-on f ll( reainng lasse (aainthee alie %%iirld itidirati inrne probalie tietrberslrij in thu(

wvere 1:3 Ili totail), :1 1 %kire- also reasonahnl v well iliscriril- othier class. For thIe examnple given, riot abnormal values
iiizieil onl the basis of lesion Or hers flagged itemis suich of xl aiid x coulbiled %ith rio inflamrrratioir is irudica-
;Ls younrg ;iriirriafs or cac thlat fraid ,lry floor over-all tive 11'. uC'., -R L;~ii.weesa ihrcl

prgnsil ounrt (miore abnormral). toger (or with sonic rnflamtma~tion
\ra dat a 1i:is beenl ',bltinwdr;,tiol coh, wrnitci to anid the presiel of degrirerati' cills indicates a slirgical

tae now,% r:uf-s atof leti-rurii a profairiity vdistribiitio,r casc at :u level of 85. Neeping 50t (:i1s- us idi Fo~r

Fr 1his ,as (rr Itli(- clases fri wh :, robilitY' of pup), thle Irhnrtiiiti ,i f tfifs ssneni for outeo-Icw

oline,,rrie rmrav beV ialbIrfAted It is irnterest ing to note- that Ib%-I. (ill-( or rut iaiiidci v. s 7-1"(" correct dingno s

tfii -v~ cd* ftai~ ' - fr- hiifii'ationr for riieirial diragirosis it i-r iel ireifict i- oif fesn -it,. lesion t fir result xv irs

tisl- fashionl is Ili a sense a iruathernaticil mrodel of Ili(. 6i 1I "1 lIxver. thet iitii t rainong set xvws rot part iii-

ntiiial pri'- fi, (Iirrinite-s ifirnis',r lisa. l iii Laf*y irgi' , xi fun loosingt ditau xis lakinl nto a(lll

lj I *v I-r t hinl -J jtiuilair n ;I I( s :iil idiat liapifi'iwdi I,, ild %k' lnuvi ii 'ii jlst ttijrlfiieif tl f -I ll-f, (le o f iii%

111- rIii er inrs 'Ilie- t'cfni(itii',fr if
t nf, i t:, fIlil I,ehimug risoid Tiut' initiaif pr-

miiinig irill i l~llii -i iiif a vell'- roidll.s''a si,1 ifisti- 'ri r it', i' w s ftter r iimt tc li'. r" i

hIl -opv, A.f til-, phair it, 'if,,liliiiit all III, rrib(rrrrril iiil

.ft fr., rnm itg I~\'s frt'i iiifi'rici A\ O1iiai- .ilg, itliii IS f ,,t nil' '\ rictilt i , c-i

tl iltf- usf-ilius s of- l'crniifinlg iformaiuoti frcni t0w "'if I ,,'.'o I' xii' 'I h'lw i I''i,itx;,ri:tf'l-ir

rfiults ,I' it;.x''ran iiifiu ~ti'l lf irri %k'it I h o t i l i- li 1i-, l tI' iII fu" Il'ii 'I~''i r

2.3 Other Induction Techniques fu . lill.l . 'i'~ff" ;,.r' lclf':lt"u

I I it - i id I , f t " 'i l[. ilyd Ii, rl ml, 1Ii.r i' n '' iN' IIMI i i 'Il II Id il, t-
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3.1 Overview For these values the physician may say that the tern-

This section describes a mnethodl of evidence l*nbi perarure is "sort of normal" or "sort of normral hut also
nation which performs Bayesian updating using evidence' sort of high". This is a differont arid sep)arate con~cept

that may be best modelled using an infiniiite v alued logic- from! the probability of ar eve it (using either the belief
such as thlar which fuzzy sit theory provides TI] or likelihood interpretations). Implicitly, prohaihilir v

methdoloy dscried i ths set in prv ids aun ih'dt heory' (in hothI interpretations) assumre that an evenlt
approoalor ierient rain thssc in prois tat either happens or does not (is true or false). On thei

appoac fr itelignt eaionngIlidomin, tatpract icail side, we hiave founrd that thle concept antI eshtinclude probabilistic uncertainty as well as interpretive roation of nmembership functions is intuitively easy for
or "fuzzy" uncertainty.phscas

Aer formulation central to ieveral components of the
methodology is that of tie "u eight of evidence" air(1 IN Let F he a fuzzy subset of a universe, L'. F is a
thirefore in troduiced in sect ion 1.2. The dlescription (anid set of pairs )x, pi ,(xz), x c U where p1- (X) takes a value
justification) of the use of' aii infirite valued logic I., in 0,1'. This value is called thi' grade of iriembership of
presented in section 3.3 anid explatins how ''irriort" x I in F arid is a mias-ure of tluu' levil of' truth o~f thei stalti-

syminptomi sets are used . Section 3A- relates t he pe rfor- rnen t x is a mnemib er of thle sit F
triance of this method Ii the d',r-nain of' eqlruie colic dinug- A- strong ai - level subset, A', Of F is a fuzzy" set
rins1es. whlose i'lenmints niisr havi' a grade of nmermbershuip of*

o.- Formally dlefineil
3.2 The Weight of Evidence

AMI Turing originally developed a foriiulation for A, )iillIi45
whliat he called the "weight of evidence prov-icded by tie
evidence E towards the hypothesis If" or Vl:E.Good For example, if we hiavi' theii fuzzy' sit F {xl 0.2,
8,9 Ii as siibsetjuen tl 'v investigated triarly of thle proper- x2 0,7. X:3 0.0. v-I 0.- t henr tit(' strong ci - level sor
tics arid uses of Tiiring's formiulat ion which is expressed A- I . x 1 0. 2 x 2 0.7, N, 1, 0 (.

as Because Ai' wish to pcrfo.-ii probabilistic iriferemui

Ill we riced to have a nmeants of e,;ulu ularirig the prolualuilitY of

11:1E) lug Or WVI I1 :L ) log fiuzzy even]t s. T%%o ro Cihi sIi live beein su ggt'st ci for thItis.
W( H 0(11) thle first fromi '/adeli 2f6 arid thle seconiid frorii Y ager 25.

Zadeh's formuiilation is as follox s

wher' 0(11) ri'pri'se'nts thle oudis of li kt~I( viglit of
P 1f

1
) 11-A f Ia ' dp = ' t -

evitlc pc uhis t lii follow ig par Ili hax-isiari infiritnce: it1

Prnior log odd.,s - n1: ighf of ei idenier pcost'riotr log odd.,l is the rimembeirshill funtion tof thIi fu i-tx- Sit A, idt
1 1, A 0.1 . Yager argues that '',. it appeari unnlatural

A we'ighit of evidt'nice wlhi is highly negat iii for tii' piroibability of a fuzz.% subset to bei a nuimibeir"
irilit's that there is sigiiific-anit reason to be'lii've' in fi We* wldii fiirthier argu i ilt /:idvh's fornmulat ion ioes
while a positive Wl:)siulports HI. This formiuilat ioni not truily providle a prttl:iltt of at fuzzy el-cut libut

haS ltiiii [Triost riota ibly isitdI II a dci ision suippiort s.telii sonteti ig quiite diffe'reiit th le xpeicte'd t rut h Valuei of a
tciliu LAI)YS deve'loped't lv s'pii'gelhualii'r 23.' fuz-v ev-cut. Yaigi'r prpoe thlat thle proithilir 4'tf

Ili:in- frinlmin fr eidece ombnaton l. llgfuzzy event he a fuzzy siibset (trizzy proltabilitvy

higher ordler joint prtftii;'-i t h''ri' exists thi' probli'em
,4 i-v ilirc thl l ruse alttr in inane) diffiereti ways V'ol J7 I,,
F'or iupiltf-, ' pat i-nit lis tlii' folltotwiig irnpirt str .'= 1 t
syiitrn group, hIigh pain). (hligh pain. high t''lilt I,

( High pain. hligh ti-nih hugh pust'). \Vwlit of I lest' sYrup- ii o t t'tifit's Th ot c- It-I suibsu of A idt slct-

tnli groups sluiul hi' iusi'd' I'sing mrori' thin tne %%-uld I'.1C 0).1I' .- P ) is ai fiuzz) siihsct 'f ttl . 'hlis fuzzy%
'tlvittllit' bet counltg Ifh,,i'vitenciiti nuiirilii'r oif t nt-s suhtthenr privid' a ltrttfaililit v of A f-sr i'virv i

'I'ii nl'' %%(' hal-i chotsen tt it-alle t his situiat ioni is I, lu-eel siil' of A Thusiii dependcinug tri thfie reijtir-t por
Ow' veilpt"Ili grtut, bhiattld ''It al (ibuhiiialt 'i ''f tli''iri't) degrie' tf satisfaction, a trlbibfiI, (of ithi fuzy

Thle grttup'ts iz'. wighur, siut 'ror lit this %%w e Wi- ni:i,- mewli A is ava~rilaible. it our -as,' the( tI-i-dt li-it- of trrutfi

lil~w ,t-esi- ktors let'p-ilirig iltri i lir rnip-imw IT- Ti is I fit whit-li Inaisliiiiz's the~ liris 'f tiis i.ii t i th
it'- 'liriani F 'tr cxaiillt. it hiigheir 'trdlir ;l-t'ul-i i. fuclufit Isis F(or ixkInnli' i f \%it- I I~ ,- ,-t ;i detgree i-f

tt - f t-i t ii i I'-rimir ii wn ' -it,- 'w -f d gr' 'up is-; d lit- ' ii'action for the 1ip oasition '' ,u tiull"'' m %%i , :t' in' -

3.3 Events as Strong a - Level Subsets difitntim, tit'-111 pLiyirs frtii iii-llll p.\tis \%, dl-fiut-

Irlit ivlue- logicr llVf is baseul onit- belief thait II] l 'OITI1 on ilt -I'.'u I lit

'guti nit,- -i 'V , it( it'-r ,t iit, ss:i nw il i , I r t - tn fi tfst,-

ttli rty fal avri4) lo. ii' iiit t Fuzzy sit It / f. ' , rt is % A ll- lit, tIV A , . I ), I ) ' t :1 1it /% oTi

349



hypothesis (or ti1il1 hypot hesis) is the( ioptiiiiall - lv i-m 'Ii (sc rc~iilts %%, (-illic thit Ow nie ilto of'

Thbe ileittijclitioii ofi important SIAtS oi sviliplits or I'-tl wich exceiiec the chitijitis Iticorret ludrg-
characteristics is ic (iiiiifitlt. l) 'v liiiatiilm-ii :iI hIts iti bolug rviewevd 1) v iiliribi to svrif Im
cxilirts a ni ot her prolissicti is. Fore exatc p1fe. thle -cii xp1;~tfl(Ii 'ii:ii ie( frt cid Thiri' seiiis to hei ri, ioct

nation of' (ali;tiiinald JImit, voiit ig, le ver) cciv imiiii;iteI till bet % (,i cilimic .s errors iil] the- ioif ImItir
:iiliitiiitt is wit It a cert :till priii litv cr level ofv 11 t t ie s' 'I'llis iriiuips iilldI(ati5v I cit t)( l ie ii I
coftiiiieiiie. ()iir mtit iti fo Ir t rviig tc discover ipor- :11i ivIes %ih :Ir(. difiritt for i,]r t'ititcipics (mid

I lI s~tlitltiti grmii is 15 toil il to) ilit-111 . \ iv ic 1 1 vC C v FS: I)

gfip~s .sri Iipolritt fin a prcilct i iisv mid( I oii olwlg vlil h" IFr11Ilfr

de( isvii of, iisiig s)tiiitii to groliips itistesil I' iiiiiviitici tw cilicis Thei ti .si ilsivet the fIt'wifig yflip-

Va;iihiiis is OW blie f litiet tii~it tilil1e e'st N high (inlt is

dciiitiileiiiis iii t u~s itii other rceal-li'c dctriiaiis. All
symilttrii si tia lie ofcil Ntiv size- iietweii I midi N Mher(-

N is miiilir ot pics;iiili s 'fiptotis. To fiid :ilt sili i 'i iiitci High re ,t tempt
csYliuitti sets reitres ii exhaust cc seirch of high it- \vhigh t5 high r- 1 rate

hlmrd -i~j.iip tY Tlhis lit:ic hb riiliii siticwii):itli b)i tom ;istec lhshiiiihd~w p-r phl-
ito ixmlimitiig grctiis tim~i coiitii :i sithist oIfiii jjhrlos \i i focs iiiiu (a:t, retilh

%%Iti sb :i fe, %-rv fI ri. hi' xt ixiiijli if' ftui( hfighliOImi liv I) D.prii d 1 p hltimiiili

pi Ic)1; v(rv lcw t Oin %%c Icii to 1k :It :11iY giis Mod aiim flisjc Si ia-iigat,,ri riliix
cfl cI mg t, hucse t% cc sc i11itiitiw. Outl ii i mipiiiti- N, c-flux Ivt Piliux PI I
liii tol l iti s sits ili to s f t ir-i liii wi-igiit of -% I- Nrici re i l D1iiii l i di-u ig iiiitii-

,uI , t.iIi i 1il svii filtcfi grilip s. lIf-;iejiei fromIu t( hi h t ;iNirii pi ked c.t 11\o Noiiiiat icial iriiii

i l ' f of igi lgiifiiiv lci(ii's %%h li~.I hiils glilji 111S sii-iiliiui igh ii~ Tl Prof iii

i %%iigt t sigii c;icY tie i ilriit friiii 0. 0Oh ,igmi cii

sfilipfiiili Scls ttilit this fileto itohiuiid. Tli csts wichi i

etiO icd is iiiiig iii irtatit tisifig ft(,i weighit ofi ividihifc,
ie, symflptomii grollps t1at ',tii (iiiiciaii %%iUld Aisol (till Evidence'owards Surgical Lesion:

3.A rIplementation and Results Symptom Group NV(HE

1111picli-Ailiittt %%t ,iiilti jl:hii ahciv ~ r lv r~ s, itctil i s 1 t053

liiitfiiit t llc s ti:i ~iiiii tritu hi~usr SI i -~s t ~ilst 1, L..\ri Til P'roft 0S6I
%%ill I lfi- u1tt3Stis. [lii mho toi s ioiiidill Ci ( ii

ha.";I iiid tiuh ifiiiiit 11e of aI irigrmiliiiig iitifiei V Imii tiilsih.Pid Jiir ptilse. (- :3i 0s t6 tI

to it, e U IlK NI '~lI' Iiis 1 iro ideoti a o; eunirfil 'oit- lefit Xt rvilliNi ruIhuixA, rtiwilI'h(\ ti(lit6l

1lhiid of irociiii- ;rat(u]i iiufi-pioii ilirii t:1iigiils Ill ;t igh li,-t tutup. 0itrii tt 2

prA-f pirogrminiiiiig eiivir.,itiiit, Si-l-c)aig iiuoiiclfucilltussi

- lt~it%%was iuititiei for at t r;iitg si-t if 253 cijuti Evidence Against Lesion:
ti :isis. eu-u clmIs- 4ei~ 20 clituici viriulit e A-kts, if rf r -t. rirt iiiiii, ITutu1.

miiitis i-tiuiuai ,;itii ; ir everal 1 ii : i itgii tisi 1 0 1
tvj,( i mu Phit ,lotilu srvtiloi iiieairui

tIii firo tie' Ths- e prlohp s gii Is ,is \tvtu Final Results:

i Xirts iimiuiii'ilv hui% cpr ltf i (Ii iliuruit i fI g h'rir L, ig Odh, tt ):l

becci urgical afidi ticit-stirgicil lesufius 01t pjrilfit i :357
-i ,i t i-wticll( u- is (it- iwigat i ii li , ~ m 0 liiI-t Log Oddi-I 103

It i rv 1-t~ I it t I, iris-uit ;iiid i, iiw lii ruiti I iii k ~ (1,g i i -d p siirK t-sliiit 0 St-l

iti situ- is ruitcfutit ir f-hoe-- 111i'.i

tu. r i rig st

\ tiiht p: ,,i (I hr-to \;i I IP,%- iux I>kl hc r I i \t

S i h7 t-i Vli

Ii -w- t im d:h I r ~ fi -- 0 1- 1',%i iK t
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For this case, this met hod strongly, supports ti'l Termoinals exist Ii the h- spital in the wtork are,
surgical lesiotn Ih N pot les is. It is inite'restinug to 'omtpart' iis.J bv tie cicians anid wi' are' 1101 proceeding to,
these results to that of' the ciassicail regression utodt'l. m~itk the results available' on incotming cases. Ativ finllt
Vs~ttg t his tttotlel the jiroliahilitY of' a. le'siont, 1), is s.51slm would prov-ide the doctors with selecteud info rria-

predicted 1)1: p ._- Ihere' I ,tt from several mhid olotgit's. TIhis is to, hlpj espt'-
(I-c c'ic~ with til- iagnosis ,f iffic-ult cast's - as the( real

1- 7.,6 - 173(-,2t- 1itsicfOl is not just to) lit statisfI iallY accuraite aI t'r-taitI
= 78 - 1731; 2)- t1(/u lpd~w ) -tt-it8(~isin~uott itrlctItgt. of th limne. bilt to proviude liaignostic aids f'or

Inl tis case A2 wat. I beta use it,- horse had af d 1st enied lit- ha rder cases.

large iiitest itt. theit pulse \\:is 111 IantI te disttnion w:rs
3 j iiotlirate). Suibst itulting lilt,, the Forimulai we ge't Acknowledgements

Y 7.86 - t1.73t - 1 5-t(In ( I11) I-0 198(3t) '1Iit authors wisl to that nk t it', Oitar-. \eteriiiarv

anth whent wt- solve for p Nt- find t hat p) 0.5'818 ('llcg- comiputing group., A, Meek arid Tanou a
Stiitonger (O\() m~tidl 1 eit l~w tor theiir litlt.-ste

'[hus tilit, claissica I regression art al 'sis purodu ces a Ii llici cia llle with dttat a etl lecton tTi e - I';t tat 1>t iI consti Itlu
greater t ian 5. but wNhich is.- tot stroiigly conctlusivte. ''j, up at th li' Lttvirsit v of' Wtett'. ((' Ytountg) helpted

It is tnteresting to combine these fitintgs wkithI tht' wit i otue ailvscs IT'eti on ragt'tttt-t ' D~r I)
retu F Ba \.-ianl elassuficat oti Thlis ease belongs to ('lot- Is also gratefullyk aock iowlt1 Igt-t

auto( lass .1 (determointed with outcome itiformatton
excluded). In this clatss. ROTI% of the 22 cast's tad a

leit.coeto thle value' trethictid bitt thle weight o.f' t'-i-
d1(tit'forotula. Ilo\%t'vu'r. Ii this class otil\ ll''*( of' tilc References
case"' lis d atnd otilY I -)"( of tilit. itlalliu ili tm1 ad t I Athlit"ssiig. 1\ P f t~t t'u .itii!'t )oq
lu's it-i'.t and 't't'( olitratil otn aittille ' vd. Pat tliog hot.III''; i ll <i

5
stIi \aitild

Variales w.ert' tart iciularly' Itmportantt for iluterttiig '* --.. Il HIN p tsit 206t-265.
elti atid ul lubdotti nItII ,ist t-1sion wa;s o~f I v tI

1 
ectt-1 Klvr-hg'. C . Grapht, al Ifllt-r~ctatls. N' t i I iHif

signiiiaiit (alt li' gh lt( d,,It -rs atid logist ic rt'grussitttis.1173 / .

rly .if this variabile). '[T'e sigitatt v ariables l'otitt bY lias'. I? 1 :In ort11" . ~ p
tlit' 1151 alg,.rithim were also .f vt'r. high weighlt f'or 3. lilta ai IuilSi tlt~I.ltl-latdIxr

clIass I . (One mieasiir'eeit o~f a pat hctlog) va r I:i ItlIt' -svtt'IivI I't \I, Y(AlN I-1sl'ritll I I liit hl
ri cesar rv for tmakitng a tliagtit'is wtas mtissitig. 'I'lii' t.ltt'r lfotiristi Pr' 'or~tttttiug r* jt , .lis tiX -i

f'act' 'rs iiolicatl aI slight tref'ertrite fttr thlit prt'se'tnc (4' :,I Nsi

et0titit Jlrlgtitsi ill alelast'(.Im Il Ititdeed t his kvas ;I sIlitt- l I,. \\urkslilt tp lute ltilt-I ' Is "trui

I' I- I ill \w Iitvli tl tIf 1 if iiu-iti i i ccidlud ott t'it I ltt:vitr, I~t t-i . -I I hie r~ 191 1, , 1) 11 - 122.
It egressioi aiid %steiglit of' evideikc tecliniqus aloiic .' litttiaiI U , lKtllv I . Sel. \h Ildl k~iit '

4.0 Conclusions and Further Work Ht';toru, f57
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ABSTRACT

This paper presents a comparative reasoning methods that are useful in
study of six major, leading methods for resolving problems about which
reasoning: (1) Bayes' Rule, (2) experiential familiarity is slight.
Dempster-Shafer theory, (3) Fuzzy Set
Theory, (4) MYCIN Model, (5) Cohen's A major motivation for this paper is
System of inductive probabilities, and the need to assess the progress in the
(6) a class of Non-monotonic reasoning development of methods that utilize
methods. Each method is presented and imperfect information, and algorithms
discussed in terms of theoretical that offer the potential for utilization
content, a detailed numerical example, in computer-based expert systems. Many
and a list ostrengths and limitations, papers in the literature discuss one
Purposely, the same numerical example is method, but few consider in a
addressed by each method so that we are comparative manner two or more methods.
able to highlight the assumptions and As a result, the reader must deal with
computational requirements that are imperfect information about the
specific to each method in a consistent capabilities, applicability and
manner. Guidelines are offered to assist limitations of each method.
in the selection of the method that is
most appropriate for a particular This paper borrows from other works
problem in many respects. One of the numerical

examples used throughout this paper, for
KEY WORDS: Inference models, expert instance, is originally due to Lee,
systems, imperfect knowledge, Grize and Dehnad (1987), who have
uncertainty, decision support systems, demonstrated four of the methods,
inference network, evidential reasoning. specifically: (1) Bayes' Rule, (2)

Dempster-Shafer, (3) Fuzzy Set theory,
1. INTRODUCTION and (4) the MYCIN model. This paper

Intelligent systems that support presents their treatment of the first
human judgement and choice are computer- three methods, proceeds to expand on
implemented procedures that seek to the description of and example for the
combine knowledge about a domain (e.g., MYCIN model, and two new examples are
problem or situation) with methods of constructed to illustrate (5) Cohen's
conceptualizing, structuring and System of inductive probabilities and
reasoning about such a domain. They (6) a class of Non-monotonic reasoning
incorporate, additionally, "formal" methods. During the construction of the
methods of reasoning about the domain example for the non-monotonic reasoning
that need to be brought to bear when method, valuable insight into the method
tasks are poorly understood and was provided by the previous work of
structured, or when the information Cohen, Watson and Barret (1985) who
available is incomplete, fragmented, or present a realistic application to image
otherwise imperfect. The ability of analysis. Also, a comparative analysis
such computer-based expert systems to be by Black and Eddy (J985) has helped
able to look at part of the "picture" greatly in the discussion of the
available and then make inferences about strengths and limitations of each
the true nature of the problem rests method.
upon a knowledge base that is able to
combine pieces of information available Interested readcrs are invited to
and utilize appropriate reasoning write to the author for a complete
methods. Such reasoning methods include version of this paper.
the heuristics or informal "rules of
thumb" that people use to rapidly find Consider the following diagnostic
solutions to problems, as well as formal problem due to Lee et al. (1987):
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"John seems to have a runny nose and There are some problems in the

irritated eyes. How likely is it that theory that are yet to be addressed in

he is suffering from (1) a common cold, greater detail:

or from (2) a nostril allergy?" (1) Dempster's rule of combination
cannot be applied in situations where

2. BAYES' RULE there are considerable disagreements

The problem would restated as among the evidence, that is, when the

follows: cores of two belief functions are

IF: a person X has a runny nose, and disjoint;
X has irritated eyes, (2) in relistic cases a long chain of

THEN: conclude that X has only a common inferences may make the theory very

cold with probability pl, and inconvenient and expensive to use

conclude that X has only a because of the increasing complexity in

nostril allergy with probability the structure of the core of the belief

P21 AND conclude that X has functions;
neither a cold nor an allergy (3) the numerical stability of the

with probability p3 , AND conclude theory needs to be analyzed further; in

that X has both a cold and an some cases, small variations in the

allergy with probability P4. basic probability assignments can

Also, we let the evidence be produce a large variation in the

E: X has a runny nose and results.
irritated eyes, and let the
set of hypotheses be 4. VAGUENESS IN FUZZY SET THEORY

H1 : X has only a common cold In contrast to probability and

H2 : X has only a nostril allergy evidence theory as models for

H3 : X has neither a cold nor an representing uncertainty, a theory of

allergy, and possibility was proposed by Zadeh (1978)

H4 : X has both a cold and an to represent vagueness inherent in some

allergy, linguistic terms.

By Bayes' Rule we have that Our problem is decomposed into 'wo
rules:

P1 = P(H LE) Rule 1: IF a person X definitely has a

= P(EtH 1 ) P(HI)IC runny nose,

where AND X definitely has irritated

C = P(E HI)P(HI ) + P(E H2 )P(H 2 ) + eyes,

P(E1H3)P(H3) + P(E H4)(H4). THEN X probably has a common
cold;

Strengths and Limitations. There Rule 2: IF a person X aefinitely has a
are number of significant drawbacks in runny nose,

applying Bayes' rule to expert systems: AND X definitely has irritated

eyes,
) the rule requires all the THEN X may or may not have a

hypotheses to be disjoint and, in a nostril allergy.

large expert system, dividing a solution
space into mutually exclusive subsets These two rules make use of the term

may be expensive; set T( ):
(2) in the event of altering the T( ) = [definitely not, probably not,
probability of an event in a system (by may or may not, probably, definitely].

adding or removing hypotheses) we would There have been a number of
need to recalculate all the applications of fuzzy logic to expert

probabilities; systems, including SPII (Martin and

(3) there is no guarantee that the Pradee, 1986), and REVEAL (Jones and

set of probabilities built into an Morton, 1982). Some observations on

expert system is consistent and possible drawbacks:

coherent; for example, the product (1) the maximum and minimum rules for

P(A B)P(B) may or may not be equal to disjunction and conjunction may cancel

P(B A)P(A); valuable information when fuzzy

(4) in realistic situations individual assignments to various pieces

evidentiary information can quickly of evidence include one assignment that

translate into very long sums and is very close to zero;
products 'f conditional and marginal (2) membership functions are context-

distributions requiring substantial sensitive; for example, a "small"

storage and computing resources, building can be bigger than a "big"
house; generic membership functions, if

3. THE DEMPSTER-SHAFER THEORY OF applied blindly, can lead to misleading
EVIDENCE results;

This theory of mathematical (2) computational and storage

evidence (Shafer, 1976; Dempster, 1967) requirements can I( large whenever

is basically a set-theoretic individual membership functions are non-

generalization of Bayesian theory linear, non-trivial; discrete
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approximations of non-linear membership
functions place a significant demand on CF(H,E) = MB(H,E) - MD(H,E).
computer storage and computational Since MB(H,E) is a number between U and
requirements. 1, and MD(H,E) is also a number between

0 and 1, the certainty factor CF(H,E) is5. COHEN'S SYSTEM OF INDUCTIVE a number between -1 and +1. A positive
PROBABLITIES CF indicates that there is more reason

Among the several researchers who to believe a hypothesis than to
have noticed anomalies and paradoxes in disbelieve it. A negative CF means that
the application of conventional Bayesian a hypothesis is more strongly rejected
probability to inference in certain than confirmed. A CF of zero, is a
situations is the Oxford logician L.J. "don't know" value which tells us that a
Cohen. In Cohen's system, "inductive hypothesis is independent of some
probabilites" are assigned to evidence. Measures of belief are used
alternative hypotheses (Cohen, 1980). in an inference network such as the one

Cohen's system is congenial to a shown in Figure 2 to propagate evidence,
process called "induction by leading to a hypothesis.
elimination", as one proceeds to use
evidence as a basis for elimination of 7. NON-MONOTONIC REASONING
some hypotheses, such that the Monotonic systems of thought are
hypothesis resisting being classified as such that beginning with an initial set
"false" by evidence is then considered of premises, the number of statements or
to be "correct", at least tentatively, theorems that have to be shown true

Figure 1 presents an illustration of (e.g., to be proven as true) increases
an application to an inferential task monotonically (increases continouusly)
involving four hypotheses about a over time as new axioms or premises are
particular situation. Evidence is added on. This is generally the case
gathered resulting on n evidentiary for many traditional, axiomatic formal
points. Each evidentiary point can be systems of reasoning.
thought of as a "test" to apply to each By contrast, in non-monotonic
hypothesis; some hypotheses pass (P) systems of thought, the number of
this test while others fail (F). At practical structure- of argument and
level fcur, that is after El, E2, E3, belief may increase as well as decrease
and E4  have been considered, the over time. This may be so because new
assessed inductive probabilities (IP) data may compel an analyst to
are as follows: conclusions. Humans become skilled at

merging conflicting data into existing
Inductive arguments or beliefs so as to regain

Hypotheses Probabilities at level i=4 consistency while minimally disrupting
HI  IP(Hl evidence) = 2/n the book-keeping activities within such
H2  IP(H 2 evidence) = 3/n a system.
H3  IP(H 3 evidence) = 1/n
H4  IP(H 4 evidence) = 2/n A key concept in implementing nOn-

monotonic systems is that of dependency-
and so it appears that hypothesis H2 is directed backtracking. As data and
the one that the pieces of evidence E constraints are added to a non-monotonic
E2, E3, and E4  support the most, system, they are treatcd as valid until
tentatively. Read Schum (1987) for an a contradiction is found; when and if a
in-depth study of Cohen's system as it contradiction is found, the system
contrasts with Bayesian theory. rearranges the set of beliefs that are

"IN" (e.g., considered to be valid,
6. MYCIN CERTAINTY FACTORS true), and the set of beliefs that are

The MYCIN experiment of Shortliffe "OUT" (e.g., considered to be not valid,
and Buchdnan (1975) was originally not true). Traditional systems, in the
applied to a subdomain of medicine where face of contradiction, must backtrack
little reliable data is available, and a past the data that was added immediately
rigorous application of Baye's rule prior to the contradiction and then
would be difficult if not impossible, search for a path that is free of

MYCIN's theoretical framework contradictions. As a result, many dead
includes terminology such as "measurcs ends are encountered with exhaustive
of belief", denoted MB, "measures of searches before a consistent total set
disbelief", denoted MD, and "certainty of beliefs found (if available, at all).
factors", CF. Formally, these are In a non-monotonic system, only those
defined as: beliefs that actually contribute to a

contradiction need to be examined.MB(H,E) = the measure of the belief During the knowledgo-representation
in the hypothesis H, given evidence E, part of the problem use is made of data

structures called support lists. A
MD(H,E) = the measure of the support list (SL) justification for a

disbelief in the hypothesis H, given statement has the form:
evidence E,and
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SStatement l Statement - (ISL (inhis,0t)(ist) is automatically regarded as IN.
(2) A monotonic justification has a non-
empty inlist, but an empty outlist, as

Such a justification is a valid in
reason for belief in the statement if
every statement in its inlist is N-2 Person X has (SL(Person X has a
believed to be true, and every statement a nasal runny nose)
in its outlist is not believed to be congestion (nasal membranes
true. Two types of justifications are are normal))
used most frequently:
(1) A premise justification has an empty 8. A COMPARISON OF THEORIES
inlist and an empty outlist, i.e., Figure 3 depicts the format and
(SL(()). Nothing else needs to be content of the conclusions reached by
demonstrated to ensure acceptance of a some of these methods. Conclusions are
statement with such a justification. not and cannot be identical given the
Observed data and (unquestioned; general different calculi employed by these
principles might be treated this way. methods. Table 1 presents some general
For example, observations on the computational and

structural requirements of each method,
N-1 Person X has a runny nose SL()())

Alternative Hypotheses:

Hi H2 H3 H4

cold allergy no cold, cold and

Evidence: only only no allergy allergy

El: Runny nose P P P P

E2: Irritated eyes P F P

E3: Test tesults of nasal
F P F F

tissue culture

E4: Itching of nose

and throat

E5: Medication B

stops itching

E6: Medication A
P F F F

alleviates runny nose

E7: Swelling of nasal

membranes

EB: Medication A
P P P P

causes drowsiness

legend:
P: Pass Figure 1. Hypothesis testing in diagnostic problem.
F: Fall
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Algorithms for Paired Comparison Belief Functions
David Tritchler, Ontario Cancer Institute and

the University of Toronto
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and for necessary concepts from graph theory.
Abstract In this section we use a graphical

representation to describe the application of
This paper studies computational issues in the theory to paired comparisons. We begin

applying the theory of belief functions to the with a frame of discernment Oti=aL4ai, a,~ad
method of paired comparisons. General for each pair of elements, where a±4a,
algorithms are derived, and special cases indicates that a. is preferred to aj. A
depending on the focus of the analysis are simple support function SUPtj on 8Oj is
studied. obtained from a comparison of a± with a,. If

at was chosen with certainty r± we obtain a
KEYWOIRDS: Belief functions; Paired basic probability function m whose focal
comparisons; Preference modelling, elements are the subsets {a±4aj} and Oij;

1. Introduction m({ataj})= r., and m(Oj) = l-r.

If another comparison is made choosing aj,
The paired comparison experiment is and the resulting basic probability function

familiar in the social and decision sciences. m({a14a±}) = r2, m(O,j) = l-r is combined

A subject makes pairwise comparisons between with t r, wetai t rthoon s
membrs f asetA ={a.,a2,..,.) f nwith the first, we obtain the orthogonal summembers of a set A = {ax, a=,,...,a.} of n

objects, choosing the most preferred object of m({at-aj}) = r.(1-r)/l-r~r.),
each pair. There are several methods used to m({a14aJ}) = r(l-r1 )/(1-r~r),
infer a preference relation, often a ranking, m(8) = (l-r1)(1-r)/(l-r~r)
from the dominance data consisting of the
stated choices, (see e.g. David (1963, 1971), The conflict between the two belief functions
Thompson and Remage (1964), and Flueck and is (l-rxr) - . In general, after combining
Korsh (1975)). any number of belief functions over the frame

a L, the possible focal elements are [asiat},Tritchler and Lockwood (1988) considered an {at-a,}, and 9±5 and we denote the orthogonal

extension of paired comparisons in which acertainty factor between 0 and 1 is expressed sum Bel'j, with basic probability functioncertintyfactr btwee 0 ad 1is epresed. We denote the conflict among the simple
for each choice. They applied the theory of spt funt oe eni by Eh of

belief functions to study the weight given by these focal elements has a canonical graph

this data to various preference relations, and defined as follows: the canonical graph of a

derived various diagnostics describing the sineton follent th a arand the

violation of transitivity and symmetry axioms singleton focal element is that arc, and the

by the subject. canonical graph of Otj is the graph with
vertices {a±, a,} and no arc. Thus, the subset

The belief function analysis of paired Ot, of Oej corresponding to a canonical graph

comparisons is very time-consuming G( tj) is the set of all asymmetric graphs

computationally. This paper studies the with node set {at, aj) which contain G($t,).

computational problem and derives algorithms. we define 8(S) to be the product space
In section 2 we give a graph theoretic 9(S) = neO where the product is over the
formulation of the belief function indices (ij)S for S = {(ij); l<i<j:nl; 9(S)
methodology. Section 3 poses the computing cnists all a r ijrelin oprobem nd gvesan agorthm or ompuingconsists of all asymmetric relations (orproblem and gives an algorithm for computing graphs) with node set A. To combine the

basic probability numbers for the general evidenc from aofe Airs e he

case. In section 4 we give an algorithm for evidence from all of the pairs, each Belo j

computing the beliefs for the 'best' object. giving Bel al(S) and then the orthogonal sum

Section 5 discusses Monte Carlo methods.

Section 6 discusses computations for singleton
focal elements. Bell =

Belo.1O(S) @ BelOttIM(S).. .GBelD.-. tO(5)

2. Preliminaries taken. The minimal extension of Beli, to 9(S)

assigns basic probability number m t to each
The essential framework of theory of belief set of the form *t, x (S - {(i,j)}), where

functions was established by Dempster (1966, * , is a subset of 9k,. We define the
1967 a,b, 1968 a,b, 1969). Shafer (1976) canonical graph G of a focal element of the
elaborated and extended the theory. The reader minimal extension Bel ,9O(S) to have the same
can consult Tritchler and Lockwood (1988) for set of arcs as the canonical graph of the
a brief summary of the theory which is corresponding focal element of the marginal
notationally consistent with the nroduct -ace belirf functio ei'. ; it -l - -the

.tation of Kong (1986) used in this paper, set of all asymmetric graphs with node set A

which contain G. We will write this set as
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(9(S)IG). The focal elements of Belo are and Lockwood, 1988, Lemma 6).
formed from intersections of focal elements of
the Beloit8(S). Each focal element of Belo is 3. Computing Basic Probability Numbers
of the form

We can dismiss the possibility of computing
0 = 0 x 13 X ... X beliefs for all subsets of L, for both

computational and interpretive reasons. The
where 0± is a focal element of BelO±j and complexity of 21' (implied by the number of
each such set product defines a focal element subsets) is clearly not feasible, and most of
of Belo with basic probability assignment those subsets will have no interpretation as a

relation. Tritchler and Lockwood (1988) show
mO(=) mP1 2(C 2 )m! 3( 1,(3)... mo-_ (O_ that each focal element can be interpreted as

a partial order, and suggest that, for reasons
(Tritchler and Lockwood, 1988). In graphical of interpretability, we calculate beliefs and
terms, the focal elements of Belo have plausibilities only for subsets of L which
canonical graph correspond to a partial order. This indicates

that we should calculate the basic probability
G(O) = Gx2 (Oxa) u GX3(C 3 )u.. . ), numbers for the focal elements, and from them,

calculate beliefs and plausibilities for
where G±j(0 1j) is the canonical graph of 0±. selected partial orders. To this end, they
Thus, intersections of focal elements of the characterize the focal elements which are
BelOVj are represented by unions of disjoint contained in or intersect with a given partial
sets of arcs. order.

To introduce the assumptions of the linear We can describe the calculation of the
ordering preference model we define a belief basic probability numbers in the following
function BelL on 8(S) with basic probability way. The analysis proceeds by first forming
function mL(L) = 1 where L is the subset of Belo and then combining Belo with BelL. This
8(S) consisting of all complete transitive can be done in two steps (Tritchler and
irreflexive asymmetric graphs (linear Lockwood, 1988). At step 1, form the set r of
orderings). Then Bel = Belo S Bel describes all unions of the form u r1~, where rl is
the subject's preference over A, constrained t ao olS
by our assumptions about the structure of his the canonical graph of a focal element of
preferences. Belo ±.. r consists of all focal elements of

Bel-, represented by their canonical graph. At

Tritchler and Lockwood (1988) show that a step 2, first the conflict KL is calculated as
focal element 0 of Bel has canonical graph the reciprocal of one minus the sum of the
focal=elementherof Eel hasocanonicalngraphbasic probability numbers for all elements of
G() = Gt(0), where 0 is a focal element of r containing a cycle; those elements are
el. andther, G () s th transitivelosre ofe deleted from r; and the basic probability

G(0) Furherm(6)= K' ~ m(0) herethenumbers of the ren.ining elements of 1' are
summation is over every focal element 0 of nomaed by the actor elemet the

Belosuc tht G( ) GO, ad K isthenormalized by the Zactor Kl-. Next the
Eel0suc tha Gt0) ~ G(), nd K isthetransitive closure of each element of 8 is

conflict between Belo and Bel. K is an index craputecan sdupicatsaar elmnte,
of the subject's circularity since computed and duplicates are eliminated,
K = (1- EmD(0)]- , where the summation is summing the basic probability numbers of
over focal elements * of Belo such that G(0) identical closures. We denote the resultingcontains a cycle set of graphs by fr. This step corresponds to

the orthogonal sum of Belo and Bel L. The
We can represent a partial order in two complexity of the algorithm is R N1 j , where(1. j).s

ways; as a transitive, asymmetric graph H or
alternatively, as a set (LIH), the set of all NL2 is the number of focal elements of BelO.
linear extensions of H. The focal elements of The computation will be more efficient if
Bel are of the form (LIH), H a partial order. we can induce the deletions of cycles andAlso, (Liot) = ((S)IG) n L is nonempty iff G duplicates from r earlier. To this end,
is acyclic (Tritchler and Lockwood, 1988). recall that each focal element of Belo can
This expression describes the intersection of be written as c = fC X l3 Xe... O l where
a focal element of Belo with the focal elementof BelL .  C±i is a focal element of Belo . Suppose

that 01 , 0,2 x 013 x... x .ft, for some g, h,

For ease of exposition, we have formed Belo g<h<n, is such that G(C) contains a cycle.fror theasimle f upoi fnction aThen each focal element of Belo of the form
from the simple support functions will be associated with a cycle
corresponding to the comparisons in 2 steps: 0 L.wi t
first we combined replications of the same for all choices of I, where #, is a focal
comparison over 8, and then the resulting fIToent of ies d B 0 S-[(,2),(i,3) ...
BelO,1 were combined over 8(S). However, (g,h)}. The collection of such focal elements
Dem.sler's r.IIe .as co...atiVe an tLheDempters ruLe coi".,tivaanathewill thus contribute total probability
combination can actually take place in any
order. The total conflict when computing Bel
is K = K - K", where KO = fl K0 1, (Tritchler "'("2 ) MD(0 3) ...
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to the probability mass for the null set when where
BelO is combined with BelL. Thus if we check T. = {0; 0 e L and a1 is ranked highest in 0}.
for cycles while calculating BelO, we may Tj is a partial order with canonical graph
prune focal elements with cycles as soon as H, = {aj-a., i~j}.
they appear in the orthogonal sum.

The belief function of interest is BelfT,
Similarly, assume that the coarsening of Bel to the partition T. The

C= OiXa X C X ... X .N and computational complexity is reduced if we
02 = 

0 
2 x 043 x ... %4h are are such that calculate Belo,.T S...G Bel.4T, but we must

GI(01 ) =GL(0). Then verify that this calculation agrees with
BelT. If it does, then we say that TGt(40 H 40j) = (G(*1 ) u G( n Cj))' discerns the interaction of the Bel01 ,

(i.J). W.j)o i=0,1,...,k relative to itself, using Shafer's
= (GL(01 ) u G1( f l ±,))1 terminology. Shafer and Logan (1987) give a

(l.j).s criterion for assuring this discernment: for
= (Gi(O.) u Gt ( fl Oi))L any choice of 0, i=0,1,...,k where 8 is a

<.J .ft focal element of Bel1 and any TjeT,
= (G(02 ) U G( n &_))1 0 n 9. n ... n 0. n T, = 0 implies 0n ' T,=0

(,,J>.s for some i.
= Gt(0a n 0'j)

"'"-.s Theorem 1. T discerns the interaction between
io any choices of the focal elements of O±i Bel-, Belx, ..., Bel,. relevant to itself.
of BelO", for (i,j).B. Thus we may combine 0C
and 0. into a single focal element with basic Proof: We may write a focal element of Bel as
probability number mP(t1 ) + mP(O.). In fact,
the above arguments show that we may always 81 = [ x e(S-I)] n L
represent e.g., 01 by Gl(01 ). This will
identify duplicates and cycles (a cycle will for 01 a focal element of Bel01 . Then by the
result in GI not asymmetric) at that step in independence of the frames (I±), i=0,l,...,k,
the orthogonal sum.

4. Computing Beliefs About the Best Object 0. x 0 x...x L
where 0 = 0 x ......x 0 is a focal element

We can reduce the computational complexity of Be with canonical graph e(m) = G() u

of the analysis if we are interested in () u..iu G(a) for G(ra) the canonical
choosing the single best object, the best 2 Grap o .

objets, r i genralthe et f i ostgraph of ,.
objects, or in general the set of i most First consider the case for which 80 n 0. n
favoured objects. Let Z, Zi. , Z, be the .. .n 8, = 0 n L = 0. Tritchler and Lockwood
strong components partitioning of the (1988, Theorem 1) show that 0 n L = 0 iff G(0)
dominance data. Define contains a cycle, which implies a cycle in

some G(01 ) by the definition of strongI.. = {(i,J); a1 ,a .,, i < j}, m=l,...,k components, so 8. = 0 and 8, n T. = 0.

Next consider the case 8 = 0- n 1n. ..ne,. 0 0,and let a n T, = 0. Tj = (LIH,) = (e(S)IH,) n L. Let
= - I- I -.. - I0 = (O(S)IG) be any focal element of Bel 0 such

I. I 12 Ik}. that 0 n L = 0. Note that G = G(0o) u G(01 ) u

...u G(0k) for some choice of %o,%, .... 1Define Eel 0 .. to be the orthogonal where 0. is a focal element of Bel01 . Then
sum of the simple support functions over a n T, = 0 implies
0(1.), m=l,...,k and let

Bel- = Bel0 tO(S) Bel .  n n L n T, = 0 n (e(S)IHI) n L
= (e(s) IG) n (e(s)IH,) n L = 0

Then(O(S) G u H) n L = 0,

Bel = BelO * Bel' so GuH, contains a cycle. But then adding Hj
to G creates a cycle, since G is acyclic.

- Belotet(S) 9 Bel( Thus G must contain some arc a.4aj incoming to
S[BelotO(S) l 0 B el-ot(SABel ]  aj, where a. is elfher in the strong component
Se... a[BelL0e(S) elBe, Z containing a, or is in some other strong
Bel. ( BelL Se Belk component. In the first case G(_) n Tj = 0,

and in the second case G(0o) n T, = 0.

by the idempotence of BelL. kor a gLvea Lroiq component Z-, the
To restrict our attention to hypotheses calculation of BeI-4T can be done over the
bot rheosti y rattention toctswe frame 0(1-). To show this, explicitly express

about the most highly ranked objects, we the operation of coarsening Bel- to the
define a partition of L: partition T: mn6T(V) = m(B) where the

T = [Tx, Ta, ..., TJ
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suimation is over all focal elements B of Bel- a,, coarsen them to T, and take the orthogonal

such that V={Tj; TjnB'01. We can write BnTjO0 sum (justified by Corollary 1). The result is

as a simple support function with focus T - [T±}.
We thus obtain simple support functions over T

(LIG(B)) n (LlHj) = (O(S) G(B)) n (e(S)IH1) n L of the form SUP±(T - {T.)) = S±, i=l,2,...n.
= (e(S) G(B) n Hj) n L # 0, By Corollary 1, their orthogonal sum will be

(BelD E BelL)4.T.
which occurs iff adding Hj to G(B) creates a
cycle. This condition is completely The conflict between the SUP, is one. To

determined by arcs in e(I-), and our see this, note that a null intersection of

calculations can be done over e(I-). focal elements of the SUP1 is possible only if
T - [T±} is a focal element of Sup1 for

There is a further result leading to the i=l,2,...,n. But this implies that each a.

efficient calculation of Bel. It states that has an incoming arc in I-, implying a cycle
each Bell±,, (i,j)eI- can be coarsened to T and thus contradicting the definition of

before combining, strong components. Thus combining the SUP1
yields the commonality function with simple

Corollary 1. Bel-4T = BelD%.T. Further, T form
discerns the interaction among BelD±jtO(S),
(i,j)eI- relevant to itself. Qo(B) = H (l-S).

SIeB

Proof: M.&T(V) = M(B),
a.wc v Further, by Barnett (1981),

where W(V)={B;B a focal element of Bel- such
that V={T,; TnBO0}}. Thus Pl.(B) = 1 - n S±.

SieB

M.T(V) = X Ko H (O) = X o ,
s.w(v) *.-L- 4.z(v) Thus if the set of comparisons has no

circularities, so I- = S and Pl- = P1, the

where Z(V)={$; * a focal element of Bell. such computations for each subset of T are of

that V={T,; Tn~nLOf}}, since K'o = 1 is the complexity linear in n.

conflict over I. Noting that Tj n L = Tj, we
see that M.,T(V) = MDo4T(V). The discernment 5. Monte Carlo Method

of interaction follows from an argument
similar to the second case of the proof of Let H = {H±, H2, ..., HJ} be a set of

Theorem 1. partial orders which are hypotheses of
interest. For example, we could have H = T, T

An algorithm based on the above results is: defined as in section 4. We wish to
approximate Bel(HO), P1(H1 ), and the conflict

ALGORITHM 1: K. Interpreting a focal element 8 as a random
10 Calculate the commonality function Q. subset with probability m(6), the Monte Carlo

for Bel.4T procedure is apparent from the graphical
20 For each I-, m=1,2...,k formulation in section 3 and is given below as

30 Calculate the basic probability an algorithm.
function m. for Bel- by the method of ALGORITHM 2:

section 3. Initialize M=0 Z=O

40 Coarsen m- to T (this can be done 10 Repeat N times: initialize R=0, G=0

concurrently with step 30). 20 For each (i,j) e S:

50 Calculate Qm for BelrT from m,4T. 30 With probability m"($ ) randomly

60 For each subset B of T, calculate select a focal element , from the

k focal elements of Beltj.

Q(B) Rl Q1 (B). 40 Add m0(8j) to the set R.
1-0 50 If *L, is a singleton add the

70 Calculate BelT and the associated corresponding arc to G.

plausibility function P14T from Q. 60 Calculate G, and m = n r.

The above algorithm calculates beliefs for 70 M = M + m.
all (C) subsets of T. If only certain subsets 80 If G, contains a cycle add m to Z.90 If G1 is cycle-free, then for HIEH,
are of interest it might be more efficient to 

i0 Ii=1,2,...p
calculate Lim orthogonal sums using basic 100 If H1 is a subgraph of G

t , allocate
probability functions instead of commonality m to Bel(H1 ).
fur=tiOfs. 110 If aduing G.H±, tu GI does no.

create a cycle, allocate m to
It is instructive to consider l, the PL(H).

calculation of Q-, separately. Each Belli , 120 Set K = (M-Z)
-1

. K is the conflict.
(i,j)eI. must be a simple support function, 130 For i=l,2,...p set Bel(H,) = K Bel(H),
otherwise both ai4a, and a,4a, are in the PL(H) = K PL(H&).
dominance data and a1 and a, would be in the
same strong component. For each aEA, let us Step 100 is justified by Lemma 4 of Tritchler
collect all the Baln'j which prefer some aj to and Lockwood (1988). Step 110 is testing for a
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non-null intersection of the focal element {ss,...,s} = {O,l,...,n-l}
with the hypothesis Hi.

ai4aj is in G(8) (Moon, 1968, Theorem 9).6. Cnutin Beliefs and Plausibilities for Choose a± and aj so that s = k and sj = k-i,

and assume a±4aj is not in G(). Since ai-4aj
is in G't(4) there must be a path aiak4 ... a

Suppose our interest is focused on rankings in G(0) by Theorem 5.4 of Harary et al (1965).

over A, i.e. singleton subsets of L. We assume But then s-s > 2 since GH() is transitive,

that we have approximated the conflict K by a tr cn so m be insitive
the method of section 5, or used Theorem 2 of a contradiction, so aL aj must be in Gw.
Tritchler and Lockwood (1988) to simplify the Thus G tth contains a Hamiltonian path which

exact calculation. We also assume that we correspones to the ranking of the a in 8.

have preprocessed the data so that for each since {a.-a,1 can be a focal element of
frame Oej we have at most two belief
functions. One is a simple support function Bel er, and thus an arc in some G(o), ifof a
focused on {a.-aj}, while the other is focused was preferred to am on at least one occasion,on {j~a}. Lt SPISU~z... SUP bethewe can enumerate Hamiltonian paths in the
on {a,4ai}. Let SUP., SUP2..... SUP., be the dominance data to find singleton focal
simple support functions so defined, where elements of Eel.
m.(A) = Si for A the focus of SUPi over some
frame e . Then the commonality function for When a Hamiltonian path W is found, Bel for
Bel is the corresponding singleton focal element is

calculated by enumerating all acyclic 0 such
N that G() contains W. Specifically,

Q = K QL Ii Qi , (1)
i-i Bel(8) = K fl S± fl (I-Si) = P1(&) II S,

where Q. is the commonality function for
SUP~fO(S) and Q is the commonality function where P = {i; the focus F. of SUP. is an arc
for BelL. For a singleton set OeL, QL(O) = 1, in W) and R = {i; the focus F. of SUP1 is of
and the form aj4 ai, where a± preceeds aj on the

1-S. if the focus of SUP is the path W1. To see this, divide the simple

reversal of an arc in G(O), support functions into 3 classes corresponding
01({91) - to P, R, and the complement C of PuR. By

I otherwise. Theorem 2, for an intersection 0 of focalelements of the SUP1 to satisfy G(0) = G(8),

Thus, since {8} is a singleton, PL([81) = Q{8} the focal elements Fi, ieP must be in the

is easily computed when OeL. intersection. Also, no focal element from R
can then be in the intersection since that
would create a cycle in G(O). Any combinationWe can compute Eel for singletons more of focal elements from C in the intersection

efficiently if we can identify those rankings gv focal e from sin the trsti
with zero belief without actually calculating gives Gl( ) = G(O), since the transitive
wther belief Thfollotng actn ca atng closure of the arcs in W determines a complete
their belief. The following definition and

theorem enable us to do this. A Hamiltonian graph, so we have

path is a path of length n where n is the
number of objects in A, and no object is on Bel() =
the path twice. L- J., .

Theorem 2. * is a focal element of BelO and 8
a singleton focal element of Bel such that where F. is a focal element of SJP1, ieC.G()= G(9) iffwhrF iafoaeeenofSsi.

Since the arcs corresponding to focal elements

1) G(0) is acyclic and from C are in a subgraph of the cycle-free

2) there is a Hamiltonian path in G(O). complete graph G(M), no choice of F.,F ,...,Fk
can yield a null intersection, so the above

Proof: First, suppose that acyclic G() summation reduces to 1.
contains a Hamiltonian path. Thus for any
pair (a.,a,), either ai is reachable in G() The problem of enumerating Hemiltonian
from a, or vice versa. By Theorem 2 of paths is NP-hard. We can prune the search for
Tritchler and Lockwood (1988), 9 such that Hamiltonian paths by using (1) to restrict our
G() = G(M), is a focal element of Bel, and search of rankings of high plausibility. As
by Theorem 5.4 of Harary et al (1965), G(M), each arc is added to a candidate path the
is the canonical graph of a linear ordering, partial product corresponding to (1) is
i.e. a singleton focal element, checked. If it falls below a threshold , the
Next assume that 0 is a singleton focal attempt to complete that path is abandoned.
element of Bel and G'(0) = G(8). Clearly G(O) This restricts the search to rankings of
is acyclic. To establish 2), we define the plausibility greater than a.
score si of a. to be the number of arcs in
G(M) of the form a1 a,. Since 8 is a linear Acknowledgements
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Fusion and Propagation in Graphical Belief Models

Russell Almond, Harvard University

ABSTRACT variables, and the relationships among those variables be modeled

This paper demonstrates the potential of graphical belief function as a belief function over E. To compute the combined belief func-

models in decision problems. The working of a simple example tion, BELg, which in turn yields marginal belief functions for any
problem illustrates the basic procedures involved in calculating attribute or group of attributes of interest, the computational cost

marginal and conditional beliefs in a complex system. First, graph- is M 21'. For the special case where all of the attributes are
ical modeling techniques break the example down into a series of binary variables, the cost is M . 22".
small relationships, linked in a model hypergraph. Next the re- The high potential computation cost, due to the large size of
lationships between the attributes (variables) of the problem are E, makes the direct computation of BELg impractical. However,
expressed as belief functions. A simple procedure (Kong[1986b]) the following strategy, which I have implemented, makes the corn-
transforms the model hypergraph into a tree of cliques. This is a putational tasks manageable:
tree of "chunks" of the original problem; the information in each 1. Break up the problem using the Graphical Modeling and con-
:'iue can be combined independently of all other cliques except ditional independence assumptions, as described in Section 2.

its neighbors. Each node in the tree of cliques passes messages
(expressed as belief functions) to its neighbors consisting of the 2. Locally model relationships with Belief Functions. This pio-
local information fused with all the information that has propa-
gated through the other branches of the tree. This propagation 3. Re-express the graphical model as a Tree of Cliques ( see
algorithm, along with the fusion algorithm given by the direct sum Dempster and Kong[19881 and KongI1986b]). The tree of
operator, can easily compute marginal beliefs, and can save consid- cliques will be described in Section 4.
erable computational cost over the brute force approach. Finally, 4. Propagate and Fuse local information to find margins of the
the paper explores new methodology for presenting the results of total belief function. This will be described in sections 5 and 6.
the computation. 5. Now compute and examine any desired marginal belief func-

Key Concepts: Graphical Models, Belief Functions, Bayes- tion. This will be described in section 7.
ian Models, Fusion and Propagation, Probability in Ezpert Systems, These procedures reduce the computational costs dramati-
Triangulated Graphs. cally. Returning to the above example, let m be the number of

nodes in the Tree of Cliques (m > M but only slightly), and k be1. Attacking Large Problems the maximum number of neighbors of a clique in the tree. Further-

Many large problems, of a type that occur frequently in expert more, let C* be the largest clique in the tree, n be the number of
systems, involve a large number of variables and complex infor- variables in C, and 8C. be the outcome space associated with C*.
mation about the relationships among those variables. These are Then the computational costs are no more than rn-k-21° 1 ' 1, or for
not the classical statistical problems of estimating parameters from the case of binary variables, m . k 22'. In most cases n < N; this
repeated observations, but instead require combinations of evi- reduces the size of the double exponential and yields a large savings
dence from diverse sources to reach conclusions about the plau- in computational time. Furthermore, these computational costs are
sibility of certain events. Thus a decision maker, using one of worst case figures, based on arbitrarily complex belief functions. In
these models, requires marginal information about certain events practice, with simple belief functions, the computational costs will
or groups of events. Graphical models are a clear and concise be much smaller.
way of describing problems of many variables with dependencies This paper will illustrate the strategy by following its appli-
among those variables. The variables, or attributes, become nodes cation to a simple example. Consider the reasoning by which the
in a model hypergraph and are joined by hyperedges. Only re- Captain of a ship decides how many days late her ship will arrive
lationships among variables which all share a common hyperedge in port. The first step in reasoning about the Captain's Decision
must be modeled, considerably simplifying both the modeling and is to define the attributes (variables) of the problem. The goal is
the computational task. Graphical models have been studied by to find the Arrival delay, or by how many days the ship will be
Pearl [1986a,1986b], Moussouris[1974], and Lauritzen and Spiegel- delayed (for simplicity assume it will be an integer). This delay
halter[ 19881 in the Bayesian case, and Kong)1986a], Shafer, Shenoy, is the sum of two attributes: the Departure delay and the Sailing
and Mellouli 1986 and Shenoy and Shafer[19861 in the belief func- delay. Before the ship leaves port it could be delayed for Loading
tion case. problems; a Forecast of foul weather could cause the Captain to

Probability distributions are not quite flexible enough to model delay departure; and Maintenance could cause the ship to sit at
the more complex interactions that can take place among attributes the dock. For simplicity assume that each of these three factors
(variables) in one of these models. Belief functions, usually repre- delay departure by one day. Therefore the total Departure delay
sented by the set function BEL, are a generalization of probabil- could be up to three days. Similarly, bad Weather en route could
ity that allow ways to express total ignorance, Bayesian probabil- cause delays, as could needing to make Repairs at sea. These de-
ity distributions, conditional probability distributions (likelihoods), lays contribute to the Sailing delays, again an integer number of
logical relationships (production rules) and observations. All these days.
diverse types of knowledge can be combined with a uniform fusion
rule, the direct sum operator. Belief functions can be simply re- 2. Graphical Models
stricted to a smaller frame and easily extended to a larger frame
without adding additional information. Shafer[1976,1982] devel- Graphical models provide a way of organizing information about
ops the theory of belief functions and Kong[1986al summarizes it. the relationships among variables in problem domains with many
Belief functions provide a more flexible modeling tool than prob- variables. Z)ecision problems, diagnosis problems, fault trees, log-
abilities, but their computational cost rises quickly with the size linear models, and expert systems all fall into this category. Thus
of the problem. The problem must be subdivided into manage- the graphical model is a form of knowledge representation, and a
able chunks before it is solved. Thus graphical models and belief graphical model design very much resembles relational data base
functions work well together. design.

For example, consider a problem with N attributes or vari- Breaking a large problem (the complete model) into a series of
ables, and M independent relationships among groups of those smaller problems is the essence of graphical modeling. A model hy-
attributes. Let e be the discrete joint outcome space for those N pergraph, g, organizes the pieces of the large problem. Each node

of the model hypergraph is an attribute or variable of the probleni.
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Each edge of the model hypergraph corresponds to a group of at- tributes R and D. {S, F, M} are one set of attributes which sepa-
tributes that are related through some mechanism, modeled with rate the two target attributes. Thus given S, F, and M fixed, R

the methods of Section 3. Any pair of attributes (nodes) which and D are independent. This makes sense in terms of the original

are not directly ,.'nnected are assumed to be conditionally inde- model, since, if we know the failin dela,, the Forecast for the
pendent under the Markov conditions (see below). This last part weather, and the Maintenance record at the dock, it is plausible

is important. Any group of attributes that share a common by- that the Departure delay and the Repairs at sea are independent.
peredge will have a belief function mechanism which models their Although the model hypergraph visually suggests many inde-
relationship, yet any two nodes which are not directly connected, pendence conditions, not all of the independence conditions fall
will have no such mechanism. Instead, their relation will be ir- neatly into the graphical model. For example, if the Departure de-
plicit in the way they are connected through other nodes. Thus lay is not fixed, it is plausible that the Loading and Forecast are
the models of small problems with the graphical structure linking independent. However, because their relationship represents one
them from the model of the large problem. Furthermore, indepen- process, modeled with one belief function, they all share a com-
dence conditions may be easier to elicit from an expert than joint mon hyperedge. It is even possible to go further, and to model the
distributions(Pearl[19821). Thus building a graphical model limits relationship among several variables with a vacuous belief function
the size of the joint distributions (or complex mechanisms) which (thus implying that they are totally independent). Although this
experts must provide, makes the graphical model a less useful picture of the problem, it

For example, Figure 1 shows the model hypergraph for the could be a useful technique for assessing the importance of depen-

Captain's Decision, with the first letter of each attribute name dency assumptions. Conversely, once two attributes are marked as

representing the node. conditionally independent in the graphical model, there is no way
to add a dependence between them, without adding a new edge to
the model

3. Belief Functions

Here I will briefly discuss why belief functions are attractive tools
for representing uncertainty in networks. Definitions and detailed
descriptions can be found in ShaferJ1976] or KongJ1986a]. I will
only give an abstract of the ideas here.

._[S . -"Think of a set of possible outcomes = (01,.... ,0} of an
experiment. Now given a subset A of the possible outcomes, define
BEL(A) as the belief (a number between 0 and 1) that the true

Figure 1. Model Hypergraph for the Captain's Decision outcome will be in set A. With probabilities, one normally thinks
of placing a mass function on the possible .outcomes. With belief

The second step in building a graphical model is to construct functions the mass function, m(B), places mass on elements of

the edges. The edge containing, L, D, F and M represents the pre- the power set, 2 0, of the outcome space, that is on subsets of
viously noted relationship between those attributes, namely that the possible outcomes. We normally restrict outselves to belief
Loading, weather Forecast and Maintenance delays could each add functions over discrete outcome spaces. The total mass is always
one day to our total Departure delay. Similarly, the edge contain- one. For a normalized belief function, the mass on the empty set is
ing S, W and R expresses of a similar rule for delays that occur at always zero. Elements of the power set which have non-zero mass
sea. The edge containing A, D and S represents the logical assump- are called focal elements. Equation I relates the mass function to
tion that the total delay equals the sum of the two partial delays, the belief function.
The edge containing F and W represents the condition that the
Weather and the Forecast are dependent variables, and similarly BEL(A) = m m(B) (1)

the edge between M and R graphically depicts the dependence be- BCA

tween Maintenance and Repairs at sea. Lastly the three singleton The plausibility of A, PL(A), is 1 - BEL(A), where A is the
edges containing L, F and M respectively represent the Captain's complement of A with respect to e. Furthermore belief functions
prior beliefs about Loading, weather Forecast, and Maintenance. aompent th ispect n B = 0, thenare superadditive; that is, if A, B c e and A n B = 0, then

There is a one to one correspondence between the edges of the BEL(A) + BEL(B) C BEL(A U B). Note that this last rule is
hypergraph, and the component belief functions of the graphical a generalization of the corresponding case for probabilities.
model. Summing all of those belief functions, although compu-
tationally intensive, yields a complete picture of the interaction The mass function of a belief function over a binary outcome
among all attributes of the problem. However, as a part of parti- space is particularly easy to interpret. For example, suppose the
tioning the total belief function into its components, we are also outcome space is 8 = {F, T} where F represents fair weather, and
making certain assumptions about the conditional independence T represents foul weather. Consider the belief function with the
of the attributes. These are the Markov conditions, developed by following mass function:
Moussouris[19741 for the probabilistic case and extended here for m({F)) = 0.6
belief functions and hypergraphs. (The formal definition of a belief m((T)) = 0.2 (A.2)
function BEL(A) will follow in section 3. For the purposes of the
discussion in this section, one can think of belief functions as some m(G) = 0.2

generalization of probabilities and still follow the arguments). We can interpret this as either: (1) There's a 20% chance of bad

Markov Conditions. Let 9 be a hypergraph. For any pair of weather, a 60% chance of fair weather and 20% chance of unpre-

nodes X and Y of g, such that X and Y do not share a comnmon dictable weather, or (2) There's a 20-40% chance of bad weather.

hyperedge, let S be a set of nodes through which all paths from In terms of betting odds, by this belief function I would be coin-

X to Y pass. For any such pair, BEL(X I S, Y) = BEL(X I S) fortable betting with odds better than 1:4 that there will be foul

and BEL(Y I S, X) = BEL(Y I S). That i X is independent of weather, or betting against foul weather with odds of better than

Y given S. Then g will be considered a Markou llAergraph, and is 3:2. I am indifferent to (that is to say I would not take either side

said to satisfy the Markov Coruitton.s. of) any bets within that region. It is useful to think of the mass
placed on a given focal element (that is a subset of the outcome

The the belief functions of the Captain's Decision hypergraph space which has non-zero mass) as the weight of evidence that sug-

(Figure 1) follow these Markov conditions. Consider the two at- gests the outcome will be in the focal element, and that cannot be
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divided (because of our ignorance) into finer divisions. As another 4. Making the Tree of Cliques
example, we might think of the belief function given in Equation 2 From the model hypergraph, g, choose a collection of sets, C
as an urn containing black balls and white balls. With probability (C', - C"), of 9's attributes, A = (A,... A.). (Recall that
0.2 we draw a black ball, with probability 0.6 we draw a white ball. attributes are nodes of th , model hypergraph. I will deliberately
With probability 0.2 we draw a ball which looks grey in this light, use the term "attributes" here to avoid confusion with 'cliques,"
and we cannot determine its color without further experiments, the nodes of the tree of cliques.) If the model hypergraph is trian-

Belief functions have certain advantages over probabilities for gulated (acyclic), then the sets C' will be the cliques (maximally
modeling relationships in graphical models: complete subgraphs) of the model hypergraph. If the model is not
1. Upper and lower probabilities. A belief function provides a two- triangulated, a procedure given in Kong 1986b] (also in Appendix II
value assessment of uncertainty, the belief (BEL) or lower proba- of Almond[19881) produces these sets. The Kong procedure implic-
bility and the plausibility (PL) or upper probability, where a prob- itly fills in hyperedges to create a triangulated graph; the C"s are
abilistic model would provide a single number. Belief functions cliques of the triangulated graph. The Kong procedure also con-
express uncertainty about the chance of an event occurring in sim- nects the cliques to form a tree, called the Tree of Cliques. The
pIe way. connections to satisfy a separation property which will be given
2. Can be used to represent: Bayesian probabilities, logical rules, below. For computational purposes, the tree of cliques is easier to
observations, and ignorance. A Bayesian belief function has all its use than the model hypergraph (Dempster and Kong[l9S88).
mass on the singleton subsets (representing the elements) of the A useful way to think about the tree of cliques is to consider
outcome space. A "Vacuous" belief function, one with all its mass each clique to be a group of attributes within which some complex
on the frame, E, provides an unambiguous definition of ignorance, interaction takes place. This complex interaction will be mod-
unlike a so-called non-informative prior. A belief function with all eled by a belief function representing the information local to that
of its mass on a single focal element can act as either an observation clique, and by messages, also in the form of belief functions, passed
(if that focal element is a singleton) or a logical rule (if the focal from the neighboring cliques in the tree. Calculations are per-
element is more complex). Furthermore, dividing the mass between formed by propagating messages between the nodes via the schema
the frame and one other focal element produces a belief function given in Section 5 and by fusing the messages via the schema given
which expresses partial support for a rule or an observation. (These in Section 6. The result is a belief function representing the margin
operate in a way that the MYCIN (Buchanan and ShortlifeI1984]) of the graphical belief function for each of the margins C'.
authors wanted their certainty factors to work). Belief functions In order to make the computations more modular, we augment
incorporate both set and probability theory, and mix logical and the tree of cliques by adding each of the original edges of the model
probabilistic knowledge in a single uniform franiework. hypergraph to C (new nodes in the tree of cliques) and connecting

S. Belieffunctions easily marginalize to smaller frames or vacu- each new node to any clique that contains it. (Note that every
ously extend to larger frames. Merely projecting the focal elements hyperedge will always be contained in at least one , lique). We can
unto a smaller or larger frame trivially marginalizes or extends a also augment the tree of cliques by adding (as a node) any set of
belief function. Note that the former is true of probabilities as well attributes that is a subset of one of the cliques. In particular, the
as belief functions, but the latter is not. singleton sets of one attribute are always a subset of one of the

4. Fusion rule. The direct sum operator, D, (Dempster[19681, nodes and are frequently margins of the graphical belief function
Shafer1976]) involves both set intersection and multiplication of that might be important to examine later on. The . ugmented
probabilities with renormalization. It is a generalization of both collection of sets is called C+

.
logical and Bayesian inference rules. Each set, C' C C', has a local belief function, B EL,:., repre-

Belief functions generally yield a great deal of flexibility at the senting the local information attached. This local belief function
cost of more complexity in both notation and computation. All the can be easily found from our graphical model, providing that that
examples in (2) above --e easy to specify. Furthermore for a binary every edge of the original niodel hypergraph is in C+ . For every
variable, the belief funcLion is easy to interpret through its upper node, C', in the augmented tree of cliques that corresponds to
and lower probability functions. The binary variable case seems to one of the original hyperedges, BEL,:. is the belief function cor-
be, in general, a case were the Bayesian description yields too few responding to that hyperedge. For every other node, BEL,:. is
parameters (we must choose a single probability) or else too many vacuous.
(we must specify a prior distribution over all possible probabilities As noted above, the tree of cliques is easy to build if the model
that the value will be true). hypergraph is triangulated. In order to get the tree of cliques

On the other hand, as shown in section 7, a general belief func- from a non-triangulated graph, the Kong procedure fills in extra
tion is often difficult to describe or interpret, simply because of the hyperedges to make a triangulated graph. There is often inore
large numbers of sets of outcomes to examine. A belief function than one way to fill in the hypergraph and different fill-ins lead
over a frame with n possible outcomes, has 2" different outcome to different trees of cliques, some of which are better than others.
sets which could be assigned positive mass. Fortunately, for model- Because, as discussed in the first section, the cost of combining
ing purposes, graphical modelers can usually restrict themselves to belief functions is exponential with the size of the largest clique,
the simple belief functions they do understand. If they can not, the trees with smaller cliques will be better. The problem of finding
problem may require further subdivision into simpler problems- the optimal tree of cliques is NP-hard. Kong and I have developed
another graphical modeling process. some heuristics for finding good trees of cliques that seem to do

Another aspect of the complexity of belief functiois is that well. (Given in Appendix II of Aliond119881).
they are difficult to elicit from experts. While there is much litera-
ture on the general problem of eliciting probabilities from experts,
no one as of yet has examined the problem for the more complex
cases of belief functions. For the present, graphical modelers imust
rely on the simpler and more easily understood special cases.

If the input belief functions in the model are all Bayesian
probabilities, then the marginal belief functions resulting froml thisA
conputticn will be probabilities too. Thus in a general way, ev- .. ...
ery thing we discuss here applies to probabilities as well as belief W
functions. Doing the mathematics in the belief function notation
helps us to understand what is happening without worrying about
difficult technical details of extending probability distributions. Figure E. Model ltypergraph wth fdl-ins.
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Let us return to the Captain's Decision problem. Figure 2
reproduces the model hypergraph from Figure 1. Notice that some
new edges (the dashed lines) ha e been implicitly filled in as part
of the construction procedure. Figure 3 shows the tree of cliques.

Figure 4. Propagating Inwards

roo, {S, A', W, F). When {S, AM, W, F) receives all of its incoming
m,ssages, outward propagation can occur. The flow then follows
backwards through the arrows of Figure 4.

Figure 3. Augmented Tree of Cliques Incidentally, there is nothing in this discussion which is spe-
cific to belief functions; belief functions only provide a ccnvenient

The nodes {S, D, M, F ), {L, D, M, F}, {R, S, M, W}, uniform notation for both the local information and the messages.
{A, S, D} and {S, Al, W, F) are the cliques of the graph in Fig- This passing messages in a tree f cliques works equally well in the
ure 2. The nodes, {A,S, D}, {L, D, M, F), {R, M}, {5, W, R), and special case when all the belief functions are Bayesian probability
{W, F) all correspond to original edges of the model hypergraph. distributions.
These latter nodes are loaded with the belief functions correspond-
ing to those edges. Furthermore, {M}, {L}, and {F} all have 6. Fusion
univariate prior belief functions associated with them, which are
also loaded into the appropriate cliques. The edges (S, D, M, F), Now let us turn to the details of what happens inside each clique
(S, M, W, F) and {R, S, M, W) are all associated with the filled in to 'fuse" incoming messages to prodcce the outgoing messages. At
edges. They have vacuous belief functions associated with them. this moment, a single node, C*, which has neighbors C 1 

.Ck,

The remaining nodes, corresponding to the remaining singleton has received messages from all but the last of its neighbcrs. This
edges, also have vacuous belief functions associted. is shown in Figure 5.

The nodes, C', of the tree of cliques are connected so as to The node C" must now compute the message, BEL, .. _,,
satisfy the separation property (Kong[1986b]). This is also true of that is to be passed to the remaining clique. Equation (1) shows
the augmented tree of cliques, the calculation that C* does.

Separation Property. Given two nodes in C+. r /BE k- i

C' = {A ....... A..} )E,.w [-I.G~,B ~.s.)
C 2 = (A,,...., A,,} The message passed is just the sui of the incoming messages from

Let C" be any clique lying on the path between them. Then: all of the other cliques, BEL, .,.'s, with the local information,

BEL,,:., stored at that clique.

C, n C, C C, Each of these calculations is done over the frame corresponding

to C*, and then the result is projected onto the frame corresponding
The separation property also implies that the subgraph of the to C'. JNote: the computational cost is then < n k 2 ', 1

, as
tree of cliques consisting of all cliques that contain a given attribute, ;"en in Section 1.] A clique can pass a message as soon as it has
or set of attributes it will be connected. This is not obvious, but received messages from all but one of its neighbors. In particular,
can be seen after examining figure 3 for a few minutes. the leaves, which only have one neighbor, can inmediately pass a

message to that neighbor. Therefore the fusion and propagation

5. Propagation algorithm is:

At the heart of the computational system, the cliques (nodes) of the a Starting with the leaves, the nodes propagate messages in-

tree pass messages anong themselves (Dempster and Kong[19881). wards until the messages reach the root. At each successive

This message passing system propagates the local information stage, the inner nodes receive all of their incoming messages

(which makes up the graphical model) to global information which and cami pass towards the center.

can be used to answer questions about the process being modeled. 9 At this point, the root has received messages from each of its
Their system operates as follows, neighbors, thus it can pass outwards in all directions, calculat-

The cliques pass "messages" to their neighbors in the tree of ing its messages by equation (1); each time a clique calculates

cliques, in the form of belief functions. Define IIEL,.. =,:, to be a message, it omiits tl,e destination from the sum. When a

the belief function passed from C' to C1. Its frame corresponds to clique receives a message from the center, it now has all of its

C' n C). Each clique 'fuses" its incoming messages with its local incoming messages and can send messages to each uf its more

information, and "propagates" the results as its outgoing message. outward neighbors. This is continued until the leaves receive

The fusion step will be described in detail in the next section. their messages.

When the node C' has received messages from all its neighbors At this point each of the cliques has a series of inconiing mes-

except C2
, it can calculate the message BELC' =3 C1 and pass it sages describing the contribution of the other parts of the tree to

to C'. Therefore the outermost leaves of the tree can immediately the total belief function. If we wish to view the margin of the to-

pass their messages inwards. The outermost cliques (the leaves of tal belief function, BEL;, corresponding to a given clique, C*, we

the tree) pass their information toward the center (root). When all simply sum all of the incoming messages with the local component,

the information reaches the center, the cliques in the center start as shown in equation 2.

passing messages back towards the outside (leaves).

Let us illustrate this with an example. Figure 4 shows the hI I luI,,,. (D ((Dk BFI. (2)

tree of cliques propagating their messages inwards, towards the
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C
t  

C C
k

BEL,:, BELc,' BEL,:

T... T T T T T---

Figure 5. Mes-ages passed to and from node C"

The separation property, mentioned in Section 4, assures us
that the marginalization done in each step does not lose any infor- .ass Focal Element Mass Focal Element
moation. Thus it enables calculation over smaller frames, at consid-
erable savings in time. That this procedure is correct follows from
KongI1986a, 1986bl. 0.04 {01 0.01 {41

A similar procedure can be used for sensitivity analysis. If we
modify o:.e of the component belief functions, the modified node 0.07 { 1) 0.01 {4, 2)

in the tree of cliques simply passes new set of messages outwards 0.16 {1, 0} 0.03 {4, 3)
to the others. The messag s passed inwards toward the modified
clique will be unchanged, and can be re-used. The same margins 0.04 {2} 0.03 (4,3,2)

are examined before and after modification, and the change indi- U.01 {2, 01 0.07 {4. 3, 2, 1}
cates the sensitivity of those marginal beliefs to the assumption
represented in the changed component. 0.12 (2,1) 0.04 (4,3,2, 1,01

0.09 (2, 1,01 0.01 (5,4,3,2}
7. Examining the Results 0.02 ' } 0.01 (5, 4,3,2, 1}

The output of the fusion and propagation algorithm is the conflict,
or the extent to which the belief functions are inconsistent, and the
marginal belief functions for each clique (or singleton element) in 0.06 (3,2} 0. 6, 5,4,3,2, 1,0)
the tree. For the Captain's Decision example, the belief function
over Arrival Delay is of special interest. We will examine both the 0.04 (3,2,11 = eA
conflict and the Arrival Deley here. 0.10 (3,2,1,0}

The total conflict is mass that would be assigned to the null
set, if the direct sum operator did not renormali, the belief func- Table 1. Focal elements on Arrival delay
tions. It varies from 0 to 1, and indicates to what extent the
component belief functions are inconsistent, or how much mass is Obviously, looking at beliefs and plausil ilities for all 128 sub-
placed on contradictory cases. In this case the coiflict is zero. Thus sets of eA would be exhausting, but looking at a carefully chosen
conclusions are formed from reinforcing positive evidence, rather batch of those subsets could reduce the task considerably. One
than by ruling out contradictory possibilities, such group of sets is the batch of singleton sets corresponding to

Recall that Arrival Delay has seven possible values, EA each day. Figure 6 shows graphicly the beliefs and plausibilities for
(0, 1,2,3,4,5,61. Belief functions are defined over the power set theses sets. The beliefs (lower probabilities) are the s-li lines and
of the outcome space, so the belief function takes on 128 values, the plausibilities (upper probabilities) are the dotted line.
One way of cutting down the information to a manageable size
is to only observe the focal elements; that is the sets of possible
outcomes which are making a positive contribution to our belief
(those elements with a non-zero mae-). There are 21 of these as
shown in table (1). The mass numbers represent support for the
true outcome being in a given set (focal element). In our example,
there is relatively small support ',r any given day, but there is large
support for focal elements representing large sets of days.

The raw focal elevtents are difficult to interpret, as is generally
true for non-binary variables. Let us try to nake some meaningful 11 MO .C, 01 11) M 010

summaries of the results.

First, look at the lower aird upper expectati, ns for the arrival Ftgure 6. Single Day Beliefs for Arrival delay
time. Equation 3 gives the f,,roula for calculating them.

Another group of interesting sets of arrival days is the batch of
E (A) 2 1 r nimi z) 2.388 propositions that the ship will arrive befoi, a certain day, or after a

oc.,, certain (lay. For ex.,mnple, (0, 1,2) would represent less than 3 days

E. (A) : m( 13) max(} 0.824 atnd (3,4,5,6) would represent at, least 3 d.ys. These are shown

[?' ' 1 in Figures 7a and 7b. Because of the relationships between beliefs

That means that on average (it a seris of hypothetical but never and plausibilities, Figure 7a is the same as Figure 7b when turned

realise I trials), the ship will be bet een I ind 2 days late upside down and the dotted and solid lines are reversed.
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passing algorithm described above would work well on a variable ar-

chitecture machine, such as the connection machine. Furthermore,
methods of modularizing graphs (breaking very large problems into
more modestly sized pieces on wh'ch the fusion and propagation

algorithm will work) to make large problems solvable on small ma-
chines need to be explored.

I1 0 The next stage in this research is to use the system to worklarger examples. This will help to develop both the theory and
the algorithms to accommodate the new examples. The meth-

Figure 7a. Fewer than n days Figure 7b. Greater than n days ods described here make belief function methodology accessible for
for Arrival delay for Arrival delay practical problems; its real potential has yet to be realized.

Work on useful summaries is still at a very preliminary stage. Bibliography
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Although the fusion and propagation algorithm successfully
breaks modest sized problems into tractable pieces, a very large
problem, such as the fault tree analysis for a nuclear power plant,
will require new approaches Supercomputing might help. The di-

rect sum operat, is very aienhable to vectorization, possibly tak-

ing ad'a.,-age of hypercubic notations for sets, while the message
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Variants of Tierney-Kadane
G. Weiss & H. A. Howlader

VnlIversltj oi" Winnipeg. Wi'nnipeg. Manitoba

Abstract
Bayes estimation of the reliability funct,'on of the logistic

distribution under a log-odds squared error loss with a non-informative
prior Is considered by using the approximation method of Tierney &
Kadane (1986). Direct application of the procedure does not yield
correct results and so some variations of the procedure are considered.

by using the method of Tierney & Kadane (1986), using
1. Introduction the non-informative prior p(u, o) oz 1. Combining this

In Bayesian estimation it is often necessary to prior density with the likelihood function,

evaluate the ratio of two integrals which cannot be L'x, alxz = (-C& ft l + cosh ,]', 3)

expanded into closed-form expressions. Numerical

approximation of the ratio of the integrals is the joint posterior density of ju and a is

necessary. Two recent procedures to achieve this

approximation have been proposed by Lindley (1980) and a, axiz . al a -t- cosh (,I-, '4

by Tierney & Kadane (1986). The Lindley (1980) where X C e-

procedure is fairly well-behaved and can be applied in

all situations. The procedure of Tierney & Kadane For most statisticians, interested mainly in

(1986) works well in certain situations, such as, for controlling the amount of variability, it has become

computing the posterior means of the parameters of standard practice to consider squared-error loss

probability distribution, and gives results which are functions. In the case of estimating a reliability, the

more accurate than the method of Lindley (1980). For usual squared-error loss does not seem appropriate as

approximations from small samples or over restricted the reliability, which is a probability, is contained in

spaces, however, the Tierney & Kadane (1986) the closed interval 0, II and hence the 'distance' from

procedure can be very erratic and may lead to the true value is bounded. One remedy, is to first

incorrect results. See Howlader & Weiss (1987, 1988). compute the log-odds ratio of the probability, which

!- p-r
t *,,!ar, the method does poorly in cas' s maps the [0, II interval onto the entire real line. It

where the integral in the numerator ranges over would thus be reasonable to use the squared-error of

positive and negative values. In this paper, we the log-odds,

consider one such instance, in the estimation of the Loss'R, i2 , R [og [ I- -g ( 1 - I

reliability function of a logistic distribution. iR[

The Bayes estimator, R. of R. under this loss

function is the value of r. which minimizes the

2. Bayes estimation posterior risk, EI.oss(r., R,)(Iz, such that

I he logistic probability density function may be r yl.j 6, '
written as

P xlftV a ' L - ' 
f which gives

1 - e 
'T

< • , ". L Cr, 0, and where Then,

.3 a is the mean, and ar is the standard 6 IF l:(og E[, or ff -1,1

deviation of the distribution. J I

Here, we consider the Bayesian estimation of the / -/ -th

reliability function, ' _

l~. - f/a '~' 111 ~co.'.h dta
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Tiehey & Kadane (1986) gave a method of and, (15)

evaluation of the ratio of integrals, such as the a2
t 1I +

posterior mean of a function u(O), which has the form ac, 2  nor, +

EAu(9)fr]d9 Similarly, setting f and respectively to 0 gives
E~u(e)l] = 1(9)34 N

f 7r(4z)d O  - = -E, and J ((j) n+l -1-TE, (16)

by writing

Ilog 6(*2) = log p(I) + Log L(O~z)n n 'where C (I~ +e-
-1

and (10)

l= + Log u(O} = log u() + log p(9) + log L(I*) Here,

Thus, (9) takes the form n nor'

E[u(O)Ilz] fen dO (11) a2e •  -C E + '7Y(77) 4-{ (,)+,Y(j)),

J en  dO (17)

Tierney & Kadane (1986) claim that their method a2) 2(n -4- 1) - + {2Y o,)

derives from an approximation method due to Laplace. ar na' (22E + 1T2 Y(7)1

Whereas Lindley (1980), in a similar approximation, I.

expands both the numerator and the denominator of (11) The procedure of Tierney & Kadane (1986) is

about a common point [the mle or posterior model, difficult to apply directly. The procedure requires

Tierney & Kadane (1986) expand each integral that the integrals in (11) be strictly positive, and the

seperately about the point which maximizes the procedure should only be applied when the integrals

integrand. This method requires only the first and the are not near zero. In (8), 6 will be positive if R. is

second derivatives of the posterior density. Following greater than (i.e. t > u), otherwise it is negative.

Tierney & Kadane (1986), the equation (11) in the multi- If the value of t is fixed at some value away

parameter case takes the approximate value from the mean, 4L, then the integrand will be either

fEu()jzI I eXPjniC(6) - positive (t > u) or negative (t < U), almost surely. In

I1I this case, the procedure can be applied by applying the

where &° ana 9 maximine e° and e, respectively, and ° method to the vositive integrand (taking absolute

and 1 are negatives of the inverse Hessians of V and value) and determining the sign afterwards. If the

R at 6° and 0, respectively, value of t is fixed at some point near the mean,

however, this procedure will not work.
To apply the method in the logistic case, we

need to maximize The estimators of the reliability function for

-( +- !)log a - I log(I cosh , 10,000 simulations of samples from (I) with t = 25 and

and, n13) = 5 were computed and the histograms constructed.

1 -~log I +e'l -1 +!)log a - !Elogl + h Figure 1, the histogram for t - 15, shows the typical

distribution of an estimator about the true mean,

where V7 = c(t -_" . R= 0.9741. However, Figure 2, the histogram for

~ et = = 25, shows a bi-modal distribution with the

Settang and Le respectively to zero produces

aun a-, estimates being pulled away from the true mean,

the system R-

= 0, and E ,p(,) = n+ l, (14)

which produces the posterior mode. Also, Although, most apparant when t = , there are
similar disturbances to the distributions of the estima-

~ai2  
- - tors of R, for other values of t also. In the following

sections several variations of the method are given.

a2e C
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3. Variant 1 differences were virtually eliminated when the

One way to remedy the above situation is to convergence criterion for the iterative procedure was

shift the value of the integrand by adding the inte- strengthened from c = 10- to E = 10-16.

grand to a large positive constant, Y >> 0, which is then

removed from the result (or subtracting, if t < 4L):
4. Variant 2

E(Y +- log( R~ J )1, - 'Y' t > LL In this particular instance it is possible to re-
6 =E[Ioqj- -Jl' = 1S) write the expectation as a linear function of

I R - EIY _Iog 1 R_ )kJ' t.i expectations:
6 -of~u X [(" x (1x] (9

This procedure will not alter the maxima of the

integrals and should be invariant with respect to the Now, the Tierney-Kadane procedure can be

size of the constant (as long as it is large enough). applied to each of these expectations, since for ui not

However, since we altering the value of the integrand near zero, each of the integrands will be away from

we may have slightly different computational precision zero. Now, however, we are performing seperate

for different values of 1. approximations, and hence this variation of the

Tables I and 11 give the means and the mean procedure is not numerically equivalent.

squared-errors (MSE) of the sampling distributions of Although these variants of the procedure are

the reliability estimates for different values of "Y, the not numerically equivalent, they did produce very

shift parameter, for 1000 samples generated from a similar histograms in the simulation studies. See

logistic distribution as in (1) with u = 25 and a = 5. Figures 2-4. Compare Figure 4, which shows the

As expected, slightly differing histograms were histogram for variant I with a shift parameter of 500,
Asnexpected,3slightlysdifferingahistograms wer

obtained for different values of the shift parameter, and Figure 3, which shows variant 2, with the

histogram in Figure 2 obtained by direct application ofhowever, such differences were minimal for any

reasonably large shift value (greater than 50). These the method (identical to variant 1 but with shift of 0).

Table I Table II

Mteans of the distrib .ton of" T-K est',motor f"or dif'ent shifts MSE's of the distribution of 7-K estimator for diffent shifts

Y t- 15 t=20 t 25 t 30 t=35 '7 -is t 1=20 t-25 t 30 t=35

0 0.98791 0.91606 0.49198 0.08057 0.01190 0 .0004710 .0078547 .0536627 .0077600 .0004711

50 0.98377 0.89322 0.49216 0.10304 0.01595 50 .0005580 .0079320 .0288334 .0080704 .0005525

100 0.98362 0.89280 0.49217 0.10345 0.01610 100 .0005595 .0079287 .0286412 .00806Rn .0005539

500 0.98349 0.89237 0.49218 0.10387 0.01623 500 .0005615 .0079177 .0284799 .0080577 .000555

5000 0.98343 0.89214 0.49218 0.10410 0.01629 5000 .0005625 .0079181 .0283601 .0080589 .000556S

100000, 100000,
a000 9 0.97060 0.85790 0.49274 0.13753 0.02885 f000 .0009700 .0077780 .0196678 .0078457 .000950C

100000, 0.98345 0.89288 0.49218 0.10396 0.01626 I0000, .0005618 .0079143 .0284491 .0080543 .0005561

R, 0.9741 0.8598 0.5000 0.1402 0.0259 s-(-,)e .000018 .000122 .000356 .000103 .000015

(*) These are the standard errors of the MSE, which is approximately

constant for all values of the shift parameter, except for a shift of 0

and for the shift of 100000 with 4 = 10- 9 for which the values are

slightly different.
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The first variant, which is the technically more while the minimum posterior risk estimator for log-odds

correct method, does require a seperate optimization of squared-error loss is

the numerator for each value of t (as in the standard * 1 (21

-K procedure). This second v,riant, however, is 1 + eC(tE 
]

)x -- EI

easier to apply and requires the optimization of only

two numerators which can then be used to estimate the

reliability function for all t. [Both variants also We Propose the estimator

require the determination of the posterior mode, which _____I____)

is used to evaluate the normalizing integral in the 1 e c- t -E[ouIZ)7/E[o7xJ'

denominator, which is, of course, common to all of the
which is very likely will not be the minimum of the

posterior expectation of any loss function, and is thus

What we would like is a method that has the not a true Bayes estimator.

advantages of both variants.
We generated the 10,000 samples of size 10 and

constructed the histogram, shown in Figure 5, for the

estimator in (22), for which the posterior expectations
5. 'Variant' 3

were approximated using the method of Tierney &

Another variation of the procedure of Tierney Kadane (1986). Compare this distribution with the

& Kadane (1986) is suggested by the result in (19). In histograms for variants I and 2 shown in Figures 3 and

(19), we are estimating the reliability function (2) by 4 and also with the histograms for the Tierney &

replacing 1/, and /Or in the kernel of reliability Kadane (1986) estimator under squared-error loss in

function by their respective posterior means. Again, Figure 6. There is not a very great difference betwen

since these cannot be obtained directly, each is any of these. Hence, although (22) may not be a true

approximated using the method of Tierney & Kadane Bayes estimator, as an approximation to a Bayes

(1986). estimator it seems to be a justifiable alternative.

Although, this variation of the Tierney & Also, the form (22) is intuitively attractive in

Kadane (1986) procedure is only valid in this particular that it suggests that, as in the case of the mle, for

situation, it does suggest a method that might be estimating a function 9(9), we can use the Bayes

generally applicable whenever we wish to approximate estimators of 0 in place of 0 in the functional form.

the Bayes estimator of a function of the parameters of As well, the method is generally applicable and requires

the distribution. a minimum number of optimizations.

The suggestion is to simply use the posterior Another comparison of these three variants is

means of the parameters themselves (W and or) and use obtained by generating the estimated reliability curves

these values in place of the unknown parameters. for a single sample. A sample of 20 observations from

Again it may be necessary to compute these posterior the logistic distribution in (1) with u = 25 and a = 5

means using the standard procedure of Tierney & is obtained as

.'adane (1986), or by direct computation when possible. 10.372 20.570 21.204 21.540 24.118

This procedure is not really a variant of the Tierney 24.256 24.325 24.357 25.301 25.344

& Kadane (1986), nor is it even a true Bayes procedure 26.661 26.881 26.989 27.377 29.110

in that the estimator is not the minimum of the 29.450 29.888 31.849 31.946 37.473

posterior expection (risk) of some loss function.
Figure 7 shows the estimated reliability curves

Recall that, for squared-error loss, the minimum for the three variants under the log-odds loss,

posterior risk estimator (i.e., Bayes estimator) is together with the curve for the true reliability and

for the Tierney-Kadane estimator under squared-error

R,* E(R~lx) - ~jJ (20) loss. There again appears to be little difference

between the four estimates. In particular, the curve

for variant 3 is almost identical to that of variant I.
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NUMERICAL APPROACH TO NON-GAUSSIAN SMOOTHING
AND ITS APPLICATIONS

Genshiro Kitagawa, The Institute of Statistical Mathemiatics

Abstract els. But these liinear Gau ssia (lii o(1(1 Salre I ot so iI(loqalit c

for the sudden changes or j 1101)of paraietcr t s An 111WC

A smoothing methodology for the analysis of tinoe se- need another pirior that allow suddlen chanoges a.;well as

rics is shown. The met hod is based oii the genierail state gradual changes.
space model which is expressed by coniditioa 11101 istribu- Such a prior cain bc well realizedl by the use of noni1-
tions. Various types of tion-Gaussian models, nlonlinear Gaussain state spa~ce model. But this noi-Gaulssauil state
models and discrete variate models canl be handled with sape model can be further extended to a general state
this generic model. Recursive formiulas for the prediction, space model which call handle very wide situnationi itichtd-
filtering and smoothing of state are given for thIis general ing nonlinear a0(1 (discrete (list ributilolls. InI this paper, we
state space model. Unlike the familiar linear Gaussian derive recursive fornmulas of tile lirellict ion. filtering 1111(

state space modlel for which these formulas can be realized smoothing for this genleral stalte space miodel. Unlike thle

by sinple K(alrman filIter- and the fixed illtel-va Ismioot her, famniliaor linear Gauissiani state sjiii c mo1) de for wI ich thIi'e

these formlas 1 atre imll emiented by 11511 a" 1(11illeri cal ,X - formulas canl he rea lize'd b y sin iple Xal11ao1 filt (1 ;and the
pressions for relat ed (list rib1u1t ionls. It thlus b ecoimnis at COIln- fixed interval snmoothe(r. these foriniiilas ar' ilil )l'1e1 (lted
put at ionally inlte nsivye m e thod1( but is ver-y flexibl and'(11 is by using numneric(al expreO ssionls forl rel at ' , 110)1t101

a useful tool for the analy sis of timze seril's that have been It thuFi becomes a -i'os- at ioiially' intensive it hod but
difficult to handle by the St andard t ime se'ries moadels. is very flexible and is a uisefull tool for thle iitiali'sis (f t illie

Many numerical example)11s are shown to d tIiICt he utse- series that have been dIificult to hanl by1)'1i the stialndard

fulness of the gencral sta(te Csapice mo1d elinI g ando of ge'neral time s 'ries models. Manya n5 humeri cal examl os are shio wn

smoothing adgorithin. to illustrate 'ie uisefulne ss (of thea genI era Il Ct 'lIpce IliodI-

cling and of general silliootllitg algporithiii.
1. Introduction

2. General State Space Model and State
In time series model1 'inI g, wel 1isel to conlsider I iilne~i- Estimnat ion

teric mnodels. Bitt wvtll the spre''ad~ of the application (if thel

time series nmodels, the lintitat ion (of thei) usual aa 1110ietric Conidoer a syst el n (l('s('ribc i b' y 1 a get i(ra 1 stato s'pal (ce
models has I eelt re'cognliz'ed alol ill Sol i)'Stutit on s Iike tmode'l
seasonal adjulstmen)1 t. 1(i) il withi very 11any IX' l uil(t)'rs

were required. But obhvioutsly ii such1 a situationt. the or- q(, r- j
dinally mnaximu 111 l ikelihI ood imetho 1 d11(oes n ot work sinice Y - z,. 1
it somet imnes inivolvyes thle es ti a Iit iol oif 111011 para1me(ters

than the number (if) observat Iions. where Y,, is till ol servait iol ;1111)1 X , is tl( lie t ki) a'.iI state
For such a situait ion1. lpenali zed I lieli 1(o( 0 'ithoI il i ight, vector. q a~nd r' an'-( l'ollithional (list t lot tionis oif .1i,,'give

be applied. In this appr-oach, the cruclt'd luoli1l is thle X.-i and( (if y.j givell X.r - rlShiV'tivl. The iniitial u'tate vc')-
selection of the tradeoff palllncto'r A. But thiere is a tor x0' is (list ri hi ite'( accordl-(inig to the (listrilit Wo pi{l

Bayesian lot erpreta(tio o11(f thle lirI dletl Iae o)10( il smloth- The set of observatIionls and1( thei) staltes, and X_ ;ire'
ness pror and we ('1111 (Itlrllini(' thie t rade)oiff lirili)- defined by Y",,--------'t,1"'} and xA',, -_ Ir1  .... r,, . 'h
ter by ma~lximlizing thet likelihioodl of tie Bap-siaii mode~ll cond(itioll (list rihllt ion1 (If r,, giv.ll A. n 1

A the( ),, is
(Akaike, 19S0). Tis sn iilt Ii iss prior Ime thIoh glivi a so- de'l~ note by p(a, X~1,,.Th' prolni il' I f stilte' 'stilll-

lution to the mny p ar~ti iit er Iprolems10, lilt Ithlis Lisua Il tioti call he foriiiulated ias till' ev'Xiiit ilill (If Ill" 1, ). tlit'
inlvesl' soluit ion of linea'lr eqtliat ionl with very la1rge' dIi- conditiona ( lis t riIll iiii (if .1,)1 give X ob1) servaltion s I-For
metlsiont. The uIse (If t Ii) stilt)' Shill') lliiIdl ll1itigaItes this n > 7to,7 n 10 d 111( illto this fo-itilates the iill'lts

Comlpultationall Iltleli ;1llld ma~ke's thle ai~gI' IIallrant(ril' of p~redliction. filtering a1n1 smnoothling. lesla'tive5* .
Itiodel practical. The a11bov'e genteral Stilt)'spc hi'' 0111) (1) ilolllilit 

1Y
In the iiode'liiig oif il istlt lolilary t 11111e Swril's. th I a'lill assumnes thel following NI ;ltk)v 1)1)11 Ilt0's-

issue is the repreni'itationl (if tilicl variliig s5'st)'l. Lil-

car Gauissianl state space'l millol alie X'IrvN t's'fitl for the (.'j, -'I = (r,
modeling oif gradual caligi's (If laiuiiillats. For c'x(illI' Hy ,,IA', Y- = 11, '~1 (2)

spectrumlr call bI' trcvito wiithi hids flloa~r GaustsinI lli- Obviously oitir gciroal state space mlodel itlhd's Ill'
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ordinary linear state space model be found by maximizing the log likelihlood defined iiy

X = Fx,-1  + Ge,. 109) 10 log , PY.W)

Yn = Hin + I'_ (3) N
E ~log P(YnIyiY- l) (8)

with Gaussian white noises v,, and on. ntl

Under the assumption of (2), it canl be shown that the N

conditional distribution satisfies = Zlog pAy, j),,.1 I
i(n In+t YvN) = P(XnIXJJnn (4) Here each ( ,1,-)is the qulittity alihielred inl (6).

In Kitagawa (1986,1987), it was shown thlat for lie general If we have severid candidate miodlels, thle goodntess of
state space mnodel with (2) and (4). the recurisive fornin- the model can lie evaluated by thle valiie of A IC definled

)as for obtaining one step ahead predictioin. filtering arid by
smoothing distributions are (in contitnious variate case)

given as follows: AIC =-2 max 1(4) + 2) ninilier of pairamlleters). (9)

Thus the best choice of the model can lie iiade by looking
One step ahead prediction: for -.lie one with the sniallest value of A IC.

- j p~~jx~. 1~)px~ 1 I1... )x,..i 3. Numerical Implementations of the Gen-

q(.r Ix )px_ II 1(5)eral Smoothing Formulas

Filtering: InI this section, we will show numierical iliet Inols for

p( i I~n ) P(in In ' ~-implement ing thle foriulas. For dliscrete (list r ilmit ions, the
)( Yn in - )p( .. I -iimiplemnent at ion is esy. Thlerefo re ili thIiis sec tionul we ).%-ill

I', ~~~~assumi e that eaicli (list ribti tion Ii as a den sit fiunic t in.

ryI Xn)Mix,I1. (6) 3.1 Numerical Approximation to the Densities

where ( /, -)is obtained byi f *(i'r ,) r, Y.dv In tN 'pical situoatio n. thle filt erin g and ii 1 Iill ting for-

mulas canl be iminplemiente by( liisi ig thle follow inig Oiperal-

Smloothing: tiotils:

p(Xnl~v) e )X niV.)~,i nonli nealr trtia sf irmti t i (if s tilt(,

0 colIVollitlt o11(f two detisit ics
= j. ],(X,+ 1 1 ix"(r ., + 1. VVii, +1

= p~,+i~v~p.i~jr,+. 1;i/v, I i;,* Bayes flirill

10--+111 )POn X. +I +I tiirtiializatIili
= (r1f p(.r,,iVl')p0( ,+iI x- "" (/.,I

/).I " +I'li Tese operaitionts (liiib lii r'liv('i bv ilisilig iiiiriciil aji-

~) r,~ J(.r,,+] Y0,(., +I IY ) roxitniatioti tii thle (leiities. III IKitligaia 19S7). each

/4 .r~. 1.) +denisity fiiiitionl Was appilroimalitedl byv ai cul ililoi pee
wvise litiear (first. order splinei') fiitict iiii. l~nwe will show

These foirmuilas (5). (6) and~ (7) show icisti rcll- a siniple mtihtlod hnisii Oil step)-fiiCt iiii illi)IONllIlill.

tioti bit veli state (list riluitiorts. hiI the liwlar GCiiussil Eaich fitriction is (.xhili'..ci byv the iii iwhe of ,illlls. .

case, the condiitiitnal ilistrilbitions J(ili . n) locatioi (of noides. a2-, (1 = 0I.A). illS1 th le of the
and1( jp(x,I Yv) lire chilracterized 1*v liv he tialisnd theii cii- deinsity at echl segilielit. ., (I = (I.. Sjieifjially. we
variance tiaitiies andl (5). (0) itild (7)0 bus le. ]( I'llivl- use, the followinig 'xlir'siiuls: Jl) .r ,J ) { 1k..
lent to the standalrdI IKalmtani filter ;iiii thei fixed iiitil- p(.,Ix), k. }. i N l) - Ax,11 .,,, q)
val stiloiithiitig ailgorit hitos. Inl thei gelll~il ciwii. liow~eri' {kq.,, ,} -a ) lt,}.We detiolt lhii' flinn-

tilit-Gilsiiti antid iant.i bei spi-iicdii 1,v ii.iiig iiill\ the For simpihlicity weahssui' th~it li iilsii iulsiiii
first twol mlotiitts. It thuis liecotiles tiu";1Ir , V ilSe ; i ll- ~ il lin ht AX =s .1 - X1, -

tneric;ui ttietlioi for the rehili/it iii of thi foriiilis. This

po~int wvill be conlsidered itl the tii'xt srcit . q Convoluionl

ktixtl iitiitiiitil5 'I'le lest \v;iliiis of thI il.pieitcls, cilli
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f.-I(x). This can be done by: reduced by using FFT algorithm based on the following

diagram:

P.i = pf(x,) = ]_ q(x, - y)f,,_.(y)dy (10) f(x), q(x) ---- , p(x) = f q(y)f.(x - U)elyk T
F q(x, - y)f,_(y)dy IF F 1 (13)
3=

1 J -l

k

Ax qj f,-,, F(), O(,) - P()

3=1
3.3 Gaussian Suin Approximation

here ij satisfies xi ,r x j

In the case of linear state space nondlel with densities.

o Nonlinear Transformation of State another way of imI)lenoIlt ing the n)1n-Gaussian fileter is to

Assume that the density of x is given as f(,r) and that use Gaussian sum (nixtmire) approxiriatious t1 th' dei-

we consider the density, h(y), of y- q(. (. If q(d') is a sities. In this method each (hnsity is opplroxililated by a

monotone function with ;il inverse, then /I(!)) is obtaie(l Gaussian sulm:
by f(g-i(.r,)) . But in general, h(U)= {A,.r,.h, eon c.a
be evaluated iiuinericvlly by the following ailgorith I: p(.r .r,,_,) = - ( .r _i)

3=1

For i = 1 to k p(yflix,,) =

SYo rnin{g(x,).q(x)} ,=1

Sy3 =max{g(x.i),g(r,} p(x.,, = -,1 (14)
g~x,)k=I

* jo = Y._ -01 I i '] I ).~I~
1=1

for j = i + It): (15)

- y, = ilax{ 0..r,0 + (j- I)Ax) where each ;), is a Gaussian density with ippropriate

- Y'2 = Milln{ Y, .r,0 + jA.r} mean and covariance matrix.

- hi= I + YIzYi f, Using this approximation, the formulas for prediction
3 -0 YO and filtering are obtained as follows:

o Bayes formula

Given r(x) and the predictive density p(J3) f., 0 = * Prediction

0, 1. k) is obtained by

f x p (x,)r(y - x(.,)) P,,,r, q f1.I

C' C (1-1 Y- ji
3
,t,,,_ ;.(x,,i ,..1 ,,ii;_ d ,,

k=1
Here y is the given ol)servatiol at thlat stage and rv, = q '"_-

r(y - h(x,)) cin Ie evalated directly from the function - Z Z 5,-,,,t(S~ 't

r(w). In (11), C is the normalizing colistmilt givell below. I=l k=i
ko

- Z "t,.&*(.,', II;,- ) I11)

o Normalization k=I

C p,,(x)r(y - h(.r) (l.c * Filtering

_1 p,(x)r,(y - h(.x))(dr (12)

k-

LI= k/=
:=1~ ~ ~ ~ ~ ~~~= -_ -5=3,¢ x,};,)(7

(17)

This normalizing constant C (71n he used for the c3)11p-

tation of likelihood given in (9). Here = means the reoderiing, ,. = , j (for soilie k).

6, = 1
7t¢5 ( /,,IV,-i) (for sone1 , 1) 1111( 1 ;1 1'(1 ,k i313e

3.2 Implementation by FFT obtained 1)y the IEalniw filter.

Technical difficiultics with this inetiod are as follows:
In the above illij)leilieIlt ation. tile Most of tile coin-

puting tine is speit for the coiivilution ape3ared iii tle * The number of n'cessary G(aussii termis in'irases

prediction formula. This colplltatiol can )e significantly very rapidly to infinity, e.g., inf., = illO (111, . , )".
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* The smoothing formula cannot lbe directly realized 4.0

by this method

The first difficulty can be nmitigatedl by reducing the niiin-

her of Gaussian components at each step of filterinigAp- 2.0

proximate fixed interval smoother can be obtained by
fixed lag smoothing which is simp)ly realized by augmnent-
ing the state vector.

4. Numerical Examples

We will showv various applications oif general state
space modeling and the genieral shmothbing. The first ex-

ample of 4.1 and 4.4 are takeni frouin Kitagtwat ( 1987).

4.1 Estimation of Mean Value Function -40 a. 0.0 40 .
0.0 100.0 200 3Ca W 0.

Wie conisidler the estimnationx oif the ito-ou value functionx Vi g. 1. 2 / ~ rlri~tj ,, "I'i lai' iN the 1,1
of the data. VWe Ilse at simptjle first order trenld limtotb ( i 1.ia ,iel, ( I'. twa I!ISMT

'At" = I,

!/, = t, + i,.(S

Here A is the (hjffiiui (ipeitor ilehiitti byv 1 t t,- Amiong the clais, (if hhIII,(;.i~.:I n1ihel-.. till join-

t1and c, antd it, tile white noiie suqei'ncIes tt ait, i t titii of A IC (1.18-1 S( ;it I iw, it 01, 1 5., 7 .

necessarily G;oissitn. VWe coinsideir thel folhhwiitg ittiidil 2.2 x I0lL. o, 1.022. Fl. .. 2 th,~ p-t, !iI'! dcu

M~od( 1(b) :j( i, ) C)(7' + .24Ing with Fig.1.1. i ilii clearI tha;t tlhi 111 a i il

ii,) (2~2 V ehi . (9 mdo-I. \liideht 175) lio> bet tel alilty ti) I'.I(,Itiht thte
I-( i", 2 ,, a 2 CXP(19) jumpll of the nltin level ;tilt tintot i(cllv.

where

20 3000r(1 ORIGINAL AND TREND

The( nttxiruiunti likeliuid CiI;tit CiS of T- ,it u11i r- f0i tIti 2000-

Gaussian niidel. NInilul) -_N I wereV 7-' .0 122. 7 = 1.0-13

and the AIC of the nii-I was 1503.03. Fig. 1.1 shiiws tw Ia 000-

posterior densities of t, obtained byv the Cauissiainxt uiih.
It can ie Seen t httit thec posterior itetit is dlrifting with hi t 0-

tintie and does nit re.flec(t the jIumpI of ti- Ilnetin vitlle.

4.0 -_0 0

000- SEASONAL

-

0 12 24 36 48 60 72 84

-2.0 000-NOISE

4 0 -.. . . .00-- -. . .I - -O-O - -
0.0 00.0 ) C 3W0 a 00 go a 0 12 24 36 48 60t 7,1 84
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eNori-Gaussian seasonal adjustment nential dlistrib~utlonl. Therefore, we (-;in estimai~te t lie log-

This method of t renid esstin it ion canl be eX tel i h (l to ( Variance by usinig thle ii a del

%-asonal adjustment. The state space inodel for the sea-Al"
sonal adjustment is given in IKitagawa and Gersch ( 1984). A,

But here neither sytem noise v,, nor observaitiojial noise 11- t, + I ',(22)

w., are assurned to he G aussian. Since thle state diiiieii- wit h 7-(?1i) = .rp je -

sion of thle scasonal adjustnient mxodel is large, we uised a

Gaussian sumn approximaztion. Fig. 1.3 shows the quiarterly *notigpcidgai

recordl of the increase of inivenitories of lriv~itv eoll1)iIIIiiS since- the 1 a'riodogr- Iia is ilistriliteil ;Is ;III cxpolieri-
in Japan (1965 to 19S3). Also showii are the ticiil. sl- tial (listrilit Ilion. ;is a tiatttiral alpilitiuii ()f this ilicthiiai.
sonal and the noise compionenits est iiiiaei1 *r a ii issiii WC Cli S1iioot h tlI he log -* ~ I; .ri~rIill bV Oil lie v mio ethod.
mnodel. The est iniited trend is tooi sioot ill oth sva- Il sphile sioot hing,~ Wulih1i( l9O) ;i)ipioxiiiit ed lie dilx-
sonial Comiponient (liligcs graduially. (1i the- wht lii idh sitv r(wi) liv a (wIissiain distrOiutioti with the ,,siv first
Fig.1.4 shows the' results by tioi-CGliissiaii modi~el. We cati and second! momeni'ts as tliose iif r( i). Bilt herc liv our
see that the trenid jumnps ipl and doi'ii ;irril at 1,73 lixt hod. we can siliot Ii the series withloiit iiji aiis-
197-4 when the oil crisis took pluice. The se soiial ull ter sian apliroxiiliitiol. Fig.2 shlows thle log-pcriola2,r;I li ;tlill
also chiaxigeil sigriificiiltlv dur11ing h1is tinic 1 i~ h iiole o-'ilgii ltii rteACbs

3000

2000

000

0

- 1000

-2000-
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model, e.g., tlie- second ordler tr nd mode110li (k' = 2) with fik and Rm$~ ale Cauchyi anld U',, is Gauossianl. We cia'i see

Cauchyv system nloise iliplit. that the arrival of ) and1( S waves are clearly bltclliy

this iletlholl.

4.3 Estimation of Changing Spectrum 44hloi-leuDscteProcess
It is well kilf-ii that the *oeficjiitts of aln AR 1mode1l callIizmgizn Dsrt
beC e'st imatedi relll~sivly by IVlit;ailliig pail1 alit o(orlli;I h ec0 tt pc oe -,I cap lt h
tion Coethiceez's. ,\!ceX'elI this liethol to ilollbttil 01WTl'g(1lri ttesai''10111cl apidt il

hRiodl st iillatti)11 of t ilill'-v vig icali of tll' discrete' Idisrrili-
K tiolis. We consider the li1llillber of raillv dayvs (over lllltii

ii,.= ___ o~,, +a~ -(23) ini Tokyo for- each dllv duirig 19S3-84. "ill'- [Irlcin~ is to

TI' he Ill oels flI s ;11th '1 spel-vlii~1 ~i' cific calendr iilN' ihich is a 'I vl ' to be gradludl

rel~t i~li('II li''i'lit5 I ilchlligilig with timei.

'1 ok~i, I , izig Illlhel:

with, f1l) 0(i) = J,,. f ,) iandl ic respectively: for- l)IJ,) = (j )v i-p)''. 26
ward a111d lblckwlai-( pill,ictiol virar (If till iiltIorI'gr('Nivl' Here ql, --- logjp,,/( I },, 1)1,i till wliiilbvl I)f IlhIl'liv-

CGaiisslanz or llol-Gaianiil. Afte'r e'stimalt ing tillll-vlng this mellthodl is shown ini Fig-.

AR colfflcil'llts IIV till silllothlilig meithod, %.W'(.11 cal .tilllaitl' eNonstationary Poisson Process

p I+Z " l'X25) 2ijf) roit . i till atiaysis of jXiIi-;illhtarsl.' 14 c ti iil'i

illiii-secolldi). and thle sign~al -Chilg oIf 11111111 is oly a1

fewv p)(rrenit (of thicIIImI level ( a 11( thll vilrianit'e al i till

series blks hike thll one11 w~ithi very lo1w sign~al to n iseb ra-

tio. Foi su ch ;I series, t 11is me(t hond ran be' use to11 II (xl I'l

till signl
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4.5 Quasi Periodic Process k.=

= U," (27 j
Th'Ie famouas Wolif suiis]pt numbloer data exhibits the(

ap~proximtate r,,pct it ion of at pit teiti hut boithlitlli pierjiod C, (1,sl 51" +, 1)- Vo t',S } ± i

widl( h amiphit (1(1 are not so) deinite ;mo cliatge grad- J OJ=
1

ually. This typei (If pbotlotlota (-;li be seen Siill (C(-lo,i(-Iil eao(tiltehael1illiitilofletile.Fg1

data (e.g., ill Cimaidiaui lynx &ata) and illanyII Olritics -hw thilhlsso iiiii ter lat;I. the (st imIiteil phase, lig-

of air )ohitio I dataI. Although suiih Sces allv ficletlh n1 pihtil~e ;1111 the cylcfuntction oif ill i1lodc1

tmodcled by AR. .\flA orI AR pils sliliiidils models,5 TJO c'eck. OW IPle"Iht loll ahiiht.% wocllic t i ilfh

11o0th of thom. hlii)(I(1 scc105 (Ilite satisfalctory for tw lie - lioeJwli otlal mlpitw
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40.0 lhereu' and v',2 are itituially indiepiendient (.alissiari wile

nodise seq1uenle %%'t i variances. r, 2 aiiil rj. lesp(eCtivly.

T1he sliiiit liiiess roli mllodel (33) with Iitlie olbservation

20.0model (31) const itulte (our nonlinear state space model for

20.0 ~estiiiat iii thle locatloll of (hle object. It sliu l(I lhe inoted

that the Galsaltvo et if ?, liir 1 i. are niecesssar N.,

in our modiiel. th'le Value of 7-' aitil 7 are unknown bit

0.0 Call Ie est inliated byx Illaxim iliig the log-likelihood diliid
p.by (8). lFig.6.7 shows t lit colntoll of Ilte posterior detisit v

p(.r' , X21I'l,\. for i20,10,60,aiol 80.
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liiili-Gallssia Ii slili it liei. F ig 6i.5 Trajectory oif (x ,,4

Tlie Seclillil examlple iif nmoliniear sml~ Iing is a pais-

sive receiver prolilemi A simiilar prolelll was col.silliril

by Hlijy anld Seimiie( 119740). 1ii t Ili,~ examiple. t he t '1rgiet is

graduallyN minl oll I lie two imlensionlal space. Iig.t.5

Shows alm examiple of t uks trajiitovN. Tllis t aru't is k

Serveid bY tOl scalai lioitilna ileaslitelliell fiicot ioli

whle re

1-i + ,, A3 (312)

lvre 10 and A I ari giv'll iiilitaiilts aiind ii, is a (;allssiahl 0

white, noise withI kno~wn variallee (r- ,. [h is a simple vX-

iibserlvinmg thle Idoit v ani. iIseiveil ()Ii a 't at lill iili-

vatory, lig.6; shows, all exalpItl of y, wichl is giiiiratiil Is to 5 ---- 110

jr-it. we colsid. tw l fiilviit siiiilifi -ilillil es p155IIii'l llg.t.6 ()bsem"'lII
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IN IERIOR POINT ME I IIODS FOR i.iN LAR PIROGRAMMING PROBILEMS'

P.T. Boggs. P.D. Domi(h, J.R. Donaldson and C. Wiltgall. National Bureau of Standards

1. Introduction

Interior point methods for linear prograrniirg problems therefore desirable. In §3 we derive two Specific algolithms
are certainly not new. Many people have been intrigued that incorporate a reccitering strategy. Firallx. in §4 we
by the notion of going through the polytope rather than give some numerical results that show the promise of our
proceeding from vertex to vertex around the polytope as approach. The details of the methods and results presented
required by the simplex method. This idea received fresh here are contained in BDDW88> additional theoretical de-
impetus from the startling anouncernents of Karinarkar velopInents are in "%'BD881.
'Kar84', who claimed that his new interior point method
based on projective methods solved a certain large linear 2. The Method of Centers
programming problem 50 times faster than the simiplex
method. Furthermore, this algorithm was provably poly- In this section we describe the method of centers and show
nomial in the number of operations required. Thus for the how to obtain a smiooth trajectory rather than a sequence
first time, there was a polynomial algorithm for linear pro- of points. We generalize these results by posing an imi-
gramming that actually held the promise of outperforming tial value problem in ordinary differential equations whose
the simplex method. Since then, there have been many solutions are trajectories that connect any feasible initial
studies related to Karmarkar's method and renewed in- point to an optimal solution. The problem of trajectories
terest in other interior point methods such as the barrier that get arbitrarily close to an exponential number of verti-
function method and 1Huard's method of centers. cies is then examined. We overcome this problem without

In this paper we present computationally efficient in- sacrificing the essential properties of the original system by
terior point methods based on Huard's method of centers, deriving a modified differential equation that has a recen-
We confirm the need to keep iterates close to the center tra- tering component.
jectory of the polytope in order to get good performance, The notation required to describe the method of centers
and we derive and present numerical results for two specific is defined as follows. Let the set of residuals corresponding
multi-directional procedures. The best of our procedures to the constraints of (1.1) be
is based on solving a two-dimensional linear programming r5 (u) - - A -k

problem at each step. This method compares very favor- .

ably with other recent interior point procedures reported Note that if rk(u) > 0, k 1. m, then u is a fea-
in the literature. sible point. Next, define a residual corresponding to the

In the presentation that follows, we take the linear pro- objective function
gramming problem to be in the form Tmin~e~uro(u,t) I c eiu.

subject to Au<b (1.1) Here I is a scalar variable that is meant to correspond to aprevious value of the objective function. In particular, let
where cu C R' , .4 C R"- "', and b c Rm . Although we U0 be a feasible point and let
assume that the problem is bounded and that A has full T
column rank, it is not necessary to assume that the con- to -- Cuo.

straints have a full dimensional interior since the big-M Then if ro(u.to) > 0, u yields a lower objective function
procedure used here to find an initial feasible point will al- value than uc0 , i.e., cTu <'eTucI.
ways have one. In that case, the Phase I soluticn will be The ri r tr of the polytope defined by the constraints of
the optimal solution. (1.1) and the objective constraint for I - to is the feasible

The remainder of this paper is organized as follows. In point, ul, that solves
§2 we give a description of Huard's original method of cen-
ters, and we consider some generalizations. In particular, max log [r0(u,t0) jrk(-u)l
we show that smooth trajectories exist that connect any k I

initial feasible point to an optimal solution. Somne of these
trajectories, however, get arbitrarily close to an exponen-
tial number of vertices, and Ae argue that recentering is

nC,'ntribuion of the National BHitcau of Standards and ni subject to opnght in the United States.

This research was supported in part by ONR Contract N-0014-87 F0053.
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or then u,,(t) satisfies (2.2) anid hence the initial value problem

Max og o~u to)I lg r(U)(2.3). When g - 0 the resulting trajectory is referred to as

k -I 1 thle ccnter Irajectory while if g / 0 the t rajectory is called

Now set an off-crfnier Irajectory. The theoretical properties of these

t, cri, trajectories are contained in Xll8

and define n 2 as the solution to Cornputinrg tile act ual derivatives of L. and substitut inrg
these in (2.2) yields

max logro(u,t]) 4 ilogr,(U~)] .r T.r~ r uw
k. i Ju'(t) AT2 I( T (2.4)

Continuing this process, a sequence of iterates {u, } is ob-

tained. It can be shown that {u,} converges to an optimal Where D) is defined as

solution as i c. This procedure is Hluard's original
method of centers Iiua67' applied to the linear program- D) diagjr k 1,... l

ining problem. An implementation of this method was
shown by Renegar Ren86 to possess an equivalent poly- For T2
nomial complexity hound to that of Karmiarkar's original X diag ~ '-,k 1 _m

method Kar84 r }
It is easy to see that by continuously moving tire con- (24caherwitns

st raint corresponding to the objective function, one obtains

a continuous trajectory rather than a set of points. Every U1)- (2.5)
point on that trajectoryi can be viewed as a function of 1. ( AX.
Specifically, let A pplyinrg the Shetrmnan-MNorrisoni- \\oodhu rN f rinula to the

mnatrix in (2.5) results in
L(u, I) -- log ro(u, t) >log rk(U).

Si IU'(1) - 17 (.4Ax..i c (2.6)
T h e n f o r a n y v a l u e o f , u ( t ) s a t i s fi e sw h r 7 i a s c l r A U l e c l p o e d e f r S l i l g ] -

VJ~(u(l). t) U. (2.1) ear prograimiiing problems can their be Obtained by numner-
ically integrating (2.5) or (2.6). The use of Euler's method.

By differentiating (2.1) with respect to t, air expression is for example, yields a direction t hat :s known as the dual
Oht ai ned for tire cliange in u (I) as a fuiict ion of 1, i.e., afirue direction 'ARV86'.

VuJn, Lr.t)u'(t) -VrL(v, I) 0. In Witzgall ct al. WB D88., we show that all trajecto-
ries converge to a single optimal solution, even when the

or optimal solutions are not unique. In thre case of a single op-

u'(1) - V,,L(u, I) V~ ~.1. (2.2) t imal solution at a vertex, all of the trajectories converge to
that vertex. arid tire tangents of these trajectories similarly

Whiile thle abose differential equation cliaractcriyzes the~ converge.
r j i As we discuss in II3DDW88S, there are paths that stay

raje-torv. air Initial COTidition ireeds to he supplied to coin-
plet t ie pecficaion 're c~irsderthirefrrearbit rarily close to the brouiidary cf the polytope (see also

MS86 ).[IiS is corroborated by t lie fact t hat V. L(u(t), t)

ri'(t) V_~ L(u. t) I 'V~ L(rr I ) st avs constant: if it is large init ially. wNhich it will be if

U(t,)) - u 'F(23 r1r is c'lose to thre houuidary, thieii it unrist st av large there-

(2.3) aft er. Thus thre dial affinre direction c-al produrce Ionqg paths

>0. NISS6 il e tl:rilytrrpc. i.e.. pathsta visit air exponel-

j ial nmbnler of vertices. These paths mirror tire long paths
By taking u - O fromn aborve and ( c 7 ,u 0 c i we -xliibit eu 1)i'v ire simnplex met hod, and it follows thiat poor
obtain the desired trajectoiry'. It is of interest , hrowever. to perfrmrance is possible.

conrsider anlY initial feasible point u and] anY > 0, und Rec-all howevecr that the center t rajectorv is kVehned by\
to assess thle soluition to (2.3). Ini general, for any% such u Ihe i'oiidition that L(u, I ) Ihe maximiized aS a funIfctirui Of U.
amid I lire iratuiral nMethiod Of Solvinig thiis optimli/ation probulem

g V", I(7i1. lo) is N ewtoir' M net hod where thle step is givyen liv

is niot equal to zero.Vrs if we eur ht (igatr VLI(u, ) iVI.(u.). (2.7~
jectorv uu5(t).
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We can incorporate this direction into the differential equa- Long paths can be avoided by including a recentering

tion (2.2) to obtain component in the search direction. Such an approach aims

at keeping the iterates more interior to the polytope which

u'(t) = -V,uL(u,t) ' iVutL(u,t) - ,VL(u,t), (2.8) helps maintain nonsingularity in ATD2A. Various strate-
gies for combining a recentering direction with the dual

for an arbitrary positive constant $. The sign appears to affine direction are possible. Such "multi-direction" rneth-

be wrong, but recall that the integration is backwards from ods are discussed in the remainder of this section.

to to the optimal value t° < to. A multi-dirfction method attempts to combine a cost

It would seem that (2.8) would not satisfy any condition improvement direction, s, with a recentering direction,

such as (2.1). By differentiating s,, so that the iterates remain sufficiently close to the center

VL(u(t),t) = e0(10)g trajectory and thus do not display the convergence prob-
lems described above. The value of multi-directional search

with respect to t, however, and solving for u'(t) as before, procedures is well appreciated in the recent work involv-

we obtain (2.8). Thus, along any solution to (2.8), the ing interior point methods, e.g., 'Kar85'. Closer analysis

value of V , L decreases. It does not, however, go to 0 by Gonzaga !Gon87) of various standard interior point ap-

since the upper limit of integration is t and not oc. The proaches demonstrated that each consisted of two basic

amount of recentering correction can also be made to vary directions: a cost improvement direction, and a recenter-

with t. If ing direction. In this study, we consider three different

4(t) ft 0(s)ds multi-dimensional search approaches using both the stan-
dard search directions and new ones. These approaches are

then deriving the differential equation with respect to t called the composite method, the two-step method, and the

using two-dimensional subspace method.

VJ.L(u(t).t) = e(l 9  The cornpositc method is conceptually the least compli-

yields (2.8), but with 0 replaced by 0(t). cated of the multi-direction methods. Using this method.

The theoretical properties of (2.8) are contained in the two component directions are combined at each itera-

X\WBD88. Note however, that while recentering is intu- tioi to form a single direction

itively appealing when far from the optimal vertex, it may s = S, + (t)s,

actually slow final convergence. In 1BDDW88 we observe

that a negative component in the recentering direction of- as suggested by (2.8), where 0(t) is a weight that deter-

ten yields a better direction as the iterates approach the mines the contribution of each component to the combined

optimal vertex. Further discussion on this point is included direction. Unfortunately, we have not been able to find a

in §3, which explores numerical algorithms based on the value of 0(t) that performs consistently well in practice.

search directions derived here. In addition, the selection of an appropriate steplength

for the composite direction depends heavily on the value of

3. New Algorithms (t) selected. Projecting a search direction heavily dom-
inated by a recentering component to within 99% of the

In the previous sect>ii ;, m-.!ivatcd the choice of the dual boundary won't necessarily yield an improved trajectory.

affine search direction by using Euler's method for ordi- Likewise. attempting to recenter using a quadratic line

nary differential equations (ODE). Different search direc- search with a direction dominated by the dual affine search

tions could be generated by considering other methods for direction is not practical since the slope of the quadratic

the numerical integration of initial value problems. Since model of V 'L(t,u) will be approximately zero (see §2).

the precise determiination of the actual trajectory from an Because of these problems, the composite method is not

initial feasible point to the solution is not of interest here, discussed further.

the ODE analysis is used only to suggest search directions; The two-step methoduses the two component directions

other considerations dictate the distance to travel in those independently. At each iteration, a cost improvement step

directions, is followed immediately by a recentering step. This elim-

For example, a typical dual affine procedure uses a inates the need to explicitly specify the weight o(t) as

steplength that is a large percentage of the distance to required by the composite method. The two-step method

the boundary of the polytope and thus does not atlempt also eliminates the problem associated with lhe coin ps-

to follow a single trajectory. One can easily see that this ite method of selecting an appropriate st jlepngt h. Since

type of algorithmin might perform poorly. While he current the steps in the cost improvement and recentering direc-

estimate mnight be on a "well-behaved" t raject ory. the next tions are made independently, the sleplength of each step

itc;ate migtt be on a trajectory that gets arbilrarily close can also be specified separately. This method, described

to an exponential number of vertices of tle polylope. further in §3.1. is found to work well in practice.
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We derive the two-dimensional subspace method by not- where Tc

ing that a cost improvement and recentering direction, pro- f~d cT11'R 1

vided they are not co-linear, define a two-dimensional cross

section of the polytope. Because of the reduced dimen- might be preferable to die Newton direction. The value (,d,

sion, the cost function can be easily minimized on this two- which was originally suggested by Fiacco and McCormick

dimensional section. The solution to the reduced problem FM68 in the context of barrier functions, minimizes the

then defines a search direction that combines the original i' norm of VL(u,t). This value produces a steepest de-

two directions. The two-dimensional subspace method is scent recentering direction that is orthogonal to the cost

described in detail in §3.2. As reported in §4, this method direction c, i.e..

also performs well.

Each of these multi-direction methods include deriva- cT( ATR 'e-) cTV, L(u.t) 0.

tives of L that contain the term t -- J and, implicitly,

its initial value, c. Since no effort is being made to remain In the simplest implementation of the two-step method,

on a particular trajectory, it is reasonable to "start over" both component directions are computed at the current es-

at each step, i.e., to pick a new value of f at each step timate u,. The first step taken is some large percentage

and to ignore . Thus, in the following, the derivatives are of the distance to the boundary in the dual affine direc-

written using ( and not t -- cTu. For example. tion, (ATD2A) ' , . This step results in an interme-

c diate point fz,. he trajectory is then corrected using the
V L(u,t) -AR - T recentering direction computed at u, provided that the

A R c recentering direction forms a negative inner product with

Vu=~it AT -.)L.

Particular choices for ( are discussed below in context. fL(u.,t) - (-ATJ -  ) ,,

3.1. Two-Step Methods where E is either f, or .d depending on which recentering

direction is used. A quadratic model is used to determine

As outlined above, the two-step procedure follows a cost the steplength for the recentering direction.

improvement step with an independent recentering step. The two-step method is improved if the recentering di-

The dual affine direction rection is updated at the intermediate point i,. For the

Sd. - (ATD24)_ -steepest 
descent direction, this simply means computing

(Ad AT)--
is the obvious choice for the cost improvement direction. -

There are many possible choices for the recentering direc- For the Newton recentering direction, however, only a

tion. "partial" update of s,. is made. Applying the Sherman-

One such choice is the Newton recentering direction de- Morrison-Woodbury formula to (3.1) yields

fined by (2.7), i.e., T T
(A D'A) ATR 1 3(,) (A4D2A) c, (3.2)

[ rr
±c2 DAT + (3.1) which is a linear combination of the dual affine direction

- TJ \ ,and a transformed gradient term. (Note that 3 is a func-

where tion of E.) The partially updated Newton recentering di-

cc(ATD A) c rection is obtained by only evaluating ATR and f, at u,.

cT(ATD2A)-_ ATR .  
Thus,

The choice of ,, originally suggested by McCormick ., (TR ,

McC87i, results in a Newton recentering direction that -' (3.3)

is orthogonal to the direction c. The value of ,. thus (,,) (ATDA) (

minimizes the 2 norm of the vector This direction is easily computed using the already factored

(,.,'rT)c2 form of ATDA. Since 4 T12 A is a positive definite ma-
f , trix, this updated Newton search direction is a trajectory

improving direction.

In the presence of ill -conditioning in A.-iTjp2A, the steep-

est descent receritering direction Our best results for the two step method were obtained

using the updated recentering directions, and it is this im-

.d ATR c, plementation that is reported in §4. Our two dimensional
f.d subspace methods, discussed next, show even better per-

formance.
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3.2. Two-Dimensional Subspace Methods (ATD.A)i d, for any choice of d not orthogonal to ak.

Observe that the dual affine and recentering directions de- This direction has as a dominant component in the direc-

termine a two-dimensional plane and that this plane inter- tion (ATD2 A) - ak, and if d = dl, the new direction is

sects the polytope to form a two-dimensional cross section dominated by s, and (.4TD2A) a for the subsequent
on which the current estimate lies. We obtain a search step.
direction by minimizing the cost function on this cross scc- I he gcnerators to the subproblem can be varied de-
tion. Given two linearly independent directions, s, and pending on the location of tie current estimate. i.e., its
s2, the two-dimensional subproblem is thus proximity to the optimal vertex. This is done in order to

min(,,(, eicTsi + (2 eT 2  create a globally effective algorithm and to alleviate prob-

subject to (,.4s, + (2A82 < b - Au (34) lems caused by ill-conditioning of the Hessian.

for scalars (, and c2. The solution to this subproblem 4. Computational Results
then determines weights for the search directions s, and
s2, respectively, that define the multi-directional search di- 4.1. Methods Analyzed
rec tion In this section, we present results for two of the methods

Ciss ~2~2described in §3:
The solution to (3.4) produces an optimal search direction

with respect to s, and S2 at the current point. Specifying * a two-step method comprised of a dual affine step
a steplength completes the algorithm, followed by a recentering step; and

The only restriction on s, and 2, the generators for
the subproblem, is that they be linearly independent. The e a two-dimensional subspace method.
dual affine direction and the Newton recentering direction The results from a dual affine approach are used as the
produce the obvious choice for the subproblem generators, base-line for comparing these more promising methods. It
namely has been shown in IMM871 and MMS88* that the dual

3, = (ATD24)- ;, affine method compares favorably to MINOS 5.0 'MS83'.
a well known and widely available implementation of the

s,= (ATD2A)-' ,A; .4TR [ . simplex method. Since our dual affine implementation re-

The partially updated Newton recentering step, discussed produces the dual affine results reported in MM87 and
nMNIS88, it is assumed that our work would also comparein §3.1, could also have been used to obtain s2. In our I '

computational studies however, we found that the former favorably with the MINOS simplex code.

produced better results !BDDW881;. The two-step method is implemented using a dual affine

We also have examined the properties of a second set step followed by a steepest descent recentering step in the

of generators, early iterations, and a dual affine step followed by a par-
tially updated Newton recentering step in the final iter-

T= D2.) ', c ations. The switch from one recentering direction to the
(A )-, other is based on t, the residual to the objective row. The
SAD.4 ,, at,, two-step approach is used in both Phase I and Phase 2.

where ak is the first constraint encountered in the s, The two-dimensional subspace method also uses the
direction. This choice of generators is motivated as follows, residual to the objective row, -, to switch between strate-
Suppose we have a search direction gies. While ( > 1, the two-dimensional subproblem gen-

si = (ATD2 A) 'd, erators are

for some di. (In this study, d, c so s is the dual affine 8i d
direction.) Then let k be the index of the first constraint S2 (ATDA)- a,.
encountered in the s, direction. From the current point,
U,. take a step of, say, 997 of thedistance to this constraint, These generators work well in the early iterations when
obtaining a point ii,. Compute r '(i,). Now a rank-one the number of active constraints is small. Once ( < I.
update of (ATI)2'A) -1 due to the change in residual k, can howe,'er, we switch S2 to ( 4 Tfl21 ) 'A7R In both
be written as cases, the two-dimensional subproblems are solved exactly

ATD2A). acT akaT using the simplex method (see §4.2).
r)_, TDA - e(2. The two-dimensional subspace methods were originallyconfigured in two ways. The first used the solution to the

Evaluating the new Hessian inverse using the Sherman- two-dimensional subprobhlms in both Phase I and Phase
Morrison-Woodbury formula and the previously factored 2. '[ie second used a dual affine approach in Phase 1 and
form of (ATD2A) - results in a second direction 32 did not use the two-dimensional subproblem solution until
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Phase 2. The former did not perform as well as the latter The steplengths for the two-step method are specified

and therefore only the results of the latter configuration are independently for each of the two search directions. In

reported here. Since the initial feasible solution can have the the dual affine direction, the steplength is 99"Xi of the

a significant effect on a method's overall performance, we distance to the boundary of the polytope. In the recenter-

are now investigating Phase I procedures other than those ing direction, the steplength is selected using a standard

described below. (See, e.g., Bar88,.) quadratic line search.

For the two-dimensional subspace procedures, the

4.2. Implementation Details search direction is determined by the subprohem solution.

Starting Values and Initial Feasible Points. For This solution provides multipliers that lake the current es-

each of the problems analyzed in this study, the initial timate to an exterior face of the polytope. The steplength

solution is un 0. A big-M Phase I procedure (see, is 99% of the istance to that face,

e.g., BJ771) is used to obtain an initial feasible solution

when necessary. This is implemented by adding an arti- Solving the Two-Dimensional Subprobler . The

ficial variable with coefficient 1 to every row in .4. The

Phase 1 problem is then solved with an artificial variable the general purpose simplex method implemented in IMSL

with coefficient A = 08 added to the original objective routine ZX4LP IS841 and a dual formulation of the sub-
row. The Phase 2 problem begins nce the value of the problem. Empirically, the number of pivots required for
rtiw.Tae vabe 2 bleme negive andca theruefo bhe each subproblem was found to be less than 15 in most cases.artifttial variable becomnes negative arid call therefore be

removed.
Stopping Criteria. Three convergence tests arc used to

Scaling. In the implementations reported in this paper, terminate the iterations. Objective function convergence is
Scalng.hi te iplemntaionsreprtedin his ape, lotainied when

the .4 matrix is not scaled. The two-dimensional subprob- o whe z, _ 10

lem constraint matrix defined by (3.4) has been scaled, z <

however, to improve the numerical stability of the sub- where z, is the objective function value at iteration

problem solution. The two columns of this matrix are con- The convergence criterion based on the relative difference

structed using the normalized search directions, sil si 2  between the primal and dual objective values is of the form

and s 2 / s2 2' respectively (see §3.2). Each row of the

subproblem constraint matrix is then scaled to have norm a , z, < 108
I. mnax{ z~ d

where Zd is the dual objective function value at the cur-

Constraint Dropping. Constraints that are sufficiently rent iteration. This, of course, can only be tested when

far from the current point u. i.e., those having residuals the dual multiplier estimate D2.4 (ATD2A) _- c is non-

r(u) that satisfy negative (see M \187). The third convergence criterion is

based on steplength, where convergence is observed when
rju) > 1012 x rnin{rk(u).k 1. m}, (4.5) the steplength

are explicitly removed from the computations. Constraints As < 10 16.

. that satisfy (4.5) are "dro ,ped" by setting R. and D, to

zero prior to comr uting .4 D'.. and .4 R. Thi, improves Computing Environment. The methods reported

the sparsity in .,tD2 A and the numerical accuracy of the here were implemented in '7ortran and executed in double

resulting search directions, and therefore leads to improved precision on the Cyber 205 at the National Bureau of Stan-

performance. dards central coimiputing facility. The .1 muatrix is encoded

in sparse format using the XM P -xperimen(Ilal mathemati-

Steplength Selection. As discussed in §3, the cal programming data structures described in Marl. and

steplength fr edlthe Htessian is encoded arid solved using tle Yale sparse
fied as a large per(entage ofnthe distance to the bundary matrix package SMPAK SMP85 with non positive defi-

of the polytope. In '[able 1, two sets of dual affine results niteness of the Hessian handled in tie standard way b\

are listed. differing only in the percentage values used. The augmenting the diagonal entries.

first set is imnplenrenled using the same steplength config-

uration as that ruported in MM87]. i.e.. the steplength is 4.3. Test Set Description

99% of the distance to the boundary of the polytope for The methods analved in this study were lcsted oT 31 oft lie

the first 10 iterations, and 9(( of the distance thereafter. 51 publicly available linear prograiming pr,,h'ms avail-

The steplength for the second set of dual affine results is able on Nellib thrugh (a.85 . [hue problems omit ted

997% of the distance to the boundary of the polylope for all from our studv are those with impliCit boilnds, whilh our

iterations.
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implementations do not currently handle. All but 3 of the Our results show that the two-step method results in a
31 problems analyzed required Phase I to obtain an initial decrease in the number of iterations almost 3 times more
feasible point given u0 - 0. Another 8 problems do not often than it results in an increase when compared to the
have a full dimensional interior and therefore only required dual affine approach with a 99/99 steplength configuration:
Phase I to find the optimal solution. The remaining 20 a 16 of the problems show a decrease in the number of
problems required both Phase I and Phase 2. iterations,

* 6 of the problems show an increase, and
4.4. Observations a 9 of the problems show no change.

Convergence. Our results agree well with the accepted The maximum relative decrease in the iteration count is
optimal values provided in [Gay85'. With few exceptions. 25, the maximum relative increase is 46%, and, on the
each of our implementations solve the problems in our test

average, the relative number of iterations decreases by 2%.
set "correctly", converging to the accepted value with at There is no obvious difference between the results for the
least 7 digits of agreement 'BDDW88 . The most note- first half and those for the second half of the problem set.
worthy of the exceptions is problem CzProb. None of the indicating that the method performs equally well on both
methods reported here. and in fact none of the methods we the smaller and larger problems.
tested, converge with more than 3 digits of agreement for The results for the two-dimensional subspace method
CzProb. although all of our methods do converge to exactly are significantly better than both the dual afftne or two-
same value, namelv- ; :C F'ob - 2182528.5. aesgiiatybte hnbt h ulafn rto

step methods. Using this method, the number of iterations
Excepting CzProb, both variants of the dual affine decreased 10 times more often than it increased:

method agreed with the accepted values for all of the re-
maining problems. The two-step method, however, failed * 20 of the problems show a decrease in the number of
to agree for one other problem, E226 (relative error 6e- iterations,
6), while the two-dimensional subspace method failed to s 2 of the problems show an increase, and
agree with the accepted value for Shipl2l (relative error a 9 of the problems show no change, of which 8
3e-5). are Phase I problems and therefore cannot show a

We are currently investigating methods for determin- change. (See §4.1.)

ing the optimal basis from interior point solutions such as The maximum relative decrease in the iteration count is
these. One option is that of computing the Lagrange multi- 41%. the maximum relative increase is 11%, and, on the

pliers and checking for dual feasibility at suspected optimal average, the relative number of iterations decreases by 16%
solutions. "Restarting" the iterations when the Lagrange (12% counting the 8 Phase 1 problems in the total number
multipliers indicate a non-optimal solution has been found of problems). Again, there is no obvious difference between
should eliminate the problems noted here. the results for the first half and those for the second half

of the problem set.

Iteration Counts. Each of the methods reported in this
paper have the same order work per iteration. Iteration 4.5. Conclusions
counts rather than execution times are reported, thus hav- The results of this study demonstrate the computational
ing the advantage of making these results comparable over advantage.z of using recentering ideas and more sophisti-
different machines. cated adaptations to the traditional method of centers. In

Our results show that the dual afflne method using the particular, our two-dimensional subspace procedure pro-
99/99 steplength configuration results in an overall reduc- duces results that are a significant improvement over the
tion in the number of iterations for the problems in our dual affne method, reducing the number of iterations by
test set when compared to the dual affine implementation

using the 99/90 steplengtlh configuration used by Man average of 16%. The two-dimensional subspace results
W L are also competitive with the dual affine results reported in

While this reduction is generally only an iteration or two, Monma and Morton IM187 and with the primal-dual inte-
the iteration count for CzProb is decreased by 6 iterations, a nior point results reported in and McShane tal. M.NISSS8.
relative change of 12%. There are also only two instances
where the total number of iterations increased using the Tepoeue Metdd o nraeteodro h
where st gthe otalntr, it rons iase d usIiterign the work required per iteration, and can be implemented easily.
99/99 steplengt h variant, in one case by 1 iteration amid

in the other by 2. These results thus indicate that the
99/99 configuration is preferable over the 99/90 configu-

ration. Note that our 99/99 dual affune results also com-
pare favorably with those reported in M.MS881. We thus
use the 99,99 steplength configuration of the dual-affine

method as our base-line for comparing the two-step and
two dirmensinal sumbspace met hods.
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Table 1: Iteration Counts BI)DW88, Paul T. Boggs, Paul D. Domich, Janet R.

Donaldson, and Christoph Wit/gall. .AIIo-
Dual Affine 2-Step 2-1) rithrnic Enhancrrmnts to thc Mthod of C' n-

(99/90) (99/99) Subspace hrs for Linfar tProgramming Programning.
Phase I/ Phase 1/ Phase 1/ Phase 1/ Manuscript, National Bureau of Standards.

Name Total Total Total Total June 1988.
Afiro 1/ 21 1 20 1 20 1 13
ADlittle 1 / 22 1 / 21 1 21 21 BJ77 Mokhtar S. Bazaraa and John J. Jarvis. Lincar

Scagr7 3 / 24 3 / 23 3 23 3 / 21 Programming and Nctwork '"lows. John Wiley

Sc205 4 / 28 4 / 26 4 27 4 / 19 and Sons, Inc., New York. 1977.

Share2b 4 / 30 4 / 30 5 /28 4 / 22 FM68 Anthony V. Fiacco and Garth P. McCormick.
Sharelb 7/ 40 7/ 37 6 36 7/ 32 .¥onliruar Progamming: Squential Uncon-Scorpion 5 / 25 5 / 23 5 25 5 / 19 strandi(d lniat ion T Shniqufs. John Wiley

Scagr25 3 / 27 3 / 27 3 27 3 / 28 and Sorns. Inc., New York. 1968.
ScTapl 6 /36 6/ 3 4  6 33 6/ 28
BrandY 35 / 35 36 I 36 27 27 36 / 36 Gav8S5 l)avid M. Gay. Electronic nail distribution of
Scsdl 0 / 17 0 / 17 0 15 0 / 10 linear programming test prollems. Mathemat-
Israel 9 / 40 9 / 39 6 57 9/ 38 ical Programming Society COAl. Newsletter
BandM 7 / 31 7 / 30 7 30 7 / 25 13, December 1985.
Scfxml 30 /30 32 /32 28 28 32/ 32

4Gon87' Clovis C. Gonzaga. .Sairh I)ir(ctons for In-E226 42 /42 39 /39 33 33 39 /39

terior Lintar Progrinmorung .ie thods. Prelim-
Beaconfd 26 / 26 25 / 25 24 24 25 / 25 inary version, Department of Electrical Engi-

Scsd6 0 / 19 0 / 19 0 19 0./ 14 neering and Computer Sciences. University of

ShipO.is 5 / 29 5 / 28 5 27 5 / 25 California, Berkeley, May 1987.

Scfxm2 37 / 37 36 36 36 36 36 / 36 Hua67 Pierre Iluard. Resolution of mathematical
Ship041 4 / 31 4 / 28 4 27 4 / 24 programming with nonlinear constraints by
Ship08s 5 / 33 5 30 5 27 5 / 26 the method of centres. In J. Abadie. editor.
ScTap2 6 / 33 6 32 6 33 6 / 26 Vonlinfar Programming, pages 209 219, North
Scfxm3 38 / 38 37 / 37 35 35 37 / 37 Holland, Amsterdam. 1967.
Shipl2s 5 /33 5 /29 5 /27 5 /28
Scsd8 0 / 20 0 / 19 0 19 0 / 13 1M Usfr's Manual: IISL Library. IMSI..NBC
ScTap3 6 / 35 6 /34 6/32 6/27 Building, 7500 Bellaire Boulevard. louston,Sczapr 6 35 34 63/ 426 3 7 3Texas 77036-5085. version 9.2 edition, Noveii,-Cz~ob 50 3 j 44 3 /46 39ber 1984. Publication Number IMSL I.IB3-
25FV47 56 / 56 54 / 54 41 / 41 51 / 54 he09.
ShipO81 4 / 28 4 / 27 4 27 4 / 25 0009.
Shipl21 I 5 / 30 5 / 27 5 31 5 / 301 Kar841 Narendra Karmarkar. A new pol
Total 410 /999 403 /954 357 '924 403 p63

T44 8algorithm for linear programming. Combina-

torica, 4:373 395, 1984.
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AN APPLICATION OF QUASI-NEWTON METRODS TO PARAMETRIC EMPIRICAL BAYES ESTIMATION

David Scott, Universitl de Montrgal

Introduction data sampled from an exponential family is as

follows. Let T indicate a vector of hyperpara-

This article discusses some numerical methods meters, A a vector of parameters, and x a vector

connected with variance estimation in an empir- of observed values. Given i, the density of the

ical Bayes setting. Our principal focus is the parameters, p(' f), is assumed to belong to an

iterative EM process of Dempster, Laird, and exponential family. The density of the observa-

Rubin (1977) as applied to parametric empirical tions given A, f(x1A), will in general depend on

Bayes problems in which the prior distribution L but not ?. The joint model of x and L, ignor-

belongs to a regular exponential family ot dis- ing a constant of proportionality, is

tribjutions with unknown variance (and possibly

other unknown hyperparameters). Because the EM r(x, 6I1) a f(x1A)p(Aj) . (I)

process can converge slowly nd because each

iteration involves the calculation of a poster- If we assume an initial estimate 0 Of T', then

ior expectation, numerical methods designed to the p th EM iteration is:

contain the computational burden in this method E-step: Given an estimate p , calculate the

are of interest. A method which assumes normal- posterior expectation of the sufficient

ity of the posterior distribution in order to statistic t for Y:
simplify EM calculations has been proposed by

Laird (1978) based on a suggestion b- Leonard tp= E6(tlx, T ) (2\
(1975). The main contribution of our research is P

the use of a quasi-Newton approximation to the This calculation will in general also
observed information matrix in cases where the yield an estimate Ap of the para-

Leonard-Laird approximation is used in the EM meters.

iterations. We show that in practice the quasi- M-step: Given tp, calculate a new estimate of+

Newton methods give roughly the same degree of
accuracy in variance estimation as Newton- using maximum likelihood.

Raphson methods, and can allow considerable

savings in computation time in problems where a sup(tpi5)

large number of parameters must be estimated.
It generally seems to be tile case in EM-type

Empirical Bayes and the EIM process caltulat ions for exponential families that once

an L-step has been performed the corresponding

One of the main contributions of the work on M-step is straightforward. The r-step, consist-

maximum likelihood with missing observations by ing as it does of a posterior expectation, poses

Dempster, Laird, and Rubin (1977) was their more important numerical problems. The obvious

demonstration that the unknown parameters in an ipproach is to use numerical integration, which

empirical Bayes problem could be treated as for high-dimensional problems can be very time

"missing data" in an overall statistical model consuming. Laird (197b) proposed to solve this

and then estimated by applying a general model problem by using an approximation wihicl appar-

for ML estimation from incomplete data. Nominal- ently originated witi, Leon.rd (1975) and which

ly, one estimates the hyperparameters of the has been used in m.ny recent studies using para-

overall model; the empirical Bayes parameter metric empirical Bayes (e.g., Wong and Mason,

estimates fall out as by-products of the hyper- 1985; Tomberlin, 1988). We first note that the

parameter estimation. This process, to which posterior distribution of A given x and i is

Dempster et ml. gave the name "EM" to emphasize proportior:l to (I). Our first assumption is

its iterative use of an expectation of missing that the posterior mean of A is the posterior

values (the E step) to carry out maximum lik li- mode. Th- mode can be found by optimizing (1)

hood (the M step) had been used before on many with respect to A. Second, we assume that thc

occasions. Dempster et al. showed the generality observed information matrix:

and usefulness of the EM procedure in situa-

tions, like parametric empirical Bayes, in which -H' log r (x,, 4l) -
the connection with the missing data problem had p -x )- (3)

not previously been apprent. IPAA J
The CM process becomes particularly interest-

ing if tie complete statistical model of the accurately represents the posterior covariance
parameters and the observations 13 a member of a c atrlx of A. If one of the comonent of is aregtrixrofxA.nIftonelofathe compocente of isea
reglar exponential famiy, because it thtien variance component for i , then it will often

becomes necessary to only calculate the poster- happen that the sifficient statistic tor this

ior expectation of te sufficient statistic for hae tth sfent s t orvti
th hpepraetr, r~h rthnal o tevariance compone nt involves t ,e obse rved
t h hye paramet r r~ I ier Lhan a Iof heinformat ion matri x. La ird ( 1978) n es that tihe

missing data, during the -:-step at ach ite ra- info conditions ot (I) aymmetry and (Is) poster-

tion. in the corresponding :-step this expected os
sufficient statistic is used to calculate a new ior covariance matrix equal to -1llp are sat is-

maximum likelihood estimate of the hyperpara- f led If we as sumie tht (1L) is proport ionaI to a

meter. Normal density.

The general form of the EM calculat ions for If we use the Newton-Raphison melthod for

398



unconstrained optimization as a means for carry- ing that I is "ranked higher" than j if At > L
ing out the calculations in the E-step (2), we for both i,j*K, and i*K is "ranked higher
have available, at the optimum A for the pth ("ranked lower") than K if A, > 0 (A, < 0).

iteration, the matrix Hp of seconS derivatives Our empirical Bayes approach to estimating

at A-6 P. The inverse of this matrix is the neg- the Ak is inspired by the approach to estimation

ative of the observed information matrix (3). in log-linear models given by Laird (1978). We

Our invest igat ion of numerical methods in consider that the Ai are (iid) Normal (0,02),
parametric empirical Bayes concerns the imple- where 02 is a variance hyperparameter which must
mentation of this approximation. Before proceed- be estimated from the data. Thus the hyperpara-

ing to a discussion of numerical methods, we meter Y consists of the single component . We

illustrate the EM calculations using the example estimate 02 through the EM process, using the
of empirical Bayes estimation of tile scale para- Leonard-Laird approximation to the posterior

meters in the Bradley-Terry paired comparison distribution of A.
model. We first establish that the overall statist-

ical model for the "complete data" (x,A) belongs
An example problem to an exponential family. This is not difficult

since, as we see presently, the joint density of
In this section we present an example of the observations x given tile parameters does not

parametric empirical Bayes estimation in a clas- involve the hyperparameter, and the joint dens-

sical statistical paradigm, the method of paired ity of A belongs to an exponential family. Thus
comparisons (Bradley and Terry, 1952). Consider the overall statistical model of (x,A) must
an experiment involving comparisons between a belong to an exponential family.

set of K objects by a set of N experimental Under our assumptions, the likelihood of the

subjects. Objects i and j, for i,j=l,...,K are observations is
compared nij times; the nij need not be equal to \

N and in fact need not be equal to each other. f(xIA,02) = Hl I r i

The data consist in a matrix of counts X=lxij , i=1 j=i+l xij ij ji ()

for i,jil,...,K, in which xij represents the while the joint density of the parameters is

number of times object i is preferred to object

j in the 'nij times which these two objects are 'Al
2  '- -- K A E 2) (7)

compared. We assume that there are no tie, ( .2 x ( 2o2 k=l
hence thlat xi.+ xji = n1 j for all i,j and that
xii= 0 for all a. The expression for the model of the "complete

iven 0 wer a e tt idata" can then be written, after taking logar-
Given nij, we assume that xij is distributed ithms and performing some algebraic manipula-

according to a Binomial (nij; xij) distribution, tions, K-I

where T ij is the probability that object I will K A2 K-I log 02

be preferred to object j in a single comparison. o2o2 ) k=l 2
Following Bradley and Terry (1952), we propose

the following model for tile 7T ij: + d(x,A) (8)

where d(x,A) does not depend on the hyperpara-
log .= - O. (4) meter a2. Note that the two explicit terms in

-j J(8) originate in the prior density (7). Also

note that (8) is in a form where tile sufficient
where the k' k=l,... K are parameters to be statistic for o2 is teadily apparent:

estimated. Since i" is monotone increasing in

(i - 1), this modef unambiguously defines a s2 = K-I A2
scale on which we can rank the K objects being k=l k

compared, i.e., object i is "ranked highe r"
than object j if and only if 0 > 

0 
- The EM calculation2s for this application

The n so defined are only unique up to a become tile following. Let o0 denote an initial

change in location, in that a constant can be estimate of 0
2
. The pth iteration of the EM

added to all the Ok without affecting the value procedure is then: 2 2

of any of the T1 . A constraint must therefore E-step: Assume that an estimate 0 of 0 is a'

be placed on the Ok for them to be estimable. We hand. Calculate
impose this constraint in the following way: we 2 

2  
= T 2

arbitrarily choose one of the Ok, which wit.)ut p E x, p x, 0 (9)

loss ot generality we call C K, and then we which is the posterior expectation of
reparameterize the problem in terms of the K-I s2, the sufficient statistic for 02

parameters M-step: Calculate the maximum likelihood estim-
2 2 2

S k- (IK (5) ate p+l Of o given that s SP.

s
2

fo r k=l,...,K-1. This repa ra met eri zat [on is Tils estimate is 2 I  
=

P
equivalent to fixing the origin of tile scale 2 K-1

defined in (1) at an arbitrarily chosen para-
meter value. Note that we can still rank the K A demonstration that this processa must ultimate-

objects using the Ak Instead of the ('k, by say- ly converge may be found in Dempster et al.

399



(1977). Then M =C TC where C=A
- I , and tr M- 

= ICII F where
The Leonard-Laird approximation allows an II .II is the Frobenius norm. This result indicates

important simplification in the E-Itep calcula- that the quantity of primary interest for numer-
tions (9). Since we assume that -H- is the pos- ical calculaLlv: of a variance estimate in thep
terior covariance matrix of A, and that the application we are describing is the Cholesky
posterior mean of A is equal to its posterior factor of Hp, that is, the lower-triangular
mode Ap, it is easy to show that matrix L such that Lp L pT = H p. In addition,

1 2 since this factor is triangular, its inverse is
EA(ATA I x, oJ = AT A + tr Hp (10) also triangular and this fact can be incorpor-

ated into very fast algorithms for calculating
This expression only involves quantities which the Frobenius norm of (L ) - I , which is nothing
are readily available at the termination of a P
straightforward application of the Newton- more than the sum of its squared elements.

In fact, modern implementations of the
Raphson method to find A p Newton-Raphson procedure do compute the Cholesky

In the remainder of this article we discuss factor of the Hessian at each iteration, rather
alternative methods for performing the calcula- than carry out the calculations exactly as given
tions in (10). Our particular interest centers in (1i). A fast, straightforward implementation
on what changes occur in the quantity (10) if we of the Newton-Raphson procedure can be coded in
use a quasi-Newton approximation to H instead FORTRAN, for example, using the subroutines for
of calculating second derivatives. This inter- positive definite matrices available in LINPACK
est stems from the potential for considerable (Dongarra, Bunch, Moler, and Stewart, 1979). For
savings in computation time if this quasi-Newton our problem, the Cholesky decomposition as coded
approximation is applied. in LINPACK uses on the order of (1/6)(K-1) 3

arithmetic operations, in constrast to the
Numerical implementation of Newton-type methods approximately (K-i) 3 operations which are neces-
in the EM algorithm sary to explicitly form the inverse of any of

the H(n).
pIn the application of the EM process to A second approach to the calculation of Lp

variance estimation in empirical Bayes problems directly approximates Lp using quasi-Newton
such as the one we describe, the inverse of the methods. These methods, also called "variable
matrix of second derivatives of the complete metric" methods, have a long history of applica-
data density (the "observed information matrix") tion to the solution of systems of nonlinear
is used in constructing successive estimates of equations and unconstrained and constrained

the variance hyperparameter. This matrix is optimization. Helpful background on quasi-Newton
methods may be found in the review article byDennis and Mor6 (1977) and in the text by Dennis

Raphson procedure to carry out unconstrained and Schnabel (1983).
optimization when estimating A. Let IAM The basic idea of quasi-Newton methods

(2) p pA be the approximations to A which are applied to the nonlinear optimization in each E
P P sm is as follows. Given the initial estiate

generated during the Newton-Raphson FEocedure of H , we form succe-sive iterates HT j ,

applied to the computations (10). The n itera- p P p
tion of this procedure can be written, for y2 )
n=O,l,2,.. .,P

-g(n)= -g(n-l) + u(n) (12)
s(n) = H(n)Vl g(n) (Ila) P P

where U(n) is a matrix of rank two. U(n) is
A(n+l) = A(n + s(n) (llb) generally some function of A(n) A(n - 1) (n)

wher p- phu (n (n-I)Nwto , o , gp and
where s(n) is a search direction, g ( n ) is the gn .oes not

calculate second derivatives but uses onlyvector of first derivatives (with respect to(A first-order information. The matrix (n) is then

of log r(x,Alo 2 ) evaluated at an estimate pAsdi laeo ~)inten)ato I)tPn  used in place of H~n ) in the iteration (11) to

of A and H(n) is the matrix of second derivat- cp Pcalculate a new estilmate of Ap
ives (the Hessian matrix) evaluated at the same A large part of the acceptance of quasi-
point. At convergence of the Newton-Raphson Newton methods in optimization stems from the
procedure, Ap is taken to be the final iterate ability to directly compute the Cholesky factor-() j(n) Lni
in the sequence generated by (i) and the L(n) of n from the Cholesky factor -(n-I) of
observed information matrix IH is the inverse p p P
of the Hessian evaluated at A •p  H(n-1). Several authors have proposed efficient

P p
From (10), however, we see that at each and numerical ly stable methods for doing so

E-step in the EM process we do not need the (see, for example, Gill, Golub, Murray, and
entire observed information matrix but only its Saunders, 1974; Goldfarb, 1976). Importantly, if
trace. We car thus use an elementary result in we have M parameters to estimate these methods
numerical linear algebra (e.g., Golub and Van can carry out the update in 0(M2 ) operations, as
Loan, 1983) to avoid having to explicitly calcu- opposed to the 0 ($3) operations required to
late the Hessian inverse at all. Any positiv explicitly form H(n, and decompose it. Thus if M
definite matrix M can be decomposed as M-AA P
where A is nonsingular and lower triangular. is large, quasi-Newton approximations hold a
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certain promise for carrying out EM calculations an a priori reasonability to using the origin as
with reduced computational effort. the initial estimate A

( 0 ) 
of the parameter

pTwo quasi-Newton updates in particular have vector, but the likelihood function is often
attracted the attention of researchers. 1

E a
ch very poorly behaved rigin and the gradi-

asithvery , e p n s ent evaluated there may be large. If this is the

nn) is as well. These case, then by (ii) the next iterate A) may be
p d n

updates are named with the initials of the a very poor estimate of A . In addition, the

researchers who Initially studied them. The DFP quasi-Newton iterations build up approximate

update, named after Davidson, Fletcher, and second-order information based on calculated
Powell, is perhaps the best known. The rank-two first-order information. Thus if the initial
update (12) characterizing the DFP method is: estimates of A are too off the mark then much

P

U(n) I (q YT +yqT) - 0Ts yyT of the early quasi-Newton updating will be

DF =T + T 2 counterproductive.
s y (s y) Determining an initial Hessian approximation

is known as "scaling" the optimization problem
where since experience has shown much better behavior

q g(n) _jR(n-I)s, y g(n) _ (n-i) of quasi-Newton techniques if the initial iter-
n p = - g ate A(') is of roughly the same magnitude as A

p P
This scaling problem does not come up in the

and s = A(n) - A(n
-

). The BFGS update, named Newton-Raphson method because the iterate A(')

for its discoverers Broyden, Fletcher, Goldfarb, is a function of the calculated Hessian at AM
and Shanno, is p

In relatively well-behaved problems, such as
= (yyT) + 1 (ppT) (13) those arising in many estimation problems from

SsTy s p regular exponential families, this property of

Newton-Raphson allows it to create useful iter-
where ( s ) and y are as defined above and ates at an early stage.
P s. Many texts on practical optimization tech-

The DFP update was originally devised to niques (for example, Gill, Murray, and Wright,

yield a good approximation to the analytic 1981; Dennis and Schnabel, 1983) suggest the use
Hessian. See Dennis and Mor6 (1977) for a dis- of line searches to mitigate the effect of a
cu~sion of the nature of this approximation. naive choice for the initial Hessian approxima-
The BFGS update is "complementary" to the DFP in tion. When line searches are used, the second

the sense that it provides the same sort of step of the iteratio-i (ii) is modified to
approximation to the inverse of the analytic
Hessian that the DFP provides to the Hessian A(n+

l
) = A(n) + X s(n)

itself. Since the calculation (i0) involves the p n

negative of a Hessian inverse, we are naturally where Xn is a scale value which is determined by
interested in the BFGS update. In addition, the first calculating s(n) using (i1a) and then

current consensus seems to be that the BFGS is carrying out a unidimensional search along s
(n )

the most successful quasi-Newton update in
practice (see, for example, Dennis and Schnabel, to find a A(n+i) which satisfies certain condi-

1983, and the references cited therein). tions. In prfnciple such searches may be useful.

In this research we have investigated a However, most accepted line search procedures

quasi-Newton optimization method using a BFGS involve function evaluations. Since in many
update as an alternative to the Newton-Raphson statistical applications (such as the one we

procedure in the computations leading to (10). consider here) the function to be minimized is
In the next two sections we discuss some issues the log of a product, hence the sum of many
arising from the implementation of this method, logs, the function is extremely expensive to
and give some numerical results. evaluate. The additional expense of funLiun

evaluations during line searches may outweigh

Implementation of quasi-Newton techniques any efficiency advantages which might be gained
from using approximations to the Hessian
matrix.

The Newton-Raphson method is well known tomarx
Thea wtionrahsincethe method is aps w wtof In this research we have used the following

practitioners since the method adapts itself procedure for initializing the H{essilan approx-

readily to a wide variety of problem situations. pron:

Quasi-Newton techniques are not as well known imation: EM iteration, we take f)-

and need more careful implementation if they are ( ) tha is, E italize te a i

to be useful. In this section we discuss certain H0O) that is, we initialize the approximate

practical problems which arise from the use of Hessian using the analytic Hessian evaluated

quasi-Newton methods, many of which would not be at &-A0 .

present in an analogous application of Newton- (b) for all subsequent EM iterations we take

Raphson. 'A() YP Dp, where y is a scalar and D is
p pR o p

The most important issue is that of finding a a diagonal matrix.

good initial approximation to H p. If the initial The matrix Dp is constructed following a

estimate of A is zero, the use of H)) - I, the suggestion by Dennis and Schnabel (1983) that
p p

identity matrix, is often a bad choice. In many prior knowledge about the magnitude of the para-

statistical applications, including the one we meter estimates should be used to scale the

have described in this article, there is often optimization problem. Let (Dp) 1 denote the ith
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diagonal element of D . We set tion of the scale parameters of the paired-
P comparison model. We use both real and simulated

(Dp)i - max [i, f (Ap.l)ji ]  data. Using the real data, we show that both
mcthods give virtually identical results.

where (Ac n)i is the i th component of A,-. We Unfortunately, each of the real data sets is too
dervet~ costntyby onidrin te or small to show any computatiuaal benefit from

te cy by considering tie form using quasi-Newton methods (in fact, the quasi-

of the iteration (1I1. By taking first and Newton iterations are much slower). We have

second derivatives of (8) it can be shown that therefore simulated large data sets in order to
each of the components of the gradient vector is give an idea of the kind of savings in computa-

a sum of K-I terms, each of which involves a tion time which might be expected from using
sample size nij. Furthermore, each of the ele- quasi-Newton techniques on large problems.

ments of the diagonal of the analytic Hessian is In the case of both the Newton-Raphson and

such a sum. Since we want both sides of (Ila) to quasi-Newton methods we have used Initial estim-

be roughly on the same scale, we take ates AO) = 0 and A(
0

) = aAp_ for p=
2
,
3
,... The

results reported below use a=.8. In testing we

Y = n(K-1) (14) used a=.9 as well, but interestingly the smaller
value of a induced fewer quasi-Newton itera-

where tions. The effect of using a > 0 on Newton-
Raphson was to reduce the number of Newton

K-i K iterations by about a third, although there was
n 2 Z I

K(K-i) i=l j=i+l no discernible difference in effect between the
two values of a.

is the average sample size. The expression (14) The Newton-Raphson and quasi-Newton itera-
would be equal to each of the diagonal elements tions are terminated when

of the analytic Hessian evaluated at A=O, in the

case where nj= n for all i and j. KA(n) - A(n-l)tI
This procedure for initializing the Hessian p P

approximation is a compromise between using the 5(n-l)1 l

high-quality, but expensive, scaling information p

available in the Newton-Raphson procedure and and the EM iterations are terminated when

the less expensive, and less reliable, technique
of using a diagonal matrix. We do the former 1 2 2 1
when our prior information about A is poor, at __p - <C
the first iteration; we do the latter when our 2

prior information about A is better. °P-l

In fact, we use AM=X 0 as a starting value
P where E > 0 is an error tolerance. We have used

only at p=l, the first iteration of the EM. £=10-6.
Since the EM process solves a sequene of sim- The simulated data sets were generated by

ilar optimization problems, A P. provides a very drawing 4=K-1 values Ak* from a Normal (0,1)

good estimate of A . Therefore, for p=
2
, 3,... distribution, for M=u0, 80, 100. 150, and 200.

we take These simulated parameters were then used in
AM = binomial experiments to generate data matrices

p 0) 1  ix 1 j*1 according to the Bradley-Terry model (4).

where act(0,1] is a shrinking factor. The shrink- We have used nig 50 for all i and j in all

ing factor is applied to preveaL the approxima- simulations.

tion to A from being too good, in order to Our numerical results are summarized in Table

allow sufficient quasi-Newton iterations to 1, where we report, for both Newton-Raphson and

build up a reasonable approximation to H
1  quasi-Newton methods, the number of EM itera-

p tions required, the average number of Newton
before convergence occurs. A premature conver- Iterations per EM iteration, the estimated 02,
gence of the quasi-Newton iteracions may cause and the approximate computation time.

the EM iterations not to converge. For each of the simulated data sets we com-

We have comiputed our BFGS updates by applying pute s2 the empirical variance of the gener-

two independent rank-one updates, according to A t

formula (13), to an LDLT decomposition of Ti(n) ated Ak*. Each of the variance estimates gener-

t ated by Newton-Raphson and by quasi-Newton
according to algorithm C1 of Gill, Golub, aproaches in very close to the corresponding
,Murray, and Saunders (1974). Other methods are s .rnall insery closecto the cespon

available to perform rank-one updates, and to SA In all cases, in fact, the Newton-Raphson

directly compute a rank-two update in a single and quasi-Newton methods give virtually ident-

subroutine call. Some of these methods may ical variance estimates

provide better numerical stability in hard prob- We note that in the case of the simulated

lems, but they are slower, data sets, the size of the problem has very
little effect on the number of Newton or EM

Some numerical results iterations required to converge. In the case of
the real and the simulated data, the quasi-

In this section we present results from a Newton method requires 3.5 - 4 times as many

comparison of quasi-Newton and Newton-Raphson iterations per EI iteration. Again, this ratio

methods in carrying out empirical Bayes estima- seems to be independent of the size of the
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problem. Bradley, R.A. and Terry, M.E. "The rank analysis
The column labelled "QN advantage" gives the of incomplete block designs. I. The method of

ratio of the Newton-Raphson time to the quasi- paired comparisons". Biometrika 39, 1952,
Newton. For problems in which M, the numbers of 324-345.
parameters, is small, Newton-Raphson is clearly Dempster, A.P., Laird, N.M., and Rubin, D.B.
faster. As M gets large, however, the quasi- '"aximum likelihood from incomplete data via
Newton advantage seems to approach M itself. the EM algorithm" (with discussion). J. Royal
Such behavior is to be expected, as each Newton- Statist. Soc., series B, 39, 1977, 1-38.
Raphson iteration involves O(M3

) arithmetic Dennis, J.E. Jr. and Mor6, J.J. "Quasi-Newton
operations, while each quasi-Newton iteration methods: motivation and theory". SIAM Review
involves 0(M

2
) such operations. 19, 1977, 46-89.

Discussion Dennis, J.E. Jr. and Schnabel, R.B. Numerical

In this research we have applied quasi-Newton Methods for Unconstrained Optimization and
methods in a parametric empirical Bayes setting Nonlinear Equations. Englewood Cliffs:

where the EM process is used to estimate a varn- Prentice-Hall, 1963.
ance hyperparameter. We have shown that the Dongarra, J.J., Bunch, J.R., Moler, C.B., and
variance estimates calculated using our tech- Stewart, G.W. LINPACK Users' Guide. Phila-
niques are virtually identical to those calcu- delphia: SIAM Publications, 1979.
lated using Newton-Raphson methods. In addition, Gill, P.E., Golub, G.H., Murray, W., and
the quasi-Newton methods use substantially less Saunders, M.A. "Method for modifying matrix
computation time in large problems. factorizations". Maths. of Computation 28,

The potential for application of quasi-Newton 1974, 505-535.
methods is great in statistics, not only as part Gill, P.E., Murray, W., and Wright, M.H.
of the EM process but more generally. A very Practical Optimization. New York: Academic
fertile area for further research is in the Press, 1981.
scaling of quasi-Newton optimization when Goldfarb, D. "Factorized variable metric methods
applied to parameter estimation problems. We for unconstrained optimization". Maths. of
suspect that the ad hoc scaling solution used in Computation 30, 1976, 796-811.
this researeh will generalize to a rule which o
may be applied in a wide range of estimation Golub, G.H. and Van Loan, C.F. Matrix Computa-

problems. tions. Baltimore: Johns Hopkins University

Press, 1983.
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Table 1

Numerical Comparison of Quasi-Newton and Newton-Raphson Methods on Selected Data Sets

No. Newton-Raph gon Quas t-Newton
nata set parameters s No. EM Avg. Newton a2 t lIe3 No. EM Avg. QN -2 m03 ON Advantage

:terat bns I terat bns Iterat ions Iterat bns

Dominanoe1  6 N/A 36 4 1.4904 .1373 x 10- 3  35 13 1.4321 .1382 x 10- 1  0.01

Schoolboys2  12 N/A 10 4 1.6781 .5287 x io 10 10 1.6781 .3230 x 101 0.16

(Slmulated' 60 0.79 5 4 0.8340 .5494 x 101 2  5 14 0.8337 .2432 x 1012 2.3

(Sl ldnu Iat'd) 0 0.84 5 4 0.4937 .1795 x 1015 5 14 0.8835 .3019 x 1014 5.9

(SI mjlated1 t0O 1.23 4 4 1.2235 .3897 x 101 7  4 15 1.2232 .3221 x I016 12.1

(SImulated) 150 0.10 5 4 0.9908 .2000 x 10
2 1  5 15 0.9907 .1602 x 1019 125.0

(SInulatel) 200 0.99 4 4 1.0280 .7676 x 1023 4 16 1.0279 .5317 x 10
2 1  144.4

Notes_ :
I From Appelby (1983).
2 From Kendall (1962).
3 TIms are given in P sec. All computations were carrrlid oLit on a SUN 3/50 workstat bn with floatIng point accelerat ion.
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NUMERICAL ALGORITHMS FOR EXACT CALCULATIONS OF EARLY STOPPING PROBABILITIES
IN ONE-SAMPLE CLINICAL TRIALS WITH CENSORED EXPONENTIAL RESPONSES

Brenda MacGibbon, Concordia & UQAM, Susan Groshen, USC, Jean-Guy Lcvreault, U. de Mtl

For some cancers, the existing treatment regimens and the more recently developed group sequential tech-
produce long-term disease-free survival rates of 90% or niques appropriate for censored data, or adaptable to
better. In this situation a new protocol may aim to re- censored data, rely on large sample theory for proba-
duce the amount or duration of treatment, while main- bility calculations (Pocok [1977], [1982], O'Brien and
taining the high disease-free survival rates. Although Fleming [1979], Majunder and Sen [1978], Gail [1982],
the primary goal is to evaluate the specific morbitity Jennison and Turnbull 119831). It has been observed
of such a new protocol, it is desirable to develop rules (Gross and Clark [1975], Lesser and Cento [1981],
to stop the trial if many patients die or relapse early Benedetti et al. [1982]) that for analyzing censored
in the study and to study the statistical properties of data, the effective sample size at a given time for a
these rules numerically. Since the failure (death or re- group of n patients, is approximately the number of
lapse) or success (survival) of the nth patient is not usu- failures observed prior to that time, and furthermore
ally observed before the (n+l)st patient is entered onto that asymptotic approximations depend on the number
the protocol, most developed sequential techniques do of failures (Selke and Siegmund [1983], Slud [1984], Tsi-
not apply to the problem. Most group sequential tech- atis [1982]). Thus asymptotic approximations may not
niques involve large sample results, inappropriate for be appropriate under these circumstances.
small studies. If the survival times of the patients fol-
low an exponential distribution and the entry times into Any sequential or group sequential procedure ap-
the trial are Poisson, and if these are independent, then propriate for the one-arm pilot study described above
a pure birth-and-death process with a well-defined tran- will therefore require exact, finite-sample, probabilities
sition matrix is an appropriate model. Analysis of the based on a nonparametric method or on a procedure
process enables the expression of error rates in terms designed for a specific parametric survival distribution.
of the transition probability matrix and renders these Because of the limited number of failures expected in
calculations computationally feasible. A conceptually this setting, nonparametric statistics will be insensitive;
simple design for monitoring a trial, in which a new parametric techniques, if appropriate, will be more pow-
treatietA is evaluated alter each observed failure, iz erful. Since many survival patterns can be well sum-
presented and algorithms to calculate the error rates marized with an exponential curve, several sequential
of interest are given. Algorithms for the calculation of methods have been proposed for the exponential distri-
the average sample number (ASN), the median and the bution. However none of them are quite suitable for the
quartiles of the sample size, as a function of the ratio type of trial under consideration. As demonstrated by
of the entry rate to the failure rate, are constructed. Barndorff-Nielsen and Cox [1984], with staggered en-
Approximations to these exact results are also given by try, the distribution of the one-sample likelihood ratio
the use of the ballot problem. Finally, the methods are test (and therefore the maximum likelihood ratio esti-
illustrated on an example involving the design of a pilot mator) for the parameter of the exponential curve is
study. not explicitly known and is usually approximated using

large sample results. Epstein and Sobel [1955] consid-
ered one-sample sequential procedures for exponential

1 INTRODUCTION failure. Their techniques were not appropriate for cen-
soring due to staggered entry and ultimately involvedIn the above setting, guidelines or criteria would be large sample calculations. Breslow and Haug [1972] de-

useful in helping the investigator to decide when there veloped two-sample methods for comparing exponential
have been "too many" deaths or failures to justify the survival curves which used asymptotic approximations.
continuation of the trial. Two problems may arise in e- Canner [1977] employed computer simulations to de-
tablishing criteria in these situations. The first occurs velop critical regions for a group sequential procedure to
when the response variable of interest is a time variable compare two survival curves. Klein and Lerche [1983]
such as survival, remission duration, or disease-free sur- proposed methods which could lead to exact calcula-
vival: the failures (death or relapse) or successes (sur- tions for the sequential comparison of two exponential
vival or continuing remission) of the first n patients are survival curves but used large sample approximations
not usually observed prior to the entry of the (n+l)_t to obtain results.
patient into the study. Thus the classical sequential
techniques such as those described in Wald [19471, can- When the survival times are exponentially distri-
not be applied to this situation. The second problem buted and entry into the study is Poisson and inde-
occurs because the expected survival in the proposed pendent of the survival times, the problem can be mod-
study is high or the total number of available patients is eled as a pure birth-and-death process (see Ross [19801).
limited. Either situation would imply that the observed This will accommodate censoring due to staggered entry
number of failures will probably be small. Sequential and does not rely on asymptotic theory, thus permitting
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one to calculate the exact size and power of any preas- 3) At the time of each failure, record the number of
signed decision plan. Analysis of the process enables patients entered on to the tiral. Let ni be the total
the expression of error rates in terms of the transition number of patients who have begun treatment at
probability matrix and renders these calculations com- the time of the ith failure.
putationally feasible. A conceptually simple design for
monitoring a trial, similar to one previously proposed by 4) If at the ith failure, n, < ni*, stop the trial and

Breslow [19701, in which a new treatment is evaluated reject H0 . If ni _ ni*, continue accruing patients

after each observed failure, is presented in this paper until the next failure is observed or until N patients

and the error rates of interest are determined. The av- have been treated.

erage sample number (ASN), the median and the quar-
tiles of the sample size, are calculated as a function of 5) When patient accrual has terminated according to

the ratio of the entry rate to the failure rate. (4) above, then a complete analysis of the data

2 THE TESTING PROBLEM AND PROCEDURE will be undertaken. The rules above are proposed
to monitor the study respecting ethical considera-

Each patient who will be entered into the trial will tions, and not to replace further appropriate anal-
be represented by the pair of random variables, (X, Y) yses.
where X is the entry time of the patient measured from
time zero, the start of the trial, and where Y is the time 3 THE BIRTH-AND-DEATH PROCESS MODEL
at which the patient fails, also measured from time zero.
We will consider the case where Y-X, the survival from 3.1 Notation and Definitions
entry of the patient into the trial, is exponentially dis-
tributed and where the entry into the trial is Poisson. Now let us define an event to be either the entry of
If patient entry is Poisson, then the waiting times are a patient onto the trial or the failure of a patient. Let
exponential. That is, X,+l - Xi follows an exponen- the pair (r, j) denote the state with exactly j. failures
tial distribution, where X, is the entry time of the ith by the rth event and prior to the (r + 1)st event. A
patient that comes into the study. Let l/Af and 1/A, permissible path will be defined to be a sequence of the

be the expected values of the exponential distributions pairs (r,Jr), {(0, 0), (1,Ji), (2,j2).-.(kJk)}, satisfy-

of the failure times, (1, - Xi), and the waiting times ing l 
< 

i2 <,"" <
. k and r > 2jr for all r = 1, k.

between entries, (X,+1 - Xi), respectively. The random Let 1 denote the set of permissible paths.

variables. X, and Y - Xi are assumed to be indepen- Now define Si (for i = 1,2,---) to be the subset

dent. of all permissible paths that represent trials continued

If in previous investigations with the intensive or through the (i - 1)st failure and stopped at the ith fail-

standard therapy, the mean survival time has been p*, ure. Thus Si [po : p = {(0,0),(1,ji),(2, j2) ,

then for ethical reasons, we require that 1/Af based on (r, jr), ... ,(m, J, )} such that whenever j, = i it follows
that r < n, * +i- 1 and whenever jr < iit follows that

the modified therapy under consideration be at least as

large as u*. Thus the hypotheses under consideration r - j, > njr*.] A path in S, must have strictly fewer
than j failures at event time j + nj * -1 (for 1 :5 j < i)

Ho : ! <1/p* and therefore must have at least nh* entries into the
trial at that time. At event time i + ni * -1, the path

HA : ).f > I/P will have at least i failures and no more than ni * -1
The proposed trial design (i.e. the stopping and entries into the trial.

decision rule) for this testing problem can be summa-
rized as follows: if at any time, the "simple" failure The probability of stopping the trial at the itth fail-defied o betheobsevedrati of ure is the sum of the probabilities of all the paths in
proportion, which is defined to be the observed ratio ofthe probability of
number of failures to total number of treated patients continuing the trial to the end is 1 t- Pr oaUbi S, Let us
exceeds some predetermined threshold (which may de- o=
pend upon the number of failures) then the trial will denote this probability by P{C}. To calculate P{C},

be stopped. This is the boundary proposed by Breslow we will model this problem as a birth-and death process.

[19701 for binomial responses. More specifically, 3.2 The Birth-and-Death Process Model

1 ) Plan to enter a maximum of N patients. If the assumptions of exponentiality and indepen-

2) Establish a threshold, W*, such that if the "simple" dence in the preceding section hold, then we have a
failure proportion exceeds W*, the treatment will birth-and-death process where the states are determined
be considered ethically unacceptable. This will lead by the number of patients alive and on trial (see Ross
directly to a sequence of critical numbers, nl* < 11980], Chapter 6, Section 3) and whose transition prob-
n 2 * < n 3 * < "-' < n1* = N, where ni* is the ability matrix, P = {P,,} is given below:
smallest integer greater than or equal to i/W*. The
WV* is chosen not only to control error rates, but (1)P01 =

is also based on ethical considerations which reflect (2)for I < ij ! N + I
unacceptably high values of \f.
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Pjj+I = A/(iAf+ Ae) will be a path with a non-positive slope that passes
Pj~j-l = iAf/(iA1 + A,) through balls at each of the six stages. An S 3 path

Pi,=o for j 5 i - 1 or i + 1 will pass from T(0, 0) to a white ball at event time 22.

PN~ 1An S7 path will be a permissible path passing through
black balls at event times 0, 22. 30 and 37, and a white

Pi,i+l is the probability that another patient enters the ball at event time 45.
trial prior to any failure when there are i patients on

trial and at risk for failure. Pj-I is thc probability that FIGURE 1 TWO PERMISSIBLE PATHS FOR TRIAL

a patient fails prior to another entry, when there are i Event

patients at risk. N is the total number of patients that Time Slate (No. Alive)

will enter the trial if early termination does not occur 0
and I - 1 is the total number of failures permitted prior 0

to the entry of the Nth patient. 22 0 9 0 0 0 0 0 0
" -2 

0 %% 8 4 12 10 8 6

P is the transition matrix of a Markov Chain whose 22 20 ,18 16 14 12 10 6

states denote total number of patients alive and in the 30 0 0 0 0 0 0 0

trial, and Pi, represents the probability of moving from 3 2 20 2137 0 0 6.. * ostate i to state j after the occurrence of one event (entry 37 35 33 31 29 27 25 23 21
or failure). Let Pij be the (i,j)th entry in the produci 45 * * • 0 0 0

matrix p'. P. represents the probability of moving 45 43 41 39 37-=35- 33 31 29
from state i to state j after the occurence of r events. 66 0 0 0 0 0 e - 0
Thus Pr{(r,j)} =pJ 2 .66 64 62 60 58 56 54 52 50

To calculate the probability of terminating the trial
prior to the entry of the initially specified N patients, for The mathematical formulation will now be devel-

given Af and Ae, we will use the transition matrices, pr oped. T(ij), the outcome of being in the jth state at

to calculate tile exact probabilities of the sets Si. These the ith event time (i > j) actually represents a trial

transition matrices also enable us to easily compute the in which there have been exactly i + (i - j)/2 entries

average sample numbers (ASN), the usual measure of and (i - j)/2 failures. (Note that the Pr{T(i.j)} = 0

effectiveness of stopping rules. At the same time, it if i - j is not even). Let r[T(i,j) -- T(k, r)] repre-

was felt that the median sample size and the quartile sent the set of permissible paths from T(i,j) (i > j)

sample sizes could be viewed as a more robust measure to T(k,t) (k > i). The fact that r contains only

of effectiveness of the early stopping mechanism and permissible paths implies that (i - j)/2 < (k - rn)/2.

the transition matrices have also been used to calculate Clearly. if all trials were to be run from the 0th until

these quantities. the 22nd event time. then the 7[T(0, 0) - T(22, 2n )J for

More explicitly, in order to facilitate the discussion n = 0. 1,. .8. would represent permissible paths which
would be stopped by tle stopping rule for the 3rd fail-

of the probability calculations, we will limit ourselves to
the following hypothetical trial with the following pre- re. Since ,= P,-{[rT(0,0) - T(22,2,)]} is equal

cise stopping rules (the method can be easily modified to 1. and since 7r[T(0,0) -- T(22,22)]. 7r[T(0,0) -

for other values of the nj*'s): T(22, 20)] and fr[T(0,0) - T(22, 18)] represent the sets
of all permnissible paths of trials not stopped by the stop-

1) Do not plan to stop directly after the 1st or 2nd ping rule for thc 3rd failure, then the probabilities of
failure (hi * = 02* = 1) stopping or continuing at this stage can be easily calcu-

2) If the 3rd failure occurs before the 20 thi entry, stop: lated using the stochastic matrix, P. defined in Section

if not, continue (713* = 20) 3.2.

If the 4th failure occurs before the 27th entry stop. Let c' represent the (row) vector. (0.. .. 1.0..),
3) with a 1 in th: (i + 1 )st place and 0's elsewhere. Let ( v))

if not, continue (Yi4* = 2) 1represent the jtLh element of the vector contained within

4) If the 5th failure occurs before the 33rd entry, stop: the parentheses, v. Now, Pr{ 7rT( 0.0) -4 T(22, 2u )]}
if not, continue (n,,* = 33) can be written as (c0 P' 2 

)2,,, the (2n)th element of the

5) If the 6th failure occurs before the 40thIi entry, stop: vector (0 p 22. More generally, if r[T( i, j) - T(k, in)]

if [iot, continue (06s* = 40) represents the set of permissible paths (that is, i >_
j, k > ,. *(i-j)/2 < (k--m)/2, and (i-j) and (k-m)

6) If the 7th failure occurs before the 60th entry, stop; arcvel) then we have
if not, continue (17" = 60)

7) Stop at the 60th entry. P,'r[T(i,.j) - T(k,m)]} = (jpk-) 0  (.41)

The events, S , S-2. S .. • S7 alnd C, will be fined If , I T(i. j ) -- T(k, n )- T(? . q)] is perIiissibl'. then

as before in Section 3.1. Let T(i.j) denote the outcome its probabfility is given by

of being in the jl 1 state at the ith event time for i > j. ((pk-,), X ,p,,- )q (.42)

Figure 1 can be used to visualize permissible paths

for the given trial design. Intuitively a permissible path The dotted line on Figure 1 joiiiiiim (0.0). to (22.20)
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to (30,26) to (37,33) to (45,39) to (66,52) represents where E(i,j) = union of all type [i, j] admissible paths
a subset of permissible paths with an endpoint of 59 and
entries and 7 failures (that is, a trial stopped only at the Prob {E(i, j)}
7th failure). Its probability is calculated as (e0p 2 2

)2o x

(e 2°P 8 )26 x (e 26 p 7 )3 3 x (e3 3 P 8 )3 9 x (e09P 2i )52. Total #of admissible sequences of type lxA(I)

Thus the probability of the events S 1 , S2, -" ', S 7 , Total #of sequences of type [i+j-k,kjxAi+j-k,k)

and C, can be calculated exactly, using the stochastic
matrix. It suffices to enumerate the permissible paths (v') q(ij) A(i,j)
for each event and to calculate their exact probabilities =-zt('

21 ( ) q(i +j-k,k)A(i +j-k,k)
using extensions of equations (Al) and (A2).

For determining the ASN, the median, and the where [(i + j)/2]= largest integer less than or equal to
quartiles of the sample size, the above calculations can (i +j)/2. Thus, the probability of not stopping the trial
be modified to compute, for each n, the probability of at the first state is
stopping the trial after the entry of the nth patient and
prior to the entry of the (n + 1)st patient. To see this, r(j, n3 + k3 - 1 - j)

let i be the number of failures such that n*_t < n < n+.
The trial will stop after the nth entry only if the ith J=-3

failure occurs between the nth and (n + 1))st entries.
Therefore the probability of stopping at n patients is
the sum of the probabilities of the paths in Si with ex- (ha+k 3 -1) q(jln 3 +k-i-j) (j 1 n 3 +k 3 -I-j)

actly n + i events. "__
[(n 3+k3-1)/21

3.3 An approximation to the true probability of the (++
events Sa..-- SI. C using the ballot problem.

These approximations tend to work rea.sonably well in
Recall that if we have two independent Poisson pro- practice.

cesses with parameters A,, A2 then probability that the
uth waiting time in the first process occurs before the 4. AN EXAMPLE OF THE STOPPING RULE FOR
mtli waiting time in the second process is: GOOD PROGNOSIS PATIENTS WITH

OSTEOGENIC SARCOMA
,A- k \ \,n The calculations presented in this manuscript were

k=i prompted by the following clinical situation.

One method of treating the bone cancer. osteogenic
Although our Poisson processes (the entry process and sarcoma, in a subgroup of children involves intens,'
the failure process) are far from being independent. we chemotherapy followed by surgery and then more
can use a similar approach if we make the following chemotherapy (see Rosen et al. [1982] and Rosen et

assumptionc al. [1983]). Examination of the tumor after removal by
A sequence will be said to be of type [i. j] if it Con- surgery can identify those patients with tumors which

sists of exactly i cntries and j failures. In order that a are very sensitive to the pre-operative chemotherapy
ft. j] type sequence represent a trial, we will require that and have had at least a 90% tumor reduction. These
for each subseqllence Sk of length k < i + j. the nunber patients with responsive tumors appear to have a rea-

of entries in Sk be greater than the ninber of faihres sonalby good prognosis with the probability of disease-

in Sj. Such a sequence will be called admissible, free survival estimated to be approximately .8(:± .077=

Now let us assumme that the probability of any se- S.E.) at three years from the start of therapy (unpub-
quence of type [i. j] is equally likely (this probability will lishied update. Rosen [19821). However. the chemother-
be denoted A(i. j)): standard mathematical techniques apy regimen is quite intense, with both short-term and

can be used to approximate or bound this probability. possible long-term side-effects. A modified treatment

Under this assumption, the weak selise version of tie protocol was proposed to shorten the duration of tie
ballot problem, (ef Barton and Mallows (1965)) call be post-operative chemotherapy, in those patients who had

a pplied and the probability that a sequence of type [i,.1] experienced at least 90V tumor reduction as a result of
is admissible = ( + 1 - j)/(i + 1) (Let us denote this the preoperative chemotherapy. The goal was to re-
pro)bability by q(i. j)). (1hwe the severity of the side-effects while maintaining

Then the probability of 013 eintries before V3 failures, the overall higher probability of disease-free survival.

that is. the prol)ability of not stopping the trial at the It was estimated that approximately 12-15 patients

first stage is: a year would be eligible for the study. Since a study

lasting over 5 years was not considered practical, it wasz ,~kal decided to plan a single-arnm study witi 60 patients. Al-
PrE(0, ?13 + V: - 1 -j)} though the main objective of the study was to evaluate

toxicity and side effects, it was agreed that a niechanisma
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to monitor the number of disease recurrences as well as and we would certainly want a small probability of earlydeaths was necessary. Monitoring rules, such as the one stopping if the three-year survival were 0.90 or better.in Section 2, were proposed. Based on past studies, it Figure 2 plots the median, mean. upper and lowerwas decided that the assumptions of Poisson arrival for quartiles for the number of patients entered for SR3.
treatment, and of exponential failure during the first 3 Once more, the mean and median are similar for the val-years after the beginning of therapy, were reasonable ues of ln(Ae/Aj) under consideration. The mean tendsand would provide useful approximations to the actual to be larger than the median when the probability ofdistributions, early stopping is higher and therefore the distributionThe stopping rule proposed in the previous section is somewhat skewed to the left; the mean tends to behas its critical values chosen so that the "simple" failure smaller than the median when the probability of earlyproportions would never exceed 15%. nI*, and n 2* were stopping is lower and therefore the distribution is some-
set to 1 so that the trial would not stop after one or two what skewed to the right.
early failures. The maximum number of patients was set FIGURE 2: Number of patients to be entered into studyto 60 and the maximum number of failures permitted with stopping rule 1: Expected number, Median, Lower
was determined by the critical region for a .05 level one- and Upper quartile.
sided test of a binomial parameter, 7r = .05 with n = 60.

Table 1 presents the probabilities of stopping early so.
for a variety of ratios of entry rate (A,) to failure rate s50
(Af). For the particular situation under consideration in
this example, we would want a high probability of early LE

stopping if the three-year survival were much below 0.80 .30 A: Loam, Qu

' 20L
74 r quartileTABLE 1: PROBABILITY OF STOPPING EARLY* 4'

1 0

In (A,/Af) (A, = 10) (A, = 12) (A, = 15) ** 0
Nlturl logarithm of the rMilo ot th. entry rat. to tho f.i-,a mil.3.20 0.294 0.231 0.160 1.000 ,(0,/0 ) 3.6 4.0 4.5 .0 .5 6.0 6.5

3.30 0.331 0.265 0.190 1.000 .... .... .... .... .... .... ...
3.40 0.367 0.301 0.223 1.000 Probability X. 0 0.74 0.83 0.88 0.83 0.9$ 0.98 0.801 0 ,,*, .- 12 0.70 0.80 0.88 0.82 0.80 0.87 0.883.50 0.404 0.337 0.257 1.000 suro al a. 18 0.7; 0.64 0.8 0.90 0.84 0.96 0.98
3.60 0.441 0.374 0.292 1.000
3.70 0.476 0.411 0.329 1.000 P,obabd y )%. 10 0.40 0.5 0.72 0.82 o.88 0.83 0.86ol 3 ,eer e 12 0.34 0.02 0.87 0.78 0O.8 %.1 0.803.80 0.511 0.447 0.365 1.000 ... v.v X:. 1 0.26 0.44 0. 1 0.74 0. 3 0.88 0.83
3.90 0.545 0.483 0.402 1.000
4.00 0.577 0.517 0.439 1.000 5. CONCLUSION
4.10 0.608 0.551 0.474 1.000 With the calculations of the entries in the matrices
4.20 0.638 0.583 0.509 1.000 P'n(n > 1) for different values of Ae and )A, the exact4.30 0.666 0.614 0.543 1.000
4.40 0.692 0.643 0.576 0.999 probability of not stopping early can be computed for
4.50 0.717 0.670 0.607 0.997 a given trial design by summing over the appropriate
4.60 0.740 0.696 0.636 0.993 products as presented in the appendix. With these cal-
4.70 0.761 0.721 0.664 0.984 culation, the proposed trial design can be evaluated in
4.80 0.781 0.744 0.691 0.969 terms of size, power, ASN, and median sample size. In
4.90 0.800 0.765 0.715 0.944 practice, the patient referral patterns are often known
5.00 0.817 0.785 0.738 0.905 from past experience and thus A, may be estimated;
5.25 0.854 0.828 0.790 0.744 different values of )A can be used to evaluate the de-
5.50 0.885 0.863 0.832 0.515 sign. This manuscript confined itself to the study of
5.75 0.909 0.892 0.867 0.294 one stopping rule; in MacGibbon et al. [19881 several
6.00 0.928 0.915 0.894 0.139 stopping rules are compared and examined according to
6.25 0.944 0.933 0.917 0.056 the above criteria.
6.50 0.956 0.947 0.935 0.020 Canner [1977] also considered the problem of moni-
6.75 0.965 0.959 0.949 0.007 tering a trial when the failure was exponential. Using
7.00 0.973 0.968 0.960 0.002 computer simulations for nuch larger studies, he found

that his results were reasonably robust against changing
a Columns 2,3,4 correspond to three-year survival referral patterns, but quite a bit more sensitive to depar-corresponding totures from the assunption of exponentially distributedpatients/year respectively. failure data. The effect of varying referral patterns illthe set t ing under consideration is current ly being stud-

•* Column 5 corresponds to the probability of stop- ied.
ping early. Since the calculations of the size and power er
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are exact if the failure distribution is exponential and Lesser, M. and Cento, S. (1981) Tables of Power for
if patient entry is Poisson, then for small and moderate the F-test for Comparing Two Exponential Survival Dis-
sized studies, the proposed sequential stopping rules can tributions. Journal of Chronic Diseases 34:533-544.
be used as exact procedures - - thus establishing the
objective criteria to permit the necessary monitoring of MacGibbon, B., Groshen, S., Cento, S. and Levreault,
one-sample studies. J.-G. (1988) A Stochastic Model for Exact

Calculations of Early Stopping Probabilities in One-
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A Numerical Comparison of EM and
Quasi-Newton Type Algorithms for Computing
MLE's for a Mixture or Normal Distributions1

John W. Davenport
Margaret Anne Pierce Georgia Southern College
Richard J. Hathaway

ABSTRACT

Calculating maximum-likelihood estimates for a Pm(Xe) x a I p(x11 1,E1) + " + orP(xf.lZm) (E)
mixture of normal distributions can be one of the
most computationally intensive problems in where 8 collectively refers to all the individual
parametric estimation. Maximizing the corresponding component mean and covariance parameters along
likelihood function is complicated by singularities and with the mixing proportions a,, a2 , • •., aCm, which
numerous spurious maximizers. Currently the most must sum to I and have values between 0 and 1.
popular technique for finding maximizers of the Some of the earlier applications of densities of
likelihood function is the EM (Expectation the form in (I) are from the field of fisheries
Maximization) algorithm. While this iterative research, from which we borrow an illustrative
algorithm is extremely reliable and usually finds the example. According to Hosmer (1973), adult halibut
.good" maximizer from most reasonable initial of a given age class have lengths distributed
guesses, it is very slow in cases where the overlap according to a mixture of two univariate normal
between component normal distributions is great. distributions. The lengths of the male halibut are
Another approach, which is faster though thought to actually normally distributed, as are the lengths of
be less reliable, is to directly maximize the likelihood the females, but the two normal distributions
function using a (locally) fast iterative algorithm modeling the male and female subpopulations are not
based on some variant of Newton's method. The the same. In this case the overall population of all
disadvantage with these quasi-Newton methods is halibut of a given age class Is not normally
that sometimes the estimate obtained is very distributed, but rather is distributed according to a
dependent on the initial guess used. This paper mixture of 2 normals
presents some preliminary numerical results
indicating the relative strengths and weaknesses of P2(x18) - C(MP(XI1M,GM2) + aFP(XIVIF,aF2 ) (2)
the EM and quasi-Newton approaches found by testing
several methods on a variety of mixture estimation where for convenience we use M and F to denote
problems. Comparisons made include the parameters corresponding to the male and female
computational efficiency and reliability of the subpopulations, respectively. Note that in the
approaches tested. The ultrnate goal of this notation used above that 9±F, for example, is the mean
research is to learn how the two basic approaches
can be hybridized in order to achieve a method that is length of all female halibut of a given age class,both quickly convergent and reliable, while axM, for example, can be interpreted as the

proportion of all halibut of the given age class that
1. INTRODUCTION are male. Accurate estimates of the complete

Normal mixtures are a widely applicable modeling mixture parameter 8, based on data lxi,.. xq}
tool whenever the statistical population of interest consisting of the lengths of n halibut taken from the
is itself composed of subpopulations which are population, would be important to scientists
distributed according to different normal interesting in better understanding the population
distributions. A t-variate normal density p(xlp,Z), dynamics for halibut In this paper, we are not
with t-variate mean vector I and t x t symmnetric, interested in the applications, but rather in the
positive definite covariance matrix Z, is defined for computational problem of accurately and efficiently
t-variate real x by estinating the parameter 8 for mixture densities of

the form (1), given a t-variate sample (xj, ,xJ
P(xII,?-(exp(-(X- I)T '1(x-I 1,2)) / ((2n)U/ 21jIi/2)) distributed according to the unknown distribution

An excellent reference for more information on both
A mixture of m t-variate normal distributions km(xI) applications and estination techniques is Redner and
is defined by Walker (1984)
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The next section contains a brief description of
the two types of methods (EM and quasi-Newton) to
be tested, and Section 3 contains a description of Wik(i(r) P(Xki(r)2(O / Pm(XklCr)) k 1,..,,n
the numerical tests performed, along with
comparisons of the results obtained by the two
approaches. The last section contains a discussion n
of the results along with ideas concerning the Ai(r) I ZWik(r))
successful hybridization of the methods tested. k-1

2.The EM and Quasi-Newton Methods C(ir-i) Aj(r) / n
The theory of maximum-likelihood states that n

good estimates of the unknown paraneter 80 can be lgi(r-) = ( I XkWik(rj) / Ai(r)
obtained from the log-likelihood function L(O), which k-1
is defined for a given t-variate sample {x,,...,xJ and

ndensity of the form in (1), by r = ( (Xk-9i(r+l) (Xk-9i(r 1))T Wik(r) ) i(r)

L(O)= log(pm(x 11)) + log(pm(x2j9)) + -+ log(pm(x IJ)) k=1

The EM algorithm is simpler than methods based
The maxius-likelihood theory applied to the normal on Newton's method, and most of the important
mixture case asserts that a particular (local) theoretical convergence properties of It are given in
maxrnizer of L(0) will be a good estimate for 0. Redner and Walker (1984). The most important
This "good" maxinizer is denoted here by e*, and the convergence property of EM is that
two approaches considered here result from applying
different optimization techniques to the problem of L(C O L(r)
finding 0* by maximizing L(O).

Both of the optimization algorithms are iterative for each iteration, so that progress (in this sense)
in nature, and generate, in theory, an infinite towards finding a maximizer is always being made.
sequence le(r)) of approximations to 0*. The The quasi-Newton methods are general purpose
procedure starts with the user supplying an initial, optimization tools, unlike EM, and are much more
and usually rough, estrnate O() of 0*. Then the complicated. An excellent discussion of these
terms of the sequence (2,E( 3 , .... are successively methods is in Dennis and Schnabel (1983), and here
calculated until a particular @(s) is obtained that is we only discuss a few of the basic ideas.
close enough to 0* to warrant termination of the Optimization software is generally written to do
iteration. Sometrnes the iterates never get close to minimization, but this poses no problem since
0*, but as a practical matter some stopping criterion minimizing f(e) = -L(O) is equivalent to maxiizing
must be chosen for each method. The main check L(). Newton's method for generating 8(r.1) from 8(r)
used in these tests compares (in a way described in can be interpreted by first building the quadratic
Section 3) the new iterate 19(r 1) with the old iterate model in(s) (of f(8)) w ich is defined by
8(r) at each step. If there is very little difference i(s) = f 8 T 8T s)/2(
between the iterates, then this usually means that () (0) (

the accuracy of (r-) as an approximation to 0* will Note that it is a model n the sense that m(O) -
not be much improved by further iteration. For this f(er)), Vm(O) f((r) and V2mode i t e m(O ) = )
reason the implemented iteration is terminated as Next, Vming t Vf( a
soon as two successive iterates are very similar. Next, assuming that V2f(r)) is positive definite,

The differences in the EM and quasi-Newton the model function is globally minrnized over s to
schemes concern the way that the new iterate 8(r+1 ' obtain

is calculated For the EM algorithm, this is easily -

described For ; = 1, . , m where m is the number of S(r) - V2f(e(r)) Vf(OrO)
normal components In the mixture, the following
calculations are done for (xi(r-i), P i(r-i), and Z-i(r 1) Which iS then used to define the next Newton iterate

by

0 (r8) 0 (r) ' S(r) (3)
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This basic scheme was varied in two different
ways in conducting the tests described in the next 3. Simulation Runs
section. The variations are clearly noted in reporting Simulation tests were performed using several

the numerical results, but an explanation of them is univariate mixtures of two normal distributions. The
given here. The first modification is in the definition choices for the parameters a, ii and o2 were as
of the model. Finite difference approximations to the follows:
model hessian VZf(e(r)) and model gradient Vf((r))
are used. This modification mskes the general Weights (Alpha) Means (Mu)
software much easier to use without changing the
behavior of the iteration sequence very much. (Other 1 2 1 2
Important types of approximations to the Hessian are
studied in Dennis and Schnabel (1983).) {E} (,50 50) (21 (0.0 2.0)

The second type of modification involves the
incorporation of a global strategy that makes the (N) (.20 .80) (4) (0.0 4.0)
iteration more reliable. The iteration described in (3)
is known to converge iapidly to the solution, when
started close enough, but it can many times fail when
used some distance away from the solution. Usually,
the iteration in (3) is hybridized with a safer Variance (VAR)
iteration so that (3) is used when close to the
solution and the safer (and usually slower) iteration 1 2
is used away from the solution. The three
globalization strategies tried in the tests are all (1} (1.0 1.0)
described in detail in Dennis and Schnabel (1983) and
are called the line search, double dogleg, and hook {T} (1.0 0.1)
step. The line search only uses the direction given by
the Newton step S(r), while the other two strategies The number or letter in { } is the designation used
also use the direction given by the negative gradient for the parameter indicated. For example, (E) stands
- Vf(oCr)). The performance of these different global for Alphas of (.5 .5).
strategies varies according to the type of problem so All possible combinations of the above
that all should be tested when trying to determine parameters were used to generate sample data for
the uqefulness of a quasi-Newton approach. the simulation. To facilitate reporting of the

We last mention that a reparameterization is used results, the following scheme was used to name the
in applying Newton's mpthod to the problem of data files:
minimizing -L(E). The constraint oal + o 2 + + Ocn

- I is effectively discarded by keeping a,, C I ,
and replacing every occurrence of crn by 1 - (C + a2

"+ (n-, ) "  
F I E 2 1 0

UNIVARIATE CASE

ALPHA(5 5) E

MU (0 2) 2

VAR (1 1)

TRIAL NUMBER 0
(0-9)
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Table 1: Number of Failures

Good Guess

(There vere 10 samples of each type used)

Distribution EM Limner Search Degleg Hookstep

IE21 0 1 4(0)(11 4 I1l 4 111

IE2T to 0 Ill 0 M11 0 Ill

lE41 0 0 0 0
1 E4T 0 (1 I I (1) [I] (1)[1

1N21 1 7 (1] 7 I1l 7 ill

IN2T 10 0 [1] 0 Il] 0 [1

1N41 0 1 (1) [1] 1 (1) [11 10 ))Il]

IN4T 0 0 0 0

Had Guess

Distribution EM Limer Search Dogleg Hookstep

1E21 0 (6) 14 (4)151 (5)51

1E2T 10 [101 1101 [101

IE41 0 (4)[61 (2)[71 (2)(8)

IE4T 0 (3)[7 (1)[9] (2)8

1N21 1 (1)[9] (1)[91 (1)[9

IN2T to (3)[71 (1)191 [0]

IN41 0 2151 1 (3)16] (3)[6]

IN4T 0 (1)(71 (1)[81 (1)(91

Note: 1 4 bed results; (0) very bed results; I I failure to run

Bad results means that the point of convergence was reasonable but
was not -close- to the generating parameters. Very bad results means that
the algorithm converged but produced unreasonablely large values. Failure
to run means that the algorithm did not converge; therefore, no results
were obtained.
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Table 11: Mean Computational Requirements

Good Guess

Distribution EM Linmear Search Dogleg Hookstep
IE21 163.6 224.9 (33.4) 24.8 (35.1) 24.4(42.2)

1E2T 42.2 22.2 (32.8) 22.4(34.6) 23.2 (40.0)

lE41 8.2 19.7 (28.6) 19.1 (29.9) 20.8(37.2)

1 E4T 6.8 13.8 (25.3) 11.7 (25.4) 20.2 (36.0)

1N21 65.2 29.4(41.6) 29.4(42.8) 29.6 (51.9)

1 N2T 23.3 26.8(38.7) 26.4(40.9) 28.3(46.0)

1N41 10.4 23.3(33.6) 24.4(35.6) 24.0(41.6)

1N4T 5.0 24.7(35.3) 25.8(38.1) 24.4(42.8)

Dad Guess

Distribution EM Linear Search Dogleg Hookstep
1 E21 94.9 40.2 (60.0) 55.0 (66.6) 151.0 (177.8)

1 E2T 42.5 -- -

1E41 17.1 36.2 (52.7) 52.0 (78.5) 151.0 (171.5)

1 E4T 12.5 35.0(51.5) 36.5(51.5) 35.5 (45.5)

1 N21 99.6 26.0 (35.0) 40.0 (53.0) 151.0 (168.0)

1 N2T 32.5 45.0 (74.0) 28.0 (38.0) -

11441 21.1 27.8 (50.8) 41.5 (68.2) 892(118.7)

iN4T 10.2 35.0 (66.0) 44.5 (70.0) 151.0 (198.0)

Multi plications and divisions for EM =iterations* 1 4*Sample ilze( N)

Exponential evaluations in EM = iterations*2*N

Multiplications and divisions in Quasi-Newton = (function cails)*6*N+ (gradient call)*25*N

Exponential evaluations in Quasi-Newton = (function calls + gradient calls)*2*N

Logarithm evaluations - (function calls)*N

1 63.6 Iterations

2 24.9 Function Calls ( 33.4) Gradient Calls

Note Samples were included in the mean only if they~ ran to completion
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The effectiveness of the EM algorithm is
IMSL subroutine GGUBFS was used to generate measured by the number of iterations required for

a random number between 0 and 1. This number was convergence (See Table 11.). Since the main
compared to ALPHA1, and, if it was smaller than computational effort incurred in the Quasi-Newton
ALPHA1, then distribution *1 was selected to strategies is in computing the function values
produce the random data item. If the random number and/or the gradient values and since each iteration
was larger than ALPHA2, then distrubution #2 was might involve several calls to these processes, we
selected. The data items was then produced by felt that the number of function calls and the
generating a random value on a standard normal number of gradient calls would be a more
using the IMSL routine GGNQF. This standard normalvale ws ranlatd ntoan quvalnt ale fom meaningful statistic to use to measure the
value was translated into an equivalent value from effectiveness of the Quasi-Newton strategies. Forthe distribution selected. This process was the samples run, the work required to achieve
repeated to produce the 300 data points in each convergence- in terms of number of multiplications
sample. Ten samples were generated for each set of and divisions, number of exponential evaluations and
parameters. the number of logarithmic evaluations- is slightly

All data files were run using Em and Quasi-Newton more for each of the Quasi-Newton strategies than

analysis using two sets of initial values. These it is for the EM algorithm (See Table 11.). The amount

initial values were as follows: of work for the line search and dogleg strategies
was about the same in each case; the hookstep

GUESS I: Parameters Used To Create The Input File approach required a little more work in each case.
These simulation results suggest that the

GUESS 2: several directions are worth pursuing. Firstly, the
results from these experiments are consist with

ALPHA .35 .65 previous results which indicated that a hybrid

MU 9l _ (9 2 _ I 1 )- 4  91 (12 -_i)14 strategy is needed which starts with the EM
VAR 9 approach and then switchs to a Newton approach or a

VAR 9hill-climbing approach when appropriate. Secondly,

a set of experiments similar in nature to these
experiments should be tested on multivariate data.

4. Conclusions
Test results from Table I show that the EM

algorithm converges in every case, even from a poor
initial guess, whereas the Quasi-Newton algorithm References
gives poor to no results when started from a poor Dennis, J.E., Jr. and Schnabel, RB.., Quasi-Newton
initial guess. Table I also indicates that, when Methods for Unconstrained Nonlinear Problems
started from a good position, the Quasi-Newton Prentice Hall, Inc., Englewood Cliffs, New Jersey,
algorithm gives better results in the case of unequal (1983).
variances (see distributions IE2T and IN2T). This Hosmer, D.W., Jr., 'A comparison uf iterativevainces (see distibutinse oE and een Tihs maximum-likelihood estimates of the parameters
remained true in the case of an even weight of a mixture of two normal distributions under
distribution and an uneven weight distribution, three different types of samples," Biometrics 29
However, note that most of the inaccuracy in the EM (1973), 761-770.
runs for the case of normals with uneven variances Redner, R.A , and Walker, H F., "Mixture densities,
resulted from a poor convergence to the parameter
associated with the small variance. As was maximum likelihood and the EM algorithm," SIAM
expected, both algorithms performed well when Review 26 (1984), 195-239
there was good separation between the normals;
however, the Quasi-Newton algorithm did
occasionally fail to run. There was no noticable
difference in levels of convergence in either of the
three Quasi-Newton strategies. j ,, ,, . B 1r *fV , , '. ; .
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HIGHER ORDER FUNCTIONS IN NUMERICAL PROGRAMMING

David S. Gladstein, ICAD Inc.

Introduction end of this article gives the Common LISP code,

Many mathematical problems are defined as namely the functions normal-density, normal-

combinations of elementary operations on func- distribution [4], and secant and romberg [5].

tions, such as integration, differentiation, and find- secant finds a zero of a function using the se-

ing roots. Often, however, numerical programs to cant method; romberg integrates a function of
one variable using Romberg's method. These rou-

solve such problems are hand crafted for the par-

ticular application, rather than being composed of tines were translated into LISP directly from their

functionally independent parts [1]. This is largely sources without regard to their eventual applica-
tion; the code reads like C that happens to be

due to the weakness of traditional algebraic pro- written in LISP.
gramming languages in manipulating functions.

Languages such as LISP and Scheme [2,3] These routines are sufficient to provide a cor-
treat functions as first class objects, and allow one rect solution, but a major difficulty remains. The
to write higher order functions, which have func- fi are expressed as convolution integrals, each de-

tions as inputs or outputs. This flexibility in the pending upon the previous one until the basis case
manipulation of functions greatly reduces the dis- fi. Integrating fi requires evaluating fi_ 1 at many
tance between the notation of mathematical for- points, at each of which fi-2 must be integrated

mulations and the notation of the corresponding and hence evaluated at many points, and so on.
numerical program. The number of function evaluations would seem

to be exponential in i, an unacceptable time com-
Example plexity. However, it is to be expected that each

function fi might be evaluated repeatedly at cer-
A certain problem in sequential analysis deals tain points. If the function values at these points

with the attained significance S of an observed could be retained, much redundant computation
outcome (, n). S(z, n) is computed as a sum of could be avoided.
acceptance probabilities A(x, i), which in turn de- The higher order function cacheing is intro-
pend upon a family of density functions f1 (a), duced, mapping functions f(x) to mathematically

Let 0 and D denote the standard normal den- equivalent functions g(). g operates by by look-
sity and distribution functions, and let a, b, n, and ing up its input x in a table [6] of(, fr()) pairs. If
9 be parameters. Define irthe required value is found, it is returned. If not,

f is used to compute the value, the table is up-
fi W (x - 0), (a < x < b); dated, and the computed value is returned. This

0, otherwise method has the desirable property that no prior
b knowledge of the pattern of repeated evaluations

fix) fi-I(y) (X - y - 9) dy (i > 2) is necessary, making it especially attractive for dy-
S1 I -namic programming problems.

A(b, 1) = 1 - 4(i - 9) Examination of the definition of A(x, i) re-

A(x, i) = fi_,(y)(1- (x-y-0)) dy (i>2) veals that it depends upon a, b, and 0, so in
-'. some sense it is a function of five variables, not,

n-1 two. On the other hand, in the context in which

S(x, n) = A(b, i) + A(x, n) it is used, namely in the definition of S(x, n), a,
i=1 b, and 0 are fixed and only x and i vary. This

conflict is resolved by considering the definition
a A(x, i) .... to be the definition of a higher order

find a confidence interval [01. 0,,] with function A(a, b, 0) which maps values of a, b, and 0

S(x, n1O = 01) 1 to some particular function A(x, i). A subsequent
reference to A(x, i) is then understood to indicate

S(x, nf0 = 0,,) = U such a function A, rather than the functional .4.

Routines for 0, P. root finding, and integra- The LISP code for the application appears
tion are required. The first page of listings at, the on the last page of this article. The function
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acceptance-probability-function corresponds The major cost of software is the time to write
to A, mapping a, b, and 6 to a function of x and i. and debug it. The more compatible the language
In addition, it takes n as an input, to determine of the problem statement and the language of the
how many of the functions fi need be constructed. implementation, the less work in translating from

Before A(z, i) can be constructed, A must one to the other, and the less opportunity for er-
first build up the array of functions fi. Each rors and confusion. Since LISP caters to the cre-
fi after the first involves the construction of ation and manipulation of functions, and mathe-
three functions at run time: first the integrand matical problems are often posed in terms of the
fi-l(y)O(x - y - 0) is created programmatically, definition and use of functions, the use of LISP for
it is integrated from a to b with respect to y, leav- numerical work is natural.
ing x as a parameter, and finally the integral is
mapped onto a cacheing version to prevent redun- Acknowledgements
dant integration. With the fi in place, A(x, i) is I would like to thank David Place, Martin
simply constructed as the integral of a program- Plotkin and Marty Wagner for many helpful co-
matically created function which involves fi. mets.

The function S(r, n) is simple enough that ments.
the LISP function significance is barely higher Literature Cited
order, taking a function A(x, i), and x, n, and b
as inputs. While the argument for treating the [1] Halfant, M. and G. J. Sussman. Abstrac-
definition S(z, n) = ... as the definition of a higher tion in numerical methods. Proceedings of the
order function S(A(z, i), b) could be applied, there 1988 ACM conference on Lisp and functional
is little ro be gained by doing so. programming. ACM Press, New York, NY.

The function confidence-interval takes 1988.
values for x, n, a, b, I, and u, and finds 01 and 0 u [2] Steele, G. L. Common LISP: The language.
so that S(x, nJO = 01) = I and S(x, nJO = O,) = u. Digital Press, Billerica, MA. 1984.
The similarity of the two subproblems leads to the [3] Abelson, H. and G. J. Sussman, with J. Suss-
introduction of the internal function get-theta, man. Structure and interpretation of com-
which finds the 0 corresponding to a particular puter programs. MIT Press, Cambridge MA.
value of p. Since the secant method only finds 1985.
zeros of functions, get-theta constructs the ap-propriate function programmatically. [4] Abramowitz, M. and 1. E. Stegun. Handbook

of mathematical functions. National Bureau

Discussion of Standards, Washington DC. 1972.
A solution to a non-trivial numerical comput- [5] Burden, R. L. and J. D. Faires. NumericalA soutin t a on-rivil nmercalcomut-analysis. Prindle, Weber &z Schmidt, Boston,

ing problem has beeai developed, where the con- a .985.

stituents of the LISP code of the solution were

transliterations of either standard numerical tech- [6] Knuth, D. E. The art of computer pro-
niques or statements of the problem. The original gramming, volume 3: Sorting and searching.
solution to this problem was a C language program Addison-Wesley, Reading MA. 1973.
of about five hundred lines, which took approxi-
mately one week to write and debug. The LISP
version was written in one half day, and consists
(using normal indenting) of less than one hundred
lines of code, more than half of which is reusable.
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(defvar i/rad2pi UI (sqrt (* 2 pi)

(defun normal-density Wx
(0 (exp (* x x -O.5d0)) i/rad2pi))

(defvar normal-coefficients
C(o.049867347odo 0.0211410061d0 0.0032776263d0 0.0000380036d0 0 .0000488906d0 0.0000053830d0))

(defun normal-distribution Wx
(if (< x 0)

CI (normal-distribution C- x))
( (0 C 0.5

(expt (0+ (let ((xpow x)
(sum 0))

(dolist (coeff normal-coefficients do for each coeff in normal-coefficients,

sst um( um)* pvcef when done return sum

Csetq xpow (* xpow X))
-16)))

(defun secant Cf p
0 

p1 koptional (epsilon ld-8) (imax 20))
(let ((qO (funcall f p0))

(ql (funcall f p1))

p)
(dotimes Ci imax 0 <= i < imax

(error "Iteration count exceeded.")) error if loop runs out
(setq p (- pi1(o qI UI (- p1 p*)) (- q1 qO)))))
(when (<= (abs (- p p1)) epsilon)
(return p)) return root

(setq p
0 

pi)
Csetq pi p)
Csetq qO q0)
(setq q1 (funcall f p)))))

(defvar romberg-size 35)
(defvar expt4 (let ((err (make-array romberg-size)))

(dotimes Ci romberg-size 0 <= i < romberg-size,
err) when done, return arr

(setf (aref arr iD (float (expt 4 (1- D)) J.OdO)))))

(defun romberg Cf a b koptional (epsilon ld-8))
(let (Cr1 (make-array romberg-size))

Cr2 (make-array romberg-size))
(h (- b a))

Csetf Caref r2 10
(* h (+ (funcall f a) (funcall f b)) S5))

(do (C 2 (1+ i)) 2 <= i,
(nil) do forever (until a return)

(let ((temp ri))
Csetf ri r2)
(setf r2 temp))

Csetf Caref r2 1)
(.5 (+ Caref ri 1)

(h (doe ((kmax (expt 2 C-i 2)) upper bound
(k 1 (0+ W I <= k
(sum 0)) sum accumulates

(C> k kmax) sum) k <= kmax, when done return sum
(setq sum (+ sum (funcall f (+ a CC-k .5) h)))))))

(do (Qj 2 C0+ j)) 2 <= j
CC> j M) < = i

(setf (aref r2 j)
UI C-* (aref expt4 j) (aref r2 (I- j))

(aref ri 01- j))
01- (aref expt4 j)))))

(setf h U/ h 2))
(when (and 0>= i 3)

(< abs C-(aref r2 (0- M) (aref r2 M)) epsilon)
(~(abs C-(aref ri 01- M) (aref ri C- i 2))) epsilon))

(return Caref r2 iMM)) return integral

(defun cacheing Mf
(let ((cache (make-hash-table :test 3'equal)))
(function
(lambda (x)

(or (gethash x cache)
Csetf (gethash x cache) (funcail f W)l)
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(defun acceptance-probability-function (n a b theta)
(lot ((densities (make-array (1+ n))))
(setf (aref densities 1)

(function
(lambda (x)

(if (<- a x b)
(normal-density (- x theta))

0))))
(do ((i 2 (1+ i))) 2 <- i

((>= i n)) i < n
(let ((previous-density (aref densities (1- i))))
(setf (aref densities i)

(cacheing
(function

(lambda (x)
(romberg

(function
(lambda (y)
(e (funcall previous-density y)

(normal-density (- x y theta)))))
a b))

(function
(lambda (x i)

(if (. i 1)
(- I (normal-distribution (- x theta)))

(romberg
(function
(lambda (y)

(e (funcall (aref densities (1- i)) y)
(- 1 (normal-distribution (- x y theta))))))

a W)

(defun significance (acceptance-function x n b)
(+ (do M( 1 (1+ D));1<i

(sum 0)) sum accumulates
((>= i n) sum) i < n, when done return sum

(setq sum (+ sum (funcall acceptance-function b i))))
(funcall acceptance-function x n)))

(defun confidence-interval (&key x n a b
(lower 0.05) (upper 0.95)
tlO tll tuO tul)

(labels ((get-theta (p-value guessO guessl)
(secant

(function
(lambda (theta)

(- (significance
(acceptance-probability-function
n a b theta)

x n b)
p-value)))

guessO guessi)))
(lets ((mean ( x n))

(rad-mt (sqrt n))
(tlO (or tlO (- mean ( 1.75 rad-mt))))
(tll (or til (- mean (U 2.75 rad-mt))))
(tuO (or tuO (+ mean ( 1.00 radmt))))
(tul (or tul (+ mean (U 1.75 rad.mt)))))

(values (get-theta lower tlO tll)
(get-theta upper tuO tul)))))
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THEORY OF QUADRATURE IN APPLIED PROBABILITY: A Fast Algorithmic Approach

Allen Don, Long Island University

ABSTRACT
The integral representation of the moments sign. For the Weibull, the nth moment about the

of a useful class of probability density origin is
functions is cast in a canonical form in terms 00n
of Gaus -Laguerre quadrature. This transforms b- axb n b
the continuous integration into a sum of (1.3) Mn 1 x)
discrete terms, effectively removing 

the

integral sign and exposing the parameters to 0
numerical investigations. This allows moments The gamma density function has a slightly
from data to be related to the unknown different problem: the parameters are both under
parameters via a system of non-linear equations. the integral and within the gamma function
This system is easily and quickly solved for the argument. Note that Jn+i) = m! when the
unknown parameters by any of the numerous non- argument is integral.
linear equation algorithms available for 00
personal computers and main-frames. In addition, am+lxm-axxndx (m+l)(m+2) ...(m+n)
the factorials and gamma functions found in (1.4) Mn  a n
closed form theoretical moment expressions andf a
in density functions are discretized in the same 0 (m+l)
manner, enabling unknown parameters within the where order=m+1, and M represents the nth
arguments of the gamma to be included in n
numerical searches. A dominant ratios method is moment about the origin. Clearly, the full
introduced for determining initial conditions moment expression has a closed form solution
for the system of non-linear equations to which is easily solved by a system of nonlinear
overcome the notable lack of convergence found equations:
in non-linear system algorithms when initial (1.5) M (m+l)(m+2)...(m+n)
conditions are not well-chosen. The theory is n m
connected to reliability problems to show a fast 

a

algorithmic approach rather than the usual The sublety in using this expression is in

graphical approach to parameter identification the method of choosing the "extra" value of a

of density functions both for truncated and for in setting up the system of non-linear

full data. equations. As an example, with three moments,
two values of a and one value of m can be

1.0 INTRODUCTION obtained, but a third value of a is required
1.1 The Problem in the non-linear formulation. Thus, the three

Determination of parameters for probability equations are:

distributions from data is hindered by the (1.6) M1 = a±l
analytical expressions for the moments being a1

under the integral sign, (1.7) M2 = (m+l)(m+2)

00 2

(11r ~ x nf(x)dx a2
(1.1) n= I".' H3 = (m+l)(m+2)(m+3 ,

0 3
for full moments, and agm

T where the geometric mean of a1 and a2 is

(1.2) Mns=fxnf(x)dx (1.9) agm= (a1 a2) 1/2

0 0 While the closed form solution to the
for truncated moments. Otherwise, it might be hietas f orm slutino thepossible to have a fitting scheme by a system of gamma's full moments is simple enough as seen

above, it will be seen later that the truncated
equations representing the moments on one side moments have the "order" parameter within the

of the system, and the data representing the argument of gamma function, and therefore

moments on the other side. In addition, the susceptible to the same approach as the Weibull.
density function f(x), in a number of useful For pedagogic reasons, the gamma

,re tributions involves the gamma function distribution and Erlang distribution will appear

a(nmb) or factorial in which the parameters herein to be identical except that the order
and moment designation are arguments within the parameter of the Erlang will be understood to be
gamma sign, hence are intractable for use as integer whereas the equivalent for the gamma is
variables. Thus, the inverse problem, that of understood to be real. Occasionally, the Erlang
obtaining the parameters of a distribution, nomenclature might be used when, in fact, the

given the moments calculated from data, is search for the order parameter yields a Leal

rendered difficult. This is typified by the number for the best ft.

Weibull distribution which has both problems. As numer o therbes t it.
in all continuous distributions, the momentAcomnapahtoderitonf
expressiontinuoundtributions, the in i n iparameters of distributions In reliability is to
addition, the closed form solution for full use judgement in selecting the model to which

data is to be fitted, then use probability paper
moments contains the gamma function with the for that model. A straight line on the
shape parameter as an argument within the gamma
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probablity paper indicates that the correct (Christoffel numbers) and knots. In addition,
choice has been made. Computer power, with an the limitation of the usual (O,oo) interval is
engineering work-station becoming commonplace at removed providing an opportunity to apply this
the engineers finger tips, makes it is method to other limits of integration, hence, to
appropriate to implement probability research of truncated moments and to probability table
all kinds in a more automated manner, generation. Further, the relationship between

2.0 BASIC THEORY the normal and chi-square is exploited to
generate real-time probability tables for the

2.1 General Principles normal and for sums (convolution) of normals.
Quadrature effectively removes the integral 2.2 The Stepping Up Concept

sign and exposes the moment expression and its While the familiar parameter of the Erlang
parameters to numerical search methods, form of the gamma function is integer, searches

xb p will pass through and most likely result in a
(2.1)Mn f xnf(x,m,a,b)dx= C f(xi,m,a,b)xn fractional or real number argument. Also, the

0 Y unknown gamma arguments being sought are already
0il fractional for other density functions. Accuracy

where Ci and x are Christoffel weights and impairment resulting from non-integral arguments

knots for Gauss-Laguerre quadrature [1, p.105], and fractional arguments is remedied by
and p is the number of points(weights and increasing the argument in unit steps while
knots). simultaneously externally multiplying by a

The arguments under the gamma symbol are compensating factor related to the step
"uncovered" in a like manner since the gamma and increases as in (2.5) below. The gamma function
factorial functions are, in fact, derived from identities for integers and for stepping-up the
integral expressions as in (2.4) below, argument are well known and found in the most

A system of non-linear equations is set up, abbreviated mathematical tables. The concept of
p using these identities or similar identities

kn either in integral or in non-integral arguments
(2.2) C Cit(xi,m,a,b)x I= M n, n=,2 .... k as a method of increasing accuracy when used

1=1 with quadrature methods, is not well known, if

where k is the number of equations, hence also at all. The well-known identities are:
the number of unknowns being sought. Therefore, F(n+l) (n+2) _ _n+3)

k data moments must be used. (2.5) (n) = = -

The right hand side of the system is the n n(n+1) n(n+1)(n+2)
data(moments calculated from data). The left .........

hand side of the system is the quadrature The derivation of the gamma function
representation of the integral moment Identities for integers can be obtained from
expressions. repeated integration-by-parts [2,pp.201-203].

Moments about the origin are used. M is The derivation for non-integral gamma function
identities is achieved by the same method. As

the zeroth moment representing the cumulative can be seen from the following integration-by-
distribution function. Hence, for truncated data parts in (2.6), there is no real or integer
applied to reliability theory, Mo represents the restriction on n . This observation is

fraction of units failed. necessary as a precursor to an important

Gauss-Laguerre quadrature transforms the sublety: ill-conditioning occurs when fractional

continuous integration of functions of the powers are encountered resulting in the

-t algorithm wandering without ever converging to a
kernel e to a summation of discrete values, solution. Hence, the gamma relationships of

oo p (2.5) must be used to place the powers to which

(2.3) r ettndt = n" C the knots are raised within a range in which the(2.) J e i quadrature method will work; this is
0 i=1 demonstrated by (2.10).

which is exact for n=2p-1, when n is integer. The usual integration-by-parts derivations
Therefore, the gamma function is related to seen in texts is in a stepping-down mode,

Gauss-Laguerre quadrature by
00 p 00 1oo 00

(2.4) n = f tldt= 7 n-I =(n-l0 (2.6) J tne-tdt = -tne-tJ + n tn-le-tdt"

0 i=l 0 0
where n can be real or integer. While the first term on the right above,

If n were unknown and had the numerical 0
values of the right-hand-side of the above been _tne-t
given, then, using the Gauss-Laguerre table for 0
the weights (Christoffel numbers) and knots vanishes on an interval of (0,00), it becomes
(points on the time axis) and using a system of the important term later in truncated
non-linear equations solved by a suitable distributions and truncated moments. (2.5)
algorithm, the value of n, the argument within stepping-up is a rearrangement of (2.6)
the gamma sign, would be obtained. stepping-down.A useful class of probability density stepping-down.

The important subtlety with respect to
functions, the gamma, Erlang, Weibull, Rayleigh, fractional powers of n can be demonstrated by
and chi-square, can be cast in a canonical form examining the integral and related quadrature
in terms of Gauss-Laguerre quadrature weights equivalent for n=1/2 = 0.5
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00 p so that the weights and knots can be used

(2.7) (0.5) = ( e-ttn-ldt = Ct Ct0.5  directly from the Gauss-Laguerre tables, divided

n=0.5 i by the parameter a .
0 i=I Further, in the entire family of

exponentially related density functions, the
Observe that, without a step-up, the power of ti  parameter a by which Ci is divided, i.e.,

is negative. Even with a step-up of one, we C /a, is cancelled; hence, the weights C are
find, precisely those from the table. This can be seen

S (1.0+0.5) 0.5 by using (2.13) together with the gamma

(2.8) 0.5) 0.5 2 I t formulation of (1.4)

1=1 00

which yields a fractional power of ti , albeit (=f am+lxme axxndx(2.14) Mn = a xe xd

positive. Christoffel numbers and knots arej r
derived from a positive integer formulation, 0 (m+l)

00 p

(2.9) f tnetdt = i t r , n=integer:0,1,2.. m+ l  p CI (xim

0 i= a z: -(
Hence, quadrature is not valid for n<0 even ml =

though the gamma function itself is valid. Thus, p ,+n n
for a fractional gamma argument, the stepping-up = a = LM C i
procedure must be initiated from the beginning (a)
simply to bring the argument within the range of i1

validity for Gauss-Laguerre quadrature, to wit; 2.4 Change of Variable leading to canonical

(2.10) (700+0.= 0 5) - 2.5) Form
0.5 (0.5)(1.5) The Weibull distribution becomes tractable

(0.5)(1.5)(2.5) by two changes of variables: u=tb and x=au,

P b- -at b au b-Ix
1 2.5 (2.17) f(t) = abt e aea= ae

(0.5)(1.5)(2.5) 1 Cit1 00b

(2.18) M n= f tnabtb- le -atdt

While it appears that the term t0 .5 of (2.8), 0
has been brought within a range of validity, the u 00 n/b
errors are quite large. A combination of = n/bae-audu = eKx
additional step-ups and an increased number of 

0 0

points (weights and knots) must be used. If the For convenience in manipulation and programming,

density function contains an m
th order it is useful to use the reciprocal of b,

polynomial, and the number of step-ups equals s 1

and we are dealing with the n
th moment, , r = , so that

2.11) n e t f( tm )t ndt , 
(2 .19 ) Mn= f / x = p x )nr

0 i=1
then m+n+s < 2p-1; hence, Clearly, when r=l, i.e., b=1, this is the

m+n+s+l exponential distribution (Erlang order=1). So
(2.12) p 2 the relationships are sufficiently similar to

2 give an indication that a canonical form is
Therefore, p is the least number of points possible.
that must be used. However, for improved The Erlang (gamma) distribution requires
accuracy, it is always wise, and simply only the simple change of variable x=at to
accomplished, to go beyond this minimum number change o variable x atuof ponts.change from the integral form to the quadrature
of points. form, so that
2.3 Application to Density Functions 00

Introduction of the parameter a into the a ¢ mm+ ixm n

kernel e-at and using a change of variable x=at, (n=2 e f eJaxndx

the integration provides the following 0 F'"
quadrature expression, P n

00 00 x( I C tit'

(2.13) f e-attndt = f e- _,)n md 1a
a I=1

0 0 where Erlang order = m-I . The difficult problem
p of handling the gamma function (factorial) in

Ci(x in the denominator of (2.20) in a numerical search

a-  is overcome by the manner in which the
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"uncovered" gamma function is introduced as part parameter r is unknown; n is known because it
of the numerical procedure. The "uncovered" is the particular number of the moment
gamma function, i.e., the gamma function in specified. In (2.22), m is the unknown order
quadrature form, is used as a multiplier in parameter.
(2.21) for the data moments rather than as a 3.0 C FORMS AND NOTATION
divisor for the quadrature moment expression as
in (2.20). 3.1 Full Moment Canonical Form

This multiplier to the data, hereinafter The following quadrature canonical forms
called Modication factor and abbreviated MOD, is are presented for the exponential family of
nothing other than the factorial or gamma density functions including the Rayleigh. The
function, so that identical approach can be used for the

p )n chi-square, hence for the normal as a by-
(2.21) Cm L MOD product.

ii a Mn'm! = Mn' In addition, the full form is shown
i 1 separately from the finite interval form; again,

the MOD is the gamma function in quadrature form these could be combined but are shown and
P discussed separately for clarity.

(2.22) MOD = , Ctm = (m+1) = m! The truncated model removes the limitationI iof the usual (O,oo) interval for Gauss-Laguerre
i~ 1 quadrature by providing a method for the tails

or its stepped-up equivalents as in (2.5) and (T,oo) and intervals(Ti,T2 ) and (0,T).
applied in the same manner as in (2.10) and
(2.23). In addition, the subtlety pointed out

Thus, an Erlang of order m would appear earlier regarding accuracy when fractional
in a system of non-linear equations together powers are encountered is extended to the
with the gamma function as canonical form with its plethora of parameters,

p n whereas, in the earlier sections, the
(t ~ application was to the simple gamma function.

(2.23) C Cit i  a] The Full Moment Canonical Form is
i=1 (3.1)

q aQ+m
n M Cit i n= mi(m+nr+l)(m+nr+2)..(m+nr+Q)= n "m+ 1 ,

i~lP m+nr+Q
In the above expression, the summation indices tare p and q on the left and right sides, C -)
respectively, to indicate that the number of
quadrature points used on the left side and on i=1
the right side do not necessarily have to agree. 3.2 Finite Interval Canonical Form
In addition, on the right side, the gamma The following, which, at first, seems to be
function is shown with a step-up of 1. limited to the interval (T,oo) will be found to
Additional step-ups, more points, or both, will be applicable to (0,T) as will be shown hence.
improve accuracy. (3.2)

k
2.5 Alternate Weibull Form --- m

Recall that the right hand side of (1.3) e a
showed the closed form solution to the Weibull Mnt= - m _ (m+nr+l)(m+nr+2)..(m+nr+Q)
moments which, with r=I will appear as Q=1

(2.24) Mn=I() J (1+nr) , Q+m 
+

Un= th MO hc s svldfoTel(y aQ~ ci(- ' + T)and, since r is real, so is the product nr + +nr+)(m+nr+2).T(m+nr+Q)
Using the MOD which is as valid for real M! l "mn~)mn+2.(~r Q=k

arguments as it is for integer arguments, the
following expression becomes available for use 3.2.1 Notation
in a system of non-linear equations. The notation used Is as follows:io no a eNomenclature:

(2.25) = Mn / MOD, Mn n Full Moment about origin,

where M = CDF
p p th

(2.26) MOD= C t - I t nr+1 M n n Truncated Moment (0,T)
1 I Mr+1 Ith

inM nt n Tail Moment (T,oo)

=(l+nr) m Erlang order minus one,
with a single step-up as above or with a higher i.e. order=m+l
order step-up. m=O for exponential

This form uses quadrature to uncover the (Erlang order=l)
argument in the the gamma function (+nr) in a m=0 for Weibull
manner almost identical to [(m+l) of (2.22). a Parameter related to time constant
The product nr is unknown since the shape r Inverse of Weibull shape parameter b,
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r=1/b 00
r=1 for Exponential or Erlang e T r
r=.5 for Rayleigh, f a

p Number of quadrature points

Cilt Christoffel numbers and knots 0

Q Step-up index

Is Integer, limited to e-aT e-t ( + nr dt
Q < 2p-nr-l-m = a t

k Order of step-up 0

T Real-time p

T=T for gamma, exponential, and Erlang -aT7 '1 1 (ti
T=Mb for Weibull = 

e -a T
Z Ci + T nr

T 001=

T Truncation point, f or f and f(t
0 T adC 1 r-f =nM

00 00 a=

T1T2Finite Interval, f - f hreMDI P=~ l n
T T MOD (nr)!

1 T2 and MOD is as in (2.22) with nr replacing m
so that

3.3 Finite Interval Quadrature - Derivation

In a manner similar to the two changes of
variable used to obtain the full moment (3.7) C= (Ms+ Mn) D1
quadrature form, the finite interval quadrature 7a r

requires two as well, but the second change of i=l
variable introduces the finite time "T". thus

The terminology will be consistent with the p

canonical form in that, -
(3.3) Mns + Mnt = Mn, (3.8) Ci

whence Mn is the truncated(short) mean and K =1

is the mean of the tail. p
There are two forms for the truncated mean.

The first is the series expression discussed in = M + e
-a T  

C i t + T nr MDI
connection with the canonical form, the second 

ns

form uses quadrature without the series term. It
is this second form which will be discussed now. If dealing with reliability, M are the

First, the density function and the moments ns

of the Weibull are cast into the following form truncated data moments with observationsb bterminating at time "T" with N being the

by the change of variable u=x 
b
, so that T=T

b 
in os

accordance with the notation in the nomenclature zeroth moment, the CDF.

sect ion The same result will be obtained by the

b alternate quadrature form,

(3.4) f(x) =abxb- e -axdx becomes P

f(u) =ae-aUdu (3.9) Mn= =

0 b 
7axbxn i=l

(3.5) Mnt= jabx e x dx becomes p
T = M +e - T  

i  +

00ns ,\a

f(u)= aeau(n/b)du So, for truncated data, two quadrature

forms and one series form Is available.
T

Using a second change of variable, 4.0 INITIAL CONDITION PROBLEM

t=a(u-T), thence u= - + T , and using r=1/b 4.1 Inconsistent Initial Conditions
a The quadrature systems developed herein

for convenience, the moments become, have the unknown variables embedded as arguments
of exponentials. The argument can contain two

0unknowns, one a power of the other. During a

(3.6) M auunrdu search, one variable going negative raised to a

( nt ae- non-integer power, which is the second variable,

will terminate the search since the result would
be an imaginary number. The immediate response

424



to this problem might be to prevent the Thus,'the parameter r for the Weibull is
offending variable from going negative during found: it is time-dependent as well as a
the search. Unfortunately, this also destroys function of M and M This provides a very
the integrity of the rate-of-change vector 0 1
matrix. Also, convergence to the correct result good initial estimate of the Weibull parameter
depends upon the exponential argument remaining b since b=/r .
negative during the search. The value of the With knowledge of a realistic Initial value
exponential expression blows-up when the of b , a consistent value of a can be found
argument becomes positive and convergence is b
never achieved, by the CDF relationship, N =l-eax . Solving

If either parameter is chosen inconsistent 0

with respect to the other, the algorithm wanders for a
indefinitely and never converges, or terminates (4.8) a = - ,,.(1-M )/ x
when one variable becomes negative. With a 0

choice of consistent parameters, but initially It can be shown that the series of (4.1), when
too far removed from the correct solution, again taken to an infinite number of terms, is
the algorithm will not converge, precisely the CDF; that is, for n=O, (4.1) is

Therefore, to be useful, a method must be 0-
introduced to choose properly the initial (N0 TQaQeaTc o nd i i o n s .(4 .9 ) CD F M 0o (0 ,T ) = I Q

A consistent initial condition is one which Q=
relates the unknown variables by a basic o0
relationship applicable to the particular __ _ja' a)
distribution being modelled. For example, the =e

-a T  +

CDF relationship for the Weibull, Mo=1-e-  Q=

relates the parameters a and b , given
knowledge of no which is the fraction of units = e-aT (-I aT e-aT

failed in time X . Therefore, an unrealistic
initial value of b could be selected together The ratio M2/M1 yields
with a consistent value of a computed by the N Tr (r+) X(r+1)
CDF relationship. (4.14) - -

Hence, two chores must be accomplished N1I (2r+l) (2r+l)

simultaneously, that of realistic and of so that
consistent initial conditions. XM - MN2
4.2 Dominant Ratios Method, Weibull, for (4.15) r - 2M2_ XM

Approximating Initial Conditions
The Weibull truncated series is, which is simple arithmetic.

k References
Tnr+QaQe-aT References indicated in text by number in

(4.1) Mn (0,T) (nr+l)(nr+2)..(nr+Q) brackets,

Q=1
The first term of the series is domin, . For 1. Beckmann, P., Orthogonal Polynomials for
any moment, the first term has the same relative Engineers and Physicists, Boulder: The Golem

degree of inaccuracy; therefore, the ratio of Press, 1973

the first terms is much more accurate than the
values of the first terms themselves; i.e., 2. Reddick, H.W., and Miller, F.H., Advanced
M/N ,and M/M Mathematics for Engineers, New York: John Wiley

1 21 & Sons, Inc., 1938.
The first terms are, for M 0 , M , and M2

(4.2) M (0,T) = eaT 
(aT 1

0 1

(4.3) M (0,T) = e aT (aTrr+ 1

1aTSr+l

(4.4) M2 (0,T) = 
e aT (aTr2r+ 1

so that

(4.5) M/M = eaT (aTr+l )/(r+l) = Tr
1.e -aTaT r+l

With X=T b and r=1/b , where X Is real-time, we
find

X
(4.6) M1/M °  =-1o r+l
Solving for r

M
(4.7) r = X -p0 - 1
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THE PROBABILITY INTEGRALS OF THE MULTIVARIATE NORMAL:

THE 2n TREE AND THE ASSOCIATION MODELS

Dror Rom, Biometrics Research, Merck Sharp & Dohme

Sanat K. Sarkar, Temple University

1. Introduction The techniques for the evaluation of the multivariate

normal probabilities can be categorized as:
The standard multivariate normal density has the fol-

lowing form: (1) Expansions of the density in power series.

f(z) = (2 rI-} exp(--z']E-z) (2) Reduction to lower dimensions and then using quadra-
2

tures.
where

1 P12 .. Pin,
P23 1 ... P (3) Modeling the probability surface (log-linear models for

example).\P.1 P.2••

The evaluation of the probability integrals of the multivari- (4) Monte-Carlo integration techniques.

ate normal distribution is of great importance to statisti-

cians. The joint distribution of several random variables 2. The Contingency Tables And Association Mod-

is often assumed to be multivariate normal. This distribu- els.

tion also provides an approximation to many multivariate
Goodman (1981) developed the following association

distributions including the multinomial distribution, when
model: For an I x J contingency table, let Fj denote the

the sample size is large. Most of the work so far concen- expected frequency in the ith row and jth column of the

trated on either one of three cases: The evaluation of the
table (i = 1.;j = 1,. J). Consider the following

bivariate and trivariate normal probability integrals; the
model for the expected freq iencies

evaluation of the multivariate normal probability integrals

for special cases of the correlation matrix; the evaluation Ft. - (1)

of the multivariate normal probability integrals for special where a,, g3, ,j,, v, and 4) are parameters. Let 9,, denote

domains. Not much work was done to achieve a resonable
the local cross product ratios given by

technique for the evaluation of the probability integarls of

a general multivariate normal distribution on any (rect- 0,, - (FIJF,+Ij+ _1)/(FJ + IF, 4 1j). (2)

angular) region.
(a 1 I.. l-;j 1 .. J -1)

From (1) and (2) we obtain
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the bivariate normal probabilities, then, if the resulting-m = loge,, : 4€(AL - t l( i - v,+i). (3)

contingency table will have marginals which are univari-

If we let p, - A (i 1 .. , - - 1), vj - Vj+= A', ate normal probabilities, the cell frequencies will fit well

(j = 1..... J - 1), (where A and A' are unspecified) we the bivariate normal probabilities. However, since in gen-

obtain the uniform association model. Holland and Wang eral, ai and Pj are not known, model (7) can not be used

(1987) investigated the extension of "y, to continuous bi- directly. Hence both Goodman (1981) and Wang (1987)

variate densities f(x,y). They showed that the limiting use the proportional fiting algorithm to obtain the cell fre-

case of yi, is the bivariate function quencies. Noticing That if we drop a, and Oj from model

-2 (7), the cell frequencies will still have the same local cross"y1 (,y)AzAy = !-f yogf(z,y) AxAy. (4)
Y f Axyproduct ratios as does the corresponding bivariate normal

They called "vf (z, y) the local dependence function for f(z, y). density, we can use

For the bivariate normal density, the local dependence 7

function is "yf (x, y) = p/(1 - p2 ). The logarithm of the lo-

cal cross product ratio for the four infinitesimal rectangular as starting values for the proprtional fiting algorithm. This

region around (z, y), (z, y + b) (x + a, y) and (x + a, y + b) procedure cycles alternately between row scalings and col-

is umn scalings until both row totals and column totals have

{P/(, _ p 2 ) lab. (5) been matched. Bishop, Fienberg & Holland (1975) showed

that for complete two-way table this algorithm always con-
which is independent of (x,y). Let

verges.

Drawbacks of The Proportional Fitting Algorithm.
where

= p{(1 _ ,2/12)(1 - 6,2/12)}1/2. (6) The contingency table api roach, although provides

and 6, and 6, are the widths of the corresponding row and an interesting application of the proportional fiting algo-

column categories. Note that (6) is Sheppard's correction rithm in improving the existing methods for computing

for grouped data (Kendall and Stuart (1976)). Model (1) bivariate normal probabilities, has some major drawbacks.

,.,''mes: Among them are the following:

F, --- .,/, ' (7) (1) A preliminary set of the univariate normal probabilities

In this form, a, and 3, can be looked at as main effects is needed.

in the model, and , and i'j are the centers of the ith
(2) An undetermined number of iterations until conver-

row and jth column respectively. Wang (1987) showed gence. This is shown in WVang (1987). The number of

that (7) has approximately the same local cross product iterations until convergence is 3 when p is 0.05, while the

ratios as does the hivariate normal density. Bly Theorem
number of iterations until convergence is 30 when p is 0.95.

2.1.1 of Wang (1987), if model (7) is used to approximate
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(3) The procedure always generates a full contingency ta- a method for computing all Fij elements provided the di-

ble since it has to match the marginal probabilities with agonal elements are known. This is done by estimating the

the univariate normal. This requires a substantial number main effects and then re-substituting them in (1).

of computations even when the probability over a small

rectangle is needed. 4. Computing The Diagonal Elements of a Contin-

gency Table.

(4) The procedure requires a lot of memory space to store

all cell probabilities, especially as the dimensionality in- Consider a two dimensional integrable function f(xI, X2)

creases. on a closed interval [a,,b,] x [a2 ,b2]. Suppose we want to

evaluate the integral
(5) It is not easily extended to higher dimensions.

bi b2
.1 f.2 f(XI,x 2 )O9xiOx 2. (10)

In the next section we will show that these drawbacks can
We propose the following procedure to approximate (8)

be overcome by utilizing a general linear model together

with the 2' Tree technique. Step 1

Let

3. Approximating The Main Effects In The Log- 1o = (b, - a)(b2 - a)(f(aa2)+ f(ab2)
12

Linear Model. (11)
+ f(bi,a,) + f(bl,b 2 ) + 8f(ao,bo))

Following Goodman's (1981) log linear model for the where

bivariate normal density as presented in (1), we consider (ao,b) = (al + bl a2 + b2)2 2

now a different way to approximate the bivariate normal
Step 2

probabilities. Since the standard bivariate normal density

is symmetric in its arguments, it would be natural to as- Partition [al,biJ x a2 ,b 2] (the node) into four equally

sume that the main effects in (1) are equal, i.e., aL = 0, spaced rectangles (children) using (ao, bo) as a pivotal point.

i 1,... ,I, and i, = i= ,.. Use (11) to approximate the integral over each of the re-

sulting rectangles. Let I, denote the sum of integrals over
Suppose for the moment that the diagonal elements

all four children. Let 6 be a convergence criterion, then if
of the contingency table F, are known. Then from (7) we

S=i - < 6 deliver I as the approximated integral
obtain:

for (10), otherwise go to Step 3.
F,, = e -- (8)

Step 3
Which holds for all i = 1,..., I. From (1) we obtain:

a, = e 1 (io -F,, - f) (9) Apply Step 1 and Step 2 to each child sequentially

were the convergence criterion over each child is 6'= -6

(9) provides a way to estimate the main effects as functions

of the corresponding diagonal elements. This in turn gives The quadrature in (11) is designed to fit perfectly a
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second degree polynomial, i.e., if f(z,x 2 ) is a second de- 6. The Log-Linear Model And The 2' Tree.

gree polynomial, then (11) will be exact.
We now combine the 2n-Tree and the log-linear model

as follows. Each of the diagonal elements (nodes) is parti-
The above is a recursive algorithm. Its main property

tioned into four equally spaced rectangles (children). The

is that it concentrates on regions where the function is not

well behaved and spends less time elsewhere, diagonal elements are computed by the above quadrature

whereas the off-diagonal elements are computed using the

5. The Error In The 2' Tree. log-linear model. We then combine the area over the chil-

dren and compare with the node. If convergence has been

To compute the error, we can without loss of general- reached, we stop partitioning this element, otherwise we

ity, assume that partition each of the diagonal elements and apply the same

albil x [a2 ,b2 J -aa] x [-bb] procedure. This technique besides being fast, requires lit-

tle memory space since only one diagonal element is exam-

and ined at a time. This property is extremely useful in higher

(ao,bo) (0,0) dimensions.

Now, we want the error

7. The Trivariate Standard Normal Distribution

f(XI, X2 )-9 1 X2- -a (f( a,a) + f(-a,b) + f(a, -b)
a fb 12 Extending (1) to the trivariate normal distribution,

we put the following model for the expected frequencies
+ f(a,b) + 8f(0,0)). (12)

Fijk

log f5ik = (1 - P 2)6 + (1 - P132) 6 + (1 -p12)6C

We expand f(x,y) in Tailor series around (0,0) and sub- 1 /
+ - (P13P23 - P12)14; ,p + (P12P23 - 3) Ph

stitute throughout (12). All first and second order terms

vanish as they should for they constitute a second degree + (P12P13 - P23)A P)h
(14)

polynomial. The third order term in the expansion van-

where I P12 P13
ishes by the virtue of odd symmetry. Hence we have (after A = det P21 1 P23

integrating the fourth order term): ( P31 P32 1

Error ab5 a 4 f(Zx,x 2) ba5 - 4 f(Xz,x2) We assume that

45 Ox 1
4  45 Ox2

4  (13)
2a3 b3 af (xi,x2) + = =6. =6C =6, and ==# Vi.
9 ax,25X22

Putting model (14) for the diagonal elements and solving

Equation (13) gives the error when applying the quadra- for 6, we get

ture (11) to the region [-.,a x [-b,bj. (log F,,, _2- )
6, -- -(15)9 - (p2 + p2 '
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where 8. Comparisons

I = - PI + P12P23 + P13P23 - (P12 + P13 + P23))
A

We compare here the results obtained from the log-

As for the bivariate normal distribution, we can solve for linear models with some known results. For the bivariate

the main effects provided the diagonal elements are known, normal probabilities, we compare with tabulated probabil-

We again use the 2 ' Tree combined with the linear model ities given by Goodman (1981). For the trivariate normal

to generate all diagonal elements, probabilities, we make this comparison with the tabulated

probabilities given by Gupta (1963) and the exact results

for some special cases of the domain of integration. These

exact results were given by David (1953).

Table I

Probabilities under the bivariate normal density with p = 0.5. First entry is the

tabulated probability. Second entry is the computed probability. The computation

were carried out in a single precision with maximum error less than 0.0001.

xJ-.. x1-0.5 x1-1.0 X1-1.5 X1-2.0 xI-2,5

6.00 11.00 14.00 13.00 9.00 7 00

5.97 10.60 13.72 12,93 8 92 6 70
x 2 -2.5

23.00 35.00 37.00 29.00 16.00 9 00
23.47 34.59 36.95 28.59 16.04 8.92

x - .0
79.00 99.00 90.00 60.00 29.00 13.00
78.69 99.04 90.31 59.69 28.59 12 93

x 2 -1 . 5
191.00 205.00 160.00 90.00 37.00 14 00
191.11 205.42 160.00 90.31 36.95 13,72

x 2 -1 .0
336.00 309.00 205.00 99.00 35.00 11.00
336.32 308.75 205.42 99.04 34 59 10 60

x 2 -0 5
429.00 336.00 191.00 79.00 23 00 6 00
428.89 336.32 191.11 78.69 23.47 5 97

x2-O .0
396.00 266.00 129 00 45.00 12.00 2 00
396.39 265.50 128.86 45.31 11.54 2 .5

x 2 -- O 5
266.00 152.00 63.00 19 00 4 00 1 00
265.50 151.89 62 95 18.90 4.12 0 '3

129.00 63.00 22.00 6.00 1.00 0 00
128.86 62.95 22 28 5.72 1 06 0 16

45,00 19.00 6 00 1.00 0 00 0 )0
45.31 18.90 5 72 1 26 0 03 0 03

12.00 4 00 1 00 0 00 0 00 .0 10
11.54 4 11 1 06 0 03 0 02 0 0

x2-2 5
2 00 1.00 0 00 0 00 0 00 0 0
2.45 0 73 0 16 0 03 0 00 0 00

Moce Probabil lty-entrry/10000
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Table 2

Selected probabilities under the trivariate normal density. Results from the pro-

posed technique are compared with tabulated probabilities (when available) given

by Gupta (1963), and exact probabilities (when available). The computations were

carried out in a single precision with maximum error less than 0.001.

Corrala ifons Intarval _g.ULaL _ .Z&LL._ Lo-L.Lk.nar

0.5 0.5 0.5 C-0,O] C- 3,O] C- ,O] 0.2 000 0 .25000 0 .Z4965

C-0,01 C-0,O) cO'-] 0 .08333 0 .08308
C-0,O3 0,03 C--,O] 0.08333 0 08308
t-0,03 CO..] CO,.] 0.08333 0.08308
[0,.) C-0,0] 1-.,O] 0.08333 0.08307
0,.) t-.,O] o0,.] 0.08333 0 .08;'7

[0,.] co,. C-0,01 0.08333 0.08307
co,.] cO,.] O,.] 0.25000 0. 250000 .24963

0.3 0.5 0.7 [-.e,O] [-,,, ] [-m,Ol 0.25262 0.25214
C-,03O C-0,O] co'm.] 0.04588 0.0456t

C-0,O [O,0) C-.,O] 0.08072 0 .08040

[--,O3 co',.] 10.] 0.12079 0. 12044
CO,-] 1--.,O] [- ,Ol 0.12079 0. 12044
c ,o .] '-.,O [0,.] 0.08072 0 .080 40
[0'.] [0,01 [-.,Ol 0 .04388 0 .0 456 1

cO,-] c , .] 1O,.1 0 .25262 0 .25214

0.5 0.5 0.5 C3,.) C3,.] C3,.] 0.00002 0.00002
[2,.] [2,.) C2,.] 0.00137 0.00137

0.7 0.7 0.7 C2,.] C2,. C2,.] 0.003J9 0.00389

[,.] C1,61 cl,.] 0.05756 0.05746

(0,.) cO0.) co,.] 0.31011 0.31011 0.30948
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MULTIPLE SMOOTHING PARAMETERS

IN SEMIPARAMETRIC MULTIVARIATE MODEL BUILDING

Grace Wahba

University of Wisconsin-Madison

1. INTRODUCTION where the e0) are treated as independent random errors

Semiparametric model building, particularly using with a common variance a0. Here we will treat all random

multivariate splines of various types, has the potential to vaables as Gaussian with 0 mean unless otherwise

allow the organization and analysis of large data sets which specified. Simultaneously, there is a forecast of the state

represent responses as a function of several variables. One variables of the model, which can be converted to a fore-

of the major stumbling blocks to the further development cast off (P). Let this forecast be

of these techniques has been the heavy and sometimes Y) =f (Pi) + )

prohibitive computational cost of estimating multiple

smoothing parameters. Some recent work in Madison ( Gu he ervis the forecast ror te rbe istme
et a. (une1988, G (Jne 188) ha reslte in the observational and forecast data to get a new estimate

e d al. methods for8), spe(J e ding8u theecula-d infor the 500 mb height, which is then used as part of the ini-im proved num erical m ethods for speed ing up the calcula-ti l c n t o s f r a nu e c l w a h r f r c st m d .
tion of both GCV (generalized cross validation) and GMLtilcntosfranueclwahrfrestmd.
(generalized maximum likelihood) estimates of multiple Generally, the error variance of the observations depends

on the equipment and is known. The forecast error is gen-
smoothing parameters. (See Wahba (1985) and referencesther fo a dscusio of hes estmats.)erally correlated, and depends on the particular forecast
there for a discussion of these estimates.) model in question. It has not been as well known as one

This work has allowed us to explore the use of would wish. Recent work at the European Center for

interaction smoothing splines (Barry (1986), Wahba Medium Range Forecasts (ECMWF) (Hollingsworth and

(1986),Gu et al. (June 1988)) for multivariate exploratory Lonnberg (1986), Lonnberg and Hollingsworth (1986)) has

model building, and also to tackle some interesting prob- provided some fairly detailed information on the 500mb

lems concerning the merging of data from different sources forecast error covariance structure of the model there. The

with different and only partially known error structures. forecast error spatial covariance was estimated, based on

In the first part of this paper we will briefly discuss the analysis of three months data comparing observation to

data-merging problem and in the second part we will forecast. Use of these results can be used to "retune" the

describe some recent model building work with interaction estimation of initial conditions (which is then of course

smoothing splines with multiple smoothing parameters. going to change the forecast error covariance.) The fore-

We note that J. Friedman's extremely interesting keynote cast error can depend on many things, including the

talk at this conference concerned what might be called weather itself, and we were interested in seeing wether use-

interaction regression splines. There are philosophically ful information concerning forecast error covariance could

interesting similarities as well as contrasts in his approach be obtained dynamically, that is, from one instantaneous

and the one we describe, set of 500 millibar height observations,which consist of the
order of 600-1000 observations, and one global forecast. If

1. A DATA MERGING PROBLEM ARISING IN it can, then the information can be fed back into the model,

METEOROLOGY to improve the estimation of the initial conditions. In

To motivate the problem, we first describe a very spe- Wahba (1988) the forecast error covariance is modelled by

cial concrete case, then we consider a more general ver- EeFe)E) = O 0(Pi,Pj),
sion. Further details appear in Wahba (1988). where Qo(',') is an isotropic correlation function on the

Let P be (latitude, longitude) and let f (P) be the 500 sphere depending on the singie pa,ameter 0 and defined by

millibar height, that is, the height in the atmosphere at

which the pressure is 500 millibars. Every 12 hours the a°(Pi'Pt) =

global radiosonde (weather balloon) network observes the (1- 20cosy+2)-t 2(I +0)-l

500 mb height and reports the obervations. (0(I) - (l -_(l+0)_

y(O) =f (Pi) + E0  ,i=. n where y is the angular distance between P, and P,.
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Figure 1 is a plot of P0(y) for seven values of 0. 0 is a of the algorithm goes as follows:
monotone function of the 1/2 power point 71/2 (the dis- i) For fixed 0, tridiagonalize Qe as
tance for which the correlation is down to 1/2), and 71/2 is UTQoU = T9
probably the single most important parameter (in a practi-
cal sense) of an isotropic correlation function on the where U is orthogonal and T is tridiagonal, by successively
sphere. This family of correlation functions was chosen for applying the Householder transformation. A strategy for
mathematical convenience and for the resemblance of speeding up this step by appropriate tnication which sets
some of its members to correlation functions in Hollings- suitably small elements of the diagonal of To to 0 appears
worth and Lonnberg (1986), Lonnberg and Hollingsworth in Gu et al. (June 1988) and is in the code in Gu (June
(1986). 1988). Then

M (rO) h'(rl + To)-'h

[det(rI + To) -
j] n

where h =Uz.

ii) For each trial value of r, do a Cholesky decomposi-
tion C' C of (rI + Tq). where C is upper bidiagonal,

al b,

a2 b2

C=

.... an-, bn-I

y, radians an

Fig. 1. Pe(Q), for seven different values of . iii) The numerator of M is then computed by back
2

n )

Making the reasonable assumption that the £ O) and suostitution and the denominator as ( )ai)
2 i=1

2 0
2are independent, then one can estimate f, r = iv) For fixed 0 conduct a search in logr, then step to a

new 0.
and 0 by maximum likelihood, by considering Most of the work is in the tridiagonalization, thus, a

zi = y O) - y, search is "cheap" in r and expensive in 0.

then z=(z 1 . zn)' has the distribution This algorithm has allowed us to ask practical ques-

z N(0, 2(rl +Qe)) tions based on realistic simulated data, with n=600 or
more, using our Sun workstation. Such questions as, can r

where Qe is the nxn matrix with i,jth entry Qe(Pi,Pj). be estimated sufficiently accurately given one set of data,

The maximum likelikhood estimates of r and 0 can be to make the method useful in a prac,ical sense, for adjust-
shown to be the minimzers of ing the relative weights to be given in observation and fore-

z'(rl + Qe) 1 z cast when merging them to get new initial conditions. For
M(r, 0) = - example, Figure 2 gives a histogram of logr from a simula-

[det(rJ + Qe)- n tion experiment with 1000 replications. (Note that the
matrix decompositions above are only done once!) For this

and the ML estimate of Of is simulation it was assumed that 0 was known, and it was

2 = + Q taken to correspond to a realistic value of the half power
f n point of 500 km. Data was simulated for 611 Northern

where and 0 are the ML estimates of r and 0. Hemisphere radiosonde statiens witha true r of 2/3. Per-
centiles of the distribution are given on the plot, and one

An efficient algorithm suitable for minimizing M(r, 8) can see that, under the ideal conditions of the simulation,
(as well as the GCV function, to be discussed later) with one could reliably detect a drop in r from the nominal 2/3
large data sets has been proposed by Gu et al. (June 1988), to .43 or less.
and some code is available in Gu (June 1988). An outline
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MLE r 2/3 L z 500 The covariance matrix of t is then

' I j . O, o.q ~ E O'=°2 B(I)Q 1B
1 '+ (YB( 2 Q2B( 2)'"

10 0.480 Suppose B ()Q 1 B (1)' is of full rank, then we can take the
q_.25 0.56q Cholesky decomposition LL' of B(t1)QB(t ), where L is
q_.50 0.659 lower triangular, and let z=-lt'. Then the covariance

75 0.788 matrix of z is
q_.90 0.91q

q-. 95 1.011 Ezz' = a*2(rI+Q),

where r =a2/a 22and Q=L-'B(2)Q2B(2)L-,. The ML esti-

mate is then given by the minimizer of M and the estima-
bility of r depends on the properties of Q. Loosely speak-
ing, the two vectors wOi) and w(2) need have to have their
"energy" at different "waverambers". Questions about the
existence of good, or consistent estimates, as n-o can be

Ti _approached by studying the properties of Q from the point
2 0 2 of view of the theory of equivalence and perpendicularity.

loq ba 2/ See Stein (1988),Stein (1987). Wahba (1988), Wahba

Fig. 2. Histogram for logr. (March, 1987).

2. INTERACTION SPLINES
We remark that this problem of estimating relative Interaction splines provide a tool for modelling a

accuracy generalizes to indirectly sensed data from dif- response which may depend nonparametrically on d van-
ferent types of instruments. Let f be some meteorological ables, as sums of (smooth) functions of one variable, sums
field of interest, and suppose we have two different sources
of data, of functions of two variables, and so forth. Sums of func-

tions of one variable are known as additive models, see, for
example Friedman, Grosse, and Stuetzle (1983), Stone

and (1985), Hastie and Tibshirani (1987). Interaction splines

y(2) L(2)f+ E(2) loosely fail into two types, namely, regression splines,

whereby the estimate is a least squares regression on a set
where of basis functions (the number and types of of which play

y(a) = (ya) . (), the role of the smoothing parameter(s)), and smoothing

splines, where the estimate is the solution of a penalized
L a= (La), La) ), least squares problem in a reproducing kernel hilbert space

with an appropriate norm or seminorm. (Such estimates are
E(a) = (Ea) ,,) c = 1,2. always Bayes estimates, see Kimeldorf and Wahba (1971),

If f were the three dimensional atmospheric temperature Wahba (1978).) Hybrid splines result when one solves the

distribution one source could possibly be the important penalized least squares problem in a finite dimensional
case of satellite observed radiances. Suppose that (approximating) space of basis functions. In this case, the

Y(2) multiplier(s) on the penalty(ies), and the number of basis
E (a=N(O, y2)Z(a)) and it is desired to estimate r = -) functions may both act as smoothing parameters. J. Fried-
and, possibly, some parameters in y(a),cx=,2. To ) man, (these proceedings) was concerned with regression
andosib T, proceed splines, in this Section we are concerned with smoothing
as before, we need the existence of two matrices splines. Computing the GCV estimate for the number of
B(), ly,2 of dimension nxn(),ct=l,2 for some basis functions for regression splines is not a problem

sufficiently large n, which satisfy (altho modifications to the GCV to account for knot selec-

B()L )f =B(2)L (2)f•  tion raise interesting questions, see Friedman (August

Let w(') be defined by 1988), Friedman and Silverman (1987)). The computation
of the GCV function in the smoothing case can be a major
numerical challenge when there are large data sets and

and let be defined by multiple smoothing parameters, and heretofore has been a

= w()-w(2) = B ()y ()_B(2)y(2) = B(t)e-)_B(2)C(2). deterrent to work with multiple smoothing parameters.
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The reproducing kernel (rk) hilbert space that we and (QO + nI)c + Sd =y
others ( Barry (1983), Barry (1986), Wahba (1986), Gu et
al. (June 1988) have proposed as the natural setting for S'c = 0

interaction smoothing splines, is the tensor product of d one where Q e is the n xn matrix with ijth entry Q 9 (x (i) ; x (j))
dimensional rk spaces (see Wahba (1975) for an older work and S is the nxM matrix with ivth entry ov(x(i)). Letting
on tensor product spaces). We remark that the tensor pro- the Q-R decomposition of S be
duct spline spaces are qualitatively different that the spaces S[R
which provide the setting for the thin plate splines (see 0
Wahba and Wendelberger (1980) for example). Some a series of standard calculations (see e. g. Wahba (1985))
remarks contrasting tensor product and thin plate splines gives that the influence matrix A (X,0) for this problem is

may be found in Wahba (1986). I -A (?,0) = nXF 2 (F2'QoF 2 + nXI) - 1F 2'

In the remainder of this paper, we describe interaction and the GCV function becomes
splines, and show how the algorithm proposed in Gu et al.
(June 1988) can be used to choose multiple smoothing V(X,0) = (2.4)
parameters and build interaction spline models via the use (tr(n V + Me) )2(.

of GCV. where

We first describe an abstract result concerning the z = F2Y
fitting of functions with different smoothing parameters

associated with different components of the estimate. The and

application to interaction spline models will then be fairly Z1 + 02 z + ... + ePP
easy and will be described next. with

Let H=Ho(Ht be a reproducing kernel Hilbert Y =F2,QF2
space of functions ofx = (xt . ... xd) where H0 is of finite

dimension M and HI is the direct sum of p orthogonal sub- and Q is the nxn matrix with ijth entry Q '(x (i) x (j)).

spaces H .  H, The algorithm for minimizing V(X,0) suggested in Gu

, =et al. (June 1988) begins with steps i) and ii) as in Section
Ht = ®H . (2.1) 1. The numerator of V is obtained by backsubstitution, and

1
to calculate the denominator we need to calculate
tr(C- 1C-l'). Denote the i-th row of C - 1 by ci'. We have

(y, - f (x(i)))2 + X 05 11Up Of (2.2) tr(C 1 C - U)C, 12. From

-al
where x(i)= (x1(i)....x (i)), 01 = 1 and P O is the a 2

orthogonal projector in H onto HP. (The HO will later be 0 a2

various subspaces for main effects, two factor interactions, b 2

etc.) If the rk for HO with squared norm IlPIfI 2 is C 1'C'=(C 1 , c 2.  c) =1

QP(.;.), then the rk for H1  with squared norm •an-

y051 IPlf 12 is b,_ 1 an

S • 'we have

)=Qe( )~~ (2.3) c,=1 ancn = en

say. The following facts are well known: (Kimeldorf and aic, = e, - biCi+1 , i = n-,.
Wahba (1971), Wahba (1978)) Let 0 .. O span H0  where ei's are unit vectors. Because C -1 ' is lower triangu-
a.id suppose the design points x(1) ..... x(n) are such that lar, ci, 1 is orthogonal to ei. Thus we have the recursive
least squares regression in Ho is unique. Then the minim- formula
izer fX.9 of (2.2) is defined by Icn I12 =an2

M nI
fxO(x) = Xdv0,(x) + c,Qo(xx(i)) Ic I12 =( + +b Ic,+1 112 a~2 , i =n-I.

v- i=1 which can be calculated in 0 (n) flops.

where d=(d .  dM) and c =(c .  c,,) satisfy
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We now describe how one obtains interaction spline for which exactly 2 boxes are filled with a symbol other

models. Let W' be the Sobolev space than k 0 , etc. For m=1, there is only one kind of 2 factor
interaction fundamental subspace, it has 2 H.'s in the

W2 (f:f: f". f(m-1) abs. cont., f(m) -L 2[0, 11) boxes and d-2 k 0 's, but for m>2, there are subspaces with

with the squared norm 2 H.'s, with 1 H, and one k1,1>0, and with 2 elements of

rn-1 1 the form k,l>0, we shall call these pure, mixed, and
If 2 = " (Rf) 2 + f(f"')(x))2dx, parametric subspaces, respectively. Of course the possibili-

V=0 0 ties multiply if one wishes to consider higher order

where interactions.

Rvf=V)(x)dX, v=0, 1. rn..-I. The form of the induced norms on the various sub-
0 spaces can most easily be seen by an example. Suppose

Let k(x) = B(x)/1!, where B1 is the 1-th Bernoulli polyno- d = 4 and consider for example the subspace

mial (Abromowitz and Stegun (1965)), we have [{kJ}] ® [H.] ® [H.] ® [[kr)],
R vB = 8,._1 where 8i = 1, i--0, and 0 otherwise. With this which we will assign the index 1**r. Then the square norm
norm, W' can be decomposed as the direct sum of m 4

orthogonal one-dimensional subspaces (kJ), of the projection of f in ® WT onto this subspace is

I = 0, 1 .. m-1, where {k1} is the one-dimensional sub- I Pt.,f II2 =
space spanned by k1, and H. which is the subspace (orthog- 2
onal to Ye{k}) satisfying Rvf=0, v=0, 1. m-l, 11 a'1 11

that is, ax ax, ffRl(x)Rr(x.)f(xlX2,X3,X4 )dXldx4 dx 2dx 3,

W' =(ko}) (k) D ... ED (km-t) H..
where Rk(x.) means Rk applied to what follows as a func-This construction can be found in e.g. Craven and

d tion of x,,. Using the fact that the reproducing kernel for
Wahba(1979). Letting 0 WT be the tensor product of WT (ki} is kl(x)kl(x') and the rk for H, is Q (x ; x') given by
with itself d times, we have

d d Q(x x') = k(x)km(x')
® W2 = ® [{k 0) E) .. km,) EDH.] where [u] is the fractional part of u (see Craven and

d Wahba(1979)), it is easy to see that the r.k. for this sub-and 0 ,V' may be decomposed into the direct sum of
+I~d 2space, call it

(m + l)d fundamental subspaces, each of the forms

1 [ 1 ( .Q [ (d boxes) Q**r(X ,X 2 ,X 3 ,X 4 ; X' 1 ,X'2 ,X' 3 ,x'4 ) =
Q t* r(x ' ),

is
where each box ( [ ] ) is filled with either (kJ] for some 1,
or H,. Q1* *r(X ; x')=

The subspace of ®W' for additive splines is the k1(x1 )k,(x'1 )Q(x 2 ;x' 2)Q(x 3 ;x' 3)k(x 4)k(x'4 ).
direct sum of all fundamental subspaces for which at most
one of the boxes is filled with a symbol other than {ko}. In The rk for the direct sum of any number of fundamental
the additive model f(x 1, " ,Xd) is of the form subspaces is the sum of the rk's, since these fundamental

d subspaces are all orthogonal.
f(x .  xd) = 1 + Yg.(xa) We now have a very flexible model building tool, by

cvxI
constructing models based on subspaces of interest. Towhere g( E k IS ... [kr) H* and the penalty term discuss some of the possibilities in a simple way, let us first

in (2.2) can be taken as restrict ourselves to the case m =1, and consider only main

d jIa"g.12  effects and two factor interactions. tlere II is just the
c/'1 { JI)- a . space of constants, there are d one factor subspaces, one for

each variable, each of which is a fundamental space with
Then we have the identifications: 1 /o is the direct sum of all (k 0 l's in the boxes except one H, and d(d-l)/2 two
the fundamental spaces with all k0 's in the boxes except at
most a single k, with I not equal to 0, and the f1's are the ctor spa Asging espae its e pre-
fundamental spaces with all ko's in the boxes except cis trck an tr tma t all tee param e
exactly one with IH.. The subspace for (all) two factor appears tricky even for small d, and, in fact we would like
interactions is the direct sum of all fundamental subspaces
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COMPUTING EMPIRICAL LIKELIHOODS

Art Owen, Stlanford Universit v

Abstract restrict attention to distributions with support in the sattijle.Trhe emipirical (list ribution function of a sam ple is ofteti that is, to distributions F ~< F_, This is convenient becausepresented its a nionparamletric miaxiniumi likelihood catirnat,, the statistician mnight not he willing to specify a boundedof tile samnplng distribution. The likelihood function it toax. support for F", and because it reduces the conistruictioni of .Sjiizes can be u~sedl to (fli ne a likelihood ratio function. ThIiis to a finite dimiensional problem . Owen ( 19<7) p jroves:em pirical likelihood ratio fujnct ion has somie of the profo'rt ie Theorem 1. Let XVIX . . -' be i.i.dI. randomn vectorsof paramietric likelihood ratio functions: iii part icuilar at ion- tin II?. withl E( ) Ito and u'arf NV I = T of rank q > 0.parartuet ric Version of %Vilks's ( 1938S) theorn hiolds. I'or positive c < t let S,. = if j'N IF 1 1?( 1 c. TF < F,Like the bootstrap. emnpirical likelihood allows ft(i stat i- Th'len S,, is a Conivex set and
tician to siubstitte cintilir power for (list ribmit orial as-
suirptions. Thle mnethods differ in that tilie bootstrap uss, hll I') ii~~lP(\2 < -2lug c.
\loiite Carlo saniplintg while em pirical likelihood perforns a 1 7
rtiniber of numnerical optiini-,atiotis. Voreover if E (j11XII') < x then

'I' lis paper desc ribles how- thle in neriocal optiin izat ion re-
tquiireil bY empirical likelihood Ina 'v be( lierfornieil. '[le focii5  )"(11( E S"', p \ 1' 2,1 < -2 log c)j = ((n-'/2)
ik (ii confidfenice regioins for intltivariate mevans, Wilit I xtemi
,tonis to statistics that are stiloothI funictionis of iieans. For at
niultivariate imeati. the iipini/atioi lroll('t is conivex antd so '[his is a monparanet ric version of W'ilks,'s ( 193l l tfio-
heire are ptiiizat ion ietliodIs guaranec'd to finid the imtiqu', reiii. 'Tle rate attinied is also the sarne as Wilks finids. l)i('i

global optitini froiit any startitig pinjt. ccio Hall aiid Ilonano ( l95o ) showk that wlhim L_ ~X '3
Onev vk-product is an ctlgorit hi for dte rziiiitg whet her the( cotnvergenice iii t Ieorein I is ast rat e 1)~

a point it. eticlideam space, is wkit binl the convex hill of a given The( coriluitationirl probleiii thlit arisos is thle oinput a-
st of point'. tiot iof the eniiiiicail profile lik''liliooil ratio fiiiom it

Key ' VWrds and I'lirases llootst rall. i'mulideiic set. cotn- r(p )=siip 1) 1~ /( f rI xd V . s iti I F<
vex duial it v. %, vini~ rical Ii kfli boil. Ii kelihioou ratio test. tioit
parainit c likelihood. for suruoui ,iiiridaut's p for LA).'Vests of /,.V A' 1 an

1. ntrdutio. ,,, X ril, rejesteil if r-hp) is sutiall aiii cotiitce rv'giii are, firituil
. itomctoj I Ile - 6' I" CI.'101 iiif. itrio front t i', iir'jetd viii's of p. It is coiieiiit o ploi ri ji

lotivior !iI,'' niiri(t ;, it i ottio ti whoni~itii 1)i*i < 2
1K,. lii''nipinif fist rlnithutiOn (i 19,7 ) sb ls l at for pji I

I- .. -2 Ilg ii p,, 01,(- - '

- i lur' 'I2 is but'llilug's st at istic. Illi, uu't r' f'rriugj tol

H Via'' ii lo ,' t ' t tr.iwtitri( i;xiituuuuu likeilofd (It, I n//i H - fI 1 . _, itisead of tIll.e chisqlisri hunt l. I
hiII;--1 oil \ Nhr I .ut .t .~/ te.t is.~'u' ef exitilstd r

ni;g otis Ii hI.,fin r hiccio, of psti's'wu
in ;r-u hr'i~'ll a' 'ii'toi ti~tI'iiyiii/' iI 1w ( o i . 'tic,'' *muulijii-l d ik Ir~od Mif oifhr

xv rk. p .' al' t I i' 11 u'tp i rilitl1-i'r Ill (N 1-ti 19,7i171 , Il X% lo Ii i I Ill I ou f I his ;11 -I ' 1 1 i -h

,A, i'I r I.n! dH 2. Comuptit ilg for the Miean. ,-, I,
It,-I '.!~Li n.'fn ', fIll f iritIu i , i i~su ~ L ri s -tbI I u ,i i ~id t' i fr-i
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The maximizing weights are given by local convergence residlts t hat gun ranlit et'onvergetice to a rt'l-
ative mitlnimm provided the starting ptoint is siifficieit lY (lose

1 1 to the solution. The problem at lianid, the minimutizatiton of
7 '1 ' 1 +i (2.3) a conve futionovr a convex domnaiii is knowni ascne

so that l'sheiinty and lDanilin ( 1978, Chapter 3).

r(p) TiI + T' f-.1he ('oinvergenice thIeoremi s dlesc ribe) thle pe rformnice of
LI ~~~~the algorit hitswhen cilittisartadwithitfitiite pre-

For p = I it is easy to solve (3.2) with a safeguardeid cision, atid infitnite setfiteices of steps are carrievl out. Ill
zero finding algorithmn such as Brent's miethiod (Press vt a]. prfacticV Onie lhiS t0 Cotendt with finite aptproxtimatiotns on
1986). Owen ( 19MM) uses Itrent 's method to maximtize ettipir- both issues. It has bwet thte aiithoc's 'xpverivtnco that tue

cal likelihood ratios for certain .1l-estimates. iThe bisectiotio~ ptituiatI ionis are mtost til iadl for p nejr .X anid that
algori thIit whi ch safeguta rded zero finidoe rs it se, lovs iiot ex ist its p a pplroarcles thle contvex lii oItf ft( ie il a lit' rotnipita-
for p) > 1 , so we reform ulateC the p~riobhlemt. tint heroies more dIifflbiit . AlIgori thm is tnia v the refore bie

It is miore coiienyen t to coiiside r finidin ta zero of - g( A ). tottmpared on tie basis of how sit iall thli log li kel ihood rati
Inspection of -y shows t hat it is t lie gradient with re~spectI to mtust becomte before the algorit hitt ennitters diflictib * . A
A of natu ral goal for computtat ion is to be able to coitpuite t lie

h(A) I ~log( I + A') A - it1) (2.1) log, likeliltood ratio dowtn to values correspriutiing to coiifi-
deit e intervals withI cove rage well bevot id t hat reqired iti

so a zero of y is a crit ical puoin tit f.1 practice. For othier values oif p t ie( aliproxitmationi rip) = t0 is
We now argue that f is CoulveX over it -OUIv'X dotitaiti. adequate. InI the example of Sectiotn 3. the INISI. -oiijttgate

Since we ottlv itedt toi cottsiiler A for which all it, < V 1rdii rotii X'w ft)io ofettthi i o

unny assitutit' t lint lows comti~ttation of log li kelihltoods smialleir thati -5f0 wich

ft r excreeds thle nieed s cif a iiy reasoniiablle ccittdeit('ie regioiis for
I ± '(X - t) 1/t > I. t (.5) the meaii.

Wltet po i s oult side of I t( ie rtvex hu (itof t Ike dtat a. t tere
sit A tInay , te conintetd tto the ititersection 1) of half spaces isnto solutin. In puractice what happens, isthiat tlt'algturitlhint
de-iitei by 12.5). :) is cotoex. [lie Iless iart of f is lertiitates at a large value oif A for which thle slope of thle

logarithmti is so smtall that rthe gratdienit is zero to tlit requireil
HilA) M X._______ -- it) prtecision. One (-ait tell thlit this has htaptpenet'd btecauise thle

l-,-A'(Nw, ji} ' ilt ito longer sitn to I. It mta' ve liti mrt'( tittiietit ttt it'(

whr s emii, seitidefittit e il I) and hiit-f i oti~'.x. t his fart thtan to checrk whet tir a givet pttinit is wit hin the

When the samtple vihiirt' of thi' X, is tof fitl] ranik, 11 is ilntta ihher t"li at ical Owftt iffuil f

positie tiititi' ott 1). Witi iissitti'' frututi 1iw il t hat 11 is dt shgw hn2

poliitivi, (-niit 1) oif.at liente that f is strittiv tittivx til 3. Example. hFor inilist ratioi we isi' ,mwtlii'
1). It fitlliiw- t hut Ow' otlliiitn of (2.2) is lit' untiqute gltblt front Larston anti Marx 198t6, 1). .1.1M). IFloi'ei tiiuli' tdutks.
illimilliof f oil I). eat-li a st'riitd genteratiti ( ross Ittweui miiallard andh pititil.

Me tiow htavie lth' futlliuiug dutal truili'tiu: to Tilaxiiiit/(e wi,-t exatinedti. 'Ilheir uuiiigti, was rat'il ont a stile troti
2.1 1over the' mnilk siimpex itrto tt (tlts ~t is tot tit- ft (tt lvtvi'l niallardlito') tit 2t t coiipl,'tt'v jiiiaillik'l itoId

iiniizi' f itver 1) withliut cottraitits. I Ie first protblemi I, Itt lhi'ir lielaviti)r wkas sittilarkv ratedtil ttt sctle friiti 0t iallatul
lwie - I itdt'perith'it vatrittttlts if t lit siittl''s andI the 4i' to I-, (pitntail ). I igitrt I'sliuws Iitt'u idata. ti ilirwi Ii
ot I i illt tw lie p uuititttiii o tf , ti that~t thwe n )itst raittis tiesteti nIrltiril-al likt'liltutot out'turce confuitrs for I lie, ous.t,.

1c'it 1 K Cra( iit Nritet ;irutili-tii. it cir rle tof 1tc il I are; tif tItw ot tttrs. heis it r't'et
Ntttite thati if A )Is fi, I), likil,dihot ralth fitttt (2.1 t tit fcks. 'IIto' u-uiifii'tct' ctotit i re prietitti for Tioimtul

kit i ( 2.1t uhtIitit Il fir ii* tt en.- u - iglyk, this titkes thu, (itfii'ti "I! I sl(I..:~ .7,0, tiff 1.t. . takeit, frmiii '1001 liii- tIh

dim pitiltit tnoiitrm ilio d o ;u i 1t 1(f diIi u ityl A((f grll.' tistin til INIw ampijtzl tu m (' of

It i - Ionvi uijt'it '-,xtitidf frm 1) ii lli" . afilt- lt ...t' rx t-iii r nut i ; Wfilt'- 10000 1-fit t i i j1 troXsIHialv I.\

I tt i u- x / ) ' ,ti-a-u. l q' t .r H ;i uIi;idlrati fit l~ muu 'uitd p mu,, e I .t li t a Ilisi rit, ,, -iiit' (-tli k%%i.. pfii.il I , r (,t (iIt

t i iiltI ' w-ui1l1 1 ~ f, i ' \ ' lI m tt- l fr l ~ t l il
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Figure 1: Empirical Likelihood Contours
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Figure 2: Normal Likelihood Contours
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tio contours assuming a bivariate normal distribution with A nested optimization may be used to compute r(a).
unknown mean and variance. The 50% region is nearly the The inner level of the optimization minimizes the likelihood
sahtr as for the empirical likelihood. More extreme regions over A with i and a held fixed. The outer level maximizes
remain elliptical while those of thle empirical likelihood ratio the resulting minimum over p for fixed a. In the outer level
method tend to the convex hull of tile data. it is convenient to know the derivative of the minimum with

respect to p. This may be determined analytically,
4. Extensions to Other Statistics. Theorem 1

for means extends by delta method arguments to statistics d inflogr'(aP,
that are smooth functions of means. See theorem 2 of Owen xA) =A t  (1.1)
(1987). Examples include the variance of X which is a func-
tion of the mean of (X, X 2 ) and the correlation between X where A, is the first component of the minimizing A. A
and Y which is a function of the mean of (X,Y .V", ", NY). generic function optimizer may try impossible values of (pi,a)
Similarly coefficients of skewness, partial correlation and re- before finding the optimum. This is especially likely for ex-
gression can be treated this way. l)iCiccio, Hall and Romano tremely large or small values of ,7. It thus helps to extend
(1988) show that the coverage error is of order n- l in this cause the domain of the empirical likelihood as described in Section
under mild moment and derivative conditions. Extensions 2, through the function log*. The alternative is to design an
to Al-estimates and to Frechet differentiable statistical func- optimization method more specific to empiriral likelihood.
tionals are made in Owen (1987). Joint confidence regions When the likelihood is extended, the more general version of
for p such statistics can be based on a chisquare limit with p (4.1) is
degrees of freedom provided there are no linear dependencies di iflog r'(a. p, A) = nh A z,(A).
among the statistics.

Consider the variance. The algorithm of Section 2 can be Larsen and Marx ( 1986, p. 332) give 19 estimated ages.
used to compute the empirical likelihood of the pair (i. p2 + in millions of years, of mineral samples collected in t lie Black
a 2 ) as a candidate for the mean of (.Y, X 2 ). For ally fixed a Forest. The ages were estimated i Potassium-Argon dating.
the resulting likelihood may be maximized over ip. Euqiva- The variance of thse measurements isofdiroct interest since
lently, we may conpule the likelihood of (It, a2-) for tile mean it provides ilformat i l the recision oftie dating 1ethod.
of (X, (X - it)2 ) and take as the likelihood of ay the maxi- A histogram of this data d[pears in Figure 3. The samp.e
1 0 over p. 'I'he latter prescript ion houd be more st able 11standard deviat ion is 27. 1 iillion years. and a normal theory
numerically. Let A95 confidence interval is 20.1 to ,10 million yePars.

r(j~a)=spf i HFigure 4: Likelihood Ratios

subject to tie constraints

0',>0. L , = 1. 1u",, = . E?,(.,-V ) ='

and abuse rotation by letting 0.8

r(,r) = sup r(pi. a).
j, 0.6

The analysis in Section 2 allows irs to write i,, = i,,(A) where
A E I"?2 is the lagrange multiplier and now 0.4

log r(f') = sup inf log r'(ao, t, A) 0.2

whire 0.0

0 In 20 30 40 50 60

r'(.pI.A) [ (1 + AI(., - it) + A,)(.\, -- i) - ) Starftird lsviat ion in Mil lios a

Figure 3: Potassi.um-Argon Dates V; llro 5: aoot.rp Standard )OVi ,t ions
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The empirical likelihood ratio was calcnulated for values ales.
of the variance corresponding to standard deviations in the Larsen anr(] Marx ( 1986 page r51i) give 15 pairs of oh-
range from 1.5 to 51.5 million years in steps of half a million servations relating the frequency with which crickets chirp) to
years. Computations were made for an increasing sequenlce the temperature. The data are plotted in Figure 6. The fre-
of standard deviations starting near the maximum likelihood niuericy is measured in chirps per mninute arid the temperature
estimate, and for a decreasing sequence starting there. This is iii degrees Fahrenheit. The sample correlation is 0.835. The
way the final values from each step could he used as starting empirical likelihood ratio function is plotted in Figure 7. Also
values for the next. It took two iiiinutes to miake 102 likeli- shown is the normal theory profile likelihood ratio functior.
hood evaluations on a microvax VaxStation IL The empirical curve lies ahove the irornral one. Figure 8 is

Figure 4 shows thre empirical likelihood ratio function, a histogramn of 1000 bootst rap replications of the correlation.
together with the normual thIeory likelihoodl ratio function. Thre empirical likelihood ratio curve is very a-svimneti-nc. so
Tire likelihood ratios are plot ted against standard deviations it will yield iniferenices quite dififerenrt froni those b~ased on ant
in millions of years. Thre horizontal linres correspondn to 90'X esiadstnrdevtonfrpTh apofiecue
and 95%X empirical likelihood confidence intervals. Slightly' is similar to tire b)ootstrap histogram.

different litres would be appropriate for thre exact confidence Figure 6: Temperature vs. Chirps/Minute
regions baseud on a norrmal miodlel. T[le emrju ical likedi hood 95 - --

ratio curve has a shorter right tail and a very slightl y longer D
left tail thair thre norrmal one. It is suirprisi ng how close tIre, q9
two curves are. The shorter right tail of thre empirical curve r

e
seems natuiral given tire apparent short ness of thre tails iii e 85* *

FPgure :3. The samp~le kuirtosis is 0.02 if one rises thre nor- S*
mial niaximum likelihuood estimate of (T2 as iii Miller (1986. F, *0

p. 272), and -0.29 if one uses Irle unibiased estimiate of CT' a

Since the sample maximum is 344 and the minimumn is 2413. r *

thre largest possible standard deviation for a reweighted samn-
prle is 51.5. 'lire algoritlir found air enmpirical log likelihiood h*

0 70
of -52.9 for a standard dheviat ion of -51. Thre smiallest stairt- I
ularul deviat ion for which a meaningful solution was obitainiedt:6

3~~.5 Sand ( tire, cor respoti ig erntpi ri cal lorg li kel ihood was4 5 1 1 8 9 2
-5 I .8 Th lese cornespond1i to unitativye k2,I) valutes iii excess of
1010. It folnows that for airy confideicu level ofpIractical inter- Olf5prMn~

est thle empirical interval for the variance can lbe compulited Figure 7 - Like ihood Ratios
fron this datra. F-or standard udeviations ouitsidhe (..I) the(
miodificationis to the( logarithInn t hat make it possible to rise 1.0
generic opitimoizers lead to conivergencue to solutions for which
thu( %eights it- sir to less thanl 1. It irade tIre' Compruitationis 0.8
mrore stable to dlivide thre ages liv 100~ before computrin rg tIre,
intervals.

Thre nrmial thIrory vinirve is (uxau(t if tIre, observations are 0.6

niormnally- list ributeul anii Ihas a large samiple Jiustificat ion if
i, kurtois of lie iii'rvitits is 0I. lTre empirical likeli-0.

honod cuirve has a large- sauil ule stificationi priividled thrat tIre'
krrrt i.i, is, finite. JFigur, S7 sho, a lrisrugrairr rif 100111 lurot - 0.2
,t rap reprlica~tin ruf tli st ariri ilu-viat iii. [lii Iistuigrairi

ina iuo ationr anid irr p mbh tuoiiiruui i tIruso ouf t1l1v likili0
luunul ratio 'Iirve l'uei!ylit tail ouf t hei InrlIut rip hiistugrairi
look, more liko thn niirii l likuilhoorl rat io iurvi thanl r 140 t 0.40A 0 6 0 1 Ui H .9 1 p

ruorrirrl t luory' onev. correlat ton ly t'wefl nr i arrl rifu 1-.-rat inre
A simnilar iwstirI algurirhj Innwnrk., for 1iw corr'lait ii 1).

I h, inrirr leelntisist, of firling 0, liklihrool of V i qr Ir1 8 Hoot :21 I1 ('()I i't io 00

Inn err Ins-nI for-isfriiiiiiur irh r.ur

(A- u. I-lu. if r i.u~ u .trr hr rli

tInI iinr 1,nt%0ri/ninu of n n ii i 11wul~ rl, Ii or rw in ir

ai; I' I in I' It, 'Oo ur )111ll i i , do ls 1i 'i. u 1 di li i l i

-rr vr ril (if %;dir.- for is. lIe I o~ills I In. outr q

tirrlnue'i inn-uul (0i. onp t toirr in, s i onr-rir -

l;thur finan hlwuk %Owh ' ,mhl r il pouint of rIli, outrrn-r

rr/i poiis;u-ihldu. ir i-j t,) 'urrind His- onur furn(liu

I-u rife...h iii -; nnt 2 . ,lfo or.- i trlsi( l- i % - .rc.
.n filu , fr ilw, n .- pliir/aion Nirin-riuu .;Iiier i

i- imriors-l In.- n-rr.innoi ,n-dig bfIr I-w \ .inI I \rrit 1-'n~ flr A1 1*-i :.iq
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COMPUTING EXTENDED MAXIMUM LIKELIHOOD ESTIMATES FOR
LINEAR PARAMETER MODELS

Douglas B. Clarkson, INISL, ITu-. aid Robert I. Jeirieh, UCLA

Summary 2. Extended Maximiumr Likelihood Estimiates

IMeIthods are given for conipt iig extcenid inaxlmitii

likelihood estiriites in which one or miore 1 iaraineter eS- Let 0- be at subset of W" anld for 9 E 0) let ((9l) be a

ilnates are iinuite at the siipreiiini of the likelihood, log-likelihood corresponiding to sonie obsorveri dat a. Let

The resuilts alec giveni for at 1road class of regression-like R de-note the extended real Iia' . ]. We sa1% that

inolels based onl independent observations- w'ithi linearly 9 C 'R is anl extended niaxinnum likelihood estimnate if 9

related paramneters including, in particular, the getar- is at limnit point of 0) and for every sequence 0,, E 0- that

alized linear miodels. The estimation consists of two conve-(rges to 9
steps:~ a linear programiitliig step to idient if% lhe itnfinit e

coinponents, and a mnore convent ional fuinition optiiniza- hli 1(9,,) = si0p ((P).

ion step toa opt ilni ze the remiaining finite -ola p~ot aliit ;. - G

P rov isioni is mia(e for nu iisanice lparalliet rs. Two al',o.. TI iis is equivaleiit to sayvinig that 0( 9) calli lie ('ltiilloulV

ti Ins are presenited a 11(1 exallililes i llust rat inig thliir ils(, e'xten ded so that its do'I xui iill cli nI's 9 and thIiat 9 is a1

are given. nixiliii ii Ii kelihood( est inlate over thle ext ended (loinaili.

iNt e that aii ordinary miax iii oni i li kelihI ood ('stimate is

till ext ended iaxitilin Ii kelil axid es ti miate.

1. ntodctonConisider th e 1 inii ial big-likelihood

((it) = Ce+ Y log7 + (a? - Y) 10g(l - 7). 0 < -< 1.

When at few elelnielts of at vector oif estilnates are iii-

finite at the siiprcmnii (if a likelihood, stlin f (Ir conilpil- If Y = 0, lien 0 is not inl the doilnaili 0 < -"< 1

tlt ional algorithins fail since convergelICe to inlfiliit y is of (, but is ani extend~edI Iiaxiiini like-liliixid -st iniat e.

not poss1ile. H abermian (1974. apI pendlix B ) ilefita s andl Siii l a rly undi~er thle logistic pa raielt en iZ,1t 101

gives an exalnple oif such ('st imates for frequency datta.

hut 1lie gives no counpul tat ii nal ulgorithun. He calls lie 77(1

inatcis. Becauswe thlese ('stliati's contitn1 illfini te 1'al lii's' 9j 3 is all extene (l i lr'laxii am lii Ii keliho Ia elist iriiitv(.

the do not exist in the uisu al sense' an1d ot her a uthIo rs Considhr thle ioruna I d is tribhution N (Yj. 1 ) anld a cc a -
SiIva piille and B I rrid(ge, I 986,3 An~ Idsoil andl All( a t sored Io(b servaltion y > i/,, The' log-Ii kel ihI s a is

1 9S4 ) hiave felt that detect in g thle presence of ill huite e Y (Y< 1 < -('stlniaites is suifficienit. The algorit 11111 they developed 101~) = C + log J 2 Y-il l ~<1
cI ieck for "e'xis t ence"' ( .'. fTilit eiiess ) of th 1wI'st ill lilt iS.

andl leave the ulser to re'sponld to the situoat ion by adjust- Here j is all1 extenided Illaiiiin likelihlood( i'sti
ilig the 1110(1(1 obtaining additional dlata, iir hialtinig the lillti'.

anll ysis. Follow ing Hlaherni~ili ( 1974 ), we fre(l that iliflir- Nlost of aoir dis(-iissioli will deal withI linear- praziitez-

miation slicli as the oiltilliu log-likeliliood and alltrailiv- iiaidI"ls. By this we i'leall iiodels, inviolving indeedenlilt
ter estiiates as.;oriati'd with eva'I observat ion is iisifiil ohsel-vatis. 1/i.... w ith Ii rohbility denisity or lilas

and (-an lie alit ained liy coilliliijg the' uxtedd ('111Iiix- fuincti1o1s of thea forii

aLlgoritlamls for such couliplitalt ios for lliodlils inivolvinig f( tA , X' 43f. (2)

liunearly related paramieters. ilicliling tlIn ''g'ierali-,'d

liuiear flioiils" of Nelder and( VWedibiilirli (197-2), liii- Sieli 1lols are calledI ''uioilels with Iit linlear 1 b\1' i

ear miodels ill suimvival analysis, alal] civsii-id ri'gri'ssi'ill Stilling (1984), but this teinlilllgy- is by- I,() lilealis stajll

indl.dard. By~ eithe la'lilli' tlwsi' lnills inlcludeh thle geneiral

The next section discu~sses extended'i iaxililillul likili i/a-il liliCar inllls (If Ncililr iad Wedderlilrli ( 1972) and,.

hood estilnation. Svctionis 3 and 5 give' thiior'uiis relaited as S~ irling pinlts out , lulaly ot her' niiidils as We'll. illcliil

to the crlhultatiohi of these est imate-s, Sect ionli -I iil (G ilg. fill exallihili, thei cl'lsiri'i lirlilal exallili above.

give' the colnpiltatiolial ailguiritlii, uid Sieitioni 7 t~ivi'. 'flu' hialillter Nv'it'ur 13 ill (2) is rolnlnili to Al of

solie ('Xalnlhis. thf' ob'sirvatiouis, andii is rclat'iI tol the scaluir p;ile'ir

?I fill the I"' oilsi'rv~ltiill by the' \-i-e-t r x., of co valiawt I i
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design values. The 77i are clearly linearly relatcd and may

be displayed in vector form as

i= X)3,

where X contains the x, as rows. Let Ml denote the

column space of X. Then q~ ranges over M, which, for

the purpose of our development, is an arbitrary subspace

of R'.

3. Results for Linear Parameter Models

Linear parameter models have likelihloods whose log-
arithmns have the additive form 1). simrJ (in(dill"

(07[) m. (77) C (3) Figure 1. Assiiiied Forms for the LikelfioodI 'rriis

where A-I is a subspace of '.R and the funictions (, in the WVe say those (, of form (a) are (foiihlv de-seeniing, ll
sumn are dlefinedl on the real line R.

it exists, lthaose of foirii (1b) are singly dt scon dig. TI ii cliioit oiif
Assuming iteitltright descetisl m for si ugi v ((5(711(1ii g 1, is a rl Atriii : ;t

(, ( O) = hl fj, left lescen ding (, call be ninldc riglih 'scen di ig 1by ri p -

t-ran ieten zin1g.

and(W eine [f(-oc) siziflarly. We will use the followinig Ill the cas~e of the biiinxxiial exiiiiiple with Ilie logit ic

adldi tioinal assunip tions about thle ftunc tioins Parami i eteiza tin t here is (1111Y onle t, anld it is righit dc-
sieidimig -,vlei y 0. left (ieseiildliig ~ix~el ' / -- 1. ;old

Assumptions: For vacel i = L.. r doly' desceilitig iitlerwise. Thle iiil.-d il orlial (is;
lift desceiidiiig. It. alld the lbilloiiiil (, wl I/ it,

1. to is C( iit Iililll t (1d holude oi 'il 'R would ha ive to bc repa rail lten hi
1 to slit i-fvasi1(1tli

(2) anld (3).
2. (c) =-c-, Giveni ;issuinptiiin (3), wi maike thle following:

3. -{ -z. Or Definition 1: Choiiise iW C A4 so ?I* < 0. i - (0

slipt. 10l((ii'.1 Q, - - _ ) - and ;1111 has a iii xillizil itinale-r

Utider these assuimiptiions the 1, hiavi one iif the two forliis (if zii'gativi iouilai(ii'zts. Lit D - J : %' U)1

dispilayed iii Figure 1. 13%. iiiiisiiliiiig (iiivix cominilationis. it is iiSV tii cq

l~lat il' exists nil( P is iiiiiquily ilifineis. Thefolwn
heoreili will bl isedl toiidintify thi tihlt part i4i anl

Theorem 1 : Untder a.'slijit ii, (1 ). (2). jail (31). if
Pl~ is nu(t illpjtY.

I .10

h Pis a nni .xit iiui i. (( l) 11 Tlrill lilA

I( ( ,I k o ( II(-II / . 1 s Ip ;
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If di > 0 for sonic i E D, Cj(Y'_j ) -o by assumiption 'The next section will show howv to const ruict E) using

(2). Since eacti (, is bounded above by assumiption (1), linear p)rograrnmning. This will be comibined wvith ain p

(*(7i'_) --+ -oc. This contradicts (5'). and hience do < 0) for tiniizatioti programn to give the first of the algoritlins of

all i E D. Assunie d1 < 0 and fC(-oo) = -oo for sonic sect ion 5. The second algori thl un ses an iiia rulni of thea

iE V. Again, (()1 *-oadthscntaic'o optittlizat ion pirogramn and the followving theoremn to hlpj

implies do 0 whenever (,( -o ) =-00 and i E P. Sirle( fnd(,
by the definition of P. C(J-c ) =-00 iniplies i P Theorem 3: If under assunmptions (1). (2). .;tfl(] (3)

(= 0 whlenever t,( -oc.) = -oo. 1;W sri'l decndn (i' hastepop vta
Assumne do = 0 for all i E P. Then (*(0) = ('q~ I t, Sil~in d

and by (5), ("(0) =sup77EA4 (*(77). This contradicts the (('m < C)-)(7)
assumipti' 'm that thas no miaximumiii onl M. Thuls 1, < 0
for at least one i D . for all t and if

Let if* be aiiy vector that dt-fines D in Dcfinit ion 1,
andl let Yr) f(00

d = d + oif.ES

Then for a sufficienitly large, d < 0, and d1 0 whenever has a mlaximumlil at El fV thn S C P.
= ) - -Note, hlowever, that d lias at least onie

More negative comnponent than rlf. This conitradicts thlie Proof: Assumec S is not a subset of P. Usinlg if' froml
defin it inn of 17" and intlplies that (* has a niaxi mutt in nit Definit ion 1 . coitsider

The following tlienremi Nvill tell hiow to construct ex- (S + 1,Ii) =~ j ((t)+ > I)t~+,t)

t'iede inaxiinimin li kel iiood 'st1 iia t s. ,ESn ~
For each (' ill the second "1iiii

Theorem 2: Under ils iuipJtions (1). (2). andl( (3),

Sil) Sill) 1Z (,00) + Z suip(,. (6)
TICA',e -DC D l 1 - D'-. Sinc each 'O' of thle se (' is Si ulyI tV-I'l itli g

)) v'x 13 fnit jon 1 . it fotllows frt a a ( 7 ) that ftorn stunt' p siih-

Po')of: Lt't 1 C ." miaximnize l ais dlefinetd iii Tcvit'intrtmmt C lage + ,t
1 

) > Q )J
1 antI 1tt 7' bc is tlt'fmtt' im Dt'finiititon 1. Thetn for any frei'tsitC, n t'itt ln

Sill)~ i( nif up stijt 4 fl 4-t) Inti?) 5 pq') > t 5 (ij).

,'1"This t'tontratdicts the i' ssumiptiim thatt il linaxiii/t's

Fottm I C P . ;its 0 i ~. + t(l l: S, *-- 1.

Q -- -) Xxsill) f, for i F Do'

4. Finding P by Linear Programmning

F T') II t'~'ivill tll(' pitai't'trizat itoi q = X3 itit roul''t inl

opp sit iie~ialt Iity 't-tio 2.lit t',deSnoe I tlt' u l itril o Xv ct'sc i ini '

Tn t'niistmit't ill extt'li'tl ii;ixiiiiuinmi ljkt'lltuotl is ti- (an potl 1 ssilA' atdditionial rowvs wvith Iiniolt' ktovil to it'

nate' tunditi Lssui ti itis ( I ), (2). ;tutd (.), fiuid of ;i. givii il P) t1ittl let X2 (lt'iitt' the still imulit lix oti niti flita lit'

iii Dt'finiitionm 1. Tlhen find a iaxumol/ir ij C Ml tf I' at, ict'ntinimig rows. Pinini l)'titiiti 1 we eetk a '3 'ich'lt that
de'finetd by (4). Thlis exists liv 'l'lit'to'mut 1. siiit't lutlti'

theSe samie aissmmijtiotiSs ,upl,~ Q(-- -,.) ft1 r taili D V X d -;3IN

it fitllows frouin Ittioritit 2 thawt X23 0t.

I c~ Do' litu c ii mtms t f X, 1 c int'h irly inl It 'p 'Itd t It. '1 0 w.

ial etvld d lllxliiVl liSilll o liiiwtc iti i-wl t t i PS 1, itii c illict.1 itt 't i lt, ag it \'''il It
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(8) can be put in the equivalent form have the samne su])rcxnurm. If (ij, ) miaxmizes ( 13) and

XIIfOx + X 12/32 = 0, (9 V/

where X11 is a suinati'ix of X, with linearly indepc'n- thn(, iane eddi;Lmu lkiodesmte
(lent columns spanxning the space of X 1 . The prole oc f thn( )isa etexdxlx Lito xik iiodetjxat.

findling D is reduced to finding a )3 such thait X-,,/3 2 < 0
and k X 2 ,3 has ats many negative comiponent;it s possible. 6. Two Algorithms
This is equivalent to finding 3, and 6 so that

2,,+ 6 = 0, Let T denxote the set of inidies x for which 1, is doloiuv

6 > 0. (10) descening. The simxplest algori t Iin coinsists oif t wo Siteps.
Tefirst is to solve t I x liniexar progri iin g probe i1n(1

and 6 has as nially posit ive compihonenits ais possib1lex. Cs- Sect iiii 4 withI X, x coxi aiiiixg theii rows o f X wvith ii i i ls

ing row transformxuat ionis to cli i ixixt e thle "free variahbles" iii T. This gives D. Agenieral op~ timxiizat ionx aiigi xithui

2 ats dlescribed by Lxiciihierger (1 984, page 13 ), (10)) canii suxxi xs Fislier scorinx g or Newt oin- R1 xijxlsoxi is tiii ipliix'x

be writ ten in t he equiivalent form tox xi ix iili e (13).

A I + b2 = 0,

graxxniiiiig step, iIlixi alvoidis it (xitirx'lv whlxex anx xte'ilii~

where bl andi 62 xxrc 51 i )X'Cor io f 6- xstilxxixit is xiot requp ired',l p rx x cis xis f xli iW s Apl the, xx

To fixid at 6 with itas xia xi posit ive coiimponentxx s is o pt imiiz ing xilgx i di toii th compxxi liete a j. )xs gi vexi Ixv

I)ossile apply the siiili'X xlgxritlixxi to) ixxxiiizx' thei (12). If duirinig thex iteruxtioxi ax x'xxijxxixit q, xxf 17 xp-
fuinction f (6) = x,/, uiixdxr the conxxstrxxint (11). wliri lxi'xxs ti bcx toxx niegxaiive xxil if i V'T. x'iiiiiuixx the t'rxiil

inxitiallyvcacti e 1. Iterate initil convie'irgence'x oz- uiili , ;.~ froxin ( 12). Conxitiiiuex ill t his Ixlaxxxxx 1hut ii ii fill-

all eciiiexits iii the c'xlxxxixx xibout to xentexr 1lix bixsis xxi-( tlix'x tenxixs ;ixi, x'inxiiixate'x. Lit S xlx'xuiix tixi iiilix's xf tile,

xuxixlixsitive. At this piunt thine is xi fixisilli sixt ixii to t.ix-ixs which lxxvie riot lixixi xlixxiitx'x. If tlix ;Ilgoxit lxxxi
( 11 ) thit liis pxositive .-;ilii.s fxxr thii vxarixulex' hii~to lx ii- cxoxverges tox ;% xixxaxiiux (of

ter xad for all baisic variaileis x'xxrepodiixxhg toi xxgitivx'

v;lixlx'' ill the exiliiiI xbiiiii tox ixitcr. Mat lxxx tl;ixIt pvn - s(ix)= .>7xx(

fxxx-ixixxg itle pivoit, "xM the ceffixcientis xc, fxxx ;x!i xof tllm .xisS

vxxrlixixxs toi /.cr). Thei ri'xix'xl i'xejiiit for thei vxiii- wixi'ix tj C A~4 axnxd xk C xi. tlixii bliv iixiirii 3, S C D iaid

xxlix tha lxi ws aboxuit txx x'txr wvill xixw bex' zix. Cxxxitill txihe ilx iixixa prxigrixuiixg pxrxoiblem ill Si'itiixx .4 (.;111 biix

wvithI the simple~ix algoritxixi iii this moduxifixex ixaixix iot il with X, x'xxni'spoxxixiig txx thei roiws if X wvit iicji' iii

ii coxivxerges. Coecfflxiients r, 1 Iat x'ixxvxrgi'xiei Aixiiify S. Fromix this pinit th ii'xlgoanix lixix e~ aixii' i iii th ixi'ts

vli'i'xxxts; xxn P. Moxre speci'ficaxlly. E) is iiiifixil lx\ the, xxigxxrxilx with '7 rx'jlxix'x by S.

ixxiix'e-(s of thxe row.s xof X, axnii the ixxxiii' iof tixi Iows xif polx .jia ix'x' ix ix i xxr11 iiixxv xi.x Ixxfx fo xix'sxxigxxxii lixix
X 2 x'xrrx'spoiuxiixg toxr - Iz ;it x'xixvxrgi'xix'i'.11 ji ii'i' it plixhixd axiiiixx lo xfl I). 'XIf.II fr i'xxxiiijii axiii'

txxixl;xxy pixxi. thenx ;I fuxnixil xxjpx'xxi iii '1hx'xri'i 3 i" noti

.5. iNuisanice paxrameiters hxssii ll thill, ixixxl ilgxritiixii iftit -x''xx lxx Xlxito

lxvc xvii , lx'iis xixxxl xiva iii xisicfxiiiv vii'wiild ;1., xx lixuiit ix

For ;Iiihiiiiuiixx it is Iisifxilxx xlx'xxl with xixixx''i' thaxi ;xIixlxxiixi.

;irx' ax little' ixixix i' xxrxx thixt liijiixi jcixxxtuxitx'r ixio'i' Ilii ;Irv fixix viY pIx ixtixi feltliix -. ~'tcitiij
o~f thu piii'ixis sx'iix ('xixii-i ;ix io ikiiixxuxx if !li ixL xvixiix ait, i. tooi xxxe1ixvv' Flxx -ixxiixxui'. ill thuc li),

Ivxi (o 1/., 0)sxxvxx , ii

xlxx'r ~ x1 ,l ixfi w l si t iof xixli xxixx pi;xi'llt.ui1. 7. Exampxiles

If frix'ix .iixfiixixxs',tx
5

if , sxi~v x"~xx

tixixis (1I). (2), xxxii (3). ;1x1xl if f~ie sict if "iiixl %i toi ix'iiixx itw ;11111 xxv ,ix "lti lxxx elx xxxiijx

[,(/.0k) xx'iiuxxiius i~ lxlxxxx feet ;III x'xxixii' x4 t~ili Ix- 3 it
1d hldi fixl i,1\1 IxxiLt~l ill iII;x':!l 1juxiaiixilxi 1x1-i

Tix'xxnx'x 2 ( , :111 kxxxvi'ixdx 111-1 hxix li xxx;x . l xlix'Ilxxii i;. .lxxxi lxxI

xxx iix~xi.,'xxxxix't W x 1i 1 1lxii ;1xxi xli X11.'1 X;1iii -1x
>~ lx~/) ,, (I f. ,4 ) 1 ) liiikltixxii. [l11x, xi""xxixxjltlxxi' ('l 1''Ii lxil feel fle-' ('-l\

~ p ~ I .If
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proportional hazards model, which can also suffer front finite 71,. The linear programming verified that the 71,

for these observations were infinite. Because algorithinthe prolen s of infinite estim ates. T he algorith mns ili u t frt s lv i e r p o r m inyI ulel ls f

still yield extended maximum likelihood estimates, how- I mst first solve a liear programming problem based

ever. Further research is needed. upon all of the data, while algorithm 2 converged(1 di-

FORTRAN subroutines for the algorithms have been ro'ctly to the fiial solution, which was then verifie(d by a

implemented and will eventually be available i the IMSL smaller linear programming problem, algorithim 2 would

(1987) libraries. To illustrate the advantages of each of probably be preferred. Obviously, this becomes mllore iml-

the algorithms, consider the data in Table 1. A two-way prtant as the size of the data set increases.

additive factorial logistic model with standard restric-
tions was fit to the data. 8. Conclusions

Table 1: Logistic Regression, Binomial Data Some algorithms for compitig cxteniid maim

Obs. Cell i y n likelid(x)d estimates, theorems justifying their mse a 1nd
I (1j) / + o + 3 5 -u exa1i)hs illustrating the aw'rformiaice of the algorithms
2 (1,2) it + a - f3 3 5 have bIeen presented. The theorenlis have beln gixi(' fr

3 (2,1) It -o + '3 1 5 linear plrameter models, but the algu-rithims may find
4 (2.2) tp-s-3 0 54 _ (2,2) ________a - 5 alpplication in a inore general comit'Nt. (Of til two alho

With algorithin 1. observations 2 and 3 were id(entified ritIimus presiltcei alig uitliii I fhlirI' ft'%. r ;st maIi
aild thus nay be mie illlroist. Alorirldm 2. Iilwvr.,as members of the set E in the linear programmilg step, llfteln inlore (' Ili'lljl't1 I-(mlllIlltat iomi:,llv. amid mmy thu l,,.

and a quasi-Newton algoritlim then required 3 iteration Ins

to converge to the o)timnal likelihood basedl t lreforred wuponre theselicl)le. c''s), ibtii I' t 011,1

two observations. For algorithm are probably llq-t too conllilloll, it wIol1ld S,,il Icasonlahl
ti e requ ired 8 iteration s a n i y i e d o lserva i is 2 all( t a Ip y t i algo rith m s d i su s sd 114.1 oi l y aft'r an al-

3 as members of the set S. The linear prograniuinii, ad- gorithili fior finit' e'sitilatl had failed.

gorithi then verified that observations 2 and 3 were the References

only clemnents in D. The estimated coefficientS /1, o. lla1d
3 were different in the two algorithls, but this is to ) Albert. A. & Anduerson .1. A. (19S4). Oil tle existenc (if

expected since the estimated coefficients ar' not unique '1a-xixiiii likelihood estilniat s iii logistic regr s5i,im

when infinite estimates occur. Also 05s, expectedl, the 1111- nodels. Biometrika. 71. 1 10.
dicted 

T
i h and probabilities in each We11 w ere idli ti'al. s Iab r m l. S. .. 1974). T he A nalvsis ,,F e , Il cy D t.

were thlie Opt iiial -ik'lih1111dis. Chicago: The University of Chicago Press.

A secoll 'xatmil- l illustrating why algorithmt 2 might Luenbergl'r, D. G. ( 1984). Linear and .Yonlinoar Pro-
be pref'rred uses the sale data as in Table 1, but tabu- gramming. Second Edition. Reading. Massachusetis:
lated as Berinouli trials. This form for the data is given Addison-Wesley Publishing Company.

in Table 2. Under the column "Freq." is theo number of MeCullagh, P. & Nelder 3. A. (19S3). Generalized Linear
observations for which the oitcom e aipplies. Thus thlre M a godelIs. Lo nd aonl: C iapiii 9ii ailnd 1tll .

were 3 trials in which a "1" (smccess) was OIbs(.-'el ili cell NelI r . A.. & M oedlserb rl I1. W. .. (1972). Genral-

( 1,2). while 2 t rials in t his cell w'r' "0" (faii'es)- ized linear models. Journal of tle Royal Statisti cal

Society. Series A. 135, 370 384.

Tablh) 2: Logistic R,'grossioo, Brrnoldi Data, Siliapllle, M. J. & Burridge J. (1986). Existence of max-

Obs. Cell 71 Freq. Y inium likelihood estimates in regression m ()l('ls fIor

1 (1.1) it + o + . 5 1 grolipet and lingrouped data. Journal of the RovaJ

2 (1.2) /1 4- o 3 3 1 Statistics Society, Series B. 48. 100 106.
3 (1.2) /1 ±o - . 2 0 Stirliig. D. %V- ( 1984). lteratively reweighted Ilast squares
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5 (2,2) p-o +,3 4 7 17.

6 (2.2) - , 0 \Vdd ,rburn. R.I \,. M. (1976). On tille exist,'cick, alld
untiqueness of thle maxiimumii likelihoo)l ,> t mlma cs fr
certain gene'ralized linear models. Bim,'trika. 63,

is mnembers of the set T, and the linear lr)lgrlmlllm72

using all observations, selected obsrvatio s 1 ;l( 6 IS

ob rvations with infinite r;,. Tle optimizatilmi rollfiiIs

required 3 iterations to convrge. For algorithim 2 th

optimization routin' required 7 itratiis atld id,,tifi,l

obse.rvations I and 6 a~s observations wvith ltultially il 4
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SIMULTANEOUS CONFIDENCE INTERVALS IN TIlE GENERAL LINEAR MODEL

Jason C. Hsu, The Ohio State University

Abstract sidestepped by replacing the multivariate normal computation

Consider the general linear model (GLM) Y =X + e. by computations involving individual Ii - [3iI (using the

Suppose 1,.-Ok (k p) are of interest; 01.[Pk May Bonferroni inequality or Sidak's inequality) or computations

be treatment contrasts in an ANOVA setting, or regression involving pairs of - [i and - [3l (using the Hunter-
coefficients in a response surface setting. Computing the Worsley inequality). As these procedures are based on
coverage probability of simultaneous confidence intervals for conservative probablistic inequalities, the resulting

simultaneous confidence intervals can be much wider than[31, ", 13k by iterated (k+l)-dimensional integration is ncsay h rjcinmto fShf&Wrignecessary. The projection method of Scheff6- Working-
impractical for all but the smallest data sets. We proposes to Hotelling avoids integration altogethei by obtaining a 100(1-
approximate the probability as a mixture of products of
univariate normal probabilities so that the number of x)% confidence ellipsoid for a based or the F distribution,
functional evaluations becomes linear in k. The performance then projecting the ellipsoid onto tile [3 , [3k axes.
of this approximation is demonstrated in a variety of These projected confidence intervals for [31, k3 tend to
settings. be even wider than the probablistic inequality confidence

intervals. (see Fuchs and Sampson, 1987, and examplesI. Simultaneous Statistical Inference and the on below)

Though not stated in SAS User's Guide: Statistics (1985,
Consider the general linear model (GLM) Y = X1 + e, p. 448), the MEANS option of PROC GLM in SAS® for

where Y.NI I is the vector of observations, XNxp is a known multiple comparisons ignores any covariates [3k+1, , 3p in
design matrix, D = (30 ... [ ,3p)' is the vector of parameters, the user's model when estimating [3t, -- , [3k (but not in

and eNxI is a vector of iid Normal(0,y 2 ) errors with y2  estimating MSE). Clearly, conclusions reached without
taking significant covariates into account can be totally

unknown. Suppose [3. 3k (k < p) are of interest and misleading. (see Example 6.1 below) Unsuspecting users

are estimable; [3t .... [3k may be treatment contrasts in an have analyzed and published scientific findings based on this
ANOVA setting, or regression coefficients in a response option of PROC GLM stating incorrectly that covariates

surface setting. Let ft = ( I, "' , k) denote the BLUE [3k+, ... [3p have been adjusted for (e.g. Thatcher. Walker,

(best linear unbiased estiMator) of ([31, , 3k)'. Then ( t, and Sudice, 1987).

. k) is multivanate normal with mean (31, 03k) and 3. Proposed Algorithm
variance-covariance 02V where V is the k xk sub-matrix of We propose to approximate the probability in (1) by 2-

the generalized inverse of X'X corresponding to [31, ... , dimensional mixtures of products of k univariate normal

[3k. Assume V is non-singular and let s2 = MSE denote the interval probabilities

usual estimator of C;2, vs2/c2; has a X2 distribution with v
N-p degrees of freedom. -+o- k 2,

To give two-sided simultaneous confidence intervals for f f 1 I((N4c-iz+qls)/(I-c. )t /)-

[3., -' ,3k with exact coverage probability 1- ox '.

P I Ai - lqs vli1  [Pi + (IqsVf-t for i = I)/, k) = I -cx -cX 1 2)1/2)I dO(z) dF(s) (2)

we need the quantile Iql such that where c = ±1, D is the standard normal distribution, F is the

pi [3i / vi ) i l} = I -cX. ( i) distribution of s/s, and X-t, ' k k are constants that depend

on X. If again in-point quadrature is employed, then (2)

To solve for the quantile Iql, the probability pI J1ailx ( i- requires 2kmn2 evaluations of ( which is much less than the
[3i' / s i ) < IqI- has to be computed for candidates I , 2 mk+ l evaluations required for iterated multivariateoil /l 

" 
_i q a oh o p tdf r add tsk ne rto .N t

which involves (k+l)-dimensional integration ifone naively integration. Note also that 2kmi2 grows lincarlv (as opposed
to e tpon(ntially for 2 mk+

l) in model size k. Thus, usilg
integrates over .s and .k, P1 in turn. If m-point this approximation, sinrultaneous confidence intervals in
univariate Gaussian quadrature is performed iteratively, then GI.M can be given in an interactive environment.
roughly 2mk+1 evaluations of the univariate nortnal If the correlalion iiatrix R f f satisfies

distribution function ( or equivalent (e.g. Schervish 1984)
is required. Thus for all but the smallest k, the von 1
Neuniann bottleneck prevents the computation of this iterated (I ) o
integral from being practical for interactive statistical data R 1 }( ± K) (
analysis. 0 ( 1cX,

2. Existing Methods

Traditionally, this ''curse of dimetnsionalitv" is s ih c + +I (called ,trutuirc-I.,cc'. Ion , 17)7 , then

453



(X2)1/2 Z1  given by our algorithm is theoretically exact (i.e., IqI I IqO.
1 It is also true that LqII = Iql for any R with k < 3 because

every R with k < 3 satisfies (3). The case k = 2 is trivial.
+ Z0 (4) For k 3, the group of sign changes on Xi when multiplied

~-P3k)/4 (I _X21/2 Zk k,J by c = +1 generate all possible sign patterns of Pij, i # j.
k Thus, by taking logarithms of pij, the IXil's can be solved as

three unknowns in three linear equations, and then the
where Z1 -", Zk, Zo are iid N(0,1) random variables and proper signs can be attached. As R departs from (3),
denotes equality in distribution, and it is well known (e.g. because of the continuous nature of our strategy, graceful
Gupta 1963) that the probability in (1) can be written as (2). degradation of the approximation IqII can be expected.
Nelson (1982) shows that when (3) holds with c = -1, (2) is Given a data set, the correlation matrix R can be obtained
still a valid expressions for the probability in (1) provided by applying any suitable software package to the applicable
one defines model. Then X can be computed from commonly accessible

a Factor Analysis algorithms. To solve for Iqjlla ql

C (a+ib) = (27t)-1 f e-(u-ib)2/2du. (5) subroutine has been written which, given 2. and degrees of
freedom v, integrates the outside integral by 24-point Gauss-
Legendre quadrature, the inside integral by 24-point Gauss-

Note that the real part of (5) is an even function of b while tlemite quadrature, and solves for IqIl by the modified
the imaginary part of (5) is an odd function of b, so the inner secant method. The entire process has been automated in the
integral of the imaginary part of the integrand in (2) is zero. S® environment for the regresion setting. Accessing the R

While textbook ANOVA examples and response surface in the structure returned by the regress function, a factor
examples tend to have highly patterned design matrix X, function has been written which returns X by calling
leading to correlations R satisfying (3), the same cannot be
said about real-life experiments: the data may be subroutine FACTR of IMSL. Accessing , 2., MSE, and v
observational; the experimenter may not follow a textbook returned by regress and factor, a glmci function has been
design; there may be covariates, or missing values. Our written which calls ql and returns a structure defining the
proposal is as follows. Given R, find the RI satisfying (3) simultaneous confidence intervals for 1. A graphics"closest" to R. Then solve (1) with RI in place of R, i.e., function ci has been written to plot these confidence
evaluate (2) using the Xj, -.. , Xk of RI to obtain a critical intervals.
value qtll as an approximation to I(1. Examples of how well the proposed algorithm performs

in a variety of settings are provided below.
4. Utilizing Factor Analysis Algorithms 5. Regression

The imp!ementation of our proposal depends crucially on
the recognition that the problem of finding the R, with c = Orthogonal designs clearly satisfy (3) with -i = 0 and can
+1 "closest" to R is the Factor Analysis problem of be thought of as 0-factor designs in our setting. I iowcver, if
computing the "population" correlation matrix R+ of a I- observations from more than one design point are missing.
factor model (3) that hes, fit the "sample" correlation matrix or if an orthogonal design is augmented by more than one
R. (In Factor Analysis, 2. = (X1, , k)' is referred to as additional design point, then generally (3) is not satisfied
the factor pattern.) Different measures of closeness exactly. But the approximation IlI is often real close to IqLI,
correspond to different methods of Factor Analysis. For as the following example A ith observational data
example, the Iterated Principal Factor method finds the R+ demonstrates.
that minimizes 11R - R+I where I-I11 is the Euclidean norm 5.1 Motor vchicle death example
defined by IIAII = (XX laijj 2)1/2. The Maximum Likelihood

n Data on page 191 of Draper and Smith (1981) gives, for
trac( I i , - + the 49 contiguous states, number of motor vehicle deaths (Y)

RI). The Generalized Least Square maethod finds the R, that in 1964, number of drivers x 10-4 in 1964 (XI), number of
minimizes trac(( RRt1 1)2). SO even though the matrix persons per square mile (X2 l in 1963, rural road mileage X

+ 1(1 3 (X3 ) in i963. and normal January maximum
is deterministic in our setting, we can use existing Factor temperature (X4 ). The linear mocel Y = [3 + I X + [2X
Analysis algorithms to compute R.

Given R, it is possible that a R_ with c = I can come jX I + l4 X 4 produces an R- of 0,9654 with the
closer to R than any R+ Aith c = -. Structure (3) with c= following correlation matrix for . 12, 1, .

I has no meaning in the usual Iactor Analysis setting.
I lowever, it is well known that R has structure (3) with c (

I if and only if R 1 has structure (3) with c = +1. (see 0.5638005 1
Graybill, i93, p. IX,) Therefore, one can find the R_ -0.6076538 0.6007092 1
closest to R" . calculate R = R _ which satisfies (3) wih C (0.2990 05 1)21818X2 0.2090254 1

= 1, and let R I be either R, or R_ %% hichevcr comes closer
to R. 'sing an Iterated Principal Iactor algorithm. /. is found to

be (-0.8161 81)0, 0.7125773. 0.8217566. 0.3053787)',
When R satisfies ). usually the Iactor Analysis caving; a rLsidual correlation natrl\ of

ale!orithms will recover the correct ),,'s so the critical value
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0 _ compare with critical value, from other methods as follows.

0.01779729 0 - Scheffd Bonferroni Sidak Exact

0.003054976 0.02120399 0 i = 0. 3.538 2.501 2.484 2.449

-0.04982275 -0.00941977 -0.04132158 0 ox = 0.05 3.851 2.756 2.749 2.721

t= 0.01 4.470 3.296 3.294 3.283
Based on this 1-factor approximation, critical values till Next suppose treatments versus control are of interest,

for various cc are then computed. To check the accuracy of with Potato as the control. The BLUE for the differences of

these approximate critical values, 40000 pairs of max ij breaking strength are as follows. (For later reference, the
estimates employed by the MEANS option of PROC GLM

- ,il / s v were generated based on R and RI in such a in SAS, which do not take the covariate into account, are
way that a control-variate variance reduction technique could also displayed.)
be applied to reduce the standard deviation of the estimate of

Breaking Strength With Covariate Without Covariute
true 0a roughly by a factor of 3. We found Starch 7 -Starch 1 58.94 181.14

Nominal a kIi Unb. Est. of True a 95% Cl of True a Starch 7 - Starch 2 71.36 265.43
0.10 2.229697 0.10 + 0.0(1006 (0.0993, 0.1009) Starch 7 - Star-h 3 119.01 493.60
0.05 2.536990 0.05 + 0.00000 (0.04c,4, 0.0506) Starch 7 - Starch 4 146.08 437.25
0.01 3.168086 0.01 + 0.00(C02 (0.0097,0.0103) Starch 7 - Starch 5 174.90 563.74

It would seem that the 1-factor approximation is adequate for Starch 7 - Starch 6 180.59 667.68
practical purposes. The following table compares the critical The correlation matrix R of the BLUE (with covariate) for
values associated with the various methods. the differences of hreaking strength is

Scheff6 Bonfcrroni Sidak Factor Analysis I --

0.10 2.883 2.321 2.305 2.230 (0.39585 1

a .5 3.215 2.605 2.597 2.537 I0.56777 0.49365 1 - -

0.01 3.888 3.207 3.206 3.168 0.54682 0.46214 0.75986 1

6. One-way Designs with A Covariate 0.51409 0.44881 0.76754 0.69301 1 -

Assume the modtel 0.55055 0.49229 0.86517 0.77387 0.79156 1

Using a maximum likelihood factor an:lvs':; algorithm, the
Yia = Pi + [N(Xia - X..) + eta, i = ,,k. a = 1,.',ni, closest I-factor model is found to be

,Awhere I, "Pk are the treatment effects, 0 is the common (0.79025 Z q) I.6 "
0.8 4 28 (Z21 0.53822 1

slope for the covariate X, X.. = XX Xia/Y nia, and cia are 0.38954 Z3J 0.92101

|0.54342 Z 5  0.83946

It can be verified that if the treatment effects pI, 9k \0.35255 Z 6  \0.93579)
themselves are of interest, then (3) holds so exact
simultaneous confidence intervals can be computed by our which leaves a residual correlation matrix of
method. If, on the other hand, treatments versus control 0

effects 1.11-1k, Pk-I-Pk are of interest, then the critical 0
value Iql has to be approximated. The following example/0.06604 0
demonstrates both possibilities. 0(339 -0.00206 (I

K0,03862 0.01577 -0.00(397 .0 0
6.1 Starch example -0.00032 -. 0,0301 -0.005C2 -.03 19 0

Scheff (1959, p. 2 16) gives breaking strength (y) in -0.02289 -0.6: 1 3 0.00329 -0.00222 0.l 0grams and thickness (x) in 10)4 inch from tests on 7 types of ' 11

starch film. (Starch I ('anna. 2 = Sweet Potato, 3 = Corn, with an aver:,ge root mean square otf-diagonal residUl ot
4 = Rice, 5 = Dasheen, 6 = Wheat, 7 = Potato) It is (1.02143014.
assumed that the regression coefficient of y on x is .hc saile 11ased on this I -factor approxination, critical ' aluC I I
fo~r all starches. Sfor various o..,re tlenii comp LitCd. To h,',k the acciracv oi

First suppose the pi's themselves are of interest. using these approximate critical ',aluies. again 4(0(1(1(} pairs i
Factor Analysis algorithms, the X1 's in (31 for the correlation Max I .i, /s\v were generated ha se,? on R and R I

matrix R of (0 1. ,71' arc found to he aind a control-variate t'chnique wkas applied %) reduce the

-1.5782190 5a iri anwe of tle estimate of rle (X. M. found
0.201929541 \oiminal~f (111 1,_ nh Vof ri i QS'; -)('Iof 'nct0.4571517 O 2.20.12;5 O10 (1.00((025 10.90()1 11.1 ll01)
-0.0483264 ((1) 2 s1) () ) .O ) (1(11 175 I0I 0 -19, 0 05( )
-(1.3582556 ( .O 1.1 40 0,, 0.Oi 0.000( 1 25 1),009).i 0(011).,

7 -0.7636223
((8210369 It e.oult seem that the I -AIctir approximnation v, adeqiiae for

Exact critical values based on these 's and 86 d.f. for MSF praccal purpos
The folhmwiilg tale Cimnipirc,, the conifidincCT intervalsfor this data are then cormputed by our algorithm, %iwh otiined 1y vario, methtos.
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Breaking Strength Factor Analysis Cl Sidak's CI Scheff6's CI SAS (Tukey) Cl
Starch 7-Starch 1 58.94 ± 127.60 58.94 ± 134.22 58.94 ± 181.29 181.14 ± 139.05
Starch 7 - Starch 2 71.36 ± 193.98 71.36 ± 204.04 71.36 ± -.75.61 265.43 ± 209.73
Starch 7- Starch 3 119.01 ± 183.67 119.01 ± 193.20 119.01 ± 260.96 493.60 ± 126.00
Starch 7-Starch 4 146.08 ± 167.47 146.08 ± 176.16 146.08 ± 237.94 437.25 ± 142.29
Starch7-Starch5 174.90±207.6 174.90± 217.81 174.90± 294.21 563.74± 161.81
Starch 7-Starch 6 180.59 ± 220.54 180.59 ± 231.98 180.59 ± 313.35 667.68 ± 123.13

Note that whereas all the confidence intervals based on Guide.- Statistics, 1985, p.492). Of interest was the increase
BLUEs cover 0, none of the SAS confidence intervals in systolic blood pressure in dogs after treatment, with
covers 0. SAS computes confidence intervals with the disease as a blocking factor. The sample means and sample
covariate "thickness" ignored. As Figure 1 shows, the sizes (in parentheses) are given in the following table.
significant differences in "starch" detected by SAS are due Treatment
mainly to the differences in "thickness" associated with Disease 1 2 3 4
"starch." 1 29.333 (6) 28.000 (8) 16.333 (3) 13.600 (5)

2 28.250 (4) 33.500 (4) 4.400 (5) 12.833 (6)
6.2 A simulation study 3 20.400 (5) 18.167 (6, 8.500 (4) 14.200 (5)

A small simulation was performed to see if the close Using a Factor Analysis L ithm, k is found to be
approximation to R by R1 above for the real data example (0.69567,0.69901,0.64584)', from which exact critical
was a fluke. Taking k = 10, n= ... = nj0 = 10, and X1 , - values were computed. The following table compares the
, X10 to be iid standard normal, 100 correlation matrices R critical values given by the various methods.
of ('t1-a k, ' ,k--lk)' were generated using PROC Scheff6 Bonferroni Sidak Exact
MATRIX in SAS. First, each R was checked to see if it
satisfied (3). None did. Then for each R, the Maximum a = 0.10 2.565 2.187 2.172 2.119
Likelihood method in PROC FACTOR of SAS was used to a = 0.05 2.889 2.474 2.468 2.427
find the closest R1 , and the root-mean-square of the off-
diagonal elements of R - RI was recorded. The mean of the

100 root-mean-squares was 0.004359595, and the standard
deviation was 0.002385. Their stem-and-leaf plot is given 7.2 A simulation study

below.
A small simulation was performed to see how well can

N = 100 Median = 0.00393708 R1 approximate R for larger k. In particular, we took a = b
Quartiles = 0.002674504,0.00537431 = 10, n I = ... = ni0,o = 10, and consider the missing

completely at random case (c.f. Little and Rubin, 1987,
Decimal point is 3 places to the left of the colon p.14), where independently each observation has a 0.5

probability of missing. Using PROC MATRIX in SAS, 100
:124456679 correlation matrices R of (I n-ta, , ta-t-ta)' were

2 :00012333334446667779 generated. First, each R was checked to see if it satisfied
3 :1122234444566777788999 (3). None did. Then for each R, the Maximum Likelihood
4 :000223445566677899 method in PROC FACTOR of SAS was used to find the
5 :000113556678899 closest R1 , and the root-mean-square of the off-diagonal
6: 014789 elements of R - R1 was recorded. The mean of the 100
7:26 root-mean-squares was 0.001343971, and the standard
8: 0001 deviation was 0.00030142. Their stem-and-leaf plot is
9 : 58 given below.

High: 0.01429412 0.01523449 N = 100 Median = 0.00134159

7. Two-way Design with Missing Observations Quartiles = 0.00112995, 0.001558005

Consider the two-way no-interaction model Decimal point is 4 places to the left of the colon

Yihr = A + Ti + A + eihr, 6 :25
7:9

i = l,...,a, h = 1,..-,b, r = l,-.,nih, 8 :05
9: 13889

where Yihr are the observations, t1, , 'ta are the treatment 10 : 0123445678
effects, YI , Yb are the block effects, eihr are iid 11 :01133334667899

Normal(0,a12 ), and tI-ta, , ta-ta are of interest. If the 12 : 0012333457889

cell sizes nih are proportionate, that is, nih = wimh for all i 14 :11122356789999
and h, then (3) is satisfied, but not generally otherwise. 15 : 3357889
However, recall (3) is always satisfied when k _< 3, and the 16 : 0012366
following example illustrates this. 17 : 05567

18 : 223577
7.1 Blood example 19:1

We use a data set popular for illustrating two-way 20: 4

unbalanced ANOVA (Fleiss, 1986, p.166; SAS User's 21:0
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8. Vector Processing [3] Fuchs, C. and Sampson, A. (1987). Simultaneous
It was relatively straight forward to code the proposed confidence intervals for the General Linear Model.

algorithm so that it will take advantage of vector processing Biometrics 43, 457-469.
capability when available. On a Cray X-MP with the cft77 [4] Graybill, F. A. (1983). Matrices with Applications in
compiler for example, execution is at least five times faster Statistics, 2nd Edition. Wadsworth, CA.
with the vector processing capability turned on as compared [5] Gupta, S. S. (1963). Probability integrals of
to optionally using the scalar processing capability only. multivariate normal and multivariate t. Annals of

Mathematical Statistics 34, 792-828.
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ASSESSMENT OF PREDICTION PROCEDURES

IN MULTIPLE REGRESSION ANALYSIS

Victor Kipnis, University of Southern California

1. Introduction. As opposed to the traditional infer- where Y = (yI,._.. ,y)l is a n-vector of observationsence based on a priori specified model, the main feature on the response variable, X = [X1 ,., X, is n x k full
of the modern regression analysis is model building with rank matrix of observations on each of the k predictcr
regard to some specified regression goals. This process variables, /3 = (/,3,... ,3), is a k-vector of unknown
usually involves some scrutinizing of both the available coefficients, f (C..n)l is an n-vector of unobserv-
data and a set of potential equations before settling on
the final version of the model. Such examples of this able disturbances, c - N(O, c 2I,). The X's are assumed

strategy as examination of residuals, checking standard fixed.
assvmptions of homoscedasticity and of absence of ce- The given n > k observations on the response and the
rial correlation, analysis of outliers, regression diagnos- predictor variables constitute, we suppose, a construc-
tics, sorting out, or transforming data, choosing form of tion set V = (Xv, Yv). Let W = (Xw, Yw) be a new
the equation, selecting explanatory variables, etc., con- set of nw observations based on the same model (1):
stitute what is usually called exploratory, or else, data-
analytical approach to modelling. Exploratory methods Yw = yO + (w = XwO + (w,
are often used iteratively and in alteination with fit-
ting of tentative models and, thus, make contemporary where cw is independent from cv. We will call W the
regression analysis a complex, multistep, iterative pro- 'target' set. Given the construction set V and the ma-
cess. Ir. practice, when all this activity is carried out trix Xw, the regression goal is to predict vector Yw
using and reusing the same data, conventional means
of inference both at the intermediate steps and for the with some predictor w based on a p-subset, p k, of
finally chosen model could be misleading, sometimes the predictor variables. We assume that this predictorbadly so (e.g. Freedman, 1983; Lovell, 1983; Miller, is selected among the class of potential predictors (say,
1984; Pin.ker et al., 1985vell,7). all possible subsets) by applying to the data V some1984 Pin keret l., 985,1987 - redicfion procedure g.

This paper concentrates on the evaluation of ex- .eWithout providing any strict formalization, by 'pro-
ploratory procedures for prediction, which is one of the cedure' we will understand a mapping from the input
major goals in applied regression analysis. In this case dure we willu tn a p in fro the input
model building is usually reduced to selection of the data to the output. In the present case the input con-
,most efficient' predictor among the class of potential sists of the construction set V, matrix Xw, the class

regression equations, that is, one that provides the min- of potential predictors, and, perhaps, some criteria for

imum mean squared error of prediction (MSEP). There choosing a particular subset and estimating the corre-

is a good deal of literature on different selection proce- sponding parameters. The output includes the chosen
dues withd ea o teir omntation (loicl subset of predictor variables, estimates of its parame-dures with regard to their computational (logical)

scheme (e.g. see a review in Hocking, 1976), but muc ters, and vector Yw. Roughly speaking, all operations
less has been done concerning analysis of statistical performed on the construction set V to get the output,
properties of thereby selected predictors. As was re- the entire exploratory process, is covered by the use of
peatedly pointed out (e.g. Berk, 1978; tjorth, 1q92; the term procedure.
Miller, 1984) the theory behind the conventional MS 1P It should be stressed that procedure g is conceived
estimators is not valid when predictor selection and es- of as a separate whole, a distinct statistical entity, in
timation are from the same data. The very selection spite of the fact that various nonstatistical considera-
process introduces considerable distortion into the dis- tions (experience, professional intuition, simplicity of
tribution of these estimators and, in particular, leads to computation, etc.) may and in fact do influence its
their substantial bias when the selection effect is not al- choice. The relationship between procedure for model
lowed for. The present paper attacks this problem along building and built up model reminds one between es-
the same lines as in (Kipnis, Pinsker, 1983; Pinsker et timator and estimate. Just like estimate is simply a

al., 1985; Kipnis, 1987). number, a selected model is characterized by a realized
We bring in the 'procedural approach' and suggest vector of estimated parameters. Its justification should

that assessment of the efficiency of any predictor should rest on an assessment of the procedure which, by anal-

rest on the assessment of the procedure by which this ogy with estimator, is the 'recipe' or 'selection strategy',
predictor has been chosen, rather than the evaluation of or 'algorithm' by which the data are transformed into
any particular prediction equation. As exact distribu- an actual model. As a result of such conceptualization,
tional results are virtually impossible to obtain, even for procedure becomes an object of statistical study, allows
relatively simple selection procedures, it is suggested to statistically valid evaluation and comparison of different
estimate procedural performance in a simulation study procedures, and, thus, belongs to the sphere of formal
by generating bootstrap pseudosamples and applying to inference.
them the same regression procedure that was used for Turning back to subset selection, a typical prediction
the original data. procedure selects a p-subset Xp = 1Xj1. ,X,,] and

For illustratie purpo-, prediction procedures based yields the nw-vector 1rw = Xwf based on the OLS
on subset selection methods are considered. It should fitting of the selected subset. If the full set of regressors
be emphasized, though, that the general concepts of is not selected, some of the components of the realized
the present study apply to any other data-analytical vector 4 are zero.
procedures for model building. It is important to emphasize that the chosen predictor
2. Problem Forzmul":on. Procedural Approach. w does not pretend to represent the 'real' model by in-
Consider the linear regression model cluding all the significant variables and excluding all the

nonsignificant ones (with 0, = 0). Moreover, procedure
y = yO L X,3 + , (I) q selects a random subset of predictor variables which

May vary for different realizations of V. Because of that
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fact, evaluation of a predictor kw = g(V; Xw) should The most obvious estimator of MSEP is the apparent
be based on the assessment of the selection procedure g losses or autolosses
rather than any particular model (selected subset) cho-
sen for the given realization of the construction set. AL(g; V) -(Yv - Yv)'(,'v - Yv)

Consider prediction error n (8)

ew = Y'w - Yw = g(V;Xw) - Yw (2) -(gv(Yv) - Yv)'(gv(Yv) - Yv)
Since Xv and Xw are assumed fixed and known, below "'asure goodness-of-fit of the procedure g on the

we will use notations Yw = gw(Yv). Let us split ew construction set V. For most procedures AL tends to
into a nonrandom and a random parts: underestimate MSEP, because the same data have been

used for both construction and evaluation. This is a
ew = e + 6 ew, faniliar fat that couid be easily demonstrated when

where the procedure g consists of OLS fitting of an a priori
eo = o yO = gw(yO)- yO (3) specified subset Xv, and Xw = Xv, i.e., when we

predict new observations Yw = Xvf3 + cW for the same
is an error of predicting the nonrandom part Yw of Yw set Xv of explanatory variables. For future references
by applying procedure g to the nonrandom part V ° = we will denote this procedure by gp. We have
(Xv,Yv9) of the construction set V. From (2)-(3) it
follows 0P(Yv) = PPYv, (9)

6ew = ew - ew - 6gw - (w (4)

where 6 gw = 9,N(Yv) - gw(Yv°). For the quadratic loqs where Pp = Xvp(X,,PXv )-'X', is the projection ma-
function trix onto the linear space spanned by the column-vect-rs

Lw(g;V) = 1--ewew (5) of the matrix Xvp. InthiscaseYw - Xv3 = YO, eo =
nw Note, that R(g; Yv) is a random variable together with

two distinct risk functions are important measures of Yv and could be considered as measuring both the pre-
efficiency of the procedure g. The first one is the con- dictive ability of a selected model and the efficiency of
ditional MSEP for a fixed vector Yv (or the fixed con- the selection procedure g for a given construction set V.
struction set V, since Xv is fixed anyway). To be able to analyze existing procedures and to invent
R(g;Yv) =MSEP(gw(Yv) Yv) = E[Lw(g;V) new ones, one needs to know their statistical properties

for different realizations of V. One such characteristic
It follows from (2)-(5) that is the unconditional MSEP, i.e., the average risk overall possible construction sets:

R(g;Yv) = a2 + 1 (gw(Yv) - Y°)'(gw(Yv) -YW) R(g) =Ey [R(g;Yv)]
(6) =r2 + I_.lEewEew + 1 tr(VAR[bgw]), (7)

Note, that R(g; Yv) is a random variable together with nw nw

Yv and could be considered as measuring both the pre-
dictive ability of a selected model and the efficiency of where VAR[6gwl = E[(Sgw - Ebgw)(6gw - E6gw)'l
the selection procedure g for a given construction set V. is the variance - covariance matrix of bgw. As opposed

To be able to analyze existing procedures and to invent to the conditional risk (6), the unconditional risk (7)
new ones, one needs to know their statistical properties measures the average efficiency of the selection proce-
for different realizations of V. One such characteristic dure g, not of a selected model, which depends on the
is the unconditional MSEP, i.e., the average risk over realization of V.
all possible construction sets: There is no full agreement in the literature on whether

conditional or unconditional MSEP is more appropri-
=yR(g; Yate for prediction assessment. The traditional statisticsR(g) =Ey, [gv] (7) have been originally proposed as estimators of the un-

= a2 + EewEew + 1._tr(YAR[6gw])  (7) conditional MSEP (e.g., Hocking, 1976), but they seemnw +nw now to be looked upon as estimators of the conditional
risk (7) (see, Hjorth, 1982; Efron, 1983; Picard and
Cook, 1984). Below we will consider statistical proper-where VAR[bgw] - E[(bgw - Ebgw)(bgw - E6gw)'] ties of different estimators with regard to both measuresis the variance - covariance matrix of bgw. As opposed (6) and (7).

to the conditional risk (6), the unconditional risk (7) The most obvious estimator of MSEP is the apparent
measures the average efficiency of the selection proce- losses or autolosses
dure g, not of a selected model, which depends on the
realization of V. 1

There is no full agreement in the literature on whether AL(g; V) - (kv - Yv)'(kv - Yv)
conditional or unconditional MSEP is more appropri- n (8)
ate for prediction assessment. The traditional statistics I (gV (Yv) - Yv )'(gv (Yv) - Yv)have been originally proposed as estimators of the un- n
conditional MSEP (e.g., Hocking, 1976), but they seem
now to be looked upon as estimators of the conditiona. that measure goodaicss-of-fit of the procedure g on the
risk (7) (see, Hjorth, 1982; Efron, 1983; Picard and construction sel V. For most procedures AL tends to
Cook, 1984). Below we will consider statistical proper- underestimate MSEP, because the same data have been
ties of different estimators with regard to both measures used for both construction and evaluation. This is a
(6) and (7). familiar fact that could be easily demonstrated when
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the procedure g consists of OLS fitting of an a priori (Xv, Yv) and a pseudotarget sample W = (Xw,Yw),
specified subset Xvp, and Xw = Xv, i.e., when we where Yv and kw are, respectively, nx 1 and nw x 1 ran-
predict new observations Yw = Xv/i + ew for the same dom vectors independently generated from model (12).
set Xv of explanatory variables. For future references Applying the same selection procedure g that is used for
we will denote this procedure by gp. We have the original construction set V to the pseudosample V,

gP(Yv) = PpYv, (9) we get a pseudopredictor Yw = g,(Y/v) and a vector

ew = Yw - Y'w of pseudoerrors. As pseudomodel (12)
where Pp = Xvp(XvpXvp)-'Xvp is the projection ma- is completely known, we can, at least in principle, an-
trix onto the linear space spanned by the column-vectors alyze the distribution of iw and use its characteristics

of the matrix Xvp. In this case Yw = Xv/3 = Yv , e ° = as estimates of their counterparts for the distribution ofS E Ythe real vector ew.
g,,(yo), and it follows from One possible approach to deriving pseudosample es-

(7)-(8) that timators is as follows. Instead of directly estimating

MSEP(g) with the corresponding pseudorisk, let us

R(g1) = ele+ -_n + p) (10) evaluate overoptimism of the autolosses AL(g) in or-
(nn + der to make an appropriate adjustment. At least two

choices present themselves for representing average

and overoptimism: the difference

0 aC QA~g ) = R(g) - AR(g)1 o. 0 a2  ) (1

AR(gp) = E[AL(g,; V)] = -evfev + -(n - p), (11)
n n and the ratio

so that AL underestimates MSEP with the negative bias
- 2pr 2/n. 

QM(g) = R(g)/AR(g)

Such 'adjusted' forms of AR as Jp (Rothman, 1968),
Cp (Mallows, 1973), AIC (Akaike, 1973), and other We will estimate QA(g) and QM(g) with their pseudo-

conventional estimators have been suggested to allow counterparts

for this bias or 'overoptimism' of the self-evaluating &(g) = -(g) - Ai?(g) = E_ [L- g, V) - AL(g,
autoloss function. These statistics are asymptotically
unbiased under certain conditions, the major assump-
tion being that g is based on fitting a subset that has and

been chosen independently from the construction data M(g) = R(g)/AR(g)
V. Thus, conventional estimators only partly adjust AL

with regard to self-evaluation, while the real subset sc- = E_ [Lv(g, )/E_ [AL(g,V)j,
lection has never been allowed for. As a result, these
estimators still carry some overoptimism and, in their where E_ indicates expectation with respect to the ran-
turn, need adjustment. To be able to get nmore adequate dom mechanism (12). In these formulas, the construc-
estimators of the prediction risk, one has to study the tion sample V is held fixed. This yields the following

distribution of kw under that very procedure g which two pseudosample estimators of MSEP: the additive

has yielded this predictor. estimator
3. Pseudosample Method. The idea is to analyze P = AL(g) + &(g)

statistical properties of predictor kw by applying pro- and the multiplicative one
cedure g to data generated by a known random mech-
anism. The main requirement is that this mechanism, AM = AL(g)QM(g)
or as we will call it, pseudomodel, should simulate the
unknown model (1). In other words, it should gener- The reason behind these estimators is to get more piv-
ate pseudosamples that are 'close' to the real ones with otal statistics as compared to the direct estimator R(g).
regard to their statistical structure. 4. Linear Procedures. If procedure g is simple

Consider the maximum likelihood estimator of the enough, pseudosample estimators could be studied an-
model (1) alytically. Consider an important case when g is linear

with respect to Yv:Yz= XI3 +, .. N(O,a 2 In), (12) gw(Yv) =GwYv,

where f = (XVXv)-
1X,Yv and E2 = Y(In - Pk)YV

/(n - k) are the OLS estimates of the parameters based
on the set of all the explanatory variables. The deci- where Gw is nw x n matrix. As Eew = ew and

sion to use the 'ful' estimated model (12) and not, say, VAR[6gw] = orGwG , it follows from (7) - (8) that

the subset selected by the procedure g is made because
our goal here is simulation and not prediction. By us- 1 U2
ing unbiased ML estimators of the parameters # and R(g) = a + -Cew + (13)

a2, we hope to get a pseudomodel that is as close to the nw nw
real one as possible. Note, that this choice is not manda-
tory for the suggested approach, and, in principle, other 1 o 02

pseudomodels could be used in different situations. In AR(g) = -evev + -tr[(Gv -I)(Gv - In)'] (14)

the present case a pseudomodel (12) is the parametric nn

bootstrap model as described in (Efron, 1982). In a similar way, from model (12) we have

Consider now a pseudoconstruction sample V =
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To illustrate the effect of subset selection on tradi-
qg)= &2 + 1ewleW + a-tr(GwG w) (15) ional estimators and to compare these estimators withnw + w the pseudosample ones, the following simulation study

was conducted. In all the experiments the simulated
1-o -o &2 data satisfy model (1), where Xv is orthonormal with

AR (g) = -eve,, + -- tr[(v - I[n)(Gv - In)', (16) n = 50 rows and k = 15,25,35 columns, a 2 = 1, and
n n Xw = Xv. As was pointed out in (Miller, 1984), the

w 0 - orthogonal case gives an example of intermediate cor-
where VV = (C, - !,)Xv3 and ; - (Gw - In)X',/3. ruption of traditional estimators under subset selection.
Comparing expressions (13) - (14) and (15) - (16) we The procedure g represents the method of all possi-
get ble regressions (Hocking, 1976) and consists of screen-
Theorem 1. If g is a linear procedure, and if /3 and 2 ing all 2 k subsets and selecting the 'best' one with re-
are unbiased estimators of P3 and a2 respectively, kA is gard to the minimum C, (or ft") criterion. The two
an unbiased estimator of the prediction risk MSEP. pseudosample estimators, /kA and PM, were compared

The multiplicative estimator AM still remains biased, with the wo traditional estimators: d ' (l?, and J,
except for the important case when e° = e° = 0. As (18). Two values for the true vector / were conbidered
follows from the definition (3), e p resents 'bias' in '31 = (0,0,..., 0)', which represents the model with no
applying procedure g to the nonrandom data V °. We significant variables, and /32 = (7.0,5.0,0... ,0)'. The
will call it o-bias. Any procedure that does not have o- second model has two very significant predictor vari-
bias is called o-adequate. o-adequacy means the prop- ables with the 'signal to noise' ratio ('3')2/a 2 being 49
erty to build up 'true' model on the 'faultless' data. and 25 respectively. The estimators AA and A M werePutting eo 0 -0 , -0,i ozr nfomls(3 1)
P e ,eweve W to zero in formulas (13) - (16), calculated by generating 100 pseudosamples for each
we have simulated data set.
Theorem 2. If g is a linear o-adequate procedure, A M A summary of the results averaged over 400 simu-
is an unbiased estimator of the prediction risk MSEP. lated data sets is given in Tables 1 and 2. The columns

Consider again an example of procedure gp (9) when 'CMSE' and 'UMSE' report the mean squared error of
Xw = Xv. Here Gw = Gv -_ P, so that it follows each estimator with regard to the conditional and un-
from (15)-(16) that conditional risk, respectively. One can see from the Ta-

bles 1, 2 that both traditional estimators are consid-
AA = !(RSS, + 2p& 2) erably biased downward, especially for ratio k/n close

n to 1 (k = 35), when their bias reaches almost 50% of
the actual MSEP value. The pseudosample estima-

As 52 = 62 is the mean residual sum of squares foi tors considerably reduce bias. Moreover, contrary to the
the full model (1), fA coincides with the traditional traditional estimators, they are somewhat 'pessimistic'adjusted (unsealed) estimator of MSEP (e.g. Hocking, by slightly overestimating the actual MSEP. On the
1976) other hand, pseudosample estimators have bigger vari-

ance than the traditional ones, so that their MSE only

2p32) = C + n (17) slightly, if any, better than MSE of Air, especially when
(RSS (CP + n) (17) we consider conditional risk. RA varies a little less than

n n RM and has the lowest MSE. JP is the worst of all
the considered estimators. With regard to the uncondi-If, in addition, the fitted subset represents the true tional risk, both/AA and AM outperform the traditional

model, and we use this information to estimate 3 in
estimators having about 17-20% lesser MSE than 1R&.(12) by ]= (XvpXv)iXvpYv, Am coincides with Although pseudosample estimators demonstrate some

another adjusted estimator better results than the traditional ones, especially with

regard to biasedness, they are not very impressive. One
JP = RSS (n + p 8) explanation is that the considered procedure g involves

n n }- p very extensive search. Thus, being very 'nonlinear', it

5. Nonlinear Procedures. Empirical Results. becomes very sensitive to the choice of ,0 = X3 for the
When procedure g involves selection it becomes nonlin- pseudomodel (12). Although k 0 is an unbiased estima-
ear, and distributional results for pseudooveroptimism tor of Yo, E-IIYOJ12 = IIY0JI2 + ka 2 , so that pseudo-
are virtually impossible to obtain analytically. In this model (12) is based on a response vector with a much
case A and QM must be evaluated by Monte-Carlo: inflated length.
independent pseudosamples (VI,W).... , (VN, IVN) are One possible way of coping with this difficulty is split-
generated by the known pseudomodel (12), and for each ting a comprehensive multistep procedure into subpro-

cedures (intermediate steps), estimating tentative re-V1 the pseudopredictor gz,,(Yv1 ) is calculated. Here Xv sults for each of them, and choosing the final predictor
and Xw remain the same as in the observed data. By based on these estimates. The reason behind this ap-
comparing Yw, and Ywi a pseudoerror ewi is calcu- proach is that subprocedures are less nonlinear and so
lated. This gives pseudoreplications Lw(g, ~j) may be less sensitive to the choice of pseudomodel (12).

' -ate and gives psedoepi= atina wegap- Turning back to our example, consider subprocedures
-wwewa AL(g,V,) = , vt. Finally, we ap- that for each p = 0,1,...,k, select the best subset

-
" with respect to CP among all possible p-subsets. The

proximate OA and M by the averages k -- [Lvi, (g, V1
i ) original procedure g consists of consecutively applyingP N these subprocedures for each p, estimating NfSEP for

(gL1g,_ ] and L Z (g, -AL(g, ,) each selected subpredictor, and, finally, choosing the
respectively. best one that correspond- to the minimum estimated
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Table 1. Simulation Results from 400 Trials for 813 = (0, 0,..., 0)'

k=15 k=25 k=35
Estimators Mean CMSE UMSE Mean CMSE UMSE Mean CMSE UMSE

Actual MSEP 1.19 0 .016 1.31 0 .020 1.44 0 .042
Jp .90 .140 .121 .83 .315 .272 .72 .622 .553
At, .91 .133 .114 .86 .281 .241 .79 .523 .462
f A 1.20 .124 .092 1.48 .264 .184 1.64 .502 .350
pM 1.30 .131 .098 1.50 .280 .202 1.67 .528 .382

Table 2. Simulation Results from 400 Trials for 132 = (7.0, 5.0, 0,..., 0)'

k=15 k=25 k=35
Estimators Mean CMSE UMSE Mean CMSE UM9E Mean CMSE UMSE

True MSEP 1.21 0 .016 1.33 0 .028 1.46 0 .041
ill .95 .130 .111 .86 .302 .259 .75 .09 .541
f"t, .96 .122 .103 .91 .261 .220 .81 .515 .435
fA 1.28 .120 .090 1.48 .258 .182 1.65 .496 .350
AM 1.30 .127 .096 1.a .270 .200 1.68 .524 .381

MSEP. The results of the corresponding simulation smallest values when p = 0 for the first model and when
experiments, based on the same model specification as p = 2 for the second one.
above, are reported in (Kipnis, 1987). Some of them are Table 4 reports the average MSEP for the final pre-
reproduced in Table 3 that contains empirical average dictor selected among all the best suL-r xdictors accord-
and CMSE for the less corrupted of the two traditional ing to criteria based on each of the five statistics: dctual
estimators, 10f, and pseudosample estimator, !RA, for MSEP, JP,R IRA, and fM. It follows that apply-
each of the selected subpredictors. One can see that /tr ing the suggested approach at the intermediate steps of
is still considerably biased downward when p exceeds the model building leads to substantially better final pre-
true number of non-zero components of) , but less than dictor than those based on traditional criteria.
the full size k. What is even worse, ~r~ does not fol- 6. Conclusion. The procedural approach consists in

low the actual MSEP. Thus, it has its minimum when evaluating a selected predictor by assessing the selection
p = 4 for f3 = 31 and when p = 6 for 0 = 62. On the procedure which has yielded this predictor. For this
contrary, as expected, the pseudosample estimator / A purpose, it is suggested to construct a pseudomodel, to

generate a necessary number of pseudosamples, and to
behaves here much better than in the previous case. It apply to each one of them the same selection procedure
not only considerably reduces bias, but also has much that is used for the original data. The corresponding
lesser MSE than R 1t, especially when p is not too close empirical distribution of pseudoerrors provides all char-
to k. Moreover, it matches the actual MSEP having acteristics of interest. This method appears general and

Table 3. Subprocedures: Simulation Results from 400 Trials; u = 50, k - 25

Sbe = (0,0.... 0)' 012 = (7.0,5.00,0 .... 0)'
Subset

Size True fAt  A True A f? A
p MSEP Mean CMSE Mean CMSE MSEP Mean CMSE Mean CMSE

0 1.00 1.01 .04 1.01 .04 2.48 2.46 .15 2.46 .15
1 1.11 .94 .06 1.11 .05 1.55 1.49 .08 1.55 .09
2 1.18 .91 .11 1.18 .07 1.05 1.04 .05 1.10 .06
3 1.24 .89 .16 1.23 .08 1.15 .97 .07 1.16 .07
4 1.29 .881 .20 1.27 .09 1.22 .95 .12 1.22 .08
5 1.32 .882 .24 1.30 .11 1.27 .933 .16 1.26 .10
6 1.36 .89 .27 1.33 .12 1.32 .929 .20 1.30 .11
7 1.38 .90 .29 1.36 .13 1.35 .93Z .23 1.33 .12
8 1.41 .92 .30 1.38 .14 1.38 .94 .26 1.36 13
9 1.43 .94 .31 1.39 .15 1.41 .96 .27 1.38 11
10 1.44 .96 .31 1.41 .16 1.43 .98 .28 1.1I0 15
15 1.50 1.10 .27 1.45 .19 1.49 1.11 '6 1 45 I'
20 1.51 1.28 .21 1.47 .20 1.51 1.28 .21 1.17 20
25 1.52 1.47 .20 1.47 .20 1.52 1.47 .20 1 .17 20
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Table 4. Average MSEP for Predictor Selected by Different Criteria

True
Criterion MSEP .J, /', P A frM

Ave MSEP for 0 = 81 1.00 1.39 1.31 1.07 1.11
Selected predictor 6 = #2 1.04 1 40 1.33 1.14 1.17

flexible enough and, in principle, could be used with any but to split the procedure into some simpler subproce-
selection procedure. When procedure is rather complex dures to be able to evaluate the intermediate steps. As
e.g. includes extensive search), it becomes sensitive to a result, the suggested approach can be used not only

the choice of an appropriate pseudomodel which should for assessing the efficiency of existing procedures, but
be 'close' enough to the original one. One way of cop- for constructing new, more efficient procedures, as was
ing with this problem is not to delay the assessment demonstrated by the last example.
of the procedure until the end of the selection process,
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POSTERIOR INFLUENCE PLOTS

Robert E. Weiss, University of Minnesota

Abstract

The posterior influence plot, a graphical number summary, the Kullback divergence

case influence statistic is introduced. It between the densities (Johnson and Geisser

displays the entire influence of an 1985,1982,1983; Pettit and Smith 1985).

observation on the posterior distribution of The problem with this approach is the

the parameters in a statistical model. The interpretation of the resulting numbers.

statistic is available for a wide class of How big is big? Also, several different

models including, but not restricted to, posterior configurations can produce the

linear, nonlinear, and generalized linear same numerical value of the influence

regression. statistic. For example, in linear regression,
a low leverage high outlier observation can

I. Introduction. have the same value of an influence

Diagnostics are statistics that aid in the statistic as a high leverage observation

identification of problems with a statistical which is not outlying. Which configuration

analysis. Specific examples from linear is the actual cause? The best influence

regression are outlier statistics, leverage statistic would be a plot of p(e Y) and

values, influence statistics and residual p(a I Y(i)) for all e in RK, but this plot is

piots. This paper develops a graphical case difficult to draw in general. A good graphic

influence statistic that is available for a should, however, capture much more

wide variety of models. information than just a single number, so, in

An influential data point has a large this paper we attempt to find a low

Pfferct n the coom lusion of an ana!-si. In a dimensional function of 8 that captures all

Bayesian analysis, the conclusion will be the of the influence of the ith observation on the

posterior p(e I Y) of the parameter vector e posterior.
given Y, the full data vector. Deleting a The low dimensional function of e can be

single case from the analysis changes the found by inspecting the sampling density

posterior from p(e8 Y) to p(e I Y(1)), where f(yi I e, xi) of the ith observation yi, where x,

Y(L) denotes the reduced data vector. The denotes the independent variables. In most

problem of influenLial case analysis is to models, the sampling density depends only

compare the two densities p(e I Y) and on a low dimensional function z1(e,xi) and

p(e I Y(i)). the observation can influence the posterior

The best solution, if possible, is to plot of a only through its influence on the
the two densities on the same graph. This posterior of zi.

is feasible if E is only one or two This function depends on the particular

dimensions, but what can be done if E is case and on the model. For example, in
high dimensional? This paper finds a one or linear regression, with known variance,
two dimensional function zi = zi(e,xi) that
encompasses all of the influence of yj on the = xe

posterior. The posterior influence plot is a

simultaneous display of the posteriors is just one dimensional. Knowing z,

P(Zi I Y) and p(vi I Y(,)), one plot for each determines the sampling density of the ith

observation, observation.
In linear regression with unknown variance

2. An alternative Baesian roac

Another Bayesian approach to influence T

analysis is to reduce the comparisons Z1(e,x1) = (xie, d)

between p(e I Y) and p(e I Y(i)) to a one

464



is two dimensional. In nonlinear regression The extra parameter pi only occurs once on

with mean function E[y] = rj(e,xi) and each side of (2) and can be integrated out,
unknown variance, zi is giving a marginal Bayes theorem for the z,

Zi(exi) = (Tj(e,xj). 0). parameter.

For generalized linear models (McCullagh and P ji p 1 Y() ) ()
Nelder 1983) with link function g(-), flyI YOP),(3)

Tg(Xe). Dividing (2) by (3) gives
P(p, IY-ZO) = p(pi IYo)Zi). (4)

These models cover a many of the models in Fquation (4) says that the ith observation
use in statistics.sein sctsti .3ahas no effect on the conditional distribution

of Pt gi,en zi. Thus y1 only has an effect on
Bayes theorem is presented and also a
marginal version of Bayes theorem. The d, the posterior of P given th does not
statement that the observation influences depend on whether y g is in the analysis.
p(eIY) only through p(z 1 8) is proved. In Rearranging (1) and (3) gives
section 4 the Kullback divergence is p(e I Y(,)) Ry1 IY(),x i) PC Y(1 ))
introduced as an influence statistic, and a p(e Y) f(y1 I 1 (ex 1 )) - P( Y).
proof is given that the Kullback divergence The equality of the outer two ratios will be
between the 8 posteriors for the ith case useful in the analysis of the Kullback
depends only on the function z(e,xi). This influence statistic.
provides a second proof that yj only
influences p(9JY) through p(-r JY). Finally a 4. The Kullback divergence influence
nonlinear regression example is given in statistic.

section 5, followed by discussion in section The Kullback divergence between the full

6. posterior and the reduced data posterior,

3. A aowndating version of Bayes theorem. = p(e Y(i))
A downdating form of Bayes theorem is Kf1)e) jLOg p(e ) p(elY()) de, (6)

p(e Yw))f(yi e,x1 ) is a useful generic measure of the influence
p(eY)= f(yi I y(),xi) 0 of the ith observation on the posterior of E.

(see MCCuiioch (1985) d tU bernardo (1985,
where F yi I Y(i),xi) is the numerator (e cu oh095 i1 enro095

hered ovyerYxs thne num. Eatio 0 1979)). The notation K()(e) is a short hand
integrated over the range of e. Equation t) notation to say that K(I) measures the
can be used in either of two directions, to influence of the jth case on the posterior of

update the posterior after new data arrives, i. The case t the can be

or to remove an observation for purposes of c ene tad chal compue
senstivty o inluece aalyis.conveniently and cheaply computed

sensitivity or influence analysis. numerically provided the observations are

Change variables in (1) from 8 to (zt,pt). conditionally independent given the

where zi is the function such that the

sampling distribution f(yi Ie,xi) is equal to parameter vector.
f(gi I zi(e,xi)), and pi is chosen to make the Equation (6) can be simplified by using
trasform and Pon isec to mak.Th e te equation (5) to substitute for the posteror
transformation one to one. The posterior ratio inside the log, changing variables fromp(e I Y) can be written as p(z "Y) pip'l~i e to (c1 ,p1) and integrating out Pt, producing

and similarly for the reduced data posterior.

Then (1) can be rewritten K(j)(e) flog P(ZIY) P(ZIY(o) dz
P(ZilY) P(PilY.-t) = f P- Y

P(Zi I Y(j))P(P I Y() Z ) f(y1 j ) (2) K()(z1 ) (7)

Ry, I Y(1),x() The Kullback divergence between the reduced
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data and full data e posteriors is equal to Figure 1.
the Kullback divergence between the reduced
data and full data zi posteriors!

Equation (7) depends on the two
posteriors p(zi IY(i)) and p(ziI Y). which for O
a wide variety of models will be densities w

on R1 or R 2. The plot of these two densities
will exhibit all of the influence of the ith 0

point on e since the conditional distribution -

of pi given z1 does not depend on the 3-
outcome of the it h case.

5. An example: Bean Root Cell data.
0 2 4 6 8 10 12 '4 16

Table 1 is a list of the data and Figure L m R 1  12 4

Length from Root Tip mini

(1) is a plot of the bean root cell data from Bean Root Data

Ratkowsky's (1983 p. 88) book on nonlinear
regression modeling. The response, y, is
water content in 10-8 g (Heyes and Brown 61
1956), plotted against the independent 1 + exp(e 2 - 0 3x)' is a one dimensional
variable x, distance in millimeters from parameter and is equal to the sampling mean

growing tip. A normal theory nonlinear of the ith observation. That z, can be put

regression model with independent errors onto a scale with a physical interpretation

was used by Ratkowsky to analyze this data. is typical of linear, nonlinear and

The mean function is the logistic function generalized linear models. For this

E1 particular nonlinear model, z, is length in

E[y I .X 1 e - (8A) the same units as the measurements yl. and
Iexp((62 -8X) consequently the data analyst can use

and the variance is assumed constant and subject matter knowledge to help decide if
known the observation is having a substantial

Var[y] = .414016. (8B) impact on the inference. Because of the
statistical information contained in the plot,

The Kullback statistics. K(l), were computed the statistician ca- decide if there are

for this model using an algorithm based on statistical reasons for considering an
the iterative Gauss Hermite quadrature observation to be highly influeitial.
methodology of Naylor and Smith (1982). Figures 2 through 5 show four examples

of posterior influence plots for the bean
Y K() i X Y K(1) root cell data. The influence plots are for

observations 8, 6, 14, and 1 respectively.
1 .5 1.3 .005 9 8.5 16.4 .09 These points have the highest, the second

2 1.5 1.3 .002 10 9.5 18.3 .06 highest, the median, and a very small value
3 2.5 1.9 .001 1 1 10.5 20.9 .18 of the Kullhack influence statistic,
1 3.5 3.4 .01 12 1 1.5 20.5 .01 respectively. The x-axis is water content in
5 4.5 5.3 .01 13 12.5 21.3 .03 units of g x 10 -8 and each plot has the same
6 5.5 1.1 .36 14 13.5 21.2 .01 scale along the x-axis, to facilitate visual
1 6.5 10.6 .21 15 14.5 20.9 .11 comparisons amongst the pictures. Figures

8 1. 5 16.0 .g8 2, 3, and 4 also have the same scale on the
Table 1. Bean Root Cell Data and y-axis, while figure 5 has a scale 4 times

Kullback case influence statistic. the others to accommodate it's large peak.
In each picture, the solid line is the full
data posterior marginal p(z, j Y) while the
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Figure 2. Figure 4.
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influence plots for observations with the that "mtermines the sampling distribution of
largest values of the selector statistic. If, the ith observation. The posterior influence
for example, the plot corresponding to the plot captures all of the influence of yi on
most influential point does not show a p(e Y), since the marginal densities
worrisome amount of influence, then no P(Pi IY,zi) = P(PiI Y(i),zj) for any function pi
further plots need be looked at. of the parameters. Posterior influence plots

The posterior influence plot covers all are possible in principle for any statistical
differences between the high-dimensional model, and are practicable for a wide
posteriors p(e I Y) and p(e IY(i)), as shown in variety of useful statistical models.
equation (4). Another interpretation and
proof of this statement is as follows. Acknowledgements

Define the g-influence of yi on a function Thanks to Dennis Cook for many
,(e) as conversations and advice. Thanks to Kathryn
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EXACT POWER CALCULATIONS FOR THE CHI-SQUARE TEST OF TWO PROPORTIONS

Carl E. Pierchala, U.S. Department of Agriculture

ABSTRACT (POWHALD), based on the arc sine transformation,
was attributed to Hald (1952, pp. 705 ff). The

Approximations are often used when calculating the other (POWHSU) was not well documented; it was
power of the Pearson Chi-Square test of two inde- described as similar to the Hald version, but
pendent proportions. This speeds up the compu- without an arc sine transformation. Thus, in a
tations and simplifies programming. At times, preliminary attempt to evaluate the power of the
however, it is useful to directly compute the test for the situation at hand, some computations
exact power. For example, one may wish to assess were done using both approximations.
an approximation's adequacy in a specific situ-
ation. Thus, an APL program was developed to do It was assumed that a one-sided, nominal 5%
exact power calculations on an IBM PC/XT. It level test would be used, and that both samples
gives accurate and reasonably fast computations, would be of size 375. In the placebo group, the
The exact power values for certain circumstances probability of the occurence of the adverse event
are compared to the corresponding values obtained was assumed to be .001. In the treated group,
using two approximations, one of which is based on the probability of the adverse event was varied
the arc sine transformation. It is seen that from .001 to .020. Unfortunately, as will be
these approximations are quite inaccurate in some seen in more detail below, the two approximations
situations, did not always give very similar values for

approximate power. For example, when a treated
patient was assumed to have probability .010 of

KEYWORDS: Pearson Chi-Square Test, two-by-two having the adverse event, the Hald approximation
tables, proportions, power, APL, Personal gave .59 for the power, while the alternate
Computers, adverse events, arc sine transformation approximation gave .51. Thus, there was a ques-

tion as to which, if either, of the two approxi-
mations was better.

1. INTRODUCTION

In addition, it was noted that for an N of 375
In a clinical trial being planned to compare a and a P of .001, NP equals .375. This is much

placebo group with an active-treatment group, smaller than 5, which is a conventional criterion

there was concern that a rare but serious adverse for deciding if it is appropriate to do a Chi-
event would be more likely to occur with the Square test (Brownlee, 1965, p. 153). By impli-
active treatment. It was anticipated that the cation, this led to the question as to whether the
(uncorrected) Pearson Chi-Square test would be arc sine transformation would provide an adequate
used to test the null hypothesis of no difference approximation to the power in such a situation.
in proportions of individuals suffering the
adverse event. However, the question arose as to To answer these questions, it seemed desirable
whether the study would have sufficient power to attempt to do an exact calculation of the power
using this test to detect a several-fold increase of Pearson's Chi-Square test. Upon reflection, it
in the adverse event rate in the active-treatment became clear that this is conceptually fairly easy
group. to do under a conventional probability model.

Development of an APL function to do the computa-
Many authorities (e.g., Cohen, 1977; Brownlee, tions was thus undertaken. This paper gives a

1965) recommend using the "arc sine" transfor- progress report, and reports some computations
mation to compute approximate power for a test of that shed light on the questions raised above.
equality of two independent proportions. Note

that while the test for equality of proportions is
often given as a z-test, it follows by an argument 2. THEORETICAL BACKGROUND
analogous to that of Fleiss (1973) that the
uncorrected version of the z-test is equivalent to In this section, the theory behind the compu-
Pearson's test. tation of the power of the Pearson Chi-Square test

is reviewed. The notation used in this paper
Two approximations to the power of a test of mimics that used in the code in the APL function

equality of two proportions were available in an that does the computations.

APL library at the FDA's Center for Drug
Evaluation and Research, where the problem Suppose we observe N identically and In-
motivating this paper first arose. One version dependently distributed (lID) bernoulli random

variables from one population, and N2 such

variables from a second population. That is,
The work reported in this paper was begun while

the author was employed by the Food and Drug XIII X 12 a XIN ID
Administration, and was continued after the author 1
moved to the United States Department of Agricul- arid
ture. The views expressed in this paper are those
of the author, and not necessarily those of either X21 , X22 . . . X2Nare IB(I,P) ,
the Food and Drug Administration or the United 2
States Department of Agriculture. with )kj independent of X 2k.
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The results could be displayed as follows. P = (N !/[S !(N -S )!])P S 10-p )NI-Si

is a binomial probability, Si-0,1,2,...,Ni, for
POPU- SAMPIE NUMBER OF SAMPLE i-I,2.
LATION SIZE SUCCESSES PROPORTION

Now the power of the one-sided test is given by

1 N SS I/N p ( ) . P

2 N2  $2 P 2 $2/N 2(1)
where the sum is taken over (SI,$9) in RI,

while the power of the two-side est is given by
It follows from the suppositions above that S (2)

and S2 are statistically Independent binomial p 2 = vp
random variates. That is, Si is B(Ni,PI), for
1-1,2. where the sum is taken over (SS2) in R2 '

Note also that the results could be displayed In summary, conceptually it is easy to
in a conventional two-by-two table as follows, calculate the power. However in practice there

are problems due to the large numer of
computations and decisions as to which points in

SUCCESSES FAILURES TOTALS the sample space are in the rejection region.

POPULATION 1 S NI-S N l
O 1 N 1 3. COMPUTATIONAL APPROACH

POPULATION 2 sN- Now it is to be noted that the sample space is

TOTALS S I+S2  N 1+N 2-(SI+S 2) N I +N 2  a lattice of points, that is, a rectangular array.

Thus for each point in the sample space, the
corresponding element of an appropriate matrix can
store the probability of each (S ,S2), its X

Now we may be interested either in a one-sided value, and Its membership in eitier R I or R2.
test, Using the APL programming language, one can

readily do appropriate matrix computations and
H0: P] I P2 vs. Hl: P1 

< 
P2 ' form the appropriate sums to obtain the power.

or a two-sided test, Furthermore, one can speed up the computations
by ignoring points in the sample space having

H0:P . P2 vs. H : P trivially small probabilities. Basically, the
0 1 H1: 1 p2. idea is that there is a rectangular subspace of

the sample space "centered" about the expected
In either case we will compute Pearson's Chi- value (N.P.,N 2P2) of the random variable (S ,$2),

Square statistic, such thal 1or points outside the subspace tAe

cumulative probability is negligably small. Thus

.2 such points can be ignored, so the computations

2 (NI+N2)[SI(N 2-S2 )-S2 (N I-S])2 are speeded up by only performing them over the
" subspace. All that needs to be done is to

NIN 2 (SI+S 2 )[NI+N 2-(SI+S 2)] determine the boundaries of this rectangle, that
is, the "marginal subranges" of the S and the S2

for which the various matrix computations are to
Let a denote the nominal significance level of be done.

the test. The one-sided test is significant if
both 2 2 Two different strategies were experimented with

P1 < P2 and X > XII-2," for determining these marginal subranges. The
P. approach currently being used is to calculate the

The two-sided test is significant if PSi, for S -0,1,...,Ni, and to only utilize

2 2
X > Xl_ those S for which P > ElN i , for some smalli Si

Note the difference in critical values, value, E. A bit of thought shows that the proba-

bility of not being in the rectangular subspace is
Now the sample space ? consists of points less than 2E, which is thus a conservative upper

(S1,S 2 ) where S1=0,1,2,...,NI and S -0,1,2, bound on the error in the computed power.
,N 2. Let R and R denote the reiection

regions (i.e., the sugsets of points in the sample An earlier strategy which was abandoned was a
sapce for which the tests are significant) for the kind of normal approximation This involved using
1-sided and 2-sided tests, respectively. Si in the range [N P ±k(N P (I-P )) ], where

k is an appropriat
4  

onstin. however, although
The probability of any (SI,S 2 ) is this approach to determining the marginal

1P - P subranges proved to be computationally quick, it

where 2 S I  S 2 '  
was not always accurate even with k as large as 5
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or 6, in particular for small PI. FIGURE 1. Flow Chart for the Computations.

Another technical point is about the computa-
tion of the binomial probabilities. This is done
in part with a function named LNFAC from the FDA's BINPOWR
APL library. This function calculates the base e
logarithm of N! (N factorial). Using logarithms
and LNFAC, one readily obtains log ePs and then
exponentiates to obtain PiS DETERMINE BINOMIAL PROBABILITIES

iI

This indirect approach to calculating the
binomial probabilities is slower than the more
obvious direct calculation of binomial DETERMINE MARGINAL SUBRGES
coefficients multiplied by powers of the
appropriate probabilities. However, the APL
function that calculates N! won't work for N
larger than 170, so when either of the N exceeds DETERMINE BIVARIATE PROBABILITIES
170, the direct approach cannot be used. Using
the indirect approach, accurate computations can
be done for Ni larger than 170, making the routine
more versatile. CALCULATE CHI-SQUARE MATRIX

With regard to the calculation of the matrix of
chi-square values, which are used in determining
the critical region for the test, the computa- CONSTRUCT INDICATOR MATRIX
tional formula given above is used in conjuntction FOR THE REJECTION REGION
with APL's matrix capabilities to yield the
matrix. The APL code to do so is done in stages
in several lines rather than one line, thus
reducing the need for temporary storage of inter- ADD UP PROBABILITIES FOR
mediate results. This matrix approach proved to POINTS IN THE REJECTION REGION
be much faster than an earlier approach in which
looping was used in combination with a function
that computes E(o-e)2 /e for a four-fold table.

IRETURN THE VALUE OF POWER)

The funtion BINPOWR that does 
the computations

was programmed using Version 6.4 of STSC Inc.'s
APL*PLUS on an IBM PC-XT. A general flow chart of
the computational proceedure is given in Figure 1.

given for the error in the reported exact power
value due to restricting the computations to the

4. RESULTS subspace determined by the marginal subranges.
Such an estimate could readily be calculated and

To date, a version of the function BINPOWR has returned by the function. Finally, the code
been developed which is accurate and is fairly for calculating chi-square can be adjusted very
fast. Some speed results are given in the text simply to include various kinds of continuity
below. In developing the routine, extensive corrections. It would be relatively simple and
checks on the accuracy were made. Power values highly desirable to add such a feature to the
were calculated for certain simple cases, includ- routine. Thus, BINPOWR is still being refined,
ing the example given by Conover (1971, p. 146). and is not yet available for distribution.
In all such checks, the function gave the correct
answer. In addition, Garside and Mack (1976) give The results alluded to in the introduction are
exact probabilities of rejecting the null given in Table 1. They were computed using an IBM
hypothesis of the equality of two proportions. PC-XT with an 8087 math coprocessor chip and 640K
This varies as a function of the common proportion memory. With the particular parameters used in
assumed in the computation. Their values could be this table, approximately 92 to 93 seconds were
verified by using BINPOWR with P equal to P2 " In required for each power value computed using
doing so, it was noted that Garside and Mack BINPOWR. In the computations, the value E - 10-

performed their computations for a one-sided test. was used. Thus, the values in the table are
At any rate, a variety of Garside and Mack's correct to the reported number of digits.
computations were checked, and In every such case
the value computed using BINPOWR agreed with their For the set of P values in Table 1, it can be

2value to the precision they reported. seen that the Hald approximation to the power at
least equals and usually exceeds that of the

However, there are still some problems with the alternate approximation. The difference in nomi-
function. First, it is not readily usable as a nal power values between the two approximations is
function. It needs to be made more "user- greater than .05 when P2 either is .020 or Is in
friendly". Second, the computation of the margin- the range from .008 to .012. The difference is
al subranges seems slow. Possibly an approach to greater than .10 when P2 is in the range from .014
speed this up can be found. Third, no estimate is to .018.
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TABLE 1. POWER OF THE 1-SIDED, NOMINAL 5% LEVEL 5. CONCLUSIONS

PEARSON CHI-SQUARE TEST OF THE EQUALITY
OF TWO PROPORTIONS, AS A FUNCTION OF P2 P A few conclusions can be drawn at this point in

FOR P1-.001 AND NI-N2=375. the development of BINPOWR. First, STSC's APL on

an IBM PC-XT gives accurate, relatively quick
exact power computations. This can be useful at

COMPUTATIONAL METHOD the very least for spot checking approximations,
which are seen to be inaccurate in some cases.

This inaccuracy was particularly extreme in the
HALD ALTERNATE case where the null hypothesis is true and the
APPROX- APPROX- EXACT common proportion is relatively small. Finally,

P 2  IMATION IMATION COMPUTATION it is to be noted that APL programming is quite
time consuming for the novice APL programmer.

.001 .0500 .0500 .0045

.002* .0992 .0984 .0278

.004 .2183 .2056 .1323 ACKNOWLEDGEMENTS
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ON COVARIANCES OF MARGINALLY ADJUSTED DATA

James S. Weber, Roosevelt, University

A procedure for estimating covariances of marginally adjusted data b(
in terms of first partial derivatives and covariances of the unscaled E(4)
data and prescribed marginal sums is given. A numerical example J=l

demonstrates the dependence of these covariances upon the balancing
procedure used to maintain consistency of sets of marginal sums in (

the presence of errors in the marginal sums. b= (4b)

KEY WORDS. Iterated Proportional fitting algorithm; IPFA; RAS
procedure; IPS; Contingency table; Interaction matrix; Gravity model; It is well known that (Ic), (3a), (4ab) uniquely determine b,, 's
Input-output model; Partial differentiation; Diagonally equivalent (Sinkhorn, 1967 and many others). \ve assume that i', At2 > 0.

matrices. Equations (Id), (le), below, give instances of Fl, Y 2 in (lab). (See
Weber, 1987, p. 626, (5), (6)).

1. INTRODUCTION

Categorical data may be presented as rectangular tables of rows mn
I = rn Z + E 1n I

and columns using two subscripts or as more general arrays with three j = l =

or more subscripts. Applications of marginally adjusted categorical ,

data include adjusted census data, migration modeling, updating of m; 
2 = m 2 2 - mi)/(m + n) Il)

Leontief input-output coefficients, journey-to-work trip distribution j=1 -I

modeling and certain budgeting allocation problems. (See Bacharach,
1970, Weber 1987, etc.) Obviously if 2 ml then m;' ' a 2 2

In this paper we discuss the estimation of covariances of adjusted It is also well known that b.,'s may be calculated by itera-

data in terms of covariances of initial entries and prescribed marginal tively scaling the initial and subsequent values. This procedure has

sums. Two related issues are prominent. 1. The dependence of many names' including "Iterated Proportional Fitting Algorithm" or

covariances (and derivatives) on the way that inconsistent marginal "IPFA". Since this scaling procedure is used to estimate covariances.

sums are made consistent; 2. The calculation of partial derivatives of it is expressed below as (5) followed by the iteration of (6a) and (7a)

scaled entries with respect to initial entries and marginal sums. The (or (5) followed by the iteration of (6b) and (Tb)).

format of the paper is as follows. In section 2 we specifically describe a

row and column adjustments of tables of data. In section 3 we look at i= j(5)

estimation of covariances of the marginally adjusted data. Then we bn b

contrast our approach with others. Also a more general framework is = ( )b, r = 0...c (6a)
indicated. Finally appendices give a general lca.,t squares estimate of

marginal sums and a sketch of a proof of convergence of our sequence .1

of derivatives. While some relevant comments have appeared in the b2'+' = mJ b2 r = 0 ... X (6b)
literature, few focus explicitly on the manner by which inconsistent .,

constraints are revised to become or remain consistent. (See Weber,

1987). Consistency of marginal sums is central to understanding b 2  r = 0 ( (a)
covariances of marginally adjusted tables or arrays. From time to Z7 , 1

time we point out details for computing these covariances.

2. MARGINAILY ADJUSTED TABLES or DATA b+
2 

=( = )b
2 +  

r = 0.. .o (7b)

We describe the basic calculating procedure for scaling tables I b2+ 1

of data to have prescribed row and column sums. A is an m x n That is, (5) followed by iteration of (6a), (7a) (or (6b), (7h)) rapidly

positive inatrix of initia! values. A 1Q ,1
2 

are vectors of in row converge t", a limiting m.itrix dc">',d 1,y h, or 1
"
' or %imp)lv B+ We

and n column marginal sums. B is an m x n scaled matrix with miay write
the prescribed marginal .,ums At - ', At"2. D1 , D2 are diagonal scaling
factors. To accommodate variation in marginal sums which at one 1? = B(.. .11 W)

moment we regard as free to vary in conformity with some covariance = 1"'(... F1 (.t. At2 ),.F 2( A 7))
matrix but which in some way must also remain consistent, we write B- (l, 1. :), et c,
AIt*, AM

"2 
as functions of M, A

t
'
. wherein All, At' vary freely and

upon which Al" and Al2 depend. Often only (5), (6a), (7a) (or (5). (6b). (7b)) are regarded as the
Equations (labe) (4ab) sulmarize our setup. well known scaling procedirei for computing b,, satisfying ( Ic). (3a).

(m," Al = ,, (Al', At2) > 0 (I) (.lab). Hlowever, for our piirposes ( lah) nlvst be regarded as an ex-
pilicit and integral part of the scaling procedure. Ileince our complete

(,1;
2)  

A
"
2 = .F2(Af', Al) > 01 descriptiof of the marginal adjustiwnt procedure is (lab), (5), and

iteration of (6a) and (7a) (or (61) anl (7b))

3. ('OVARIAN('-S OF MAGIOiNAI.N A It sti TABLS O1" DAIA

We want to estimate the covariaie latrix (v( I?, .%.l .. 2)

b, d)'1d (3ta( (Sa)
Ii 1)1.'tl)2 (:t1)1 ..': .... ":"

whil ay he partithlm,'d .a,
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[o(B, B, cov(B, At") cov(B, At ) (3 R'OR 8B 21+1 At* , M, 2  
(12a)

[cov(M*',B) c.,-(M'I,M " ) cov(M't,M*2
) (8b) M,M 2  

- B 2 ',A f,2

[COV(M
"2, B) cov(M "2

, M "1
) cov(M

" 2
, M,2) IB

2
r+l aB

2
r+l QB2

r+l -

in terms of COV(A, A',M2 ). This can be approximated as ai - 8M' 197Y
stance of COV(F(X)) (aF/8X)COV(X)(OF/8X)T, namely OM"' M"' am"

I aM., (I2b)

COV(B,M',M
2 ) 

_  - 9 CM

aM
°2  

8M*2  
0aM 2(B~ *DM1 At' 2' O MM2 

T 2r --- JW
9A - M 2  I C O V ( 4 M ' M 2 ) AM ' 1 ( 9 )

0b2,+l Ob2
+ I 62 +l b2'+ -

wherein "(8/0)" denotes the appropriate Jacobian matrices of deriva- I D'"
tives and T denotes a matrix transpose. We next focus on computing
(OBM' M.

2
/iAM Al 2 ). ab2 '+' b2'+'

3.2 DERIVATIVES OF SCALED MATRICES

Some further discussion of notation is required. Expressions (5), = (12c)
(la), (Ib) can be combined to form a single vector function (13', M ,
M

2 ) of (A, Mi,M
2 ). Obviously BO(A) simply maps A to the bq 8b2 + l b

entries via a suitable identity map. A' and M, 2 are computed in ab On
a single step but are always needed to iteratively scale the matrices 0 1 0
B

2 , 
B

2
r

+
]. A. , (5a) - (6a), (or (5b) - (6b)) can be combined with

identity maps for M , M 2 to define a function (B
2r+ l

, Me
l

, M
2
) of

(B
2 r', M-1, Ml

2
). Doing this makes the augmented functions iterate 0.0 .

vectors of the same dimension from the beginning to the end of the Obviously the format above bears a family resemblence to the co-
iteration process allowing the calculus chain rule to apply in a simple variance matrices (8ab) for which (12abc) is used to estimate. To
way. Finally the augmented scaling (6a) or (7b) may be abbreviated put formulae or values in (12c) we may differentiate (6a), (7a) and
by "R" for a row adjustment augmented by identity maps to carry enter either formulae or values. (See Weber and Sen, 1985a). The
along M,1, M " 2. The augmented (7a) (or (6b)) may be abbreviated entire matrices OR/aBM " M . 2, OC/OB, M "  , M "2 can be manipu-
by "C" for column adjustment augmented by identity maps to carry lated or formulae for the entries can be coded as functions of indices,
along M' l, M 2. That is, (B2, + 1, 

M.1
, 

M-
2) = R(B 2 , 

A
t , 

M
2 ), B A, M"', and M "2 . Then covariances (as well as derivatives, if

etc. With these notational changes we may rewrite (9) as desired) may be computed all at once as a matrix using (10) or as

subsets or individually via (11). Obviously there may be a wealth of
COV(B, MM "2 ) - applicable techniques for fast and efficient handling of large matrices.

aC ~ aR 3o114 [a 0M m-
2

J [ aAMIM 2  3.3 A NUMERICAL EXAMPLE

The following discussion of a 5 x 5 example shows that linearly
COV(A, M1, M 2 ) (10) estimated covariances depend on the procedure by which inconsisten-

T cies are resolved. Weber (1987) gives a numerical example showing

J[( OC ' )( 8' [8B0
M'lM°

2  the dependence of constrained gravity model derivatives on the bai-

"KOBMIM.2 OBM-'-M.2 [ aAMIA
2  ancing procedure. Mathematically, constrained gravity models are

identical to the row and column marginally adjusted tables of data
15 or 19 that we have been discussing.
]J F,, Table I gives hypothetical data for 4, A', A12 and B. This
k=i example is borrowed from Webei (1987; 1981) and is reasonable

in the context of those discussions. Here all that matters is that
for Fi: appropriately identified with the above matrices. Note that A, Al', M 2

, B > 0, which is obviously true.
covariances may be calculated individually since

FABLE 1
cov(b,,,b,,) (COV(B,M.,M 2

)](i-)+j.(P-I1)+, ITERATED PROPORTIONAL FITTING EXAMPLE

k,=l k... 15 j ) A : Initial Interaction M atrix
2 1 t 19

"' k , ki " ... " , . k .i i(p
-  

l.+9

0.7828 0.6128 0.4512 0.4331 0.3679
wherein (i - I)n + j, (p - I)n + q change double indices to a single 0.6128 0.7363 0.6128 0.5882 0.496
index. 0.4512 0.6128 0.7515 0.576! 0.1512

The preceding gives an overview of a computational procedure. 0.4331 0.5882 0.5764 0.7214 0.5099
We refer the reader to Weber (1987), Weber and Sen (1985), Weber 0.3679 0.4996 0.4512 0.5099 0.7068
and Sen (1983) and Weber (1981) for additional details. Here we
summarize only key ideas of those papers as they relate to covariances
of marginally adjusted data.

Obviously many individual partial derivatives are required to AI' owP': lOW Sums
evaluate expressions (10) or (11). Let us now look more closely at m, na ,13 in ,n,
these2 . 6500.00 8000.00 5280.00 850.0A 3730.00

We may write
A1 & M ": Column Suis

m? 2 ~ 172 7773 17
2  7112

6690.00 8030.00 5270.00 840.00 35300
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B: Marginally Adjusted Values Example 2. COV(A) = 0, COV(M'A1 2 ) = 10 x 10 diagonal matrix

of (,0,0, 1, 1,0, 1,0, 1,0). That is, a
2

, = = = a
2  

= l and

2431.37 2078.87 1108.14 180.44 701.18 the others are zero.
2143.40 2813.23 1694.93 275.98 1072.47 TABLE 3B
1151.43 1708.13 1516.59 197.29 706.57

189.66 281.36 199.58 42.37 137.03
744.14 1148.42 750.76 143.92 912.76

Note: M
° 1 

= AP and M
°2 = M

2 since El m, E E m? Balancing 2
I ,=I J* Procedure ob

In B, the row sums are given by M', the column sums are given by
M

2 and B = DIA D 2 where D, and D 2 are diagonal matrices. B A 0.00528653
was obtained by the Iterated Proportional Fitting Algorithm. BL 0.01693739

Table 2, below, gives the partial derivatives, Ob11/cam rin2m4 BR 0.01364130
rm1 2M rm2 for three different balancing procedures: A, B c 001C28051
(BL and BR) and C. The procedures A, BL, BR and C are defined
immediately after Table 3b. See Weber (1987) for a more lengthy Largest U2,, +smallest a' -2 3.20
discussion. For both examples, the balancing procedures for M "',M "2 are

defined below.
TABLE 2

ObI/8A1IA1
2

A. M 1 
and M 2 

are least squares estimates such that M*tAM °

are consistent and the sum of the squared deviations from M'

' 22and M
2 is as small as possible. The formula is given by (Id),

A 292 - 0482 -0330 -0346 - 0303 283 - 0462 -0308 - 0322 - 276
BL 343 00248 0177 0161 0204 232 - 0969 - 0815 - 0829 - 0783 B. BL&BR correspond to the set of marginal constraints for which
BR 243 - 0925 0833 - 0 38 - 0795 332 0031 0258 0170 0216 the constraints which sum to the larger value are scaled down to
C 323 - 0179 - 0027 - 0043 0 232 - 0969 - 815 - 0829 - 0783 sum to the smaller sum. BL and BR are right and left deriva-

_ tives and probably the variances associated with BR and BL
should be averaged.

We use these derivatives to estimate covariances for hypothetical
covariances of A, Afl, M 2 . In the two examples which follow, we let C. Here, a single marginal sum, m

1
, absorbs all of the inconsis-

COV(A) = 0. (The effect of including a diagonal covariance matrix tencies arising from variability of the others.
COV(A) simply would be to add a constant to the numerical values
we obtain for a2, below).

w o ,In this subsection we established our claim that covariances de-
/ h1 ( )T pend on the balancing procedure. Obviously we would like to be able

71 cov(bl, ,, 1 ) ~ I COV(AA' .1l
2) to report having done a simulation as a check on the examples re-

2,, J b18-1 CVlfl ported here, but this has not been done. (Note however that Weber

(13) and Sen, 1985a, compute all of the covariances for a different numeri-

a b, / I bA T S cal example by both a linearization and a simulation, obtaining close

- M Cov(MI
2

) kM 3 , since COV(A) = 0. agreement).

Example 1. COV(A) = 0, COV(AI'A 2 ) = a_ Ila = a variance 3.4 COMPUTATIONAL ALTERNATIVES
times the 10 x 10 identity matrix. Then

These covariances may be estimated by using simulations, how-
U2, = a9b(O.l2M

2 ,Cb9/8A f2) = o.211(b,/c tAfl 2
1
2  ever there are a number of disadvantages with simulations.

wherein II is ordinary Euclidean length. 1. Changes in the bij's are highly correlated and therefore a large

number of simulated points will be necessary. (See Weber andTABI.E 3A Sen, 1985a, for discussion of an empirical stopping rule which

can be used in this situation).

Balancing
Procedure a 2. All of the bi, 's need to be calculated for each set of simulatedvalues for A, At', Ml. In contrast, linearly approximated covari-

A a 0.17576217 ances can be programmed to provide covariances individually, if

BL a
2 0.20150297 desired.

BR a
2 0.19954164

C a
2 

0.18753435 3. It is difficult to simulate random vectors with other than a cliag-
Largest a. + smallest a2 -5 1.15. In some situations, a2  

onal covariance matrix. This coul be a problem for a simulation
4872 = M" 

Would be reasollahlI but not for a linear approximation.

lowever, for contingency tables which are not too big, when
there is access to adequate computing resources, we prefer using
both methods over either one by itself. Note that when a simiula-

tion is done, cplhctt attention to the balancing of inconsistent row,
and column sums i.s requird!
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Another alternative arises in using an implicit function approach Deming, W.E. and F.F. Stephan. "On a Least Squares Adjustments
to obtain the partial derivatives that we need. Bacharach (1970) of a Sampled Frequency Table When the Expected Marginal

does this. This leads to a generalized inverse of a singular matrix. Totals are Known," Annals of Mathematical Statistics, 11(1940),
The choice of a particular g-inverse should be linked to behavioral 427-444.

circumstances. Weber (1987) discusses three balancing procedures in
real world settings. Evans, A.W. "Some Properties of Trip Distribution Methods," Trans-

4. MORE GENERAL SITUATIONS AND CONCLUSION portation Research, 4(1970), 19-36.

Obviously, the linearization of scaling procedures can be done Fienberg, SE. and Meyer, MM. "Log Linear Models and Categor-
over 3 or more subscripts. Then we would have 3 or more sets of ical Data Analysis With Psychometric and Econometric Appli-
marginal sums, M',M 2

,M'. The literature seems to be less ex- cations," Journal of Econometrics, 22 (1983a), 191-214.
tensive on existence results and algorithms for arrays satisfying a
certain functional relationship to an initial set of values and hay- "terative Proportional Fitting," Encylopedia ofStattstical
ing prescribed marginal sums. In debating between linearizations, Sciences, Volume 4. New York: Wiley, 1983b, pp. 275-279.
simulations, balancing procedures and generalized inverses, the same
problems apparently remain. If the initial values are nonnegative Fienberg, S.E. "An Iterative Procedure for Estimation in Contin-

rather than positive, then the picture is complicated somewhat. The ienr SaE. An Iter at e mc frEtiation in Cti-
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Transportation Research, 1 (1967), 253-270. In fact, the sequence of matrix powers that appear in (10) do
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__ ."Some New Forms of Spatial Interaction Models: A Review, lim lim f(x, ,) = lim lim f(Z,y) = lim f(ZY)
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provided (i) lirn _ f(z,y) exists for each z in a relevant set and
APPENDIX I (ii) lim_.- f(x,y) exists uniformly for the set of y vlaues. (eg. see

LEAST SQUARES CONSISTENT MARGINAL SUMS Lang, 1968, p. 134, Theorem 6). This result can apply here by

Given a set of vectors, M', v = I ... v, of marginal sums, showing (i) that every finite sequence of iterations is differentiable and

S= (m', = 1,..,), LaGrange multipliers may be used to (ii) that sequences of Newton quotients converge uniformly for someobtain revised marginal sums such that neighborhood of the independent variables. The first requirement iseasily met. The matrices and vectors A, M "
, V2 are positive and

t. IV the iterative scalings are all trapped in a compact positive region of

-m = Y-rn
v 

for v = 1.... - 1) (A1) R-'
+ ' i+'. As long as A,M",M "2 

remain strictly positive, each
scaling is differentiable.

V I, The second requirement seems to require more lengthy discus-
j(m*" - m')

2 
is minimized (A2) sion. In a compact, sufficiently small ball about (B', M'. MP

2
I, the

i=I Newton quotients are a uniformly Cauchy sequence. That is, for all
T > 0, there is an integer, N(), such that whenever kI, k2 are greater

The LaGrangian than N(ej, then the Newton quotients for ki, and k 2 iterations c-

v t. v-1 IV - (RC) differ by less than c.

£(M,A) = Z Z( ; - M.)
2 + A ..(ZmV

)  The above facts are precisely the requirements of the theorem.

i=1 v=1 s=1 Consequently the limit of a sequence of Newton quotients for IPFA
s(A 3) as an increment to a marginal sum becomes arbitrarily small and the

leads to (limit of using arbitrarily many compositions of derivatives of IPFA
ac scalings commute. In particular, we may let the increments go to

cgyn* = 2(m' - n') - AV = 0 for v = I. (V - 1) (A4) zero and proceed to a derivative of the limit of iterative scalings 'ia
derivatives of finitely many scalings. Also, the convergence is rapid,

for i = 1.., hence a 3rd or 4th power is shown in (10).
v A cautionary note must be sounded regarding the convergence

= 2(ruy - r'v) + A ), = 0 for i =- 1. .- Iv (A5) of compositions of derivatives of iterative scalings. Sinkhorn (1967)
t = =and, independently, Weber (1980) showed that

0£ tv t " m ,i

= .
'  

- m:' = 0 for v = 1....(V - 1) (A6) Li lim (RC)k(A) = ('/ 1-" o) lin (('lI)*("l)

Define m' - rn, for v = I. V. Then (Al) - (A6) lead to = (1Z ,/Z1 m)L 2  
(A 10)

2 1 (b+ 1) 1 1 Where R and C denote row and column scaliigs and exponents de-
V[ (in - m.) , note repeated application of the function iiside the parentheses, etc.

I Now differentiating an (ij) entry on each side of (AI0) w rt in 1

1V (rnI yields

r _1 (A 11)_____

(AT) O_,i - , 2 Z "'+ mmi

wherein (A.,) denotes the vector of (V - 1) La(;range multipliers Setting mY. = mn2 leads to

rn, = rm, + -- for v= I V - I (A8) 0, - 0,21 '' -" > 
0  

(A12)

fori= 1..., Thus any computer implement at ion of linearizat ions of scaliigs should

be (lone with full awareness that certain interniediate calculations do
in" = n - for i = I ., It (AO) not converge. Ilowever, we observe points of accumulation when

2
Setting V 211 = 111, 12 i in (A7). (AS) amid (AO)leads to (1d there are setsI of marginal constraints, for example, a set of row suns
(l)iprented in t( at) body Io), and a set of columin sums A full explanation is found in Weber 1981,
ie) prese'nted in the body of tie papr 1987,

James S Weber
P 0 Box 603
;urnee, Illinois 60013 0603
U"S A

(312) 662 5876
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Optimizing Linear Functions of Random Variables
Having a Joint Multinomial or Multivariate Normal Distribution

J. P. De Los Reyes, University of Akron
r

I. Introduction. Let u .... r have a joint multinomial (i) 0 r(X) 2 -a and (i) x x-x1 pt-p i ) 2> 0
distribution with parameters n,p,....Pr (!o i-n, "pP-l, i-i

pi>0). The standardized var where (i) is included in order that the probability
X=(V -np)/J np,(1-p) ,=l r function in (i) is nonnegative.

have a limiting joint norma distrL ution with means The solution is two-fold: first is the evaluation of
zero, variances one, and correlation matrix IR of rank Or(x) ; second is the optimization part. The
r-1: optimization routine LPNLP [Pierre & Lowe 1975] and

D-pp', D-diag~lii-p ),..,1/(l-pr, the multidimensional quadrature subroutine "MVNORM
(1) [Milton 1972, Bohrer & Shervish 19811 provide a

p'= 1p/(-pd) ... Ipr/(l-pr) 1. complete numerical solution for l-.r-1 < 0. However,
If pi-I/r for i-,.r, then F is equicorrelated with since LPNLP must evaluate the probability integral
common correlation P- -1/(0-r). Or(x) at numerous points x to find the optimal

Suppose numbers s ..... s, are sought that minimize probability vector, a good approximation to 4r(X) and
G(s) subject to the probabilistic constraint *r(s) , other related "computer-ready" formulas that will
I-cc (O<c<l). By normal approximation, numbers ease up the computation of *r(x) are valuable.
xi,...,xr are then required which minimize F(x) Example I. To illustrate the bivariate case with
subject to Or(X)I-cr, where we define for constants e.=a 'l, consider the following "ice cream problem"
at >O, r r (first posed by L. Tak-cs at Case Western Reserve

G(s)- 'alsi, F(x)=-alxl 1 p1- p l) , University, 1979): At a banquet the dinner menu lists
i-I i-I ice creams of two flavors. Independently of the

(2) tr(s)-PGv -_ s, .- l, others each of the 1000 guests may order an ice

4br(x)-P{xl x i .i ., and cream of one of the two flavors with probability
r(XP)-P{X~x, .• } ' Which is the smallest number of ice creams of eact,

in the symmetric case, namely, if F? is equicorrelated flavor that must be provided to insure that each
and x-(xx,....x), ie., x also is equ/coordinate. guest gets his or her choice with probability -. 9991

If r-2, and a-a -l, then binomial probability A solution using normal approximation is given by:
vectors (sl,s.) may be obtained from tables of the Theoreml. Let v have a binomial distribution with
cumulative binomial probability distribution IHarvard parameters n and p. Let ,-n-a, , p:-I-p . Then the
Univ. Computing Laboratory 19551 by choosing s, and numbers s.,s for which s+s_ is a minimum and such
s so that the tail probabilities on either side of the that 0i) s.+s >n and (ii)4'ls)ul-o both hold, are
binomial distribution of i.' are each equal to j/2, in given by s1 =np1 +x, .4-1 where x - (1-o/2l,
effect centering the probability mass I-.)(see also the upper o/2 probability point or/Ihe standard
Example 1). The direct evaluation of the multinomial normal distribution.
sums *r(s) in (2) involves considerable difficulties if Proof: By normal approximation and Lagrange
r -3, while the corresponding normal probability multipliers, x,-x., and the conclusion follows.O
integral *r(x) may be evaluated by numei -al The answer to the "ice cream problem" is thus s =
integraion [Milton 19721. Since vectors s that s -1000(.5+3.291[t)00(.51(.SII - or about 552 ice
minimize G(s) can be obtained from those that creams each (agrees with values obtained using
minimize F(x) using the formulr__ binomial tables), a little more than the expected

s, -np +xnpi (I-pl) demand of 50(0 each but much less than the maximum
we then focus attention on so ying the normal case. possible demand of 100 ice creams of each flavor. In

For r_,,2 let us define a multivariate analogue of this single-period inventory model hillier &
the upper probability point y.) of a distribution, (y, Lieberman 196"] the additional 1(04 ice creams are to
is the letit value such that PQ yL, ) ,I-:) to be ward off shortages that may arise, with probability
any vector y for wh,.h l'i .v I nI . 1-o. at most .001, from a variability in demand rather
These upper o probability vectors are generally than from any delays in delivery or lead time demand
nonunique since distinct vectors y can yield the since no reorders are made.
same probabilities. However the vectors x and s In general, for r=2 in 31, the optimal pair x.,x
named above are unique for the specified singular may be found by using Lagrange multipliers,
normal distribution and the multinomial distribution, expressing x. as a function of N , then applying a
respectively, since they optimize the linear functins one-dimensional search procedure, such as the
F and G of random variables. bisection method [Mc'ormick and Sal\adori 19(,41.
2. The optimization problem. In general, probability i'nder a specified multinomial demand in a sirgle-
vectors may be found as follows: Minimi.,e F- period model, one might consider multi-type prodi.cts
cx.+...+crxr (c1  0, i-l.r) subject to (a) equality -f )ne kind such as ice creams -f r different
constraints, if any: [:. (x)-A i-I..m. r) and fb) flavors, concert -shirts of varivus -ol,.rs and si,-es.
inequality constraints, dt any: Fl fxl) _13, I ... ,n) spare parts of a discontinued milticomp,,nent system,
where x...,xr are values take.. by r random airlin or train seats t, different cities at d v,..en
variables having a joint distribution, and at least inc time (compare and contrast with Feller's rair,-ad
of the constraints involves a probability distribution train seats example If eller IQ(,8. p.18811, main dishes
of the random variables. at an airline's in-flight meal, dated snack items at a

The nonlinear programming problem to find optimal coin-operated vending machine, .r blood supply at a
upper o probability vectors x is the following: local blood bank. such items either becme ,,bsolete

r quickly, spoil easily, are st ked up only, nce, .r
(3) Minimize Fix'- ai1xJ p(l-p) subject t,,: ha, e a future that is unertain beyond .i single

I l period. In eah ,f these ase,;, an upper
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probability vector a would give the smallest supply In the symmetric case, the limits in (6) simplify to
si of an item of type i such that the probability of k-1
no shortage is at least l-ct. (7) Lk - -t i - (r-k)x and Uk=X,

The next three sections deal with various -I

formulations of the integral (r(X) in an effort to which agree with a formula given earlier by Bland
find simple computer-ready formulas to be used in and Owen[1966]. The algorithm MVNORM [Milton
the anticipated numerical integration: section 3 19721 is incorporated into a program MNCDF by this
presents Or(x) as a single iterated integral over the author to evaluate integrals (6), which are then used
given simplicial domain of integration; section 4 with LPNLP to solve (3).
shows that Or(X) is a sum of its lower-dimensional 4. Integration over infinite rectangles. Let Al denote
marginal distribution integrals; while section 5 the ith inequality defining the simplex g in (4), so

expresses Or(x) as a sum of r' iterated integrals of that 0r(x)-P{Airi...i(Ar} is positive if and only if
the uncorrelated normal distribution over certain AIC'i... CA,.- or if AIU...UAr=E1 1. By the inclusion-
simplices that yield rice limits of integration. exclusion method [Takics 1967, Feller 19681 the
3. Integration over a simplex. An m-dimensional probability Pk that exactly k events occur among
simplex is defined to be the intersection in m- Al,...,Ar is.
dimensional space of m+l half-spaces such that any Pk-'t(-1)Jk jjBJI, k-0,1,2.r , where
m of the bounding hyperplanes of the half-spaces (8) -1

meet in exactl, one point, a vertex of the simplex. Bk -  P{A A, A , ..r Ak}.
Also, any m+l points which do not lie in an m- ,!, -i ik
dimensional space are the vertices of an m- Bk is the kth binomial moment of the number nr of
dimensional simplex whose elements are also simplices events occurring among AI,...,Ar; define B 0-1.
formed by subsets of the m+l points, namely, the The normal integral Or(x) is expressed as a linear
:', vertices themselves, the edges, the f'*' combination of its lower-dimensional marginal normal

triangles, the "i'' tetrahedrons . in general the integrals over infinite rectangles as follows:
,:,j cells bounding the simplex which are k-simplices, Theorem 3. Let *k(x . X ) denote the k-variate

and finally, the m+l bounding cells or faces which 11k

are m-I simplices lCoxeter 19631. When the m(m+l)/2 nondegenerate joint marginal distribution of

edges of an m-simplex are all equal, it is called a x,X.......Xk, 1-_k -r-l; iti(x)-l. If 0
r(x) > 0, then

regular simplex. k 1
Example 2. A 3-dimensional simplex (tetrahedron) rr(x)=Z l )

-
- .x

has 4 vertices, 6 edges, and 4 triangular faces. (9) :-I .. ' j'I-, r-

Regarding the random variables x x... _ as - Br_. - Br_2 + :-I
coordinates of a point x in r-l dimensional space E' 1 Proof: P, - l-B:+B - +(-l)rBr-l-A A: -... 'A,}

then Or(x) is the probability that X falls in the (r-l)- - 0. The conciusion follows on noting that Or(x)-

simplex g : - P(A .-.. Ar}-Br and P(A, -1...-A 1= 0 k(Xi,,...,x ).

(4) C .. X. P0-P)/Pr(l-Pr)-xr) k k ik
In the symmetric case, the terms in the second

defined by the system of r inequalities or closed
half-spaces of E' where the rth inequalty is due to summation oi (9) are identical to Vr-j(x,,), yielding
the singularity condition on the x)'s, >'X- - .0.

If G denotes the vertex of Q obtained by omitting (0) )r-(l'
the ith inequality in (4) and solving the resulting j -

subsystem of linear equations, then Gj has another formula by Bland and Owen [19661 for the
coordinates in terms of the p,'s: equicorrelated normal distribution. In a way, (6) and

0j-x x j+..xr_.', jl,..,r-l where (9) extend the earlier formulas (7) and (10),
( j. j _ J .rrespectively, to the case when F is not necessarily

xl-- . Xkjpk(1-Pk)/Pj(l-p) ; Gr-(x.xr-. equicorrelated but satisfy (1).
Bohrer and Shervish [19(11 added an inviolable

Direct integraton over Q yields the following error bound to the algorithm MVNORM when

formula for 0r(x), where without loss of generality, computing the multivariate normal probabilities of
or.(t) is the joint marginal normal density function rectangular regions only, which this author
of X .... ,Xr-,, with covariance matrix K derived from incorporated ,nto a program IXSK, to evaluate

. by deleting row r and column r of F. integrals (9) or(It), and used with I_PNLP to solve (3).
Theorem 2. For any constants p,>0, and xI such that S. Integration over orthoschemes. A diagonalization

and scaling of the covariance matrix K, simplifies the

I:P,-l and ExiiP, IPI-) 0, then integrand of (br(Xl in (6) hut then the limits of
integration over the image simplex % of Q turn out
to be complicated. However, by dissecting X into r'

(6) Or(xY-PlX.I(J J o, it) dtr-..dt1 orthoschemes 0 which are multidimensional
analogues of a rigit triangle l[oxeter 19631, and then
exploiting the symmetry of the uncorrelated

.t I- P 'Px.p.(l-p,) standardized (i.e.. spherical) normal density, eachk - - .. kk integral over an orthoscheme 0 has nice limits of

4 k(I-P k )  integration. An orthoscheme 0 is a k-dimensional
simplex such that for some ordering of its vertices,

Proof: 'Solve for xr-, from the last two inequalities say, 0 ,C0 ...0 k' then all the lines 0 1, ,
in (4) to get L r-. r .xr_, lr.. Solve for "r- ()k O 0k 0 O O, 0 0 are mutually perpendicular. Iii
from the (r-2)nd inequality in (4) and the inequality fact eac.h triangle 0oi 0 0k (i j'k) is right-angled at
just obtained to get Lr. .kr-. r- Xr I r- and so on, 0 . If k-3, the )tetrahedron is known aS
down to [.. x -(.0 Quadrirectangular since all of its faces are right-
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angled. L. Schlifli [1858) first investigated the has 4 such triangular faceis ..... each k-I
content of a hyperspherical simpley. or simplex dimensional bounding cell V-. has k such 1k--
constructed on the surface of a hypersphere, dimensional bounding cells, and finally, the 'r-l)-
through a dissection of the given simplex into dimensional simplex *r- itself has r such tr-2)-
spherical orthoschemes. If the vertices of 0 are dimensional cells, therefore the total number of ways
projected radially onto points P ,P ...... Pk , on a unit of joining the center Jr- of j!

r- 
to a center Jr-

hypersphere centered at 0 then R. P_ Is a of j
r '-, 

to a center J of r-. to a center
spherical orthoscheme. or midpoint J, of an edge i", to either endpoint J of
Example 3. For r=3, the integral 4i 3 (x:,x,x,) equals an edge, is precisely (r) (r-l) 3 2=r' . All of
that of a bivariate normal over a triangle or 2- the r' orthoschemes thus formed are congruent to
dimensional simplex 9. Upon transforming, *(x) is one another because V is a regular simplex.
expressible as a sum of bivariate normal integrals An iterated integration formula for evaluating
over each of 3! right triangles or orthoschemes ilr(x,'D (symmetric casei using plane orthosc!,emes
formed by connecting the origin to each vertex of shows that the resulting domain of integration is
the image triangle % and dropping perpendiculars to reduced to just I,'r of the regular simplex t..ause
each side. By symmetry, the integral over each of of the symmetry of the uncorrelated normal density:
the six triangles is equal to an integral over a right Theorem 4. Let ,.r have a joint (singular) normal
triangle with vertices (0,O), (h1 ,O), (h,,h:), which are distribution with E(ki ) 0, tart L)=l, E(i ,,)-l '(r-1).
tabulated as V(h:,h_) by the National Bureau cf Let L,-.r- have a joint normal distribution with
StandardslI9591. %A )-(), \ar(E )=I, E(.E )=O and density function

If L is a diagonal matrix with th eigenvalues o(t.... tr.). For any x -. J, then

...... oXr_ Of I( on its diagonal, and P- is an orthogonal
matrix such that P'1(P'-L, then the variables Vr(x,O) = r' er_ () where
, defined by

(11) L' x b:t bt brtr
are jointly distributed normal with means zero and 14, E4

r-:(x) = J i i J 0(t)dtr-. dt
covariance equal to i, the (r-l) (r-l) identity matrix; 0 0l U I)

moreover, P(X-gI) - PQ-'%). In the symmetric case, if

L-diagll/(r-1), r/(r-l), r/(r-1).r/(r-l)] [Graybill and bj =(r-ii) (r-i-l) i-I.r-2).
19691 and F equals the transpose of Helmert's Proof: Since (rD'x,p) - Pk, x(-l...,rJ)- Pi,..
original matrix [Lancaster 19651, namely: -) P(:, ... r.,)- 4 l, it suffices to show that:

(a) For some orthoscheme 1* in the simplicial
]FL I": '" - 1subdivision of V, then PE-zJ)-ErW.(x);

4-- .L ,- , .- 1 (b) If J' is any one of the r' orthoschemes of V
distinct from )*, then Pic- j'J- P)JE-J .

(12) P- 't - I 477-i' To prove (a) first let X - Hr-.Hr." H.H be any
orthoscheme having vertices
(15) Hr_..vtM.,), Hr-__(h,(t..), Hr_ -(h,h,0.Ut,

4> "-- .. , H:-(h .. hr_.,O), H--(h. ... ,hr_  h r.
where

then the image V of Q under the transformation (11) h =x r(r-iP(r-i)(r-i+il tiI .. ,r-1'.
turns out to be a regular simplex 'r with center at Thus P((--X} = l 0l r. U, Er- u"ihr. 'hr. -Er-, Er-
origin and edge length e-x'47 7 7, x given as in (2). E (hr_-/hr-)r. hh)E., E: O r.',xxr

The vertex coordinates of V are precisely the since h ' h - bj if -I..,r-2, while h--x.
columns V1, of the matrix Next lei I Jr- Jr-_ J:J be the orthoscheme of
(13) V-L' 1/_PI, V defined in terms of the vertices V of V- as
with the vertex coordinates (5) of g forming the follows: Jr-I is the center of the simplex formed by
columns G of (. V ...... Vr; Jr-_ is the center of the simplex formed by

The rotation matrix, corresponding to F' in (1), V,..., vr-; and so on; J: is the center of the simplex
that will diagonalize an arbitrary nonsingular formed by V and V , i.e., J, is the midpont of \
correlation matrix other than K( is unknown in and V,; J- is t,, point V.. Let I and Ji be the
general. An iterative method, credited to Jacobi matrices with columns Hr.....,H and Jr .'J
[Carnahan et al. 19691 transforms a real symmetric respectively. Then
matrix into diagonal form by applying a succession of P(E'{V*)=P((. }-Or..x
plane rotations. since there exists aB  orthogonal transformation

The (r-l)-dimensional regular simplex -r- - matrix K'such that F--Ji , namely,
may be subdivided into r' congruent orthoschemes

JJ r )(r- i 
J  

where J (r) Is the center of ,rr-*;
J~r is "he center of any one of the (r-2)-(r-) .rof (6dimensional hounding cells, to be denoted by -r-:, of (16)<

VYr-i; Jr-, is the center of any one of the (r-3i-
dimensional bounding cells, to be denoted by rr-' , of
V r-.; ... ; J1 is the center of any one of the I-
dimensional bounding cells, to be denoted by vl, of To prove 'b), let V'-J _.J J J' be any -f the
V': I.e., JI is the midpoint of any one of the edges r' congruent orthoschemes of V<, each having Jr_ as
that bound a face of .r-; and finally, J, is either a common vertex, ' distinct from .1. Let J' be the
one of the two endpoints (vertices of jor-') that matrix with columns J . , ,J' . -here exists an
bound an edge V of the regular simplex. orthogoit-3l transformation matrix, say T, such that

Since each edge Y
' is divided into 2 segments, I*- U.', where I consists of a rotation, or A

each 2-dimensional cell r' or triangular face has 3 reflection, or a composition ,f rotations and
such edges, each 3-dimensional cell V or tetrahedron reflections. Hence '1{(. I'-P(( , 1*1.0
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The following integral recurrence formulas follow where Sk PA- A) ,k .....r-l,
directly from Theorem 4 above: k {- 1

(1) e W= X O1 yielding a finite sequence of approximations,
0)71 k-x, 0(t)k t dt (

0 x (20) Or(X) I-S+S.- -- (-llkS k-1 .... r-1,
(,,) 0r(xo0Pr I r1-- r2 with (18)as first appro.imation when V-1, and having

0 error bounds S:, the first neglected term:
Formula (17-i1) was derived earlier by Ruben[19601, S ; P(Ac, A i= X,
Steck and Owen[19621 and John[1966). Ruben used a (2"-

"method of sections" where %, a regular simplex or S.=[
r
) P(Mx,'-x, i=1,2; o- -1/(r-1))

centered at (0,...,0), is first divided into r simplices
it by joining the centroid to the r vertices. The in the symmetric case. The sum of an odd number of
probability content of each I1 is then obtained by terms provides an upper bound and the sum of an
passing (r-l)-flats parallel to the face opposite that even number a lower bound, counting the first term,
vertex of f, which coincides with the centroid, and 1. The bounds increase in sharpness with the number
adding up the probability contents over the sections of terms included and the magnitude of the error Ek
or slabs between parallel flats. Steck and Owen used in the kth approximation does not exceed the firs-(
conditional probabilities and by repeated application neglected term. The following summarizes results on
of (17 -ii) arrived at (14). John indicated the use of these bounds:
probability integrals V(h ,....,hk) over special simplices Theorem 5. (i) Bonferroni inequalities: For r22 , and
he called "'k+l-hedrons"(which are orthoschemes m=l .r/2,
with vertices as in (15)), to evaluate the probability .(-1)tSt ' Or(X) , (-Wst
of convex polyhedra in k-dimensional space under
normal and t distributions, deriving (17-ii) for his (ii) Improved Bonferroni inequalities: For r 2, sO,
"k+ 1-hedrons". . . 5 j

If Ur-E r -E, the extreme order statistic minus the .(-I) St + ( r )Ss+, (r(X)
mean in normal samples of r observaAaons_ with

E(E ))0, Var(Qi)=', then r(x,D)=P{ur:-xq(r-)lir). A (-l)tSt- (2"
1
)S :s+:

recurrence formula for ur (Grubbs 1950, David 19701
used in computing its percentage points may be (m) "Best upper bound" using only S, and S:: Let
obtained independently using the integral recurrence [x] denote the greatest integer in x.
formula (1- 11) above. 1 12 S-
Examp/e 4. Consider the symmetric case for r=6, $r(X) 1 - S! + - SS
p= p -1/6 so that o=- 1/5, and let x;= =x.-l.5. k+1 k(k+1) I
Number in boxes denote [ on the VAX/VMS 3.1. Proof: (i) See Fel)er[1968, Kotz & Johnson[1982],
From (10) and program IXSK, David[19701, Galambos[1975]. (i) See Sobel & Uppuluri

-(1.5,-1/5)-B, -B+B - B +B;-I [19721, Galambos[1975]. (m) See Dawson & Sankoff
='41 (I1.5,-I/5)--,:1.,(l .5,-l!S)+. 4O1(1.5,-1/5) (19671, Kounias & Marin[19'61, Galambos[19

7
8].

--.41I.5,.-I/5+, 01(1.5,-I /5)1-I Fable I below shows how good an approximation
where (18) is, considering it involves only the univariate

.(.5,-1/S)=.6841 -t .0001 normal distribution, based on computed values of the
4(0.5,-1/5)-.7437 013±.0000 001 [2! error bounds (21) using programs MNCDF and IXSK.

01(1.5,-1/5)-.8050 531 ±.0000 001 The values of x were .rouped together according as
1:(.5,-1/5)-.8682 136±.0000 001 1 0._21 .5. 10-t-I S-(x) .. I0

O:(1.5,-1/5 ).9331 926 t-.0000 001 L 01. 
-

Hence 0,(1.5,-1/5)=.626 1.001. 283--2 Table I
From (14) and program MNCDF, Values of x=x(r,t) such that for x -x(r,t) the function

0,(1.5,-1/5)=61 • (.0008 6998 _ .0)00 0001) 1578] 41r (x)-1-Si approximates the true value of Or(x,p)
Hence 0 .(5,-1/5)=.626 38t.000 01. to t or more correct decimals, I < t!4 and 31=-

3 0
.

Earlier attempts to compute ,(1.5,-1/5) using L r- 3 4 5 6 7 8 9-7
formulas (6) and (7) with MNCDF have been 1 0.70 1.05 1.25 1.40 1.50 1.60 1.65
unsuccessfu' due either to nonconvergence or to this 2 1.15 1.50 1.70 1.85 1.95 2.05 2.05
author's tendency to abort the run whenever it was 3 1.55 1.90 2.10 2.25 2.35 2.45 2.50
taking "much too long". 4 1.85 2.25 2.45 2.60 2.70 2.80 2.85
6. Approximations to 1!,(x). By the Bonferroni [i\ l 11 12 13 14 15 16

inequality [Kotz and Johnso- 19821, 1 1.75 1.80 1.85 1.90 1.90 1.95 2.00

Or(X) = P(Al,.. -Ar) _ I-(P{A
c) = P(A,)-(r-I), so 2 2.20 2.25 2.30 2.30 2.35 2.40 2.40

". . 3 2.55 2.60 2.65 2.70 2.75 2.75 2.80

(18) r(X) - - (x 1 )-(r-1) 4 2.90 2.95 3.00 3.05 3.05 3.10 3.10
wt [ rr-1 i .. 9 20 21- 22 23-]

where A
c denotes the complement of A 1. If r-2, (18) I 2.00 2.05 2.05 2.10 2.10 2.15 2.15

gives the exact value of (Dr(x). 2 2.45 2.45 2.50 2.50 2.55 2.55 2.55
Let S denote the kth binomial moment of the 3 2.80 2.85 2.85 2.90 2.90 2.90 2.95

number of events mr occuring among AC., A
c . Then 4 3.15 3.15 3.20 3.20 3.25 3.25 3.25

Or(X) - P(A,'-;A2 .Ar) P, the probability that it _ r-24 . 25 _ 26 _27 28 9 _0]
exactly no7e of A', , Ac occurs. From (8), 1 2.20 2.20 2.20 2.25 2.25 2.25 2.30

P, =X(-I) St, where S,.-I and Sr P(Ac-': A r) - 0 2 2.60 2.60 2.60 2.65 2.65 2.65 2.70
-. 1; 3 2.95 2.95 3.00 3.00 3.00 3.00 3.05

imply that alternatively, the normal integral equals 4 3.25 3.30 3.30 3.30 3.30 3.30 3.35

(19) Or(X)- I -S+S:- _,(-)r'S r., Table 2 gives the corresponding values of Or(x,O)
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at x-x(r,t) as given in Table 1. It is often the case over infinite rectangles, the Sk's in fact yield
that in (3), a. is taken equal to 0.20 or less, ind upper tail probabilities" of these marginal normal
Table 2 indicates for example, that if I-a -.. 90, the distributions and therefore decline rapidly, (see
approximation yields 4 correct decimals if r-3, and Examples 4 and 5) yielding approximation 8).
only 2 correct decimals if r-30. As the dimension r To put the problem in a form suitable for LPNLP,
increases, fewer correct decimals are obtained for rewrite (3) equivalently as a maximization problem:
the same ca-value. Note however that for I-o.--..99,
(18) gives 4 correct decimals for r=3..30. Maximize F(x)- -]aix,.p(1-pi) subject to:

(22) r
Table 2 (il)-(r(x)--(l-o) and (ii) -- xI p(l-pil n.

Values of 1r'(x)-1-S, Or(xo) at x-x(r,t) 1-I
ahere x(r,t) is given in Table I With (18), the gradient of the probability function in

t \ r- 3 4 5 6 7 8 9 (22-i) has only univariate normal density functions
1 .2741 .4126 .4718 .5155 .5324 .5616 .5548 for its components. Since *(xi is a concave function
2 .6248 .7328 .7772 .8071 .8209 .8385 .8392 over x- 0, the set S of feasible solutions is a closed
3 .8183 .8851 .9107 .9267 .9343 .9429 .9441 convex set. Therefore the absolute maximum of F
4 .9035 .9511 .9643 .9720 .9757 .9796 .9803 over S, F being linear, is the only local maximum
t\ r-10 11 12 13 14 15 161 over S IPierre and Lowe 19751.
1 .5994 .6048 .6141 .6267 .5980 .6162 .63601 Program OPRVEC implements LPNLP on the VAX
2 .8610 .8655 .8713 .8606 .8686 .8770 .8688 to solve (22), with calls made to a suitable version of
3 .9461 .9487 .9517 .9549 .9583 .9553 .9591 MNCDF whenever 4r(x) is to be evaluated. Copies of
4 .9813 .9825 .9838 .9851 .9840 .9855 .9845 OPRVEC are available at cost by writing to J. P. de
It \ r-17 18 19 20 21 22 23 1 los Reyes, Department of Mathematical Sciences,

1 .6132 .6367 .6165 .6427 .6248 .6529 .6371 Univ. of Akron, Akron, Ohio 44325; tel:(216) 375-7193.
2 .8786 .8714 .8820 .8758 .8869 .8815 .8761 Simulation is an alternative approach to solving
3 .9566 .9607 .9585 .9627 .9608 .9590 .9635 (22) or similar problems involving other probability
4 .9861 .9853 .9869 .9863 .9879 .9873 .9867 distributions such as Poisson. On the other hand, the

It \ r-24 25 26 27 28 29 30 methods of parallel programming might speed up the
1 .6663 .6524 .6385 .6699 .6577 .6455 .6783 numerical quadrature portion of the present solution
2 .8881 .8835 .8788 .8913 .8873 .8833 .8960 in which, for instance in the nonsymmetric case of
3 .9619 .9603 .9649 .9636 .9622 .9609 .9657 (14), the integral Or_:(x) must be evaluated rl times
4 .9862 .9879 .9874 .9869 .9865 .9860 .9879 but with different upper limits.

Example 6. Consider finding an optimal inventory
Example 5. Continuing Example 4, formula (19) and policy for a local hospital's blood bank, in the sense
IXSK together yield in the symmetric case, that the daily supply sI of type i blood is a minimum
0 (1.5,-1/5)-1 - S, + S, -S + S, -S. under a preset probability constraint that no

-1- '(1Xc(l.5,-1/5) + (lc.5,-1/5)- shortage occurs that day with probability at least I-
6 )C(15,-/5) + ot(,-l/5)-'0o(.5,-l/5). a. Suppose that the daily demand d of human blood

where we define of type i (iI....r) has joint multinomial probability

k (1.5,-1/5)-p{Acf-.. Ac) so that distribution with parameters n, p ....Pr, where is
0 (1.5,-1/5)-.0668 069 -t.0000001 the probability that the bank receives an order of
0.(1.5,-1/5)-.0018 282 :.000 001 0QO.IJ one unit of type i blood independently of other
0 (1.5,-1/5)-..0000 098 ±.0000 001 1.48 requisitions and there are n orders received daily.
0 (1.5,-1/5)-.0000 00 ±.0000 01 12857 First, estimates of the numbers p , based on actual

,(.5,-1/5)-.000 ±.001 9 percentages used (2369 pints total) over 30 randomly
Hence 0,(1.5,-1/5) - .62638 ±.001 LI24.41J selected days within January to October of one year
From (18), 0*,(I.5,-1/5)a- 1-S,-6,0 1(x) - S were found to be:

:.5991 586±.0000 01 i- _ 2 3 4 5 6 -]
The error of this appoximation does not exceed S:, type: 0+ A+ B+ A- 0- AB+ B AB
and from (21), S:-.0274 23-- .0000 01.
Hence 0,(1.5,-I/5) - .5991 586±.0274 23 [p 381 -309-- Jl19 _( 5v .3--
From Table 1, for r-6, x-l.5, I.e.,x .l.40, the number ... 79 ,- . .. . . . -]

t of correct decimals is I. Next, there being no other constraints other than
Since the integrals in these formulas for Or(X) supply levels sI having a least total, we set a,'s I in

must be computed numerically (unless otherwise function G and consequently, a,'s=l in F also. Now
known), it is possible for an approximation using (20) solve the normal case (22) for x, from the given
to have an actual error greater than the first values of ai, P1. r, and desired values of o. Use
neglected term because of errors in the numerical OPRVEC, with approximation (18) for quick results,
quadrature. It is wise to plan to compute enough to obtain Table 3. Equicoordinate vectors (x.x) for
decimal digits, in anticipation of the additivity of the symmetric case are in the last row of Table 3.
the error bounds under linear combinations, so as not Finally, the corresponding optimal multinomial
to render the results meaningless. On the other hand, vectors (s ....,s-,) representing the minimum daily
there is no need to compute numerically the integral blood supply levels, for the desired risk levels,
terms much more accurately than the specified error assuming n-1000, are summarized in Table 4. The
bounds. first column of Table 4 gives the expected demands
7. Solution of the total optimization problem. based on the estimates of p, above. Recall the

Up till now the emphasis has been on evaluating assumption that no resupply can occur in the same
the singular normal integral OrWX), with four day, hence note the overstocking that increases as
formulas (6), (9), (14) and (19) ready for computer the probability I-o of no shortage increases. If we
implementation. Note that while both ik's in (9) and assume that p.-p.-...-p -1/8, then the average
S iks in (19) are sums of lower-dimensional integrals demand is 125 at n-100[). Ihe optimal supply levels s
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and totals are shown in the last two rows of l able Coxeter, H. S. M. (1963). Regular Polytopes, 2nd.
4. ed.. New York: Mcmillan Co.

I able 3 David, H. A. (1970). Order Statistics. New York:
Normal Probability Vectors for blood Bank Wiley.

(see Example 6) Dawson, D. A. and Sankoff, D. (196'). An inequality
Ix\-o=.90 .95 .99 .995 .999-1 for probabilities. Proc. Amer. Math. Soc.,

x = 1.9686 2.2538 2.8217 3.0391 3.4853 18:504-507.
x 1.9953 2.2771 2.8404 3.0565 3.5004 Feller, W. (1968). An Introduction to Probability
x = 2.1689 2.4307 2.9649 3.1726 3.6022 Theory and Its Applications, 3rd. ed.. Vol.l. New
x. 2.2491 2.5024 3.024() 3.2279 3.6510 York: Wiley
;= 2.3357 2.5806 3.0890 3.2888 3.7(150 Galambos, J. (1975). Methods for proving Bonferroni

x, - 2.4282 2.6646 3.1595 3.3551 3.7640 type inequalities. J. London Math. Soc. (2),
x-= 2.5(116 2.'316 3.2163 3.4086 3.8118 9:561-564.
x, - 2.9133 3.1318 3.5624 3.730 4.1081 - (1978). The Asymptotic Theory of

Lx 2.2414 2.497 3.(233 3.2269 3.6357 Extreme Order Statistics. New York: Wiley.
Graybill, F. A. (1969). Introduction to Matrices With

Table 4 Applications in Statistics. Belmont, California:
Multinomial Probability Vectors for Blood Bank Wadsworth.

(see Example 6) Grubbs, F. E. (1950). Sample criteria for testing
- o)si -- 0 .95 .99 .995 .999] outlying observations. Ann.Math.Statist..21:27-58.

Harvard University Computing Laboratory (1955).
387 - s. - 417 421 430 434 440 Tables of the Cumulative Binomial Probability
309 = s - 338 342 350 353 360 Distribution.Cambridge,Mass.:Harvard Univ. Press.
117 - s. = 139 142 14' 150 154 Hillier, F. S. and Lieberman, G. J. (1967). Operations
79 = s, - 98 100 105 106 110 Research, 2nd. ed., San Francisco: Holden-Day, Inc.
52 = s- 68 -70 73 -4 -7 John, S. (1966). On the evaluation of probabilities of
32 = s - 46 47 5(o 51 54 convex polyhedra under multivariate normal and t-
22 - s- - 34 35 3" 38 40 distributions. J. Roy. Statist. Soc. Ser.B, 28:366-
2 - s- - 6 _ 7 8 8 369.

[l000 /total/1146 1164 119,9 121 4 12-731 Kotz, S. and Johnson, N. L., editors-in-chief. (1982).
Encyclopedia of Statistical Sciences, Vol. 1. New

125 = s 148 151 157 159 163 York: Wiley.
[0-0O0total! 1184 1208 1256 1272 13041 Kounias, S. and Marin, J. (1976). Best Linear

Bonferroni Bounds. Slam J. Appl. Math., 30:307-
For comparison with other vaides already 323.

published, OPRVEC, when run with (18), obtained Lancaster, H. 0. (1965). The Helmert Matrices.
upper or-.10 and .005 probability vectors in the American Math. Monthly. 72:4-1 1.
symmetric case, which agreed to 2 and 3 decimal McCormick, M. J. and S iv-dori, M. G. (1964).
places respectively, to those obtained through Numerical Methods In Fortran. Englewood Cliffs,
percentage points of the order statistic ur mentioned N. J. : Prentice-Hall, Inc.
after (I') above. When a 's=l in the symmetric Milton R. C. (1972). Computer evaluation of the
case, there is really no need to use OPRVEC' on (221 multivariate normal integral. Technometrics.
since it is plausible that the required vector x must 14(4):881-889.
be equicoordinate, thus xi=4-a(l-o/r), the upper o/'r National Bureau of Standards. (1959). Tables of the
probability point of the standard normal distribution, Bivariate Normal Distribution Function and Related
OPRVEC or course produces the same equicoordinate Functions. Appl. Math. Ser. 50. Washington, D. C.:
vectors x in this case. U. S. Government Printing Office.

Practical applications of probability constrained Pierre, D. A. and Lowe, M. J. (1975). Mathematical
or -'chance-constrained" programming in general Programming via Augmented Lagrangians: An
include the models of minimum cattle feed (Bracken Introduction With Computer Programs. Reading,
and McCormick 19681 and hog feed rations IPierre and Mass.: Addison-Wesley.
Lowe 19'5] under probabilistic protein constraints, an Prekopa, A. (1970). On Probabilistic constrained
optimal cost nutrition program under probabilistic programming. Proc. Princeton Symp. Math.
nutrient level constraints IPrekopa 19701, and an Programming, (H. W. Kuhn, ed.) Princeton, N. J.
optimal spare parts kit for a multicomponent system Princeton Univ. Press.
in which demand for spares is generated by Ruben, H. (1960). Probability content of regions
component failures having an exponential distribution under spherical normal distributions, I. Ann. Math.
[Proschan 19601. Statist., 31:598-618.

Schlafli, L. (1858). On the multiple integral
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APPROACHES FOR EMPIRICAL BAYES CONFIDENCE INTERVALS FOR A VECTOR OF EXPONENTIAL SCALE PARAMETERS

Bradley P. Carlin and Alan E. Gelfand, University of Connecticut

ABSTRACT p

Parametric empirical Bayes methods of point distribution of Y, f(la) = E f(yila). For EB
estimation date to the landmark paper of James i=l
and Stein (1961). Interval estimation through point estimation a best choice of a (e.g., MLE,
parametric empirical Bayes techniques has a UMVUE, moments estimator) is not clear. Not
somewhat shorter history, which is summarized in surprisingly, this same difficulty arises in
the recent paper of Laird and Louis (1987). In developing EB confidence intervals. Usual esti-
the i.i.d. exchangeable case, one obtains a P
"naive" EB confidence interval by simply taking mators of a take the form a = c/ x log(Yi+i).
appropriate percentiles of the estimated poste- c il
rior distribution of the parameter, where the For instance, c = p yields the MLE while c = p-l
estimation of the prior parameters ("hyper- yields the UMVUE. Choosing one of these as our
parameters") is accomplished through the marginal estimate of a, the "naive" EB confidence interval
distribution of the data. Unfortunately, these for 3i is simply the upper and lower u/2-points
"naive" intervals tend to be too short, since of the "estimated posterior," i.e., (1.2) with a
they fail to account for the variability in the ofpthed "esTieof te hThatisreplaced by a. These intervals are called^
estimation of the hyperparameters. That is, "naive" because in ignoring randomness in a they
they don't attain the desired coverage proba- tend to be too short. More precisely, Morris
bility, both in the classical sense and in the (1983a,b) defines an EB confidence set of size
"EB" sense defined in Morris (1983a). 1-a as a subset t,(Y) of o such that

In this paper we consider two methods for
developing EB intervals for exponential scale P(0 6 t_ (Y) > 1 - a (1.3)
parameters which attempt to correct this defi- where the probability is calculated over the
ciency in the naive intervals. The first is a joint distribution of e and Y. The naive inter-
"bias corrected naive" method inspired by Efron vals generally fail to satisfy (1.3).
(1987). Simply put, this method adjusts the In this paper, we propose two methods to
naive intervals using tail areas determined by correct this deficiency in the naive intervals.
the parametric structure of the model and the In Section 2 we introduce a method for bias-
data. The second method uses a parametric boot- correcting the naive interval, and discuss some
strap (Laird and Louis, 1987) to match a of its properties. Section 3 develops a method
specified hyperprior Bayes solution. Finally, which matches any hyperprior Bayes solution. A
through simulation we compare methods with parametric bootstrap (Laird and Louis, 1987) is
respect to EB coverage and length. used in place of numerical integration. Section

4 obtains simulated coverage probabilities and1. INTRODUCTION interval lengths for the methods.

Consider the i.i.d. exchangeable Bayesian
formulation where Y .... ,Yp " Gamma(visi)' 2. THE BIAS CORRECTED NAIVE APPROACH
i = 1,..., p independent, vi known and the Pi's Efron (1987) proposed a general framework for
have the conjugate inverse g a correcting the bias in naive EB intervals. In

gamma (IG) prior, our setting, a simpler bias correction may be
id th

l . . Bp "I IG(a,b), a,b > 0. We take v. = 1 developed. From (1.2) we see that the t

for convenience, though the case of gquantile of the posterior distribution f(silyi,a)

known vi is discussed briefly in Section 2. is1

Thus f(yilsi) = ti1 exp(-yi/i), Yi > 0, 6i > 0, q(a) = 2(Yi+l)/D2(a+l)(l-") (2.1)
S 11 -l1 2

where Dk is the inverse c.d.f. of a x distri-
g(Bila,b) = exp(-l/Bib)/(1(a)ba ,+), a,b > 0, bution with k (not necessarily integer) degrees

I = 1,..., p. Hence the Yi's are marginally of freedom. Define

i.i.d. with distribution 11(a,a,t) = P Qi 1 qi(a) 1f( ilYi'a)}

f(yi1 ab) = ab/(byi+l) a+l, yi > 0 (1.1) = P~ i < 2(Yi+l)/D (a+l)1 - 0

and the posterior distribution of ri is ri .'IG(a+l,(yi+l)-l ))
IG(a+l,(yi+l/b)- ), i.e., = Pfi < 2/D21 a + )(l-') :iIG(a+ll))

exp(-yi+l/b)/( i)  2(a (2.2)
f(nriYi,a,b) = i (a+)a+.

(1.2) where i =  i/(Yi+l). Thus (a,a,,) = 1

Taking the scale parameter b = 1, we view a as D (D- (1-)). Finally, let
unknown, and estimate it from the marginal - 2(a+l) 2(a+l)
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'(a,c,) = Ejalp(i,a,i)]. (2.3) + max(ll,1 2) and below by , + min(l 1 2), where

For the UMVUE a,ila IG(p,(a(p-l))- ). I1  = _f [1'(a, ) - i(a,a,c'(a,,))]dF(aja),
Note that (2.3 is a naive EB tail area in a>a

the Morris sense, (1.3). Typically, 7(a,l-,,/2) and
- u(a,a/2) < l-ci, that is, the naive intervals
are too short. It is usually argued that this 12 = f [ '(a,) - (a,a'a'(aa))]dF(aIa)"
undercoverage arises because we are failing to a<a

take into account the variability in a. In any Moreover, the simulations in Section 4 indicate
event, suppose we solve that this method does achieve EB coverage, (1.3).

(a~m) : (2.4) 3. THE PARAMETRIC BOOTSTRAP APPROACH

for a'. This a' would "correct the bias" in
using a in our naive procedure. Applying (2.4) Several authors (Deely and Lindley, 1981;
would produce intervals with exactly the desired Rubin, 1982; Morris, 1983a,b, 1987; Laird and

coverage probability. But, of course, we can't Louis, 1987) in the PEB setting have attempted
solve (2.4) since a is unknown. Instead, we to account for the variation in estimating a

propose to solve hyperparameter by introducing a hyperprior dis-
tribution. Quantiles of the resulting "marginal

T(a,') = ,- (2.5) posterior" are used in place of those of the

to obtain a' = ,'(a,c). Then we take as our bias estimated posterior. We note that while this
corrected naive EB confidence interval the naive approach is not directly aimed at developing
interval with "2' replaced by "ce'". Under mild intervals with the desired EB coverage, it is
regularity conditions, this procedure gives a generally applicable and has worked well in our

unique confidence interval. We note that empirical studies. In our exponential/inverse
correcting ct to a'(a,c) is equivalent to cor- gamma setting let us place a hyperprior T(a) on
recting q,(a) to q,,(A), which in turn is equi- a. This induces h(al), which in turn induces

valent to correcting the quantiles of the m(rI) = = ii f(j.iYi,a)dH(aIy), (3.1)
estimated posterior. Also note that since we _

were able to "scale out" y, in (2.2), the
integration in (1.3) could be done by integrat- the marginal posterior. Using the MLE for a,
ing over ala. Equation (2.5) can be solved which is sufficient for (1.1), and the flat
using a one-dimensional numerical integration hyperprior Tl(a) = I(00,)(a), the marginal
(we transformed the IG to the interval (0,I) and posterior for Bi simplifies to
used 16-point Gaussian integration--see Abramo-
witz and Stegun, 1967) with one rootfinder m(Gilyi,a) : ff(Bilyi,a)dH(aja)
(using false position).

We can extend our work to the full Gamma/IG = f(iYi,a).Gamma(p+l,a/p)da.ind

problem, i.e., Yi Gamma(vi where vi  (3.2)
ii Ithssti thTyeIwherevoknown and E IG a~b), i i= ... ,p. Again we

strap of Laird and Louis may be used to approxi-
take b = 1. (Note that this case includes the mate (3.2). It calls for drawing r* i.i.d. from
2 scale problem.) One can show that G(fla), and then Y* ,*

v a independently from f yla )
Yila r F(vi+a)/(r(vi)r(a)).y i-/(Yi+l) a i = 1,...,p. We then compute a* from the Yi's

Pearson Type VI distribution (Johnson and Kotz, in the same way that a was obtained from the Yi's.
1970). Again we can scale out yi as in (2.2),
and now 'ija IG(vi+a,l). Note that now the Thus a*ja is distributed as F(a*sa)
MLE a is no longer available in closed form.bootstrapped as

p in this fashion, we use the mixture distribution

However, since T(a) = log(yi+l) is decreas- N * N -i=l !: f(Filyi,a.)/N = : IG(a+l,(Yi+l)-l)/N
ing in a, we can use the distribution of T(a) to j=l j l
implement the bias correction. (3.3)

Before concluding this section, we address to approximate (3.2). The EB confidence interval
the question of whether the bias correcting for •, is then computed by finding the /2 and
method actually produces EB confidence intervals
in the M'rris sense. Since from (2.5) ' is 1 - 12 points of (3.3).
random, we need to look at the tail area Note, however, that the expected value of(3.3) is

E~~I q ,(iq)(a)J~ ,IG(a+l,l)} (2.6) (.)i
EaIaP .i  f(,ijYi,a*)dF(a*la). (3.4)

Ea ap(aa,'(a,)). As Hill (1987) notes, F(a*la) is not the same as

While exact evaluation of this expectation is H(ala), and thus (3.4) may be a poor approxima-
not possible, Carlin and Gelfand (1988) show tion for (3.2). Again the empirical success of
that (2.6) falls in an interval containing (3.3) suggests that this may not be an important

In fact, (2.6) is bounded above by issue, especially since the link betweer (3.2)
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and desired EB coverage is tenuous. Nonetheless, evaluated in this context. That is, for fixed
how can we achieve a better approximation to a and p, we generated .:i's i.i.d. as IG(a,l), and
(3.2) for our problem? Consider the integral then generated the Yi's independently as

f f(B iy i , a /a*)-(a/a*)-f(a*la)da* . (3.5) Exponential([2i), i = 1,...,p. Each simulation is
Next let b* : a2/d*, so that b*laoGamma(pa/p), based on 3000 replications; for the methods
(Note that b* is conditionally unbiased for ) requiring a bootstrap, we used N = 400 bootstrapUsing this transformation, a little algebra trials per replication.
shows that (3.5) is equal to Tables 4.1 - 4.4 show lower endpoint, upper

endpoint, interval length (all averaged over both

f f( ijYi,b*)-Gamma(p+l,a/p)db* (3.6) i and the replications) and individual and simul-
taneous EB coverage probability for the classical,

which is identical to (3.2). Thus, instead of naive EB, bias corrected naive EB, Laird and
(3.3) we would use Louis bootstrap, and hyperprior matching boot-

N we w use strap methods (3.8) and (3.10) (corresponding to
N Ga / .( / (hyperpriors I and -, respectively, for p = 5,

IG(a /a.+l,(y.+l) )-(a/a.)/N (3.7) 1 2'
j-1 i 1 10, true a = 2, 5, and nominal individual cover-

and take the upper and lower ./2-points of this age probabilities y = .90 and .95. Recall that
distribution as our confidence interval for i.i  in the bias corrected method, the choice of this

Ragunathan (1987) suggests a modification of estimator a affects three parts of the procedure:
(3.7) to a truly weighted average the computation of the 7 fuit.tion (?.3) (we need

N N the distribution of ala), the actual solution of
* * (2.5), and in the estimated posterior distribu-

7IG(a /a.+l,(y.+l) ).(a/a.)/ a'a)
j Ga / ) j/ (a/a.). tion. (The last of these three is the only

(3.8)
Since E(a/a*la) = 1, this modification seems place a shows up in the naive ni procedure.) In our

reasonable and works better computationally. simulation, for the naive and bias corrected

If instead of our flat hyperprior, we use naive we show results obtained using the marginal

(a) = 1/a - I(o)(a), then (3.2) becomes UMVUE a = (p-l)/P; log(yi+l). Results (not shown)

obtained using the marginal MLE a = p/ log(yi+l)ff( i'Yi,a) • Gamma(p,a/p)da. (3.9)
gave longer (i.e., too conservative) bias cor-

But since we know b*ja ,, Gamma(p,a/p), the a/a* rected intervals (extending further to the right),
term in (3.5) is no longer needed. The approxi- but shorter naive intervals. For the threemation to (3.9) becomes bootstrap methods, we also used the UMVUE for a,

but this time because the Laird and Louis MLE

N ^2 * 1 intervals generally failed to attain the nominal
IG( /a + 1, )/N. (3.10) coverage probability. The two hyperprior

j-1 matched intervals were insensitive to the choice

As we shall see, this approach proves better of a. This was what we expected, since we were
than (3.8). This is perhaps because T2 is a matching the same hyperprior Bayes solution,

more appropriate hyperprior for a shape para- regardless of the choice of a.
meter; we are matching a more reasonable In terms of comparing the methods, several
hyperprior Bayes solution. observations can be made. As expected, the

As a final simplication, note that if we classical intervals faithfully achieve the desir-
replace i4/a! by its expectation, (3.10) ed coverages, but are unacceptably long--in one
becomes case (p = 10, a = 5, y = .95) more than ten times

IG(a+l,(Yi+l)
- 1)  (3.11) longer than the better EB intervals. As has been

noted by previous authors (Morris, 1983a,b;

which is the estimated posterior. Thus not only Laird and Louis, 1987), the naive EB intervals

are (3.7), (3.8), and (3.10) approximations to perform surprisingly well, especially for small

(3.2), but we may also view them as ways to a and large p. Yet in no case do they achieve

incorporate bootstrap variation into the naive the desired coverage; for small p and large a

EB intervals in an effort to "lengthen" them. they are especially poor. The bias corrected

Again, while exact evaluation of the coverage naive intervals, on the other hand, are slightly

probabilities of these intervals is not conservative, though not significantly so (the

possible, we shall see in the simulation results average coverage probability numbers have a

of the next section that the bootstrap intervals standard error of about .5%). In addition, the

do generally achieve the desired EB coverage. bias corrected intervals have lengths that are
quite competitive with those for the two boot-

4. SIMULATED COVERAGE PROBABILITIES strap methods shown, especially when Y = .90.

AND INTERVAL LENGTHS The bootstrap methods also produce intervals that
generally hit the desired coverage. Notice that

In this section we present and discuss the the intervals based on matching the flat hyper-
results of a simulation study which compares the prior 1I generally fail to achieve the desired
methods for our Exponential/IG problem. Since
we are working in the EB framework, coverage was coverage probability. By using the hyperprior
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TABLE 4.1: a=2,p=5

Average Average Average Average Simul-
Interval Lower Upper Interval Indivdual taneous
Method Endpoint Endpoint Length Cov. Prob. Coy. Prob.

y = .90

Classical .335 19.5 19.2 90.1 59.1
Naive -B .355 3.87 3.51 83.9 46.8
Bias Corrected .331 4.74 4.41 89.7 60.8
Laird and Louis .339 5.15 4.81 90.4 )3.2
T, Matching .287 3.23 2.95 86.8 55.6
r 2 Matching .311 4.00 3.69 89.4 61.0

y = .95

Classical .268 39.1 38.8 95.2 78.3
Naive EB .306 5.53 5.22 90.0 64.4
Bias Corrected .285 7.84 7.55 95.2 79.0
Laird and Louis .283 7.79 7.50 95.4 80.9
T Matching .246 4.46 4.51 93.0 74.7
r Matching .265 5.93 5.66 95.1 79.8

TABLE 4.2: a=5,p=5

Average Average Average Average Simul-
Interval Lower Upper Interval Indivdual taneous
Method Endpoint Endpoint Length Coy. Prob. Coy. Prob.

y = .90

Classical .084 4.89 4.81 89.9 59.0
Naive EB .134 .690 .556 77.1 35.4
Bias Corrected .116 1.03 .914 90.2 66.1
Laird and Louis .114 1.04 .928 89.9 66.9
T, Matching .092 .620 .528 86.3 61.1
r2 Matching .102 .810 .708 90.1 67.9

y = .95

Classical .068 9.87 9.81 94.8 76.1
Naive EB .120 .859 .739 84.6 52.4
Bias Corrected .103 1.67 1.57 95.6 82.8
Laird and Louis .096 1.41 1.31 95.1 81.3
T, Matching .081 .816 .735 91.8 75.7
r2 Matching .089 1.10 1.01 94.7 81.1

TABLE 4.3: a=2,p=10

Average Average Average Average Simul-
Interval Lower Upper Interval Indivdual taneous
Method Endpoint Endpoint Length Coy. Prob. Coy. Prob.

y = .90

Classical .324 18.9 18.5 90.1 35.1
Naive EB .341 3.20 2.86 87.3 27.9
Bias Corrected .327 3.56 3.23 90.2 37.3
Laird and L.ouis .320 3.53 3.21 90.4 37.9
T, Matching .294 2.77 2.48 88.6 33.3

T, Matching .307 3.11 2.80 89.8 36.4

y = .95

Classical .262 38.2 37.9 95.0 59.3
Naive lB .295 4.42 4.12 93.0 50.6
Bias Corrected .283 5.23 4.94 95.3 62.4
Laird and L.ouis .276 5.07 4.79 95.3 62.7
r, Matching .260 3.98 3.72 94.2 58.8
T2 Matching .265 4.42 4.16 94.9 60.8
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TABLE 4.4: a=5, p=10

Average Average Aver.,ge Average Simul-
Interval Lower Upper Interval Indivdual taneous
Method Endpoint Endpoint Length Coy. Prob. Cov. Prob.

y = .90

Classical .083 4.86 4.78 90.0 35.5
Naive IlB .127 .577 .450 82.9 21.2
Bias Corrected .116 .710 .594 90.3 41.7
Laird and Louis .115 .714 .599 90.6 44.2
T, Matching .103 .555 .452 88.5 40.0
r2 Matching .109 .633 .524 90.1 43.0

y = .95

Classical .068 9.82 9.76 94.9 59.1
Naive IB .114 .701 .587 89.5 40.8
Bias Corrected .104 .956 .853 95.3 67.0
Laird and Louis .101 .914 .814 95.1 66.3
T, Matching .091 .701 .610 93.5 62.6
T, Miaching .097 .811 .714 94.8 66.2

2 which puts more weight on small values of a, 4. Efron, B. (1987), Comment on "Empirical

these intervals are shifted to the right and Bayes Confidence Intervals Based on Boot-

now attain the nominal EB coverage level. Fin- strap Samples," by N.M. Laird and T.A. Louis,
ally, note that these last intervals are also Journal of the American Statistical Associa-

remarkably short. For example, when p = 5, tion, 82, 754.

a =2, and = .95, the 2 matching intervals 5. Hill, J.R. (1987), Comment on "Empirical

attain the desired coverage on the average, yet Bayes Confidence intervals Based on Boot-
are only 74% as long on the average as the strap Samples," by N.M. Laird and T.A. Louis,
Laird and Louis intervals. Journal of the American Statistifal Associa-

tion, 82, 752-754.
5. CONCLUSION

In this paper we have developed two methods 6. James, W., and Stein, C. (1961), "Estimation

for computing empirical Bayes confidence inter- With Quadratic Loss," in Proceedings of the
vals for a vector of exponential scale paramet- Fourth Berkeley Symposium on Mathematicalval fo a ectr o exonetia scle araet-Statistics and Probabilit~yf (Vol. I) Berkeley:

ers that take into account the uncertainty in S " '

estimating hyperparameter a. We have defined University of California Press, 361-379.

and illustrated a method of bias correcting the 7. Johnson, N.L., and Kotz, S. (1970), Distribu-
usual naive EB intervals, and also given a boot- tonsn Sta i otinS Uniribe
strap method by which we can match a hyperprior tions in Statistics: Continuous Univariate

Bayes solution, with associated approximations. Distributions - 2, New York: John Wiley &

Our simulation study indicates that the bias Sons.

corrected naive method is a strong candidate, 8. Laird, N.M., and Louis, T.A. (1987), "Empir-
and also that modifying the Ldiro and Louis iai Bayes Cndence TeAl Based on
Type III bootstrap to approximate a different ical Bayes Confidence Intervals Based on

marginal posterior can offer substantial improve- Bootstrap Samples," Journal of the American

ment in interval length without sacrificing Statistical Association, 82, 739-750.
coverage probability. 9. Morris, C.N. (1983a), "Parametric Empirical
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A DATA ANALYSIS AND BAYESIAN FRAMEWORK FOR ERRORS-IN-VARIABLES

John H. Herbert, Energy Iftformation Administration
U.S. Department of Energy, Washington, D.C. 20585

1. INTRODUCTION 2. BACKGROUND

If observed variables X1 , X2 , and X3 are thought The recommended approach was discussed and
to be best represented in a regression analysis as Applied at length by Ragnar Frisch (1934).
a sum of a true variable value (X*) and an Although the first editor of Econometrica,
unobserved random measurement error value (X**); Frisch was more of a data analyst than an

econometrician, as these terms are understood
X =X + X*, (1) today. He generally believed that the

the assumption of error-free independent
then a relatively simple procedure is available variables required in Fisher's maximum likelihood
for estimating the appropriate regression approach to least-squares was highly unlikely to
coefficients. The first step involves merely be encountered in applications with economic data.
estimating three regression equations: Fisher's approach, however, was being increasingly

accepted by avant-garde econometricians such as
X1 = a1 + b12X2 + b1 3X3 + .. + blnXn  (2) Koopmans (1937) because it supplied an elegant

formal framework for a regression analysis, and
X2 = a2 + b2 1X1 + b2 3X3 + .. + b2nXn  (3) because it lent itself well to forecasting.

Haavelmo (1944, pp. 52-55) suggested that the
X3 = a3 + b3 1X1 + b3 2x2 + .. + b3nXn. (4) Frisch approach to regression analysis was, in

fact, appropriate as a general stochastic
The ai and bij are standard OLS coefficients, representation for certain types of economic

Equations are next reexpressed in terms of one behavior, not just as a method of evaluating the
of the relationships of interest. To obtain the consequences of errors-in-variables in a standard
required set of coefficients for the relationship regression analysis. Malinvaud (1981) noted
between variable I and variables 2 and 3, we that the estimation of regression coefficient
move X, to the left hand side of the equals bounds recommended by Frisch received little
sign in (3) and (4) and solve for XI; that is, attention in the past because it imposed a

computational burden and, more importantly, because
X I  + b 12x 2  + b 13X3 .. it was originally developed in a non-stochastic

setting as a data analysis tool. with modern
1+ B112X2 + n113X3 ... (2a) computers and software it is no longer

computationally burdensome. Kendall and Stuart

X1 = + (1/-b 2 1 )X2  + (b23 /-b2 1 )X3 ... (1979, pp. 379-380), Patefield (1981), Kalman
(1982), Klepper and Leamer (1984), and Becker

B2 - 23 X .. . (3a) et al. (1985) have variously derived the bounds

within well-defined stochastic contexts for a
X= + (b32/-b 3 1 )X2  + (-1/-b 3 1)X3 ... variety of regression models. Since there are

many examples of regression analyses in the
= - B12X2 + B3 13X3.. (4a) social and physical sciences in which many of

the variables in a regression analysis are best
Klepper and Leamer ( 1984) have shown that sets of modelled as containing a random error, this

coefficients such as Bk 12' where k(k = 1,2,3) is a change in circumstances recommends increased
direction of minimization, are maximum likelihood application of this relatively simple procedure.
bounds for the relationship between variables I
and 2, under the assumption that true variables 3. THE COMPUTATIONAL PROCEDURE
and unobserved random error variables are normally
distributed. They have demonstrated this for To obtain the required coefficient bounds, the
multiple regressions with several independent collinearity indices, and the coordinate values
variables containing a random error. for displaying the bounds graphically, a matrix

In this paper we will first discuss the of cofactors RI is computed for a correlation matrix
intellectual heritage of the procedure. Next, R of all the variables of interest in the analysis;
a simple method of estimating the regression
coefficient bounds is set forth. Collinearity r11 ... r I  • r
diagnostics, which are obtained directly as part I • .
of this procedure, are noted. Frisch's regression R = . R'

strategy is then discussed and applied to a I [ni
previously published regression analysis. Finally rnl -'" nn) r
a strategy for an errors-in-variables regression
analysis, which is inherently Bayesian, is used When the elements of R' matrices are presented in
to reduce the bounds for the estimated tabular form Frisch designated these matrices as
coefficients. tilling tables. The regression coefficients are
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calculated as ratios of elements in a tilling 4. THE PROBLEM

table with the following formula:
In two related articles by Herbert (1986, 1987a),

Bk = -[rkj/r
ki
] (5) a regression equation was estimated by OLS using

state level annual data. The equation was evaluated

The procedure used to construct the diagnostic by a battery of regression diagnostics as well as
graph is to move a a distance equal to the by a test of the hypothesis that state and temporal

denominator value along the horizontal axis and variance components were equal to 0. This latter

then to move upwards or downwards a distance test of the null hypothesis was not rejected.

equal to the numerator value in (5), that is: The estimated regression equation expressed
natural gas demand per customer in a period t

+1 (GD) .s a linear combination of the price of gas
(PG), the price of electricity (PE), income (Y),
GD in the previous time period (GD(t-1)), and an

indicator of average space heating requirements

I k  
(if Bk.. > 0) per customer (WH). The indicator WH was constructed

rki + based on changes between years in heating degree
+1 days and in the proportion of space heating+I

r 
k j 

(if Bk < 0) customers among the customers in a state. All
Ij economic vari&bles were expressed in constant

dollars and all variables were expressed in
logarithmic form. Except for WH, the estimated
equation was a conventional econometric formulation

The number of bounds (k) is determined by the of GD using state level/annual data te.g. Beierlein

number of variables defined by 1. These graphs et al. (1981) and Blattenberger et al. (1983)).

Frisch designated bunch maps. The extreme beams Additional analysis of the economic model by

in a bunch map are regression coefficient bounds. Herbert (1987b) indicated that WH represented the
The diagonal elements in R' are the space heating capital stock portion of the capital

collinearity indices. They are related to the stock surrogate variable GD(t-I) and this fact, along

collinearity indices recently recommended by with the remaining variables included in the

Stewart f1987) as ideal. Stewart interprets these specification suggested dropping GD(t-1) from the

indices within the context of the explanatory regression equation and estimating;

variables in a regression equation. Since in
Frisch's scheme we are interested in the linear GD = a - b2 PG + b3 PE + b4 Y + b5WH + e (7)

connection between all variables, not just the
natural dependent variable, the collinearity where,

indices are interpreted within the context of all
the variables. The collinearity indices are e = any random error associated with the

readily shown to be related to the familiar behavioral relationship between GD
multiple correlation coefficient (MCC) between and the other variables.

variable i and the j, ... n other variables
considered in the regression analysis, that is: The expected sign for a coefficient is indicated

by the designated sign for the coefficient in (7).
MCCi.j ... n = 1 - iRI/rii (6) Additional examination of descriptive statistics

of the Northeast region by Herbert (1988) and
where, other regression analysis by Herbert (1986, 1987a),

JRI = the determinant of the matrix R suggested that the major factors affecting GD
during the time period had been considered.

The inverse of IRI/r
i i 

in (6) is the collinearity However, it was thought prudent to reconsider the
indice favored by Stewart (1987). Since JRI is use of a price of oil variable in (7) because
constant for any set of variables being evaluated, fuel oil was widely used by households in the
the comparison of several rii/IRI is equivalent Northeast during the time period and other studies
to the examinations of several r

i i
. As an had recommended the use of this variable.

indication of collinearity problems, Frisch However, estimated results from other studies were
recommended examining the r

i
i. For a particular mixed with statistically insignificant coefficients

correlation matrix, the greater the number of the frequently being estimated for the PO variable.
r
ii 

that are similar in value, and the smaller Additional analyses of the data by Doman et al.
the magnitude of the r

i
i, the greater the (1986), and Herbert (1987b) indicated that all

chance that collinearity is a serious problem in variables included in the regression equation
obtaining reliablp coefficients. Friech also could probably be represented in the form of eq.
recommmended the examination of the ratios 1. All variables are either proxy variables or

rii/IR, not as collinearity indices, but as they are known to be measured with error. Because
indicators of fit. The greater the difference of this measurement error problem, it was decided
in magnitude of an r

i
i and an associated IRI, to evaluate the relationship between GD and PG,

the greater the increase in the fit of a PE, Y, WH, and PO using the Frisch regression
relationship by adding a variate. strateqy.
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5. THE EVALUATION OF NATURAL GAS DEMAND RELATIONSHIPS

however, is wide as indicated by the distance

The first series of bunch maps examined in Exhibit 1 between the beams. These coefficients are readily

indicate how the relationship between GD (labelled calculable from the entries in the tilling table as

with a 1) and PG (labelled with a 2) is affected being equal to -0.5 -(.5421/1) and -1.5 -(1/.5421).

by the addition of the other variables in the analysis. The next two bunch maps in Exhibit 1 indicate

Exhibit 2 lists the tilling tables required to construct that when we include PE (variable 3) and then Y

the bunch maps presented in Exhibit 1. (variable 4) in the analysis, the relationship

Several of the tilling tables in Exhibit 2 will be is no longer identified (i.e. both positive and

used to construct the bunch maps reported in negative coefficient values are obtained). This
Exhibits 3 through 6. Additional tilling tables are is likely to occur when the overall fit of the

listed in the Data Appendix. The order of a bunch linear relationship is poor and/or when we have

map is read from left to right and from top to not included a a sufficient number of variables

bottom, to identify the relationship.

The first bunch map in Exhibit 1 indicate that The inclusion of WH (variable 5), however,

the relationsip between GD and PG is negative, as identifies the relationship between GD and PG.
expected, whether we minimize in the direction of The range of likely values is obtained from
GD or PG and include only these two variables in entries in the first two columns of the fourth
the analysis. The range of the coefficients, tilling table of Exhibit 1 with a lower bound of

Exhibit 1. Bunch Maps for the Relationship between Exhibit 2. Tilling Tables Required to Construct
Gas Demand (1) and Price of Gas (2) the Bunch Maps in Exhibit 1

+1 1 2 3
1 2 I

11.6621 .2926 .11421 I 1 .54211 .542 1 1

21.2926 .8157 -. 3436
2 1.5421 1 1

31.1142 -.3436 .7061

1 2 3 4

11.5302 .2036 .0803 .0856

1 221.2036 .6678 -.2585 -. 1250

1
.35 3 31.0803 -.2585 .5526 -.0442

.2631
.t43 41.0856 -. 1250 -.0442 .4;45

0 +1 0 1 1 2 3 4 5

11.3804 .2897 -. 0529 -. 0880 -. 3218

21.2897 .3333 -. 1001 -.1096 -.2811

11

31-.0529 -. 1001 .1055 .0157 .0725

2 41-.0880 -. 1096 .0157 .1100 .1119

2
51-.3218 -. 2811 .0725 .1119 .3529

1 2 3 4 5 6

11.0665 .0533 .00003 -. 0106 -. 0460 -. 0159

3 21.0533 .0625 -. 0046 -. 0128 -. 0371 .0216

331.00003 -.0046 .0345 .0101 .0248 -. 0316

4 6
41-.0106 -. 0128 .0101 .0213 .0240 -. 0138

5 51-.0460 -. 0371 .0248 .0240 .0675 -. 0238

1 61-.0159 -.0216 -.0316 -.0138 -. 0238 .0579

-1 -.10
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Exhibit 3. Bunch Map for the Relationship between Gas Demand (1)

and the Price of Electricity (3).
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-.76 and an upper bound of -1.89. As a check on of likely values is relatively tight, until we add

the linear connection between any one variable PO. In general, this relationship is well

and the other variables for this bunch map, the determined as long as PO is not included.

multiple correlation coefficient is readily Exhibit 6 indicates that the relationship between

obtained from any entry along the diagonal of the gas demand and the price of oil is consistently
associated tilling table and the last entry in positive, as expected for a cross price elasticity,
the last tilling table which entry represents R" until we add WH. the relationship is also fairly
for the correlation matrix that includes variable well-determined when we include only variables 1,
1 through 5. For example, 2, and 3. The relationship is less well determined

when we add variable 4.
MCCGD.PG ... WH = (1 .0579/.3804)1/2 =.92

6. THE BAYESIAN TURN

Zlearly, the fit is improved by including variables
3 through 5 in the analysis. The increase in fit In the preceding analysis, we have used the
is also indicated by the length of the beams. Frisch technique to: identify the range of likely
The similarity of the diagonal elements for PE values for a coefficient; to determine whether the
and Y in the associated til!,Lng table indicates identification of a relationship was affected by
the similarity of the linear connection between the addition of a particular variable in the
these variables and the other variables, analysis; to efficiently discover any possible

The final bunch map in Exhibit 1 indicates collinearity problems in the data set; but we have
that the relationship is no longer identified not imposed knowledge of data in the estimation.
when we add PO (variable 6). The length of the Some information, however, is available on the
axis had to be reduced from 1 to 0.10 for this relative magnitude of the measurement errors
bunch map to be properly viewed. The greatly associated with each variable. For example, we
reduced beam lengths when we add PO indicates that expect the observed PO variable to be the least
the variability for estimating any coefficient accurate measure of it's true variable value and
is greatly reduced when we include this variable we can impose such restrictions on the other

in the analysis. Several of the entries in the variables. Moreover, information about measurement
tilling table used to construct these beams are errors can be used to bound or reduce the range of

so small that the coefficient is almost of the likely values for a coefficient by the method
indeterminant form of a zero divided by a zero. proposed by Klepper and Leamer (1984) and by

According to Frisch (1934, pp 5-6), when the Klepper (1987). One can think of the procedure as
magnitudes used to estimate the coefficients are indicating how the sample information would map
especially small, it is reasonable to consider different prior restrictions into posteriors.
such small magnitudes to be a consequence of Rather than update a prior distribution for a

randomness in the data from the unobservable regression coefficient based on sample information,

B3 the procedure indicates how the sample information
random component. The coefficient 12
is a good example of such a case. The coefficient would map different priors into posteriors. In
is calculated as the ratio of .0046/.00003 or order to implement the procedure, judgements must
15.33, which is an unreasonably large value for be formed either about the maximum value of R

2

this coefficient. The diagonal elements are also associated with (7) when all variables are correctly
similar. This suggests that the linear connection measured and/or about measurement error variances
between any one variable and the other variables of the explanatory variables. For this application
is very similar and that collinearity is a problem the proportion of the observed variance in a

because observed variables are measured with measured variable due to measurement error is

error. The calculation of the appropriate multiple specified. The necessary assumptions and the

correlation coefficients, for which the appropriate nature of the measurement error in the observed

JRI is .005289, also reveals this similarity, they variable values considered here are discussed in

are: further detail in Herbert (1987c). Based on the
previous analyses we specify the error variance

MCCGD PG . . . pO = .9596 (VAR) as a proportion of each observed variable

MCCPG • GD . . . PO = .9570 variance to be:

MCCH GD . . . PO 
= 

.9603

MCCpo GD . . . WH = .9504 VARGD**/VARGD = 0.02 (8)
VARPG**/VARPG = 0.02 (9)

The bunch maps for Exhibits 3 and 4 are similar VARpE**/VARPE = 0.03 (10)
in the sense that the relationship between GD and VARy**/VARy = 0.03 (11)
either Y or PE is identified when we include WH VARWH**/VARwH = 0.04 (12)
and not identified when we include the PO variable.
Nonetheless, the range of likely values for the The initial estimated relationships between

relationship for PE and Y is quite large for GD and the other variables are obtained by first
the bunch map that includes WH. For example, B

4  
minimizing, as in (2) - (4), and then normalizing,

is equal to .17, B113 is equal to 1.99. 13 as in (2a) - (4a). These estimates are reported
Exhibit 5 displays a different picture from the in Exhibit 7. The final estimates, after we

preceding bunch map exhibits. The relationship impose the measurement error variance constraints,
is consistently identified and the range as in (8) thru (12), are also reported. These final
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EXHIBIT 7. Initial and Final Estimates the measurement error in : and PE might be able to
be used to reduce the range of likely values, that

Coefficients Minimization Direction is to increase the precision, of the reported

Initial GD PG PE Y WH coefficents. For example, we would not have to

PG -.76 -1.15 -1.89 -1.25 -1.15 minimize in the direction of PE if it were found

PE .14 .35 1.99 .80 .87 that the PE variable accurately represented the

y .23 .38 .30 1.25 .35 price paid by natural gas customers for electricity.

WH .83 .97 1.37 1.27 .91 This would greatly reduce the reported bounds on the

Final elasticity as indicated by reconstructing Exhibit 7

PG -. 83 -1.04 -1.36 -1.08 -. 90 without the PE column. Frisch's recommended

PE .18 .30 1.03 .21 .24 procedures were also used to identify any collinearity

Y .28 .36 .33 .79 .35 problems within the data set. This application

WH .91 .99 1.17 1.14 1.06 does not circumscribe the usefulness of the Frisch

Elasticities strategy as a data analysis tool. For example,

PG -.56 -.76 -.92 -.73 -.61 Malinvaud (1966, pp. 32-36) used the method as a

PE .21 .34 1.18 .24 .28 means of identifying the number of linear relationship

y .15 .19 .17 .41 .18 in a data set and then estimating these seperate

WH .70 .76 .90 .89 .82 relationships rather than one relationship.
Frisch (1934) and Stone (1952), throughout their

coefficients are also expressed as elasticities texts, used the Frisch strategy as a visual documentation

which are commonly used measures in economic of a regression analysis.

analysis. The elasticities are obtained by multiplying Finally, we have shown how newer techniques can

the coefficients by the ratio of the appropriate help in the identification process. With these

standard errors, that is: techniques, information about the measurement error
in observed variables was used to reduce the range

sBkij = Bkij.(Si/S) = -(rkJ/Si)/(rki/si) (13) of likely values for estimated coefficients. This

newer approach further underlines the importance

This type of transformation is used to obtain the of information on the measurement error for an

coefficient that would have been obtained if the estimation.

sample variance/covariance matrix rather than the
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PE=.14041, Y=.08394, WH=.20928 which are required for
the calculation of the elasticities. The average
values of the variables used in this analysis are:
GD=4.55940, PG=.43313, PE= 1.94563, Y=1.27398, WH=9.07288.
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THE EFFECT OF LOW COVARIATECRITERION CORRELATIONS ON THE ANALYSIS-OF-COVARIANCE

Michael J. Rovine, Alexander von Eye, and Phillip Wood
The Pennsylvania State University

Abstract independent grouping or treatment variable. Let
Analysis of covariance under conditions of E(Y ) and E(Y ) be the expectations or means for

small covariate-criterion correlations is Grops I and respectively, then
examined. In the case of correlational research E(Y ) - E (Y re ce. ()
the increase in precision of an F-test assumed If ihe difference is a function of only group or
by the addition of covariates is questioned. To treatment effects, the estimate of a is
test whether the increase in precision assumed unbiased. If, on the other hand, the difference
was offset by an increase In bias, a set of in the observed values on the criterion may
simulations was conducted. The first simulation result from contributions of other sources in
showed the degree to which non-zero addition to the independent variable, Equation I
non-significant correlations between covariate becomes (2)
and criterion changed the tail probability of E(Y ) - E(Y ) a + f(X , X^, X, .... Xk) or
the F-test. The second simulation included all
significant" covariates from a set of random E(YIX, . ) - E(Y X1 .... X) 

= a (3)
normal variates showing how selecting all whe fisX afution o? sme set f variables
significant covariates without controlling for X that contribute to the observed group
the number of covariates considered can effect differences. This function, then, represents
the F-test. the degree of bias in the analysis of variances

Introduction when sources of systematic criterion variable
Researchers faced with results of an analysis differences other than the planned independent

of variance (ANOVA) often wonder how the variable exist.
analysis would have changed had study When a single variable X can be located that
participants been equivalent on background provides an unbiased estimator of a, Equation 2
variables. Attempts to control for effects of can be written in terms of conditional
these background or nuisance variables in such probabilities as
uncontrolled studies has led to widespread use E(Y IX) - E(Y IX) = a (4)
of analysis of covariance (ANCOVA). While most Thii covariatd, X, then, allows one to adjust
scientists agree this procedure is a poor the analysis for this additional source of
substitute for true experimental control, many variation. Analysis-of-covariance was
feel that certain research designs (Cohen & originally developed to increase precision in
Cohen, 1975), in particular, non-equivalent randomized experiments by adjusting for effects
group designs often used in the situations of additional variables not involved in the
described above, require the use of a covariate assignment of individuals to treatment or
or a set of covariates; especially in situations control groups (Fisher, 1932). Adjustments made
in which linear univariate relationships between using the covariate are only expected to yield
background variables are explanations for any unbiased estimates of effects (group
obtained group differences on a criterion differences) in the case of random assignment.
variable of interest. In a controlled study the Compared with ANOVA, ANCOVA is assumed to
possible confound represented by a specific provide a better, though possibly biased,
background variable is often randomized out of estimate of a when a covariate can be isolated
the design; however, in the uncontrolled study, that is confounded with the treatment."'%With
some other procedure, most often ANCOVA is such a confound ANCOVA provides a more precise
suggested to adjust for inequalities on that error term (Cochran, 1957). The benefit due to
background variable. increased precision may be offset by bias

While some conditions under which ANCOVA may introduced into the analyses by addition of a
be troublesome have been addressed (Elashoff, covariate. Although the degree of bias in
1969; Glass, Peckham, & Sanders, 1972), one uncontrolled studies is often unknown (Weisberg,
problem under-represented In the literature 1979), analysis of covariance is suggested as an
regards the use of a variable or a set of appropriate data analytic strategy when sources
variables as covariates when those variables of variation are located that are related to the
have relatively low correlations with the dependent or criterion variable of interest but
criterion variable under study. This paper are unrelated to the independent grouping
shows the degree that such low correlations can variables representing treatment or individual
bias the conclusions based on tests of effects difference effects.
of ANCOVA. This bias is due to assumptions The size of relationship between any
underlying ANCOVA. Simulated and real data covariate and the criterion necessary to
examples are presented. Finally, a Monte Carlo minimize bias and maximize precision has
study showing the effects of selecting and normally not been specified, although some
controlling for significant covariates generated suggestions have appeared. Cox (1957) suggested
from a set of random variates will be presented. that when both covariate and criterion are
As in most real data analyses, the correlation assumed to be drawn from a bivariate normal
between covariates and independent variables is distribution, p > .60 could be used as a cutoff
not controlledn when ANCOVA is preferable to blocking. Maxwell,

On the Use of ANCOVA Delaney, and Dill (1984) argued that the size of
In the analysis of variance, any differences the correlation is generally not important in

on the criterion variable are assumed to be due deciding between blocking and use of a
to membership in the groups defined by the continuous covariate. In designs such as the

S0



non-equivalent post-test design in which the between the criterion and the covariate. The
covariate is used as a proxy pretest, only a decreased error variability is
perfect correlation between the covariate and
criterion can assure that the use of a covariate 2 2 2
as a control would not introduce bias (Cook & a o (0 - P ) (1 + 1/(f - 2)) (8)
Campbell, 1979). These and similar suggestions e.X e e
(Myers, 1979) make one wonder what happens in
the case when p tends toward zero. In this where o Xis the error variability with the
vein, the low correlation will be discussed in covaria2 added to the model, o is the error
the context of assumptions of ANCOVA. variability as obtained in the ANOVA model, p is

As often discussed (Cochran, 1957; Myers, the correlation between the criterion and the
1979), ANCOVA is designed for the analysis of an covariate, and f are the degrees of freedom
experiment in which a set of nT individuals have associated with arror term. This equation can
been selected at random and assigned at random be rearranged to yield a formula for the
to T treatment conditions. The complication proportionate reduction in error variability due
arises when another variable, X, is shown to be to addition of a covariate. The equation
correlated with the criterion variable measuring becomes
the way in which manipulated groups are expected (9)
to differ. The question then arises: Did the 2 2 2 2 2
groups really differ on the criterion because of A /a = (o - )/o = [p (f - 1) - 1]/(f - 2)
the manipulation, or can that difference be
explained by the covariate? The way usually
recommended to answer the questions involves The reduction results in an unbiased parameter
adjustment of scores of the dependent variable estimate only when the correlation between
by extracting the effect of the covariate from covariate and grouping variables is zero. It is
the criterion and essentially analyzing residual the case that even though the population
scores. If a difference is still obtained, the coefficient may be zero, the sample coefficient
treatment groups are more likely to actually deviates slightly from zero. In that case, the
differ on the criterion variable, independence of the covariate as a predictor of

In order to properly implement the ANCOVA a the criterion is represented by pX ,' the part
set of assumptions is required to assure that correlation reflected in the regrPs Yon weight
tests of differences in mean criterion scores of the covariate. In this the independent
are unbiased (Elashoff, 1969). variable and criterion compete for the covariate

The model for the simple one-way fixed variance. Since the redundant variance has been
effects analysis of covariance is removed from the error term by inclusion of the
Y = + a + a (Xe - X) + e. (5) independent variable, the proportionate

awhic h i s dhu Lan ta criterion variable reduction in error variability decreases as the
across individuals and treatments a is the assumption of independence is violated.
deviation from the mean due to the e fect of the The change in error variability can be
treatment, B(X - X) is the variability estimated. For n=100 and a correlation of .20
accounted for ,y the covariate expressed in between the criterion and covariate (a
terms of the regression slope, 5, of Y. onto correlation just above the .05 level of
(X -X), and e is an unexplained error in the significance), one reduces the error variance by
in~ividual's residual score. The ANC0VA model about 3%. With a sample of 100 observations, it
is an extension of the ANOVA model and is is conceivable that the correlation of .20

subject to the same assumptions with reflects a chance relationship. If this is the
2 case, adjustment to the analysis of variance is

performed for a variable that is not a member of
e NID (0, o ) for i = 1. nT (6) the set JX' , X.I for the function in

e Equation 2 This a justment thus is tantamount

to arbitrarily pulling error variation out the
Z a. = 0 for j = 1 ..... k (7) denominator of the F-test.

e iWeisberg (1979) has demonstrated for the
when individuals are randomly assigned to the uncontrolled study in the case of the linear
treatment conditions as required by the ANOVA. model that the proportion of bias remaining

Additional assumptions that are needed when a after the ANCOVA adjustment is a function of
covariate is included in the analysis appear in three correlations: (1) p7q, the correlation
Elashoff (1969). Violation of any ANCOVA between group membership a a criterion
assumptions can introduce bias into tests of variable calculated under the imaginary
effects. In particular, use of covariates that condition that all individuals were assigned to

correlates poorly with the criterion exacerbates the control condition (or in the case of an
the degree of bias as follows. As Cochran individual difference variable, to the same
(1957) and Elashoff (1969) have shown, the value of the variable); (2) PTx, the correlation
increase in precision of the F-test for main between that same criterion m sure and the

effects can be expressed in terms of the covariate; and (3) p the correlation between
decrease in error variability due to the covariate and gropl membership. The

addition of a covariate. This decrease can be proportion of bias remaining after adjustment
expressed as a function of the correlation
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probabilities from the ANOVA F-test to the

(Weisberg, 1979) can be expressed as ANCOVA F-test is a function of the correlation
between criterion and covariate as one would

p p p eypect. For the case in whic,, the :..Jlatio2

(10) is near zero, and the adjustment is small
T= compared to the sampling fluctuation, the change

2 in tail probabilities tend to oscillate about

p (I - PQ the nominal alpha level. However, within each a

ZQ XQ sufficiently high correlation causes adjustments

In practice, only can be estimated from the in the direction of a more liberal test. The

size of the correlation sufficient to effect a

data. However, it P6n be shown that the change is surprisingly small For n = 100 and a
covariate adjustment is unbiased only for the chan isfsrpn gl sl Fo n 100 ano
cases in which ZX = 1 or our purposes, this mean difference of .050 between the two

case inwic.=I'Fo ou.upseti simulation groups, the tail probability of the
equation serves to demonstrate that even in F-test is .0721. A correlation between the

situations in which one is able to determine covariate and criterion of r = .17 (p = .0967)

precision in the analysis, one can at best only changes the tail probability to .0463 which

estimate bias for the uncontrolled study. The becomes statistically significant if one uses

next section presents data which indicate degree the p < .05 cutoff.

of that bias. 
Discussion

Bias Due to Low Covariate-Criterion Correlations The degree of bias introduced into an

The following discussion concerns the analysis-of-variance F-test by the inclusion of

situation in which a non-zero but a covariate that is weakly correlated with the

non-significant correlation between the criterion variable depends on both the size of

covariate and the criterion exists. The cause the correlation and the size of the sample. The

of such a correlation could be, in part, due to degree of the bias can roughly be estimated by

the lack of reliability of the covariate. calculating the reduction in error variance in

However, the situation with which this paper is cluati ng the educ t i orine
concerned is that in which a variable assumed to Equation 5 using the largest possible

be covariate has a true correlation of zero with and the criterion. Using this equation as an

the criterion variable. estimate assumes that the reduction in variance

Two reports of simulation studies will be identified as the increase in precision

presented. The first will concentrate on one functions as a measure of bias. This is the

covariate in the context of a one-factorial case only when the covariate-criterion

design. The second will present two or more relationship can be attributed only to sampling

covariates in a two-factorial design. fluctuation. The results of this study suggest
Study : Method and Results that when the correlation is non-zero and

To show the degree o biasintroduced when nonsignificant the tail probability of the test
controlling for a statistically non-significant wi 1 most often be underestimated. In the case
relationship, a simulation study and analysis of of a marginally non-significant test, bias (even
empirical data were conducted in which a set of with an n as large as 100) can be enough to push

one-way ANOVAs on a criterion variable were the probability value into the significant area
performed. The grouping variable used had only the p lity valu in

two levels. The criterion variable was created of the sampling distribution.by gnertin a andm nomalvarateandThe decision whether to include a covariate

by generating a random normal variate and as a statistical control in an analysis should
assigning a grouping number (either w or 2) to be based on a number of criteria; the most
each value of the variate. A constant was then important of which is the degree to which the
added to the second group creating the group adjustment represented by the covariate is
difference. The size of the constant wasinitialized at d 

= .02 and incrementing by .05 theoretically meaningful. Once that criterion

intilizhedt difference b.ad sin stngy .is met, one should determine an absolute minimum
until the difference became statistically value of the criterion-covariate relationship.

significant at the p 
< .001 level. Covariates The minimum value will be a function of the size

were selected by generating a set of random 
of the correlation, the sample size, and the

variates (also selected 
from a normal

distribution) using the RANNOR function in SAS size of the effect. It is suggested here that
and correlating each variate with the criterion an absolute minimum be determined by requiring

measure. The selected covariates had the correlation to be above a level of

correlations with the criterion ranging from significance determined by a priori for the

r = .01 up to a level of correlation study and adjusted for the number of covariates

representing a relationship just 
under the considered.

alpha = 05 level of significance. Covariates While the models discussed above included

apa= .0 lee"fsgiiac. Cvrae only one covariate, one can imagine the

were assumed to be homogeneous across and
independent of groups. Models representing each situation with more than one covariate.
level of difference were then re-estimated Assuming two uncorrelated covariates, each would

nlevelofdiffthercere. The re-estiwa tend to decrease the error term by some amount

including the covariate. The simulation was that would tend to decrease the size of the

performed for n = 100. The results of the tail-probability even more. One could

analysis appear in Table 1. essentially control the level of significance by
The table shows the patterns of the tail introducing enough weak covariates into any

probabilities of the significance tests of the analysis.

estimated model. The change in tail To demonstrate this, we ran the following
simulation study to show the effect of selecting
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Table I

The Effect of a Random Covariate on a One-Way ANOVA (n=100)

(iaili Probabillties of ;.. F-it

Mean Differences Between Groups

Correlation .020 .025 .030 .035 .040 .045 .050 .055 .060 .065 .070 .075 .080

No Covariate .8281 .6291 .4543 .3112 .2019 .1240 .0721 .0397 .0207 .0102 .0048 .0022 .0009

.01
p = .9358 .8292 .6311 .4568 .3138 .2043 .1260 .0736 .0407 .0214 .0106 .0050 .0038 .0010

.03
£ = .7538 .8137 .6174 .4455 .3051 .1981 .1218 .0710 .0392 .0205 .0102 .0048 .0022 .0009

.05
P = .6214 .7716 .5817 .4175 .2846 .1842 .1130 .0658 .0364 .0191 .0095 .0045 .0020 .0009

.07
p = .4730 .7644 .5737 .4094 .2773 .1781 .1084 .0625 .0342 .0177 .0087 .0041 .0018 .0008

.09
p = .3654 .8333 .6341 .4586 .3147 .2046 .1259 .0734 .0405 .0212 .0105 .0049 .0022 .0010

.11
p = .2612 .7048 .5212 .3662 .2442 .1543 .0924 .0524 .0282 .0144 .0070 .0032 .0014 .0006

.13
p = .1620 .7443 .5537 .3911 .2619 .1660 .0996 .0565 .0304 .0155 .0075 .0034 .0015 .0006

15

p = .1233 .7575 .5648 .3997 .2681 .1701 .1021 .0580 .0312 .0159 .0077 .0035 .0015 .0006

.17
p = .0967 .6781 .4960 .3442 .2263 .1409 .0830 .0463 .0244 .0122 .0058 .0026 .0011 .0005

.19
p = .0572 .6882 .5035 .3493 .2294 .1425 .0837 .0465 .0245 .0122 .0058 .0026 .0011 .0005

Tablt 2

Analyses in Which the "Nonsignificant Covariates" are Retained

Null Hypothesis Alternate Hypothesis
.05 (.01) .05 (.01)

Overall Model 14% (4%) 100% (96%)

Independent Variable A 25% (8%) 99% (99%)

Independent Variable 8 17% (9%) 98% (96%)

503



a set of "significant" covariates generated trom attempt to' adjust even when the
a set of random variates. covariate-criterion relationship is not' more

Study_ II: Method and Results than chance. Since the proportion of bias
Mnte Carlo data fnr a seria nf 100 double rema'ni-c (Equ:tior 11) 7ftnr thp ?d, tment i,

classification analyses of covariance were inversely proportional to the size of the
generated using random data. For these covariate-criterion correlation, care must be
simulations, care was taken to approximate the taken in the selection of variables that act as
sample sizes and effect sizes found in covariates.
developmental psychology research. In the It is ultimately the choice of the
analysis of covariance, two main effects were investigator to determine which variable might
defined with three levels each, and 16 normal theoretically serve as covariates. However, as
covariates. Each cell of the analysis contained Weisberg (1979) pointed out, inclusion is only
12 observations, making a total sample size of appropriate if one can assume that individuals
108 for each analysis. All data were generated who have the same value on a Lovariate, and are
with SAS random number functions for generating members of different groups, would have the same
normal variates (function RANNOR). For the value on the criterion in the absence of a group
first series of 100 "experiments" no main effect effect. We add that even when this assumption
or interaction was defined in the dependent is plausible, one must be assured that the size
variable. of the covariate-criterion relationship
Analyses Based on Data Where the Null Hypothesis signifies a truly non-zero and theoretically
is True meaningful relationship.

For the first set of Monte Carlo data where References
the null hypothesis was true, an analysis of Belsky, J., Gilstrap, B., & Rovine, M. (1981).
covariance was conducted to estimate the effect The Pennsylvania Infant and Family
of false inclusion of covariates on the nominal Development Project, I: Stability and change
alpha level of the experiment. Any covariate in mother-infant and father-infant
which achieved statistical significance at the interaction in a family setting at one,
.05 level was left in the model for the data. three, and nine months. Child Development,
This situation would correspond to that arising 55, 692-705.
when the researcher falsely concludes that a Cochran, W. G. (1957). Analysis of covariance:
covariate is statistically significant when it Its nature and uses. Biometrics, 13,
is, in fact, not. Comparison of the probability 261-281.
levels associated with the overall model, and Cohen, J., & Cohen, P. (1975). Applied multiple
with the effects of the two independent regression/correlation analysis for the
variables form the basis for comparing the behavioral sciences. Hillsdale, NJ:
nominal error rates of the model with the true Erlbaum.
error rates. For probability levels associated Cook, T. D., & Campbell, D. T. (1979).
with the overall model, 14% of the demonstrated Quasi-experimentation. Chicago: Rand
significance at a nominal .05 alpha level. Four McNally.
percent of the experiments demonstrated a Cox, D. R. (1957). The use of a concomitant
nominal alpha level of .01. For the independent variable in selecting an experimental design.
variables, 25% and 17% of the experiments showed Biometrika, 44, 150-158.
a nominal alpha level of .05 for the first Elashoff, J. D. (1969). Analysis of covariance:
variable and second independent, respectively. A delicate instrument. American Educational
The proportions of experiments showing a nominal Research Journal, 6, 383-401.
alpha of .01 was 8% and 9%, respectively. Fisher, R. A. (1932). Statistical methods for

Discussion research workers. Edinburgh, Scotland:
As can be seen, selection of those Oliver and Boyd.

"covariates" that appear to be significant and Glass, G. V., Peckham, P. D., & Sanders, J. R.
adjustment for those variables can dramatically (1973). Consequences of failure to meet
change the tail probabilities of the F-test. In assumptions underlying the fixed effects
practice such an error of inclusion can be analysis of variance and covariance. Review
avoided by carefully controlling the of Educational Research, 42, 237-288.
experiment-wise alpha level used to define a Maxwell, S., Delaney, H., & Dill, C. (1984).
significant correlation. However, researchers Another look at ANCOVA versus blocking.
looking at single covariates that account for Psychological Bulletin, 95, 136-147.
what appears to be a small part of the variation Myers, J. L. (1979). Fundamentals of
in a criterion variable are often reluctant to experimental design. Boston: Allyn and
give up that adjustment. By keeping such Bacon.
variables as covariates, they must realize that Weisberg, H. 1. (1979). Statistical adjustments
ANCOVA adjusts for anything that is supplied as and uncontrolled studies. Psycaol ouicael
a covariate in the analysis. ANCOVA will indeed Bulletin, 86, 1149-1164.
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Estimation of the Variance Matrix for Maximum
Likelihood Parameters Using Quasi-Newton

M ethods
Linda Williams Pickle' , National Cancer Institute

Garth P. McCormick, George Washington University

Abatract matrix or its rate of convergence. We have examined
With recent advances in computer processing the behavior of this matrix approximation for several

speed, statistical packages with generalized -max- representative likelihoods. Comparison of known ana-
imum likelihood estimation subroutines are pro- lytic results to results from a quasi-Newton procedure
liferating. Unfortunately, convergence criteria in using an optimal step size suggests that after the first
these packages are based on the step-wise change few iterations the ,ax:ance matrix approximation con-
of the parameter estimates or on the closeness ofofthe prs et r eti te or on 0.e N oses of verges to its correct values at nearly the same rate as
the first derivative vector to 0. No measure - the parameter vector itself. We proose a method ofthe adequacy of the asymptotic parameter vari-

ance matrix exists and most statisticians are un- determining when the matrix has converged sufficiently

aware that the variance matrix approximation to a solution.
based on the commonly-used quasi-Newton it-
erative methods can be pwur. We xamine the 2. Maximum Likelihood Estima-
behavior of this approximation for two represen-
tative likelihoods and suggest an additional con- tion
vergence criterion that may help the user to de-
termine when the variance matrix as well as the Let Z, denote the data vector for observation r and
parameter vector are sufficiently close to their X = (xi, zv,x . , ' x)' denote the parameter vector to
true values, be estimated. Then

N

1. Introduction L(Z; X) =1 f(Z,; X), (1)
r=1

Maximum likelihood parameter estimation requires an is the likelihood function to be maximized over possible
iterative solution for all but the simplest statistical dis- values of X, where f(Z,; X) is the probability density
tributions for which analytic solutions are available. The function for X. Maximum likelihood estimation may
most popular method of solution has been Newton's be viewed as a general unconstrained optimization prob-
method, which converges quickly and automatically pro- lem, requiring solution of any of the following equivalent
vides the most accurate estimate available of the asymp- problems:
totic variance matrix for the parameter estimates. Un-
fortunately, this method requires the user to provide the
second derivatives of the likelihood function (the Hes- max L(Z; X) or min[-L(Z; X)J or min[- In L(Z; X)J

sian matrix), a task which is often very difficult. The
quasi-Newton class of unconstrained optimization algo- For convenience, we will solv e last problem. Let
rithms avoids this problem by approximating the in- G(Z; X) w In L(Z; X), the objective function to beminimized. If we may assume that:
verse Hessian matrix, and has been shown to converge
superlinearly to the correct parameter vector. Use of a 1. G(Z; X) is twice continuously differentiable,
quasi-Newton algorithm and an accurate first derivative 2. X" is the unique solution to the problem; X" is
approximation algorithm coupled with the recent dra- called the maximum likelihood estimate of X,
matic improvements in microcomputer processing speed
has made possible generalized computer programs for 3. G(Z; X) is strictly convex in a neighborhood about
maximum likelihood estimation. It is no longer nec- X* (i.e., L(Z;X) is strictly concave),
essary for the statistician to write a new FORTRAN
program for each different form of the likelihood to be eG(Z; X)
maximized, thus simplifying examination of competing E aG X ] -=X 0 (2)
models.

Because the quasi-Newton methods were developed and /cG(Z; X)

for the solution of deterministic models, primarily in E a ) = Var(X), (3)
operations research, little work has been done to exam-
ine the accuracy of the approximation for the variance the asymptotic variance matrix of the parameter vector

'current address: Vincent T. Lombardi Cancer Research Cen-
ter, Georgetown University, Washington, DC 20007
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X. In practice, we estimate this variance matrix by H*, tistical problems, since the variance matrix is used to
the inverse Hessian matrix evaluated at the maximum test the significance of the parameter estimates and to
l:kc1 .6"od estimrn-s -' the parameters (X*). calculate confidence limits for the parameters.

The order of the rate of convergence of an iterative

3. Iterative Methods procedure is defined to be the power p such that
lira 11X+1 - x *11 M (6)

For all but the simplest models, analytic solutions to 1Aoo - X =[16

the maximum likelihood optimization problem do not where M is a constant. uJCJh denotes a norm of any vec-
exist. Iterative methods of solution generally include tor C; we will use the L 2 norm; i.e., JJCJJ = (Ei ci,)1'/.
the following steps: An algorithm is said to converge superlinearly if p > 1.

It may be shown that Newton's method converges quad-
ratically (i.e., p=2). For secant methods in general,

2. compute Xi, = Xi + Sit, a class of algorithms including quasi-Newton methods,
where X, = (Xil, X4,.. -- , XJ)', the parameter vec- Tornheim (1964) showed that the asymptotic order of
tor estimate at iteration i; Si is the direction vec- the rate of convergence is the solution to the equation
tor for this step and t, is the step size which min- p J+1 - p' - 1 = 0, where J is the number of parameters
imizes G along the ray S. to be estimated. For example, this result shows that for

a single pararnt,'cr p = (1 I v/5)/2 - I.C18. The rate3. repeat step 2 until convergence or the maximum of convergence is slower with an increasing number of
number of iterations is reached, parameters, but in all cases is superlinear.

For the Newton -.e+hod of solution, In practice, we may estimate the order of the rate of

convergence of the parameter estimates by taking log-

S(a
2 G(Z; X) 1[G(Z; X) ( arithms of both sides of (6), and solving the following
axiax, ) ax ) • (4) simple linear regression problem for p over successive

X, iterations (i = 1, 2, ... , I);
Calculation of the optimal step size ti is required to en-

sure a significant improvement at each step (Chambers In IlXi+1 - X'J a + pin 11Xi - X'. (7)

1977). However, most implementations of Newton's al-
gorithm use a constant step size of 1, which is optimal Obviously, if we are considering using the quasi-
for a quadratic objective function, and only adjust ti Newton method at all, an analytic solution is unavail-
(e.g., by step halving) when no improvement is seen in able. Thus, the asymptotic order of the rate of conver-
the solution vector. gence only provides a guide to the rate of convergence

The Newton method converges quadratically to the expected in practice, and is not useful in determining
solution vector but requires the first and second partial whether convergence has been reached in any particu-
derivatives of the objective function and inversion of the lar situation. How can we judge whether the H matrix
Hessian matrix at each step. Because the second partial approximation adequately represents the true variance
derivatives are often tedious to calculate, quasi-Newton matrix?
methods approximate the inverse Hessian by Hi, an up- Let a, = X,+I - Xi, the 0" Terence in the parame-
date of the last iterate's matrix; that is, Hi+, = Hi + 6i. ter estimates from one iteration to the next, and y, =
Then VG(Z; Xi+,) - VG(Z; X,), the difference in the first

,O H aG(Z; X) () derivatives of the objective function from one iteration( ax ) 1- - to the next. Typical quasi-Newton methods update the
Several commonly used updating methods are the H matrix (i.e., Hi+l = Hi + 6i) so that H,+lyi = a,. It
Davidon-F letcher- Powell (DFP) and Broyden-Fletcher- seems reasonable to expect that as H, - H, the cor-Dao-Feher-ow ( F ) andho Broyden-Fmietcher3, rect inverse Hessian matrix, H, will solve several of theGoldfarb-Shanno (BFGS) methods (McCormick 1983, peiu qain swl.Ta s

chap. 9). previous equations as well. That is,
Obvious advantages of the quasi-Newton methods HmYm-2 0,,-2,

are that no second derivatives or matrix inversion are
required. By combining a quasi-Newton inverse Hes- Hy,-
sian update algorithm with algorithms to approximate
the first derivative vector (i.e., the score vector) and to ty,-s~l a,,-+1
calculate the optimal step size at each iteration, a gen-
eralized optimization program may be developed that where J is (arbitrarily) the number of parameters to be
requires the user to provide only the objective function, estimated. If this is true, then we may use IIHmyi -

Unfortunately, these inverse Hessian approximations oII/o, II to measure the adequacy of the 1t approxima-
can be poor estimates of the asymptotic variance ma- tion.
trix. This is a critical defect for optimization of sta-
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4. Computational Methods Results from a program using Newton's method with

exact first and second derivatives (Harrell 1986) show

The BFGS quasi-Nc-.--tn algn-itlr was implemented that the maximum !ikelihood paramreter estimates are
as a subroutine of a program that calculates analytic X* = (-2.81,0.81,1.26,0.36)'. As shown in Figure 1,
derivatives and includes an optimal step size routine. Xj converged quickly to these values; after 6 iterations
This program also calculated the norm measures for the norm of the relative error was 0.0001. H converged
each iteration as described above. All programs were to its correct values (H*) less quickly; as expected, there
written in Fortran-77 and were run on an IBM 3090 was a dramatic improvement on the fourth step. After
system at the National Institutes of Health. All cal- this improvement in H the vector of first derivatives (y)
culations were performed in double precision. Machine dropped rapidly to 0.
epsilon for this system is approximately 10" I . Results of the linear regression procedure estimated

The theoretical order of the rate of convergence was the order of convergence of X to be 1.20, compared
calculated by solving Tornheim's equation for the ap- to the predicted asymptotic order of 1.33. A similar
propriate number of parameters (Borland Internationdl, calculation for Hi, excluding step 4, estimated an order
Inc. 1987). Although these theoretical results apply to of convergence of 1.06.
the convergence of the parameter vector, we used the In practice, when the correct results are unavailable,
same techniques to examine the convergence behavior of a commonly used stopping rile (i.e., corvergence criter-
the inverse Hessian approximation (H). The observed ion) is to require a "small" value of the maximum rel-
order was calculated using the linear regression function ativc parameter change from one iteration tu the next.
of Lotus 1-2-3, version 2.01 (Lotus Development Corp. That is, for step i
1985). However, because a sharp improvement in H is . .x- -
expected on the Jth step when sufficient information is max < E (9)

available to approximate the JxJ matrix (McCormick i xi - 1,) 1
1983, p.198), we omitted this step from the regression where f is a small positive number and j indexes the
data. parameters in the vector X.

For this example, as shown in Figure 2, we might

5. Results choose to stop after iteration 7, where the maximum
relative parameter change was less than 0.001.

It is less clear from Figure 2 when H has improved
5.1. Example 1: Logistic model sufficiently to declare convergence. In fact, this measure

Data for the first example are from a case-control study of convergence did not decrease monotonically over the
of laryngeal cancer among white male residents of the 11 iterations shown. As described previously, we calcu-
Texas Gulf Coast area (Brown 1988). A total of 209 lated IIH,y, - o4ll/IacII for each i < m - 1. Figure 3
cases and 250 controls (or their next of kin) were suc- shows the results for m=7,8,9 and 10. Unlike the con-
cessfully interviewed to obtain information on their usual ventional convergence criteria described above, we do
consumption of aicohol and tobacco, as well as informa- see an improvement with each iteration; for this exam-
tion on other potential risk factors for this tumor. A ple HO and H9 both satisfy the previous 4 equations to
prospective logistic model was used to estimate the rel- piehin a n o f t ru2t
ative risk for laryngeal cancer due to joint exposure to
alcohol and tobacco, adjusting for age. The likelihood
to be maximized is: 5.2. Example 2: Normal mixture model

L(Z; X) jexp(Xo + XIZI, + X 2 Z 2, + XsZs,)d (8) Because the logistic example converged in so few itera-
1 + exp(XO + XZ11 + X 2Z2, + X3Z3 () tions, we repeated the maximization on a more complex

likelihood function. Data were simulated for a mixture
where of normal distributions, with 400 points generated from

1 if person r had laryngeal cancer a N(0,1) distribution and 100 from a N(4,1) distribu-
d,= 0 if not tion (SAS Institute, Inc. 1985). The likelihood to be

Zi, = # packs smoked per day by person r maximized was:

= fI if person r was a heavy alcohol drinker L(Z;X) N=l V, { p-exp[
= 0 if not + X) = ) exp 1 ')c2

~Z 3 f 'AI if person r was age 60+ + 0l- P) [-p(Z' _ ;2 )2 , (10)
0 if not C2  2a 2 f

X (Xo,X 1 ,X 2, Xs)' are the parameters to be esti- where Zr is the observed data vector for person r, 1A, and
mated, where X, is the parameter corresponding to each A2 are the means and a, and 02 the standard deviations
Zj,j = 1,2,3, and z0 is a constant.
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for the two normal distributions, p is the proportion of convergence when the true matrix values are known.
the total in distribution 1, and X = (p,Ahora1 ,/ 2,o 2)1. Addition of a criterion such as this to the tandard stop-
We a3sume ul < /A2 so that the solution is unique. ping rules should increase the number of iterations per-

Using a Newton method with exact derivatives we formed to ensure that the variance matrix as well as the
calculated the true maximum likelihood parameter esti- parameter vector is reasonably close to the true values
mates to be X" = (0.811, -0.0315,1.02,4.11,0.900)'. As or identify situations where the values are suspect. Al-
shown in Figure 4, the patterns of convergence to the though the examples used here seem sufficiently difficult
true solution follow those seen in the logistic example. nonlinear optimization problems, a wider range of like-
After 10 iterations the norm of the relative error of the lihoods needs to be examined. We encourage continued
parameter vector was approximately 0.0001. Following work in this area so that statisticians may use the newly
a sharp improvement on step 5, H improved steadily available computer methods with confidence.
and y converged to 0.

The order of the rate of convergence for the param-
eter vector was 1.17, compared to an asymptotic pre-
dicted order of 1.28 for 5 parameters. A similar calcu-
lation for H, again excluding the sharp drop on step 5, 7. References
shows the order of convergence to be 0.98.sh o the maxir m converelatvepaamcae to beBorland International, Inc. (1987), Eureka: The Solver,Usp of the maximum relative parameter change to S ot aly A uh r
define convergence would lead to stopping after itera- Scotts Valley, CA: Author.
tion 12 for E = 0.001 (Figure 5). As with the logistic Brown, L. M., Mason, T. J., Pickle, L. W., Stewart, P.
model, this measure does not monotonically decrease A., Buffier, P. A., Burau, K., Ziegler, R. G., and
for H. Application of each Hi to previous iterations Fraumeni, J. F., Jr. (1988,, "Occupational Risk
showc,! steady improvement with each iteration (Figure Factors for Laryngeal Cancer on the Texas Gulf
6). H 17 solves the previous 5 iteration equations within Coast," Cancer Research, 48, 1960-1964.
a tolerance of 0.02.

Chambers, J. M. (1977), Computational Methods for

6. Conclusions Data Analysis, New York, N.Y.: John Wiley and
Sons, pp. 136-145.

For two representative maximum likelihood estimation Harrell, F. E., Jr. (1986), "The LOGIST Procedure,"
problems, the order of the rate of convergence of the pa- in SUGI Supplemental Library User's Guide, 1986
rameter vector to the correct solution was nearly equal Edition, Cary, N.C.: SAS Institute, Inc., pp. 269-
to its predicted asymptotic value. The inverse Hessian 293.
approximation, the estimated asymptotic variance ma-
trix for the parameters, showed an order of convergence Lotus Development Corp. (1985), 1-A-t Reference Man-
slightly less than that of the corresponding parameter
vector, but converged at least linearly in both exam- McCormick, G. P. (1983), Nonlinear Programming, New
pies. The proposed norm measure of the closeness of York, N.Y.: John Wiley and Sons.
the inverse Hessian matrix approximation to its correct
values appears promising, showing an improvement at Tornheim, L. (1964), "Convergence of Multipoint Iter-
each iteration and agreeing with our decisions to declare ative Methods," Journal of the A CM, 11, 210-220.
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Figure 1. Convergence of Estimates of Parameters (X), First Derivatives (y), and

Inverse Hessian Matrix (H) to True Values for Logistic Model Example. Normed

relative difference = jXiZ - X°11/1IX-1h for parameter vector X estimated at itera-

tion i, when true parameter values = X; similar definitions for y and H.
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Figure 2. Maximum Relative Change of Estimates of Parameters (X) and In-

verse Hessian Matrix (H) for Logistic Model Example. Maximum relative change

from iteration i-1I to i max, ' ijI for X; similar for II.
S xi - l,j

-- WI- .N-

0.001-1

1 1 -I 7 1 I II

It ra';tl 1(111 4.

Figure 3. Solution of the Equation fly c a by the Inverse Hessian Approxi-

mnations from Iterations 7, 8, 9, and 10 using y and a from Previous Iterations;

Logistic Model Example.
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Figure 4. Convergence of Estimates of Parameters (X), First Derivatives (yi), and

Inverse Hessian Matrix (H) to True Values for Normal Model Example. Normed

relative difference = jjX, - XII/i1IXl11 for parameter vector Xi estimated at itera-
tion i, when true parameter values =X*; similar definitions for y and H.
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Figure 5. Maximum Relative Change of Estimates of Parameters (X) and In-

verse Hessian Matrix (1H) for Normal Model Example. Maximum relative change

from iterationsi -1I to i =max, '-X - 'j for X; similar for H.
Xi- lIj

11(. at 1(I ! U

Figure 6. Solution of the Equation IIfi a by the Inverse Hlessian Approxi-

rnatin from Iterations 15, 17, and 19 using y and a from P'revious Iterations;

Normal Model Example.
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.PPI.ICATION OF POSTFRIOR PPROXIMATION TFCIINIQUFP'S

TO TilE ORDERED DIRICIII FT DISTRIBUTION

Thomas A. MA, and Refik Soyer

The George Washington Uiniversity

I. INTR DIiCTION *%ND OVT.'RVI"W r( 1 k, I IIc I

The ordered I)irichhct distribution has proved I-u L ) fj I k2P
H1 1-k13 ) j 1

to he i meaningful prior distribution in a variety uf j -

applications including bioassay : Ramsey (172) , lire

testing [ lochner (197S) ], damage response [ Maz,uchi 13 ,

and Singpurwalla (1982) 1, failure ratc estimation .j 0, j 1.... k~l, and
: Mazzuchi and Singpurwalla (1983 ' , and accelerated

life testing I Mazzuchi (1986) 1. In the above k I
nZ J 1.

situations the distribution is used as a prior J-I

distribution for a set of ordered probabilities. There The joint distribution is defined over the simplex

are three reasons that the ordered Dirichlet

distribution is so appealing,
I u u I  u 2 - u k  u k, ,

i. It imposes n, other restriction on the
thus preserving the desired ordering. It is easy toprobabilities other than the de:ired
see that this distribution arises as a result of

ordering.
specifying a Dirichlet distribution on the successiveii. 't allows for easy incorporation of prior
forward differences of the above variables.

information.

iii. It is mathematically tractable and allows
2.1 Prior Results

for closed form posterior res ults. Prior information may be directly incorporated

through the prior parameters by noting that

While the first two claims are valid, the third

is only partially true. It is possible to obtain results kil

in closed form, however, evaluation or ;ome posterior E ju1  iZ (22a)

quantities may require large amounts of computer time

and may be subject to error due to numerical Vluar I E[I- H2bVarlu,1 - 2.2b)
manipulations. These errors are a function of the /-+l

sample sir-e and tend to increase as the sample size and thus if u , , u are the prior best guess values
increases. With larger sample sizes we therefore

offer as an alternative the use of the posterior fr u P k' deining a ui I ul,

approximation technique developed by Tierney and kI (with u; I and uti 0) we obtain a joint

distribution whose marginal mean values are our prior
Kadane (1986) for obtaining posterior quantities.

best guesses. In addition, the parameter f may be
In Section 2 we present an overview of the use

specified in such a way as to indicate the strength of
of the ordered Dirichlet distribution with both prior

conviction in these prior best guess values. This isand posterior results. In Section 3 we present an
true since once the x are specified, /1 controls the

overview of the Tierney Kadane method and show the

ease with which this method can be used to obtain magnitude of the variance.

2.2" Posterior Results
the posterior quantities of section 2. In Section 4 we 2. P
give some closing comments. Without getting into specific problem scenarios,

the general form for the likelihood in problems using

the ordered Dirichlet distribution is given by2. IlE ORDFR|FD DIRIM~tI.ET DISTRIBUTION

The ordered I)irichlot distribution defined for a k si n

set of variables u (Ul, u2 , , u k ) is given by L) n, s; y)cf 0 u j uj (23)
j I
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c k
where n, and s, ere quantities used for estimating u,-- . a b

essentially nI indicates the sample size for estimating j 1

u, and s, is often the number of failures recorded out B(C k a171 u4-am-tbmi 1 bj

of n,). The posterior joint distribution for u is thus Z 141 J
proportional to the product of (2.1) and (2.3) and this

is given by H BI2 L - 
+k

a m 
+
b m l I bj)

Cit nilm.j

j nj - j LjI%. t k~i I  1 B[ Ekmjbn~ .
- am ubm~am ,-bmii

kl 1- uj u j (u j u j) uk

j- c m -

k uk I d
j 1 (2.4) (2.8)

jW e c a n e x p a n d th e ( I1 u j) j te r m s in a b in o m ia lf o c d a n l 12 -' 0seie iedigfor c ; d and/I '1 ,v 2 
>

0.
series yielding The posterior joint distribution (2.4) can thus

be expressed as

e E 0 . P 0 
(-I)0 1J

1 k j I I Sk ,n, ,t3)

u n j. 1uJ uj) at1 uk 

]~ ~ 1r09k

(2.5) k H ujj (uj uj) I Uk }

This can be expressed as a weighted combination of k k
FIBI( r m+nm-sm+xin+m,) 0a-i

densities of a form proportional to m n

(2.9)

a b- 1 bkl- I
f uj (uj I - uj u k  (2.6)

u~ ukwhere
jI

ks-,)

The above density is similar to the generalized j -1

Dirichlet density studied by Lochncr(1975) and Connor B k Y(em nm si) m ,

and Mosimann (1969). The constant of integration and m=j (2.10)

thus the moments for this distribution may easily be

obtained through repeated use of the integral identity and

(CRC TABLES Definite Integral Formula 609)
I k

V- F -. E ,_,,I) .
(x a)m (b x)n dx (b a)m , n + 1 B(m I l,n+1) e 10 fk=

0

a

where B(m4l,nl 1) r(m 4 1)r(n 1) is the beta
r(m n 1-2) Once the weights V(otna,3) and V4 are obtained,

posterior joint moments for (2.9) are obtained as a

function. Thus the constant of integration for (2.6) is

weighted combination of moments of the form (2.8),
obtained as

k k W ,n, 3) l Ud 1 .... .
Yklkb. ud I (amn s),f)(.e(e17 E4 ! a miml 'b~j!

j 1 m=j 2. ) 0

(2.11'

and joint moments Huc 1/,ud V7 for (2.6) are Though the expressions (2.9), (2.10), and (2.11

obtained as
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are closed form expressions, they may be difficult to A()

evaluate. The time required to evaluate such J / U(u) e dul duk

expressions is a function of s (and thus n) and k. In e A(U) du(...dUk

addition, when the ni are large, computer evaluation

of the required beta function can lead to significant
where

numerical error. This is due to the fact that because

of the summations involved, the required argument A L(u) II(u)

values often far exceed the maximum allowable values A(u) -

specified for accuracy. One alternative is to use the L(u) Log of the likelihood

regeneration formula for the gamma function and I() Log of the prior joint distribution for u

factor thus greatly simplify expressions (2.9), (2.10), U(9) function of u.

and (2.11). In so doing we may rewrite (2.10) and (2.8)
3.1 General Resultsas

Based on the Laplace's method, the
k ( 1 )J approximation to (3.1) is given by

j 1

-~ k Idi exp{ N [A *(ii) -AMu (3.2)
]TzJ I , [~deft ( )

fI f - l + (nm -sm )  M

2.12)

where A' - r/(6) + A and r7(6) Log(U(uj) and 0 I

k is the joint mode of A* (A) and -- ( . ) is minus the
where zj - YFm and

m-j inverse Hessian of A*(A) evaluated at 6' ( i ) and

k
Vlueu1

' a, N 1: nj. Note that due to the fact that the priord 
j= I

distribution is defined over the simplex1-] ][ [lbj __ 1
I f 1 mIj 1 :am Ibm U u 1  . u 2  u k  I Uk+ 0,

M==j

the integration is also subject to this restriction and
SI bj therefore so is selection of the joint moddl values.

c, I fk bin 1  k am 1bm F:,r obtaining the posterior marginal

m j distribution of say u, which was not discussed in

(2.13) Section 2 due to its increased complexity, we note

that

respectively. numerical problem may still exist for A(u du du

large n, in that. the evaluation involves dirfferenccs of j I I ifl

products of numbers very close to 1. While further P(u, -sn Aiu, .

numerical techniques can be employed we suggest j dul dum

posterior approximation tuchnique., as an alternative.

I. I'1F TIFRN Y ADAN " "-r ., given u, let Yiu , he the mode 1f A for u, fixed

at its value and 'call this func'ion V. Note thatPO.S''"RIOP API'ROXIMATION TE'lNQtlI

All the posterior quantities of Se(tn "2 can 9jl) is an m I by 1 vector and let E, denote the

be obtained using the Tierney - Kadane appro,imtitin minus inverse lussimin if A cvaluated at (tis

technique for evaluating should have 1 less rank then that of 'E.. Then the

pi,,,terfor marginl Jitrbutt, n if u is given hy
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= det3 2 , (s 1  3c 1 -1) n1  s O3a2 1
p(uiIDot) 2xN det( 1 exp ( ii(ul)-- A(u) au 2  (1 u 1)2 U12 U 1 2

iIDt8)2lNde~I I. ( - 1 Iu) 1 ( u 2 )

(3.4) 2 si n, si 0ai_ 1

Zu2 (1 u)2 2 2
3 ui2  {1 ui) ui 2  (u,_1  - ui)2

Thus all the desired posterior quantities of Section 2

may be obtained and in addition we may obtain the ott4 I

posterior marginal distribution for each u. ( 2,.kI(u i -Uil )2

3.2 The Optimization Problem 1

Usually the major difficulty in using the auaui I (u i -1 Ill 2

Tierney Kadane method is in solving two separate

optim ization problem s. T his is particularly true alp i 2,1 k1

when dealing with a constrained problem as we have )Uiauli (u i  U i ,.k

here. However, we can show that for this problem

the derivative cxpr . uns are straig ,-'- , jrd and ink nk k k 0 ak I

addition, with a simple transformation of the auk (1 Uk)2  Uk2

parameters we can convert our problem to an

un.onstrained problem. )etk 1

The log of the posterior distribution N A(u) 2 Uk)(" kUk I uk.7
given by

k
(sl r/

3
! 1)l.n{l u1 } I Z s Ln{l - uj} To convert to an unconstrained optimization program

j 2 we select the following reparameterization

k 1i
nl s 1 )i.n{u} (n. - 3 Ocxk,1l-ln{uk} u, .H V exp(i 2 k

(3.8)

k

(13. J 1 Lnf{u ! u3} or inversely,

Denoting (1.5 as T, we may find the mode of thc U in I U 2, k
3'9 (3.91

posterior by setting : uP 0, I . . . . k, and

,ulving with

Maximi/ation of the reparameteri.'ed problem is

facilitated by replacing (3.6) with
lp 'sl rooY I' n I  s 1  ( , 2  1k

au I u 1l U "I° - '2uuo i, k

j I

SI  n, s /3a Il I

All. u i U u U, -1 The additional terms h iich arc easily obtained as

uJ

1P 
5

k nk k k' il 3. 4exp{O) I j
,)uk  I '1k Uk UkI I U. 0

'3.6)

'nder reasonable choices for the prior

The - e(,nd deriv; tive! are i ven by parrnieturs, .pecifically for ,341, 1 for all i, the

frniti Tn i1' is giiarante ,1 to be concave and this

514



appears to be true for any definition of the prior ',I Mazzuchi, T. aind Singpkirwalla, '. 1982).
parameters provided the n , are large enough. Similar The U. S. Army (BRPL's, Kinetic E-nergy Pcnetr~tt r
arguments can be used to show that for reasonable Problem: Fstimating the Probability of Response
functions U1(9) the function V - N{A*) is also for a GCven Stimulus. rrceho of the
concave. Thus the optimization is really no problem. Talenty 5eeioth (7ofcrc''( on if thc fli'ign of

Fxperinemts it) Army Hescorch Dereloptient
4. CONCLUSIONS and.( Testing, ARO Report 82-2, pp. 27 -58.

The Tierney Kadane approximation technique 4 Mazzuchi, T. and Singpurwalla, N. (1983).
appears to make reason iii of Section I considerably A Bayesian Approach for inference for Monotone
more true and allows for the application of the Failure Rates . Statistics anti Pr-obability
ordered Dirichlet distribution in large sample Letters, Vol. 3, pp. 115 - 141.
situations. In a future paper we will give the results f5) Mazzuchi, T. 1I986). A Bayesiun Approach to
and comparison of numerical calculation, numerical Inference from Accelerated ifie Tests.
integration, and the Tierney Kadane approximation Submitted for publication.
technique, for obtaining posterior quantities for [6) Ramsey, F. (1972). A Bayesian Approach to
various combinations of n, s I and k. Bioassay. Bziometrzcrs, Vol. 28, pp. 841 - B58.

[ 71 Tierney, L. and Kadanc, J. (1986). Accurate
RFPEERF ENCFS Approximations for Posterior Moments and
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Generalization of the Dirichlet Distribution.
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Distribution in Bayesian Life Testing. Journal
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COMPARISON OF "LOCAL MODEL" STATISTICAL CLASSIFICATION METHODS

Daniel Normolle. University of Michigan

Introduction The classification tree method (OTREE), a
refinement of an older technique called

The different methods of statistical classification by statistically equivalent blocks, is

classification may be divided into two groups: described in detail in Breiman et al (1984). The

those which require assumptions concerning the measurement space is recursively partitioned into
class-conditional distribution functions ie.g., linear rectangles by cuts perpindicular to the

discrimination, logistic regression); those which measurement axes, and a classification rule is

classify observations depending upon the class assigned to each rectangle based on the class
membership of the nearby observations, such as membership of the observations within the
nearest neighbor classification and CART. This rectangle. The recursion is halted when the

paper is concerned with a comparison of several of rectangles contain observations from only one
the latter, "local" methods, taken from a Monte class, or contain only one observation. The

Carlo study performed at the State University of structure of the classification rule is represented
New York at Binghamton and the University of by a binary tree, where the cuts are placed at the
Michigan which examines various aspects of 22 non-terminal nodes, and each rectangle is assigned
statistical classification methods over 12,000 data to a terminal node.
sets. The estimated rates of correct classification The recursive rule as described tends to
for the various methods, analysis of the differences construct trees which overfit the data, resulting in
in performance of the methods, and clmrPP-ristics over-optimistic estimates of classification rates on
of the optimization techniques used in the various training data, and poor performance on subsequent
methods are presented. In particular, the use of data sets. The tree size is optimized by growing
cross-validation to select the neighborhood size in ten auxiliary trees, each based on nine-tenths of
the nearest neighbor method is discussed. the original training set, and then using the hold-

out sample consisting of the remaining data points
Methods to estimate the truie correct classification rate.

The trees are used to determine the value of a
The local classification methods have in cost-complexity parameter which penalizes both

common the rule that, in general, observations are overcomplicated trees and high misclassification
assigned to the same class as their neighbors. rates. The value of this parameter is used to

"tri" te min reeby"cominig the rectangles
Each local classification method has a different "trim" the main tree, by combinin

definition of what a neighborhood is, and these with small numbers of obser'ations to achieve a

different definitions constitute the differences tree which represents the data but does not

between the methods. Each of the methods overfit it.

requires that the neighborhood size be optimized The kernel PDF estimation method of

by some method to prevent neighborhoods which statistical classification (KERNEL) directly

are too small and hence overfit the data, or which estimates fi(x) using only weak assumptions about

are too large and miss important features of the the functional form of the fi f), and then assigns
measurement space. For each of the following class-membership depending upon the values of
methods, the neighborhood process will be the estimated density functions. The application
described, along with the method to optimize the of density estimation to statistical classification is
neighborhood size. described in Hand (1981. The density estimator

The dimension of the measurement space is
represented by p, the number of classes by d, and at x(x . x)' is:
the number of observations in the training sample

d n
by n= Zn i. A p-dimensional observation is I 1__(-- ('ji- k

denoted by x, with '- component . The n j

thproportion of the population in the "t-_ class is 7r

and the class-conditional density function is where Ki. is a sylmmetric, univariate probability

written f.i.i. The sample mean of the i- class is denit function and x is the thlement of the
tth i teltr s

written xi, and the common sample covariance "-k member of the class in the training sample.
is S. The use of a density function for K ensures that

matrix inearby points will contribute more to the density
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estimate than distant points. The kernel function is first calculated:
of Epanechnikov (1969),

K(u)=max{- 3 ,0}, d.j = (Xim xjl )'(Sim- (Xim X jl45 20f5
(j = 1,...,d and I= 1,...,nj)

which asymptotically minimizes the mean
integrated square error for a large class of - 1
univariate density functions (Tapia and Thompson, (where (Sir is the inverse of the common
1978) is used; it has the additional advantage of a th
bounded support, which reduces computational covariance matrix with the im- observation
cost. removed. This vector of n-i distances is sorted

The smoothing parameters h.. are calculated along with the class memberships of the training
IJ observations. Then, starting with k = 1, a running

independently for each class i and coordinate j by tally is kept of the class memberships. For each k,
an iterative method. The process is initialized by the k class memberships vote, resulting in an class
the range of the training sample: estimate for x. for each value of 1 <k<n-1. This

lm_

o0 , . - . procedure is repeated for all the points in the
maij =  . nminxc1  Xin.' training sample, and the number of points1 1 correctly classified for each value of k is

and is updated according tw. accumulated. k is then selected as that particular
value of k which maximizes the number of

h s +1 -1,"5 s correctly classified training points (actually, a
h 'K)2(h three-point moving average is maximized), yielding

where: an optimized neighborhood size for the nearest-
neighbor method. Each observation in the testing*

K = (K) '1/5 sample is then classified using the k nearest
( 100 neighbors in the training sample.

and, if f s. -) is the estimate of e.(. using theii ij The last method is not included as a "local

training sample and h s  model" method, but because it represents an
i interesting bridge to the global methods in the

original study. Each observation in the training
3(h.) = (nfl "'"v)]2dv -1/5 sample is replaced, cow dinate-by-coordinate, by its

normal score. The normal score of the i- largest
The resulting density estimates for each class are value in a set of numbers {x I .... x n} equals
then calculated at a test point x, and the test-1/ )i
point is assigned to the class having the largest 4) + n , where P(.) is the standard Gaussian
estimate.

The k-ncarest neighbor method (KNN, Fix and cumulative distribution function. The testing
Hodges, 1951) is supplied by the analyst with an observations are ordered independently of the
integer k, and then classifies a point x according to training observations. The conditional
the class memberships of the k observations from discriminant function performs a linear or
the training sample which are closest in the quadratic discriminant analysis conditional on a
measurement space to x. Distance is measured by test of the hypothesis
the Mahalanobis distance, H

d(x,y) =(x-y )'S 1 x-y).

The choice of the size of the neighborhood, where E i is the dispersion matrix of the ith class.
determined by k, is as problematic with the k- S. is the within-class sample covariance matrix,
nearest neighbor method as with those previously i
mentioned. Here, cross-validation is used to calculated from the transformed data, and I Sj is
determine k, producing a cross-validated h-nearest the determinant of S. The test used in the
neighbor AXKNN). Each observation Xim in the simulations is a special case (for n =n, and d ='21

training set is classified using the other points in
the training set as follows. The Mahalanohis
distance to every other point x.1in the training set
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of Box's (1949) modification to Wilks' A: calculate predetermined Bayes' rate in the population.

Each design point was replicated 100 times, for a

(2p 2 +3p- 1) total of 12,000 training sets. All classification

p =12(n-2)(p+ 1)' methods are calibrated on every training set, and
evaluated by their correct classification rate on a
test set of 1000 observations associated with the

I S11I S21design cell.

and reject the hypothesis of equality of dispersion Results

matrices if -2.rho log(A) exceeds the 90t
2 The result of optimization on the classification

percentile of a X distribution with p(p + 1)/2 tree and nearest neighbor methods is tested by
degrees of freedom. The symbol NCDF is used to comparing the optimized to the non-optimized
represent the use of the conditional discriminant version. The non-optimized classification tree
function on the normal scores of the data. (TREE) is the tree grown on the training sample

Since Bayes rule maximizes the expected without cross-validation pruning. The XKNN is
probability of correct classification (Glick, 1971), it compared to the KNN rule, where k is the
shall be used as a benchmark against which the smallest odd integer greater than the square root
other methods will be compared. The version of of the training sample size.
Bayes rule used here, which is less than general It is seen from Table 1 that pruning has a
but sufficient for the circumstances of the larger effect on the higher-dimensional data, and

experiment, where d = 2 and 7r1 =77 = 1 is. that the effect increases with the training sample
2' ssize on both the 2-and 6-dimensional sets.

Analysis of variance on the difference between
Classify xEi if fi(x =max{fl(x ,f2 (x)}, TREE and OTREE (not displayed, produces

significant main effects for all the experimental

where fl (),fo() are known class-conditional variables.
Cross-validation selects neighborhoods which

probability density fuic-::Dns. Bayes rate, the are larger than the square root rule (Table 2) and
proportion of observations correctly classified using
Bayes rule, will be estimated by calculating the

class-conditional density functions at each testing
sample point, which is possible since these density
functions are known precisely in a simulation Table 1.
experiment. The correct classification rates of the Mean Percent of Bayes Rate
individual methods will be reported as the
percentage of the Bayes rate.

The full details of the Monte Carlo Experiment %of Bayes Rate Paired
are presented in Normolle (1987). The simulations p n Comp.
are written in FORTRAN, compiled on the IBM H TREE OTREE t
optimizing compiler, and executed on an IBM 4381
at the State University of New York at 40 86.6 86.5 -2.0
Binghamton, and on the IBM 3090-400 at the
University of Michigan. 80 89.7 90.1 5.4

The experiment is a full %-crossed 5x 2x 2x 3× 2
design with five levels of variation: distribution 160 92.4 93.6 16.6
type (Gaussian, Cauchy, lognormal, bimodal,
uniform % dimcnsion 2, 6): training sample size 6 40 82.6 83.1 8.0
(40, 80, 160); between-class separation (low, high);
within-class dispersion (equal, unequal). A 80 87.6 89.4 18.8
multiplicative congruential generator with

multiplier 75 and base 231 _ I generates the 160 91.9 93.8 21.9
primary [0,11 random variates, which are then
transformed to specific standardized distributions
by well-known methods ie.g., Gaussian variates p<0.000!

are obtained by the Box-Muller transformation)
described in the thesis. Multiplication by rotation
matrices and translation by location vectors
determine specified population location and
dispersion, chosen to achieve iwithin I ' a
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Table 2. Table 4.
Mean Values of Cross-Validated k Mean Percent of Bayes Rate

p n Mean k %of Bayes Rate Paired
p n Comp.

2 40 9.28 KNN XKNN t
80 17.18

160 30.32
6 40 9.27 2 40 91.8 92.8 10.7

80 17.86
160 31.51 80 93.4 94.8 16.8

160 94.6 96.5 21.8

Table 3. 6 40 90.2 88.2 -14.4
Mean Values of k

80 91.8 91.5 -3.1

Distribution Mean k 160 91.9 93.8 13.8

Normal 21.60 p<0.01
Cauchy 12.25 p<0.0001
Lognormal 14.02
Bimodal 24.05
Uniform 24.25Uniform 24.25 minimum percentage of Bayes rate obtained by

the four methods considered, ordered by dimension
and sample size. Each mean and minimum
displayed are based on 2000 observations. For the

seem to be only slightly affected by the dimension 2-dimensional data. XKNN displays the highest
of the data. The neighborhoods are smaller on the average standardized classification rate of all 22
heavier-tailed distributions (Cauchy and methods. As the number of measurement
Lognormal, Table 3), and largei Jn the shorter- variables increases, the efficacy of NCDF, as
tailed (Uniform and Bimodal). An analysis of measured by the mean, actually increases, while
variance (not shown) demonstrates that all the the KERNEL and XKNN methods are degraded.
design variables except the equality of the within- At the lowest sample size, OTREE's performance
class dispersion matrices significantly effect the is inferior to the other methods, but it improves at
difference in the classification rates between the n = 80 and n = 160. In addition, OTREE'b response
KNN and XKNN rules. As seen in Table 4, cross- rate at n= 160 is relatively unchanged between
validation degrades the perfomance of the nearest- p = 2 and p= 6, unlike the other local methods.
neighbor method on the sparsest data (n = 40 and which seem to degrade quickly as the number of
80. p = 6), but as the concentration of data measurement variables increases.
increases, the improvement in classification
increases substantially. The increase is
pronounced in situations where the classes are not Table 5.

well-separated (Table 5), while the cross-validated Mean Percent of Bayes Rate

and square root values of k produce essentially the
same results when the classes are already well-
separated. %of Bayes Rate Paired

The iterative proepss to calculate smoothing Separation Comp.

parameters for KERNEL -nds to produce values KNN XKNN t
which are smaller than optimal (the optimal
values can be determined ex'ictly for some of the **

known class-conditional densities). A cross- Low 89.3 90.7 19.4
validation method of smoothing parameter Hi 95 3 95.2 1.3
estimation is currently being implemented to
remedy this situation. p<0.0001

Tables 6 and 7 present the mean and
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XKNN performs well compared to all other
Table 6. methods with respect to the minimum correct

Mean Percent of Bayes Rate classification rate at p= 2, and competes

reasonably at p = 6, except for a disaster which
occurred at n=40. KERNEL is notable in that

%of Bayes Rate the minimum rate does not decrease as far at
p n small sample sizes at p=2 and p=6 as NCDF and

OTREE KERNEL XKNN NCDF OTREE. KERNEL is the minimax methnld over
all 12,000 observations.

Table 8 displays the mean percentage of Bayes
2 40 86.5 92.1 9 2 .8 a 89.4 rate obtained by distribution type of the sample

9 4 .a 9data. Each mean is based on 2400 observations.

NCDF, which works remarakbly well with

160 93.6 95.1 9 6 .5a 91.8 elliptical distributions (Normal and Cauchy), even
if they are heavy-tailed, breaks down substantially

40 83.1 87.1 88.2 91.1a when presented with data from the very skewed
Lognormal distribution.

80 89.4 88.8 91.5 93.4 a  Analyses of variance (not showni produce very
significant main effects p<0.0001 on the

160 93.8 90.7 93.8 94.8 classification rates of the four methods studied.
The design variables account for 42% to 52% of
the variance of the local model methods, and 72%

a Best of All Methods of NCDF.

Table 7. Table 8.

Minimum Percent of Bayes Rate Mean Percent of Bayes Rate

Minimum of Bayes Rate %of Bayes Rate
p n Dist.

OTREE KERNEL XKNN NCDF Type OTREE KERNEL XKNN NCDF

Normal 90.8 93.6 97.1 100.0
240 49.9 70.4 71.0a 40.6

Cauchy 98.3 96.6 97.3 103.3
80 63.7 70.3 73.0a 43.9

Lognormal 82.8 81.0 82.3 63.4

160 74.6 78.0 79.6 a  35.9
Bimodal 92.2 96.5 97.2 99.5

640 34.6 52.8 1. b  42.2
Uniform 82.9 88.6 90.8 93.9 a

80 50.6 56.4 51.2 41.6

160 6 9 .2a 58.6 55.2 44.2 a Best of All Methods

a Best of All Methods
b Worst of All Methods
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NCDF shows promise on the sparse, higher- Glick, N. (1972), "Sample-Based Classification
dimensional data when the sample size is too small Procedures Derived from Density
for the effective performance of the classification Estimators", Journal of The Amcrican
tree, but is subject to degraded performance when Statistical Association, 67, 116-122.
the data are very skewed.

A, a group, the local model methods are strong Normolle, D. k 1988), Comparing the Performance
at p= 2; if the analyst is unable to make any of Classification Methods, PhD Thesis,
assumptions about the data, sample sizes like Binghamton: State University of New York.
those considered in this study will'yield good
results, especially with the cross-validated nearest Tapia, R., and Thompson, d. (i978,
neighbor. The classification tree method requires Nonparametric Density Estimation,
larger sample sizes than the other methods even Baltimore: The Johns Hopkins University
with two dimensions, but can tolerate more Press.
variables once this barrier is overcome. The cost
of all of these "assumption-free" methods increases
rapidly with the number of dimensions, so that
eithei some dimension reduction technique must
be applied to the data before a local-model method
is applied, the sample size must be quite large, or
a rank-based or robust global alternative must be
employed.
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An Example of the Use of A Bayesian Interpretation of MDA Results

James R. Nolan, Sieria College

This article is concerned with the other group to determine its value. The problem
interpretation of multiple discriminant analysis here is that you lose one half of your original
results. Specifically, a demonstration will be data when constructing the equation. A better
made of the usefulness of Bayesian methods for procedure is to employ the "Jacknife" method
enhancing the utility of the multiple (alternately referred to as the "leaving one out"
discriminant results. method) whereby you construct the equation using

The primary objective of discriminant analysis all but one of your cases and then proceed to
is to classify cases into two or more groups. An classify that "left out" case. After doing this
implicit assumption for using this technique is for all cases, you have a much less biased view
that the groups can be differentiated based on a of the value of the discriminant equation.
combination of multivariate normal variables. In
addition, if the variances and covariances of the The major problem with stopping the analysis
independent variables are equal, or nearly so, a at this point is that two important items are
linear classification model is optima]. being ignored:

Thus,
(I) prior probabilities of group membership.

D = b x + b x +...+ b x (2) incorporating additional information about
j 1 lj 2 2j n nj cases.

where j = group number These two items can be included in the
b coefficient analysis if we utilize Bayes' Rule. If the
i "cutting point" or critical discriminant score is

placed midway between the mean discriminant D
The general procedure for conducting an scores for each group (in the two gr:u; zase),

analysis using the discriminant method is as the implied objective is to equalize the
follows: probabilities of misclassifying the cases.

In many situations, we know that there is a
(1) a priori definition of a sample of cases in higher probability a case belongs to one group

each group. versus the other. If your objective is to
(2) definition of the variables which are thought minimize misclassification, period, then the

to account for intergroup differences, cutting point should be moved toward the mean D
(3) submission of the data to an MDA (multiple score of the smaller group.

discriminant analysis) algorithm. How far should the cutting point be moved?
(4) determination of the "cutting point" or One could alternately try many different cutting

critical discriminant score which will points to find the best. Needless to say, this
separate the groups. would be very time consuming. Bayes' rule will

05) UlLitiacely, you want the probability uf come in handy here, but we still need some more
specific group membership. information; suffice it to say that we should be

aware of prior probabilities P(group i).
Once the procedure is complete, there are We are still not at the point where we can

various methods used to determine the value of determine the optimal solution (equation).
the resulting equation - value as far as Consideration of additional information available
statistical significance is concerned as well as for eaicl case will help us. To take advantage of
its inference or predictive ability. Some of the additional information available, we need to
these procedures are: assess the likelihood of the additional

information under different circimstances.
eigenvalue = btwn. group SS/within group SS For example, if the discriminant function

scores are normally distributed for each of two
The larger the eigenvalue, the better the groups, and the parameters of the distribution
equation is able to differentiate. can be estimated, it is possible to calculate the

probability of obtaining a different discriminant
canonical correlation = the degree of association function value if the case is a member of group
between the discriminant scores and the groups. one or group two.

This probability is called the conditional
The higher this value, the better. probability of the discriminant score (M), given

the group, P(D/G(i)). To calcullte the
confusion matrix = percentage of cases correctly probability, the case is assumed to belong to a
and incorrectly classified, particular group, and the probability of an

observed score given membership in the group is
The major problem with this last method is that estimated using the normal distribution.
yuu are using the very same cases used for Finally, this information about group
constructing the equation to determine the value membership and the conditional probability of
of the equation - a very biased view results. One obtaining a discriminant score given a certain
way to get around this is to divide the data into group membership, can now be combined using
two groups at the beginning of the analysis; then Bayes' rule; this will help us to determine what
use one group to construct the equation and the we were interested in all along - namely, how
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likely membership in the various groups is, given to determine the classification of the sample
the available information - rcfcrrzd to as the hospitals.
posterior probability.

At this stage, we have an equation that can be
To demonstrate the usefulness of this used for predicting the financial classification

procedure, we can look at the following example: of a hospital - fiscally stable or fiscally
we wish to determine the financial measures that distressed.
are useful for predicting the financial health of
a hospital. The research design is now detailed: Additional utility can be obtained from this

equation by considering the approximate
(1) Financial data was collected on 48 New York probability of group membership in the

State hospitals over a three year period population. In this New York State hospital
1980-82. example, 70% of the hospitals in the state are

(2) These hospitals were selected based upon a fiscally distressed and 30% are fiscally sound.
New York State management group's opinion as Based upon these probabilities (group membership
to the most fiscally sound and the most in the population) and the additional information
fiscally distressed hospitals in the state, obtained from the calculated discriminant score
Their decisions did not result from for each case and its known group, the
consideration of the proposed explanatory probability of each case belonging to a
financial variables. particular group given its calculated

(3) The three year average (mean) and three year discriminant score, P(G(i)/D), is obtained. It
variation (standard deviation) was calculated is this probability that adds to, and
for each of the 72 possible explanatory supplements, the normal discriminant analysis
variables. The purpose of these calculations results.
is to obtain measures that indicate trends In summary, this additional information will
early enough to do something about them, i.e. help a h-os;1ial administrator determine not only
hospital management has the opportunity to whether they are in a fiscally unsound condition,
make changes to improve the fiscal health of but also the severity of that condition.
the institulton.

(4) The most statistically significant
explanatory variables wer, identified and the
discriminant scores were calculated for each
hospital; Lhe "jacknife" procedure was used
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UNBIASED ESTIMATES OF MULTIVARIATE GENERAL MOMENT FUNCTIONS
OF THE POPULATION AND APPLICATION TO SAMPLING
WITHOUT REPLACEMENT FROM A FINITE POPULATION

Nabih N. Mikhail, Liberty University

lbatrad
Unbiased estimates of the multivariate general moment functions of where P is ay partition of r.

the population are obtained then sampling from finite populations.
Partitions and power sums are featured. Unbiased estimates of multi- We are interested in deriving the unbiased estimates I of the gmfp

variate cumulants and moment functions are obtained as examples of when sampling without replacement from a finite population of site 1.
application. Carver functions C are given, usnmg different notation by Carver

p

1 introdaction (1930, p.106) and Dwyer, Mikhail and Tracy (1978, p. 14,15).

The general moment function of the finite population (gmfp) can be 5 - - I *(P) e
written in terms of ooersng associated with the partitions involved. Cp P H (1.3)

We keep the coefficients of such power sums quite general so that the where

results are applicable to a variety of functions. wsr
We treat the aultivariate gmfp In ths paper. gnivariate results a )1

are obtained by means of coalescing. The paper follows certain ideas es s( n...n
and results given in Dwyer, Mlkhail and Tracy (1978).

By giving more specific values to these coefficients, we can obtain Another set of functions related to Carver functions C, gives by
results for multivariate cumulants (Mikbail and Ralik, 1978), for er

nultivariate moment functions (Dwyer, 1937, p.40; 1930, p.42; Mikhail aDyer, Mikhail and Tracy (1978, p.16), Dwyer and racy (1980, p.435).

and Ralik, 1970) etc. and their unbiased estimates.

The purpose here Is limited to the derivations of the functional 1 (-1)-1 - lP (P) e 1.3")
forms of the gmfp of various weights, and their unbiased estimates p P
through weigkt 4 are obtained. The special cases for cumulants and where
moment functions are obtained as applications of the theory, (1.r

Moment functions of finite population have in common the property e a (1.4")
that they say be expressed in terms of coverasum (Dwyer,1938, p.104).

Power sumes in this paper are denoted by () for the sample, and by
DI for the finite population of size I. It is worthwhile to mention that the formulae (1.3) and (1.4) are

The combinatorial coefficient (Dwyer and Tracy, 1964, p.1174) designed for use In unbiased estimation problems.

associated with a partition P p1 I. Ps (p. distinct) of unipar- 2. The Analysis of DO-unctions with more than one Subscript
rIt nube pI i li
tite number p : I pi is lere we need the general expression I (F .) a (O) (Dyer,

O)P) P (1.1)
a n ikhail and Tracy, 1978, p.16; Mikbail and Ralik, 1975, p.?2; Dwyer and

(pl) l...P) a ..a Tracy, 1980, p.435) where 0 is any partition of I11...1 nd the parts
of U are represented by the rows. This defines, at least implicitly,

For the multipartite number pq .... (Tracy and Dwyer, 1973, p.4), if D8 as the coefficient of (U) in the value. ill special cases of the

same weigkt (isobaric) are then obtained by coalescig. All the U
partition W- 1 ..q' l - where$l' represents a under consideration are those which are partitions ofll 1 and

o plql..... hence have only one "1" in any column.
p I p , IDeviates should not be used for the general formula. The deviate

part of wrepeted wtimes) and p i ,q : q ..... formula can then be obtained by eliminating all partitions wlich have

one or more rows with a single 'I' element. For example,

sq sp! .. 1
€(; )2 ..~o . (i 2' N ( B~l C' +N ( Bll (ll + B ', N )

S p 0 0'2C l
The Pfp is terms ofn eraj a is FI . 1 (01) (1.2) 01 0 1

S1: DI(11) +D s 10

where there are r multivariate units, U is any partition of Il1... I and 01

1N  is the coefficient of (0)I.U 10 - B C5)i1) 8 10 C ',
Then, if W is any (multivsriate) partitiom obtained by partial Imce I t 10 }  10 01

coalescimg the colnas of U, (1.2) becomes the multivariate formals 01 01 01 1

rit2..'  1 0 € ( )I  (1.2') Similarly,f I 11 2-01

where r1 4 r2 4 r3 + ... : r, i( ) is the multivarlate comblastorial i (ill) I '1,li1 ) . I l0 (00IN + '101 (010)I

coefficient (1.1') and B is the coefficient of (;,)1 l1 Ito

The total coalescil of (1.2) and (1.2) leads to I100l
.8Il .300 1 0 101

r  1 0 (P) b ( 1.2"1 100 011 011
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* s $ 5 a or*~ ucin
:B1C2 B C (111) I F1 1  . Using the results of 00Dfunctions in section 2, me

'110'*2 '0112 ' 100'* 3l .I '
001 010 100 010 can derive unbiased estimated value of any population moment function

001 when sampling without replacement from a finite population.
B C, + B CThe formulae become quite compact if we use the integer notation
IBoC1 2 0C D suggested by Professor Dwyer (personal comnnications) for partitions.

001 1 010 1I a this notation, the product of poter sums (110) (101) (011) is
001 written as (12, 13, 23), where the numbers 1, 2, 3, indicate the rots

8101C1 + (102 )(00 1 of 101 and commas separate the columns.
010 1 010 1 "011 (

B C )0101BC ) eh -0I : 11
B011l I B10C2 10

00 1 010 1/ 1 (F ) : D (I M,+)D0s  (1,2)/oo001 S IO 11 ill 1,2
B lO 10 1 here the number of rove in the right is reduced to 2 with the

1OOCol0 |001/  replacement of I by the one in the second column by the number of the
010 1rots, we continue with the replacement of each I by the number of rot.

001 1 Hence, we get
s0 * 110 a0 101 0011 100 1(j1  s~11 s1 2
D (111) 0(l O( Dl 01  0011(100) ++D +0 010 1(11 11': D 1112) D (121)+

001 01 i 00 1 0011212
001 010 100 010 The sum of the three middle terms can be tritten as

001 3 3 3

In general this process leads to 2012(112) (or 20121(121)or D0211 )),

- , where the I applies to all the different partitions resulting from
11(1lI... ) l : - DO(0) interchanging columns. Similarly,

0 4 4 * 3 s 6 s

What is needed, in general, is the specific functions in terms of B's if (F1  ) 1 D111 (1111) 4 I01112(1112) + ED1122(1122) + 201123(1123)

and C's for different DO. The evaluation of 0111 .1 is simple enough s1234(1234)

since the coefficient of the one roved (ill... 1) term of the I value 4

of I B0)) is I B C: where 0 is any partition of 111... 1 and u is the there 2 D1(1112) indicate the four different terms resulting from
U the unipartition of 1112 and the interchange of column 4 mith 3, 2, ,

number of rows of 0. Thus, 3

1 1 1 1 2 0+ 2 C s +B CI+ B 1 0 3 respectively; where 01122(1122) indicate the three different termsIII1 : illC1  11 B0 2  BI01 2  011'2 + 100C3  1,2

001 010 100 010 resulting from the partition (1122) and the two different interchanges,
001 etc.

The partitions featured and the number of terms in each summation
and all the partitions of Ill with their appropriate B's and C's are are available with complete coalescing of the partitions. This is
included, illustrated by the multioomial theorem in partition notation with the
The evaluation of Do there 0 consists of two or more rows is partitions written in columns:

somethat more complex. We note first that columns can he inaterchanged 2
in the problem and in the result, so we may tube the units in the first 41 ~ 3 2 , \ 1
row in the first columns folloted by the units in the second row in the 1 2 3 ) 1

second columns, etc. Thus, if me huos the value of D0 and the I
110 Here the multipartition reveals the numbers of unit terms in the

110 001 respective rows, and the coefficient shots the number of different 0coefficient of 001 ' we can interchange column 3 with column I and get vhich coalesce to the same partition. That number is also the cokbi-

011 c g Ds naturial coefficient, (1.1).
011 and the coefficient o . Also, 1e can get Dlllol1011 and 4. lxpressionas for D
100 0010 0100

DO011 from D,111; DIOlo and D*o01 from D 0 etc. The other Ds for order 2

1000 0001 0101 0110 0011 D11 : BIIC1  '12,2

obtained from l , D , O f etc are 0 0 0 0 ,  122 C
11 11' 111'1101' 1110' 1100' 1110'12 1211Il

O 5 001 0001 0011 00001 For order 3I'1110,. DIlO0O , etc. by column interchange. I s 3
00l0 o 011o 'm11 ]i I+ 11' 1 '3

00001

3- gnhiased Ostimates of the lultivariate tafu '112 - 112C11 + '123C21
In this section we obtain unbiased estimates of the multivariate

gofp when sampling without replacement from a finite population, as '123 B123111
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For order 4 
for order 1

4 3 6 B0 D : C1
*~D 1 C'

DIl1I  :B1111C1 + ' B1112C2  ' B1122C2 + 123 C3 + B1234C4 for order 2

4 S S $ 1 CS -L C8D1112 B1112CIt + B1123C21 ' B1213C21 0 B2113C21 + B1234C31  D1 :I c1 - c2

DO, * , 2 _2

01122 : B1122C 11  B1123C21 + B2311C21 4 B1234C22  D1 -- 12 C*

1123 1123C111 1234C211  
for order 3

D S~ Bi -1 * I

1234 B1234CII1 I 111 1 1 12 2

For order 5 *i0 IQ

D11111 e11111C1 + 2 B11112C2 + B11122C2 + 011123C3  112 2 1  0 C2

15 10 1 1
+ I B11223C3 + I B11234C4 + B12345C5  D123 C',

* +~ B C SB 8+ C 131
D11112 B11112C11 + B11123C21  B 1213C21 + B12113C21 + 21113 21 1

S S 0 B

11223C21 + B12123C21 + B21123C21 + B11232C21  for order 4

B123431 + '12134C31 + B21314C31 + B23114C31 lill I C1 - C+ 1  C 

+ B12314C31 + B12345C1  ' : 1 .1 ' + C3*
D B C +Bnll1+B2+ , 12 1  1 C .C

B122 B1122CII + B11322C21 + B13122C21 + B31122C21 1234C22 C
1 312 1S .. C Ct

+ B12134C22 4 B21134C22 0 B13422C31 + B12345C3  1122 22 2
2

B 211$$ 3 1, DS CS - S C
11123 : Bl1l23lll ' '11234'211 1214'*211 * '2113421 '123453t 1123 1 3 1 1 4 2

$ S 0 $ 1 1
D11223 : B11223Cili + B11234C211 + B23114C211 + B12345 221

S B t D123 4 1
111234 B11234Ctill 12345 2111

112345 12345C11111

for order 5

e t c . 1I , I 1  C 1 -5 2 + C '-  C 41 C 5

5. DU for Finite Version of Moment Functions 1 1 2 3  - C

As an application of unbiased estimates of gmfp, the unbiased enti- 1  4 C 2

mates of the finite version of the moment functions p l... 
to D 12 2 C 1 3 -5 C4

sampling without replacement for a finite 
population (Mikbail and

Malik, 1978) is considered in this section. -'C' - - - C 1 C

Here the coefficients B0  for 0 11III .. I is 1122 - 2 3 4C 2 5

if 9 111...1 in one row 1 1 2 2

( -l) I : II...10000 sitb lli... I 1

__ if 000...01000) n in the first 11123 - 3C1 " 4  5c3
s........... row and only I I I/ one '1' in I 1

000. .00001 each row of
the (s-!) ro s I C; C

s- 0:1 .. D11223 - 4 C 5 C2
i) if 010 A I 2

91 
s ro ve 

1 1

:0 otherwise 11234 C

Then for the partition U and u is C3 written a column, we have I
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D12345 -5 '1 12345 : N 5 1
1 1
I 1
1 I
1 1

7 Applications and Summary
6. Do for Finite Version of Cumulanta K In this section enamples of the unbiased estimates of the trivariate

Unbiased estimates of finite vers ion of the cumulanta are considered moen fucto I I1 p\n uuat S I r banda
here as another application of unbiased estimates of the gmfp for I obtained
sampling without replacement for finite population (Mikhail and Malik, plications to the unbiased estimates of the multivariate gmfp
1978). 1 

Here the coefficient U0 for U : 114...I is Re I 1)in sections 5 and 6 using the D,-functions in sections 2 and

B0 : (-1) n- ( -1)!/p' if the number of rows is t.

Since all moment functions are identical for order 1, 2, and 3, we can 3. For example,
say that unbiased estimates of moment functions of the population are
identical for order p 5 3. Here we start for cumulants of order p -4. for P( )

for order 4

414 I C' C' C' + Ca C $ / -
1 1 2 2 2 2 3 3 4 4 1', ll (111)( 1 C' C'+-1 C (12 (2)+N1 1 I ) * 2A 1 9 2 2 3 , ((1)3 11

D12 : 1 C4  + C " 4C 3  (211)) C ' + 3C 2  + (123) 3
1 1 1 1 11

0 ~:1 C J Ci for K1
1122 : 2 1 3 2 4 C2 (1

I' I2 '- IKi~ 1 1 1 22, * Cj c)+ (112) +(121)
1123 3 1 1 2 1

1 1

:. C * + (21 ) N I  + * ) + (123) 1 CI

'1234 - H4 11 1I

For the trivariate moment function we have

for order4 :D$(111) e 1010 + 101 0D011 ) D, 10
D'41 N C1  2 C 2  3 C3  3 C 3  4 C4 + 5 C15  001 010 100 010001

S 192 3 3344 1001

1 1 s + C 4 21 C Forthebivariatecaseseget
1I112 : 2 I 3 2  4 3 3 5 4 201 10

j w S 01 t0 10 1

11122" 2 1 3 C2  1 C C3 + C3 01
1 2 11 2 and for the univariate case we have

11123 3 C 14 C2 +25 C3 D ' +~ 2 ~
( 13), 321) (2 + 1

1 1 1 1 1"
,~ :-1 '- 2 , +2 , ' I.. C

D1122 ,3 1 ' C 2 In general this paper gives the functional forms of the multivariate
1 l 2 gmtp and its unbiased estimates in a very compact form. The results

I 1 I are applied to obtain multivariate ,nbiased estimates of moment

C * a 21 ' functions Pll.. . and cumulants K11  .1I'

'11234 - 4 CI N5 C2
I I
I I
1 1
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DISCRETE STRUCTURES AND RELIABILITY COMPUTATIONS

D.E. Whited, Lincoln Laboratories
D.R. Shier, College of William and Mary

J.P. Jarvis, Clemson University

Abstrac Suppose D is the set of all states and the variable I t(5) equals
The two-terminal reliability problem for an undirected network 1 if the subgraph of operational edges indicated by 9 contains
involves calculating the probability that two distinguished sites an s-tpath and 0 otherwise. An s-t path is simply a minimal
are connected by a path of working edges. This problem is set of edges whose functioning ensures that s and t are
known to be NP-hard, even for the special case of planar connected. Then the s-t reliability is given by
systems. We describe efficient data structures and algorithms
for calculating the two-terminal reliability for planar networks Rst(G) = ,( I8t(S) Pr(5) .
in pseudopolynomial time; that is, the time complexity is D
polynomially bounded in the number of paths (or the number
of cutsets). Computational experience with the algorithms is Although conceptually simple, the state-space approach is
also presented. impractical because ID9 = 2m . Improvements to this approach

can be made by focusing directly on the s-t paths {PI, P 2,. ...
!. Introduction Pk) of G. Define Ei to be the event that all edges in path Pi

operate. Then
The study of the reliability of complex systems has

interested mathematicians, statisticians, electrical engineers, Rst(G) = PrfEt u E2 u ... u Ek] . (1.1)
and computer scientists among others (Barlow and Proschan, The probability of each event Ei is easy to calculate by the
1975). Its applications include such diverse areas as
communication and transportation systems, electrical independence assumption:
networks, quality control, computer design, and software 1i "
validation. In particular, network reliability addresses the Pr[Ei] = P
synthesis and analysis of systems that can be modeled using a j E Pi
network of vertices and edges. The availability of either two-
way or one-way communication is reflected through the use of The evaluation of (1.1), however, typically requires complex
undirected or directed networks. calculations because the events are not, in general, mutually

The models used in network reliability are of two types: disjoint. For example, this equation can be expanded using
deterministic and stochastic. In deterministic network models, the inclusion-exclusion formula, but there are an exponential
a fixed network is subject to attack by an intelligent adversary, number of terms (2k - 1) to be considered. Thus this method of
Typical reliability measures used are the connectivity, calculating Rst(G) is exponential in k. This exponential
cohesiveness, and diameter of the underlying graph. Such behavior is not surprising in view of the fact that calculation of
measures tend to incorporate a worst-case point of view, by RAt(G) is a mathematically difficult problem. Namely, this
concentrating on the maximum disruption that could be problem belongs to the class of NP-hard problems (Rosenthal,
inflicted on the system. 1977) and thus there is unlikely to exist any efficient (i.e.

In stochastic network reliability (the focus of study here), polynomial-time) solution procedure.
the network components are subject to failure according to Here we address the s-t reliability problem for the special,
some probability model. Typically, the system under but important, case of planar graphs. It is known that
consideration is treated as a network with reliable (or perfect) calculating Rst(G) is still an NP-hard problem for planar
vertices and unreliable edges that may assume one of two graphs (Provan, 1986). Our concern then is in providing for
states: operational or failed. The edges are assumed to fail efficient enumeration of certain combinatorial objects (s-t paths
independently, with probabilities that are known and constant and s-t cutsets) in planar graphs, which can then be used to
over time. calculate the s-t reliability in pseudopolynomial time: i.e. the

The average behavior of such a system can be studied using work involved is polynomially bounded in the number of such
a variety of probabilistic measures that quantify the objects, although it still can grow exponentially with the size
"connectedness" of the underlying graph resulting from edge of the graph. Throughout, various discrete structures will be
failures. In undirected networks G, the all-terminal reliability developed both as data structures and as theoretical
R(G) refers to the probability that all vertices remain frameworks to implement this approach. Section 2 discusses a
connected. The two-terminal reliability Rst(G) is the compact representation for planar graphs, and the next two
probability that two specified vertices s and t are connected sections present efficient algorithms for generating s-t cuLtsets
using operational edges of the graph. An alternative measure and s-t paths in planar graphs. Section 5 shows how these
is the expected number of vertex pairs able to communicate, generated objects can then be used to calculate network
This paper will be primarily concerned with the two-terminal reliability for such networks.
reliability of a network in which each edge i is assumed to
operate with probability Pi. 2. Representation of Planar Graphs

The most fundamental method of calculating Rt(G) uses An undirccted graph G = (V, E) consists of a finite set V of
state-space enumeration and dates back to Moore and Shannon vertices and a set L of edges whose elements are unordered
(1956). The state of the network can be represented with i 0-1 pairs of vertices. The edge e = (uv) E E is said to be incident
vector 8 = [15 1, 82 ..... 6m whose i-th component is I if edge i with u and v, and the vertices t and v are the end points of e.
is operating and 0 otherwise. The probability of a given state Two vertices u and v for which (u,v) E E are called adjacent.
8 is then given by The set of vertices adjacent to v is written A(v), with the

H--- 8 1 Adegree of v defined as IA(v)l. Throughout, we will reserve n
Pr(6) P,' (I - p,) for IVI and m for Il.

In particular, we will be concerned with planar graphs. An
undirected graph is planar if it can be embedded in the plane so
that edges inuersect only at a vertex with which they are both
incident. Given an embedding of G in the plane, a region of G
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is a maximal connected portion of the plane which does not algorithms to carry out each of these four tasks can be
contain elements of G. Every embedding of G in the plane has implemented using such a data structure.
one infinite region called the exterior region. A planar graph
will in general have many different plane embeddings, though 3. Enumeration of s-t Cutsets in Planar Graphs
the total number of regions rG will always equal m - n + 2.
Figure 2.1 provides an example of a graph and one particular A fundamental notion in reliability calculations is that of a
embedding of it in the plane; the regions ri have also been path: a minimal set of components whose operation ensures
indicated with the exterior region called r1  that the system operates. Another important concept is that of

a cutset: a minimal set of components whose failure ensures
that the system must fail. We first describe such concepts in

r the context of graphs, and then discuss methods for
enumerating these objects. For planar graphs, certain "local"
information can be exploited to provide an improved cutset
enumeration algorithm. Section 4 presents similar methods for
the enumeration of paths. First, we establish some needed
notation.

In a graph G = (V, E), the complement of X V is denoted
by X = V - X. The open neighborhood F(X) of X is definedFigure 2.1 A planar graph with regions r1 through r6  by I(X) = (v E XI (u,v) r E for some u E X). The induced
subgraph (X) is the graph H = (X, F) where F = { (u,v) E E ILet G be a planar graph with a fixed plane embedding. A u,v E X)}.

dual of G, denoted G t, is a graph formed by associating a An alternating sequence u =v 0 , (v0 ,vj), v1 .... Vk.,
vertex of GD with each region of G and then joining two (vk_],vk), vk = v of distinct vertices and edges is called a u-v
vertices of GD for each edge of G common to the boundaries path. If a u-v path exists in G between all vertices u and v,
of the two associated regions of G. (See Figure 2.2.) When it then G is connected. Otherwise, G decomposes into a number
is clear from the context, a dual relative to a specific of connected components. A vertex v of a connected graph is
embedding of G will be referred to as the dual of G. The dual called a cut vertex if the graph G -v = (V-v) is not connected.
graph GD is also a planar graph. Moreover, the regions of G A minimal set of edges whose removal from G leaves s and t
are in one-to-one correspondence with the vertices of GD, in different connected components is an s-t cutset.
vertices of G with the regions of GD, and edges of G with the If X c V with s e X and t E X, then (X,X) denotes the set
edges of GD. Note that an embedding of GD is determined by of edges in E with one end point in X and the other in X.
the chosen embedding of G. Note that the removal of the edges in (X,X) separates vertex s

from vertex t. If both induced subgraphs (X) and (X) are
connected, then it is known that (X,X) is an s-t cutset
(Bellmore and Jensen, 1970). For this reason, such a set X
(with (X) and (X) being connected) will be called a connected
s-t separating set.

-o" G The most efficient algorithm for enumerating all s-t cutsets
in an undirected graph G is the procedure of Tst, yama, et al.

D (1980). Its worst-case time complexity is given by
GD O((n+m)cst), where cst is the number of s-t cutsets in G. This

algorithm relies on two established facts:
(1) There is a one-to-one correspondence between s-t

cutsets and connected s-t separating sets.
(2) Let XC Y CV. If both (X,X) and (Y,Y) are s-t

cutsets, then there exists a v e Y - X so that
Figure 2.2 A graph G and its dual GD (X+v,X-v) is an s-t cutset. Such a set X+v is called a

I -point extension of X.
Subsequently, it will be necessary to identify the regions In view of (1), it is only necessary to enumerate connected s-t

and edges "around" a given vertex v, relative to a fixed separating sets. The second fact then guarantees that all
embedding of G. A region is incident with v whenever v is on separating sets can be generated by considering only I-point
the boundary of that region. The regions and edges incident extensions of separating sets. This leads to the algorithm of
with v can be placed in an ordered (circular) list: r0 , e0, ri, Tsukiyama, in which each separating set is recursively

. o ed.I, r0 where d is the degree of v and region ri is processed to find its I-point extensions.
border by ei., and ei (all subscripts being taken modulo d). (Any edge not on some s-t path is termed irrelevant. The
Such an ordered list will reflect either a clockwise (CW) or presence of irrelevant edges may invalidate the fact that only I -
counterclockwise (CCW) traversal of the regions and edges point extensions are required to find all connected s-t
incident with v. Similarly, a CW or CCW orientation can be separating sets. For this reason, it will be supposed
given to a region r, inducing an ordered circular list of the throughout that G is a graph without irrelevant edges. This
vertices and edges on its boundary: v0, e0 , v1, el .... vk.1, condition can be efficiently checked, using an algorithm of
ekti, v0. Here edge ei.1 joins vertices vi.1 and vi (modulo k) Hopcroft and Tarjan (1973).)

' -'-ing the size of the boundary of r To see how the processing works, let X be a connected s-t
(equivalently the degree of the dual vertex corresponding to r separating set and let v E X. The conditions for X+v to be a
in the dual embedding). connected s-t separating set are then:

Planar graphs can be encoded in a compact way for use in (a) v # t,
reliability analysis (Whited, 1986). In particular, the data (b) (X+v) must be connected (so v e F(X)),
structure allows easy access to (a) an ordered list of the edges (c) (X-v) must also be connected (so v cannot be a cut
and regions incident with a given vertex v; (b) an ordered list vertex of (X)).
of the edges and vertices on the boundary of a given region r: The crucial step in the Tsukiyama algorithm is determining the
(c) the two regions bordered by each edge; and (d) the set W(X) comprised of all vertices v for which X+v is a 1-
corresponding representation for the dual graph. Linear time point cxtension of X. The three conditions just stated give the

following description:
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W(X){ v E XI v# t, v e F(X), and v e K(X)), Table 3.1 Comparison of Algorithms on Four Test Examples

where K(X) is the set of all cut vertices of (X. Source n m CA T, T2  %A
It is important to note that determining K(X), and thus

W(X). for each connected s-t separating set X is the most time-
consuming aspect of the algorithm. A goal of this section is to Abraham (1979) 8 12 12 .0075 .0071 5.3
develop an efficient way to determine whether or not a given Locks (1979) 9 18 72 .0411 .0294 28.5
vertex v r X is in K(X) for the case when G is a planar Bailey/Kulkarni (1986) 17 25 1721 1.1518 .7609 33.9
graph. Fishman (1986) 20 30 7376 5.5945 3.5643 36.3

Suppose then that X is a connected s-t separating_.et of the
planar graph G, and let v be an element of F(X) ; X, v#t. T1 and T2 are the execution times in seconds for the original
Normally, determining whether v e K(X) is a "global" and modified Tsukiyama algorithms respectively;
operation in the sense that all of (X) must be examined (e.g. %A is (TI - T2)/T1 x 100%
by a depth-first search) to decide whether or not v is a cut
vertex. However, for planar graphs a "local" check suffices,
involving only the relationships among the edges and regions
surrounding v. We will use Cx to denote (X,X) and Rx to
denote those regions of G which have some edge of Cx on
their boundary. Also, as in Section 2, the ordered circular list
of regions and edges around v will be denoted by Av: r0 , e0 ,
r 1, e1 ... , rd. 1, ed_1, r0. Knowledge of which edges and
regions of Av are in CX and RX, respectively, will provide the v1()cniuu
"local" check indicating whether or not v is a cut vertex of
(R).

Note that v E F(X) implies that at least one edge of Av is in
CX; the connectivity of (X) implies that at least one edge of A,
is not in CX . Denote by Iv(X) the subset of Av containing the
edges and regions in CX and RX. We define Iv(X) to be a 0
contiguous subset of A, if for some j and k (modulo d)
I(X) = {rj, ej , ri+ , ej+I ... , rk, e k, rk+ 1 1. Examples of
contiguous and non-contiguous subsets Iv(X) of A, are shown
in Figure 3.1. The following result (Whited, 1986)
establishes the key relationship to W(X). v I,(X) not contiguous

Theorem 3.1 Let G be an undirected planar graph with a
fixed plane embedding and let X be a connected s-t separating
set of G. Then v r F(X) is not a cut vertex of (X) if and only
if Iv(X) forms a contiguous subset of Av.

The characterization in Theorem 3.1 yields a simple, local
check to identify whether or not v is in K(X), thus simplifying
the determination of W(X) for planar graphs. In addition, the
planarity of G can be used to establish efficient updating , P
schemes for various sets needed to calculate W(X). The
results of this section can be combined to produce a l(X) not contiguous
modification of the Tsukiyama procedure which enumerates all -v
s-t cutsets in an undirected planar graph. The modified
algorithm has the same worst-case complexity as that of
Tsukiyama (1980), which is O(ncst) for planar graphs.

Both the modified and original Tsukiyama algorithm have
been empirically tested on various examples taken from the
reliability literature with results shown in Table 3.1 (arranged In Iv (X)
roughly in order of increasing difficulty). The execution times
(on an IBM 3081-K mainframe) shown in the TI and T2
columns represent the total time taken to find all s-t cutsets in a - Not in Iv (X)
given graph after the initial set-up procedures have been
executed. The time required for set-up was virtually identical O In X In
for both algorithms and for all four problems, and amounted to
approximately .02 seconds in each instance. The results Figure 3.1 Examples of contiguous and non-contiguous lv(X)
indicate that the modified algorithm yields an improvement of
up to 36% over the Tsukiyama algorithm in these planar
graphs.

Also, the two algorithms have been empirically compared
for (p.q) grid graphs, consisting of p rows of q vertices
connected in a rectangular grid. In addition, vertices s and t
are added, with s adjacent to the p vertices in the first column
of the grid and t adjacent to the p vertices in the last column of
the grid. A (4,3) grid graph is pictured in Figure 3.2.

Figure 3.2 A (4,3) grid graph
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The grid graphs are of interest to us for several reasons. extension of Rp. Its proof readily follows from the
First, they exhibit a quite rapid increase in complexity with identification of s-t paths of G with s-t cutsets of G*.
problem size. For instance, a (3,2) grid graph has only 29 s-t
cutsets, a (4,3) grid graph has 426 s-t cutsets, and a (5,4) grid Theorem 4.1 Let P be an s-t path in the s-t planar graph 0.
graph has 16,347 s-t cutsets. Another reason for examining Then, Rp+r is a I-point extension of Rp if and only if the
grid graphs is that the dual of a grid graph is also a grid graph. boundary of r which lies on P forms a nontrivial subpath of P.
When the two algorithms were run on a variety of (p,q) grid Figure 4.2 shows examples of regions which satisfy this
graphs, the modified Tsukiyama algorithm again consistently requirement and of others which do not. Given a path P, its
outperformed the original procedure, with the percent set of associated regions Rp, and a region rc Rp, we can then
improvement averaging 21%. In the most difficult problems easily test by this theorem whether or not Rp+r forms a 1-
(requiring the generation of over 100,000 cutsets), the percent point extension of Rp. If Rp+r is a 1-point extension, then
improvement exceeded 40%, the (new) path Q associated with Rp+r is easily derived.

Namely, suppose, as in Figure 4.3, that P' is the u-w subpath
4. Enumeration of s-t Paths in s-t Planar Graphs of P ly'ing on the boundary of r, where u precedes w on P.

This section describes algorithms for enumerating s-t paths Let Q be the other u-w path on the boundary of r. Then Q is
i stnar graehs.fcrie algrati ofor uhaths-t is formed from P by replacing P' with Q'. Clearly, all that isin s-t planar graphs. Efficiet generation of such paths is required to obtain the vertices Vo and edges EOQ of Q fromQ.

crucial for carrying out the reliability computations of the ncxt those of P is a walk of the boundary of r to identify P' and
section. An s-t planar graph is one which can be embedded in
the plane with two specified vertices s and t lying on the
boundary of the exterior region. Equivalently, G is an s-t (s,t)
planar graph if G together with the edge (s,t) is planar. If G is
an s-t planar graph, then embed the graph H = G + (s,t) in the
plane and take its dual HD. The regions of H which lie on
either side of the edge (s,t) are identified with vertices sD and

tD of HD. The graph G* = HD - (sD.tD) is then called the s-t
dual of G. The important fact linking these two graphs is that
a set of edges forms an s-t cutset (path) in G if and only if the s t
corresponding set of dual edges forms an s-t path (cutset) in
G*.

Thus, one way to enumerate the s-t paths of G is to find its
s-t dual G* and then enumerate the s-t cutsets of G* using the p
modified Tsukiyama algorithm. In fact, one can devise an
alternative approach for s-t path enumeration that works
directly on the given graph. The key idea again is to consider
only I-point extensions of a given path, analogous to I-point Figure 4.2 Examples of regions illustrating Theorem 4. 1.
extensions of cutsets (Section 3). rl and r3 satisfy Theorem 4.1; r2 and r4 do not (subpath is

In the present case, a path P of G is associated with a setof trivial and intersection does not form subpath respectively)
reizion Rp, and the successors of P are determined by 1-point
extensions Rp+r of Rp. To define such a set of regions Rp
associated with an s-t path P, notice that CP = P + (s,t) is a
cycle of H = G + (s,t). By the Jordan Curve theorem, the
regions of H are partitioned into those "inside" CP and those
"outside" CP. Let cc be the region of H bounded by (s,t) and R
which is inside CP . The set Rp consists of (x and all other
regions of G which are inside CP; see Figure 4.1.

Figure 4.3 The paths P and Q' on the boundary of r

A formal algorithm can be based on this approach, in which
some improvements analogous to those presented in Section 3
are incorporated. The resulting algorithm has a worst-case
time complexity of O(npst), where Pst is the number of s-t
paths in G. Rather than pursuing this approach in more detail

in P in R P we turn to a different approach that has proved to be more
efficient in practice. This alternative approach to enumerating

Figure 4.1 Set Rp contains the regions inside the cycle P+(s,t) paths uses a depth-first search (DFS) of the graph. We now
consider how this approach can be modified to generate s-t

Having defined Rp, we next wish to determine all regions r paths P, together with their associated regions Rp, in the
such that Rp+r also corresponds in this way to an s-t path in presence of planarity. Although some extra work is required

G. Such a set Rp+r is called a I-point extension of Rp and to find these regions, they are useful (in fact, essential) for the
the path determined by it is called a successor of P. The s-t reliability calculations presented later.
following theorem, analogous to Theorem 3.1, describes a The use of a DFS to enumerate the s-t paths of a graph G

to be a I-point requires, for each vertex v of G, the set A(v) = (w E VI (v.w)
simple "lcal" condition required for Rp+r ttE E) of vertices adjacent to v. Suppose that P is a current
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path from s to v. We wish to extend P in all possible ways to Upper path U(P,Q)
an s-t path. The vertices in A(v) are scanned and each A )4 P
w e A(v) not already on P is used, in turn, to extend P to a
longer path by adding (v,w) and w. The search then proceeds
from each of these extensions in a recursive manner. If t is
reached then a new s-t path has been found. Such a
straightforward DFS procedure usually performs well in " - Q
practice, but can be inefficient in the worst case. Read and
Taijan (1975) give an example of a graph with m edges and
relatively few paths for which this algorithm requires on the Lower path L(P,Q)
order of 2m steps. Read and Tajan modified this basic DFS
approach so that the recursion proceeds only when it will Figure 4.5 Upper path U(P,Q) and lower path L(P,Q)
definitely lead to a new path. In essence, this is accomplished
by looking ahead, before extending P to w r. A(v), to Theorem 4.3 Let P and Q be two successive s-t paths found
determine whether or not this extension leads to some s-t path. by a DFS (node adjacencies scanned CW) of an s-t planar
This results in an O(mpsd algorithm for a graph with Pst paths, graph G. Then for some region r of G, Rp = RL(PQ) - r and
which is O(npst) for planar graphs. Subsequently it will be RQ = RU(p,Q) +
assumed that the basic DFS procedure has been modified in
this fashion. The proof of this result relies on two facts, which can be

To aid in generating the region sets Rp at the same time, it readily established. First, whenever some portion of Q lies
will be convenient to use a partial ordering on the set of s-t below P, this portion can bound only one region r. Second,
paths. Namely, if P and Q are two s-t paths such that Rp - only one portion Q' of Q lies below P: if Q again meets P after
RQ, then P , Q in the partial order. For convenience, s and t going below it, then Q will remain on or above P. Theorem
can be thought of as being on the boundary of the exterior 4.3 yields a convenient method for finding RQ. Namely, first
region. Then the relation P t, Q just means that P lies walk P and Q until they differ, identifying r as the region"above" Q (Kulkarni and Adlakha, 1985); see Figure 4.4. bounded from below by Q'. Next, RU(pQ ) is known since

RU(PQ) = Rp n RQ C R O implies U(PQ) '. Q and so by our
(s,t) previous observation U(P,Q) is found before Q. In this way,

e 'S't)R =RU(pQ)+r can be determined.
Together these three results produce an efficient DFS path

enumeration procedure for undirected s-t planar graphs which
not only finds all s-t paths, but also finds Rp for each path.
One particular implementation issue deals with locating
U(P,Q), and thus RU(pQ), among :i.e paths already generated.
Since there are often many paths in even relatively small

3 8 graphs, to store all paths previously generated and search the
entire set would be expensive in both storage space and

Figure 4.4 Example of two paths P and Q with P ,', Q; execution time. We can show that at most rG = m - n + 2
P=(2,4,61, Rp=(a,e}; Q=(3,8j, RQ=fa,b,c,d,e) paths need to be stored at any one time, where rG indicates the

number of regions of the planar graph G.
In carrying out the DFS, the order in which paths are These paths P (kept as a stack) are a subset of those paths

enumerated is determined by the order in which the vertices in satisfying P ), Q, each differing from the previous by a single
each of the sets A(v) are processed. For a planar graph G, it is region in Rp. Either the top of the stack is U(P,Q) or is
natural to order these sets in a manner consistent with a plane removed and will never be needed again in searching for
embedding of G. Specifically, we use a CW orientation U(P,Q) (Whited, 1986). These results yield an O(npst)
around each vertex v to make A(v) an ordered circular list algorithm for generating all paths in an s-t planar graph.
denoted w0 , w 1.  wdtl, w0 . If v is reached from wi in the
DFS, then the other vertices around v will be considered in the 5. Pseudopolvnomial Algorithms for Network Reliability
order wi 1 , wi+2 ., wi.I (mod d).Several results follow In this section, we discuss how the enumeration of s-t
from this scheme (Whited, 1986): cutsets and s-t paths can aid in calculating Rst(G), the

(1) If an s-t planar graph is embedded so that s and t lie on probability that s and t are connected in a graph G with
the border of some region a (say, the exterior region), stochastically failing edges. Each edge i of G is assumed to
then the search can be restricted each time a vertex operate independently with probability pi. As discussed in
lying on the boundary of a is encountered. Section 1, if Ei is the event that all edges in path Pi operate,

(2) The DFS can be performed so that P is found before Q then the s-t reliability is given by
whenever P ), Q.

(3) The regions RQ can be determined easily from a know- Rt(G) = PriE t u E2 U ... u Ek! . (5.1)
ledge of the regions Rp for each of the paths P ), Q. In a similr wy if F is the event that all edges in cuiset C

The third result is essential to calculation of s-t reliability fa il en if Fi  ite of G in
and hence is presented in more detail. Given any two s-t paths fail, then the s-t unreliabihty of 6 is
P and Q, define two other s-t paths as follows. The upper U, (G) = I - R,. G) = Pr[ F I F, u .. u FJ (5.2)
path U(PQ) is determined by the boundary of the set of " " t "
regions RU(p 0) = Rp r- RQ. Similarly, the lower path L(P,Q) Various techniques, such as inclusion-exclusion, for
is determinedby Rt & Rp u RQ , As seen in Figure 4.5, calculating Rst(G) or Ust(G) require (in the worst case) an
U(P,Q) is formed by choosing the first path in a CW traversal amount of work that is e.ponential in the number of objects
whenever P and Q cross, and L(P,Q) by choosing the last. (paths, cutsets). We would like instead a method that is
Now suppose P and Q are two successive paths found by a polynomial in the number of objects.
DFS algorithm. The next theorem (Whited, 1986) shows that Provan and Ball (1984) have shown how to calculate
Ut(P,Q) and L(PQ) can be used to find RQ. Ut(G) using a certain partial order imposed on the s-t cutsets.

Rheir algorithm is psetulopolvnonial: namely, it has a worst-
case time complexity O(mr2) which is polynomial in r. the
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number of s-t cutsets of G. More generally, Shier (1988) has then Si ), Si whenever Xi ) Xj. The cutsets and associated
shown how the Provan and Ball method can be generalized partial order is shown in Figure 5.3.
and applied (for instance) to the calculation of Rst(G) using the
paths of s-t planar graphs; also see Whited (1986).

Let E = (e1 ... , em) be the set of edges and let S = (S ,
Sr be a collection of subsets of E. (For example, the

subsets might be s-t paths or s-t cutsets.) Each edge has two
states, active and inactive. A set Si - E is called active if all its
components are active. We suppose that the collection S
forms a partial order ), having the semilattice property:
namely, any two S- S e S have a unique greatest lower
bound Si A Sj. Two alditional requirements are imposed
here.

(1) Closure: If S i and S. are active then Si A S i is active.
(2) Convexity: If e E Sii and e e Sj then e E Sk for any

Si Sk Sj.
For example, suppose we define the partial ordering )' on the
s-t paths of any (s,t)-planar network as done in Section 4.
Namely, Si ', Si if path Si is geometrically "above" path Sj.
In this case, the greatest lower bound of Si and Sj is just
L(Si,Si), as defined earlier.

As an example of this ordering, consider the undirected
graph G in Figure 5.1. The seven s-t paths and associated
partial order is depicted in Figure 5.2, where each set Si is
represented by a node and the link from Si down to Sj in the
diagram represents the relation Si >, Sj. In this representation, Figure 5.3 Partial ordering of s-t cutsets
any relations that can be inferred from the transitivity of t. are
not explicitly represented by links. We shall denote by Ai the event (S i is active). Then our

reliability calculations reduce to evaluating Q(S) = Pr(Al U A2
a 44VC u ... uU Ar). If we interpret "active" as meaning "functioning"

and if Ai is the event that path Si is functioning, then Q(S) is
7 simply Rst(G), as seen from (5.1). If "active" means "failed"

and Ai is the event that all edges in cutset Si have failed, then
3(S) is Ust(G), from (5.2). It is to a general algorithm for
calculating 12(S) that we now turn.

Because the events Ai are not disjoint, we will instead
2 b 6 define events Li that are disjoint by using Li = (S i is the

"lowest" active set in S). For example if only edge 4 fails in
Figure 5.1, then S 1, S2, S3 and S 5 are the active sets in Figure

Figure 5.1 Example network 5.2 (none contain edge 4) and event Lt occurs. If the sets
satisfy the closure and convexity properties stated earlier, then
the events Li will indeed be a partition of the space At u A2 U
• ... u Ar. As a result, U2(S) will equal the sum I Pr(Li). As
shown by Shier (1988), a general recursive algorithm can be
obtained that expresses Pr(Lj) in terms of Pr(Aj) and earlier
determined Pr(Lj) values:

Pr(L) = Pr(Aj)- ' Pr(Li)ctij, (5.3)

(2,3,4,7) (1,3,5,7) (1,4,5,6) where tii = H Pr(e is active: e E Si - Si}.
There are r equations represented in (5.3), each of which

involves at most O(r) terms. Furthermore, each term requires
at most O(m) operations to be carried out. Thus, the worst-
case complexity of this method of calculating Q(S) is O(mr 2).
In other words, reliability can be calculated for planar graphs
in pseudopolynomial time when the s-t paths and s-t cutsets
can be suitably ordered. Also, if every edge is assigned a
common reliability value p, then the reliability (or unreliability)
can be expressed as a polynomial in p (or in q = I - p) using
this same method. The pseudopolynomial algorithm embodied
in equation (5.3) can now be combined with the previous
algorithms for efficiently generating the s-t cutsets in planar
graphs or the s-t paths in s-t planar graphs.

This combined approach has enabled the calculation of
Figure 5.2 Partial ordering of s-t paths reliability for some very challenging networks in the literature.

We summarize the computational results for a number of (pq)
On the other hand, we can consider the s-t cutsets of this grid graphs in Table 5.1. This table lists the size of the grid

graph. Now each such cutsetS i can be represented as networks (n vertices and m edges), the number of s-t cutsets
Xi,Xi), with s e Xi and t E Xi. A natural partial ordering is (Cst), and the number of s-t paths (Pst) In addition, the total

computation times on an IBM 30RIK mainframe are included
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for calculating reliability using the s-t cutsets and also using M.P. Bailey and V.G. Kulkarni, A recursive algorithm for
the s-t paths. It should be emphasized that rather than simply a computing exact reliability measures. IEEE Trans.
single numerical answer, we obtain a functional form for the Reliability R-35 (1986) 36-40.
reliability polynomial expressed in terms of the common edge
reliability p (using the s-t paths) and for the unreliability R.E. Barlow and F. Proschan, Statistical Theory of Reliability
polynomial as a function of the common edge failure and Life Testing. Holt, Rinehart, and Winston, New York,

probability q (using the s-t cutsets). 1975.
It is seen that there can be either more s-t cutsets or more s-t M.Bellmore and P.A. Jensen, An implicit enumeration scheme

paths in such graphs, depending on the grid graph parameters. for proper cut generation. Technometrics 12 (1970) 775-
Calculation is clearly preferred using the smaller number of 788.
generated objects, and this justifies our emphasis on efficient S. Fishman, A Monte Carlo sampling plan for estimating
generation of both paths and cutsets in planar graphs. Note
that the (3,5) and (6,2) grid graphs are in fact duals of one network reliability. Operations Research 34 (1986) 581-
another, this is manifested as the number of cutsets of one 594.

equals the number of paths of the other. Also, the (4,3) grid J. Hopcroft and R. Taijan, Efficient algorithms for graph
is self-dual: it has the same number of s-t paths as cutsets. manipulation. Communications of the ACM 16 (1973) 372-
Comparison of the associated CPU times for such (dual) grids 378.
reveals that path generation is somewhat faster than cutset V.G. Kulkari and V.G. Adlakha, Maximum flow in planar
generation, other things being elual. networks with exponentially distributed arc capacities.

Table 5.1 Pseudopolynomial calculation of reliability for grid Commun. Statist. Stochastic Models 1 (1985) 263-289.
graphs M.O. Locks, Evaluating the KTI Monte Carlo method for

system reliability. IEEE Trans. Reliability R.28 (1979)
p q n m Cst Psi T, L2 E.F. Moore and C.E. Shannon, Reliable circuits using less

2 6 14 20 49 128 .124 .400 reliable relays. J. Franklin Institute 262 (1956) 191-208,
3 3 11 18 80 95 .208 .245 281-297.
3 4 14 23 195 313 1.165 2.120 J.S. Provan, The complexity of reliability computations in
3 5 17 28 444 1,033 5.834 20.724 planar and acyclic graphs. SIAM J. Computing 15 (1986)
3 6 20 33 969 3,411 28.375 197.402 694-702.
4 2 10 18 95 80 .264 .196
4 3 14 25 426 426 4.464 4.103 J.S. Provan and M.O. Ball, Computing network reliability in
4 4 18 32 1,745 2,320 68.975 100.724 time polynomial in the number of cuts. Operations
5 2 12 23 313 195 2.358 1.116 Research 32 (1984) 516-526.
5 3 17 32 2,320 1,745 110.134 64.005 R.C. Read and R.E. Tarjan, Bounds on backtrack algorithms
6 2 14 28 1,033 444 22.460 5.623 for listing cycles, paths, and spanning trees. Networks 5

T, is execution time in seconds, using s-t cutsets; T2 is (1975) 237-252.

execution time in seconds, using s-t paths; Times do not A. Rosenthal, Computing the reliability of complex networks.
include set-up time of approximately .02 seconds per problem SIAM J. Applied Mathematics 32 (1977) 384-393.

D.R. Shier, Algebraic aspects of computing network
reliability. Proceedings of the Third SIAM Conference on
Discrete Mathematics, Clemson, S.C., (1988) 135-147.Acknowledgement. This research was supported by the
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DETERMINING PROPERTIES OF MINIMAL SPANNING TREES BY
LOCAL SAMPLING

Willian F. Eddy* Allen A. McIntosh t

Carnegie-Mellon University Beilcore

ABSTRACT The work of Steele et al. (1987) demonstrated
that Oen,k,d, the fraction of vertices of degree k in

Let a,,,k,d be the fraction of vertices of degree k a minimal spanning tree of the complete graph
in a minimal spanning tree on a random sample on n random vertices in d dimensions, converged
of n vertices in d dimensions. Steele et al. (1987) with probability one to the fraction ak,d inde-
show that as n increases a,!,k,d converges with pendent of the sampling distribution. We are
probability one to an unknown constant ak,d for interested in "determining" the fractions Cfk.d for
any sampling distribution having a density in Rd. d = 2. In Steele et al. (1987) there is some spec-
They perform a small scale simulation experi- ulation concerning the possibility that the con-
ment to determine {ak,2, k =1, . .. , 5} by esti- stant al, 2 = 1. One of our motivations for this
mating a,.,&,2 for increasing values of n when ver- work was to attempt to assess the validity of that
tices are distributed uniformly in the unit square. speculation.
Here, we estimate {ak.2} directly by systemati- Our approach differs from the straightforward
cally sampling the neighborhood of a particular approach taken in Steele et al. ',1987). They
vertex of the Poisson process with constant inten- generated random samples of sizf n from a uni-
sity in 2 dimensions. The method easily general- form distribution on the unit square and let n
izes to higher dimensions. We dibcuss a variety of range from 16 to 65536. For each value of n only
algorithms used to improve the efficiency of the 20 minimal spanning trees were built. The to-
sampling scheme. tal number of vertices they examined was ab- at

2.6 x 106. Their approach suffers from two draw-

l INTRODUCTION AND SUMMARY backq. One drawback is the finite sample size n.
The fraction al.2 is an "asymptotic" constant.

Let G = (V, E) be a connected graph with ver- The theory derives this constant as a limit when
tex set V = {v} and edge set E = {e}. Let w(e) n - oo. The second drawback is the effect of the
be a real number called the length of edge e. A edges of the square. It is reasonable to suppose
minimal spanning tree T of G is a connected sub- that leaves are more frequent near the "edges" of
graph of G with vertex set V and edge set E' C E the sample. For fixed d this effect may diminish
such that as n increases.

E w(e) The details of the theoretical derivation in
eEE' Steele et al. (1987) depend on the closeness of

is as small as possible. From a slightly different a homogeneous planar Poisson process to a sam-

viewpoint, a graph T is a tree if it is connected ple from a uniform distribution on the square.

and has no circuits. A graph T is a spanning tree In fact the constants ak,2 are actually properties

of a graph G if T and G have the same vertex set of the homogeneous Poisson process. Here we

and T is a tree. A graph T is a minimal spanning will generate partial realizations (subsets) of the

tree (MST) of a graph G if it is the "shortest" homogeneous Poisson process and will determine

spanning tree of G. the vertex degree of only one vertex vo. The sub-
sets only contain vertices in the vicinity of the

*Professor of Statistics, Department of Statistics, chosen vertex. One additional benefit of our ap-
Carnegie-Mellon University, Pittsburgh, PA 15213-3890. proach (which we have not taken advantage of)
The work of this author was begun witile he was a Resi-
dent Visitor at Bellcore, Morristown, NJ and was partially is that properties other than MST ertex degrees
supported by the Office of Naval Research under Contract could be determined in the same way (for ex-
N00014-84-K-0588 and Contract N00014-87-K-0013 and ample, the number of Voronoi neighbors). The
National Science Foundation Grant DMS-8704218. Voronoi polygon of each vertex of the Poisson

t
Member of Technical Staff, Statistics Research

Group, Bellcore, 445 South Street, Morristown, NJ 07960- process is that subset of the plane consisting of
1910. all points which are closer to the given vertex
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than to any other vertex of the Poisson process. sets V0, Vl,. . . where V, contains the n, nearest
Two vertices of the Poisson process are Voronoi neighbors of vo. Thus,
neighbors if their Voronoi polygons share a com-
mon edge. Vo {Vo}

Our approach is to generate a local piece of
the Poisson realization by generating the vertices and
of the process which are nearest to vo. We de- V0 C V1 C
termine as much of the MST locally as we can, This is not a new idea; see, for example, Quine
beginning at vo. The vertex degree of v0 in this and Watson (1984).
partial MST is a lower bound on its vertex de- The advantage of this procedure in applica-
gree in the full MST of the entire Poisson process. tions such as ours is obvious; it is only necessary
We continue sampling and generating more of the to generate as much of the Poisson process as is
MST until all the Voronoi neighbors of v0 have necessary to determine the property of interest.
been joined to the MST. At this point the vertex Of course, it has the disadvantage, compared to
degree of vo is exact. This naive approach gener- the procedure in Steele et al. (1987), of requiring
ated a new problem: the procedure often requires the generation of a great many more vertices.
generation of very, very, large numbers of vertices
of the Poisson process. A first revision of this ap- 3 DETERMINING VERTEX DEGREE
proach was to "grow" the MST simultaneously
from many vertices. This provided considerable In this section, we develop an algorithm to find
improvement but was still unsatisfactory. Our the asymptotic degree of a vertex in a given real-
second modification was to determine an upper ization of the planar Poisson process. More for-
bound on the vertex degree of v0 by determining mally, if Vo, V 1,... is a sequence of circular sub-
the full MST of the subset of the Poisson process. sets constructed as in the previous section, with

In section 4 we give our estimates of the ok,2 Vo C V, C ... , and d, is the degree of vertex
together with some "conservative" 95% confi- vo in the MST of V,, we develop an algorithm
dence intervals. These estimates are based on to determine lim,_ , d,. By running .his algo-
determining the vertex degree of approximately rithm on a large number of realizations, we may
1.6 x 106 vertices (but required the generation of obtain k = fk, the observed relative frequency
a much larger number of vertices of the Poisson of vertices of degree k.
process) This procedure is very computationally inten-

sive. It generates a subset of the planar Pois-

2 SAMPLING A POISSON PROCESS son process, computes a property (vertex degree)
of one vertex, then throws the subset away and

Let v,, be any vertex in the homogeneons Pois- starts over. Why not compute the degree of more
son process with intensity A in d dimensions. than one vertex in a given subset? This would be
Let R1 , R2 . ... be the ordered distances from v,, possible, in theory. In practice, however, we are
to the other vertices. The joint distribution of interested in frequency estimates whose uncer-
RI, R_ . . is known to be exactly the same as the tainty is easily computed. If we examine one ver-
distribution of the ordered distances from the oN- tex from each realization, the observed frequen-
gin for a homogeneous Poisson process on the line ci,,s have a inultiniomial distribution. Statdard
with intensity proportional to \. See, for exam- errors and confidence interv;ds may be (,1po t-d
pie, Kendall arid Moran (1963). Since tie honi,- using standard statistical theorv. If w, exan-
geneous planar Poisson pro'ess is isotropic. it is inc more than (,n v,.rtcx. ti,'' distributio n of the
easy to see that tihe ordered distances from a Ito- o)bservedl fre(tpen oi1s i i s onk wn. and w, wArlt
nogetneous linear Poisson process paired together hav. lo verify elemnnttrv assumptions (,.g. t hat
with angles unifornilv distributed ,,in t.-. .y-il ' . i (t'x 1)(( t.,I i-u,
a planar pro(ess whi, I is Poiss',,0.

Since, in our applicatioin, w- antii;te ll'tng 3.1 A Naive Algorit im
onlY thrsef vertir,. of the Po,sson Jper ...s whi, h In IixeI sutsaptt
are near neighhors of th,. chosn ve-rt,x t', W1

I s f I ,- p r ( ,, in a n , d r d h 'o t h '. \ I S" I ( .ill b . b u il t I .v tl p c tl 1 ,1- 1 h +
generate the vertices '4 th I, proi es, in at ,.r,,r, tfi s
fa.shion. More preisely, w,- defitn in in, r, Ltst n
sequence of sanlpl sizes rr. I. '. . .and w,' PI: Any I,, I.it .,fI V. t I, , tn, t,,i I t I
g--nerat, - :in incr,.-Lsing se4tltul-Cie of ir, u sul, ti' , st ,it 16: I,,i

1 l m ull mllll Ill I; 1 " ?



P2: Any tree can be connected to a nearest Table 1: Number of Vertices Required to Deter-

neighbor by the shortest available edge. mine Vertex Degree in 5000 Realizations

In particular, the MST may be built by applying

P1 to the vertex vo, followed by n-2 applications Number of Algorithm

of P2. Vertices Naive Rev. 1 Rev. 2

To these two principles, we add a third princi- 0-64 1066 1857 4435
ple and a stopping rule: 65-128 425 682 247

129-256 404 521 154

P3: If the edge to be added by P1 or P2 is 257-512 383 484 84

longer than the shortest distance from the 513-1024 342 322 45

vertex (P1) or tree (P2) to the edge of the 1025-2048 266 251 19

sampling region, sample more vertices and 2049-4096 196 235 11

try again. 4097-8192 155 148 4

8193-16384 112 106 0

Si: Stop when vo and all its Voronoi neighbors Failure (> 16384) 1651 394 1

appear in the same MST.

By applying P1 to the vertex vo, and then

applying P2 and P3 as often as necessary, the Prim's algorithm, trees tend to grow "uphill" to-

algorithm stops with the degree of vo equal to wards areas of greater vertex density. If some of

imn,- d. To see this, consider the opera- the Voronoi neighbors of v0 lie across a "valley"

tion of the algorithm on some subset Vk of ver- in the vertex density, the MST may grow very

tices. Prinriple P3 guarantees that the only large before crossing the ,lley. For example, in

edges added to the tree are those that will be in Figure 1, the unconnected Voronoi neighbor is

the MST of subsamples Vk+l, Vk+2 ... Once vo part of a small cluster of vertices separated from

and its Voronoi neighbors are in the same tree, the remaining vertices by a relatively large gap.

adding anothei dge between v0 and one of the The MST might cross the gap eventually; we gave

Voronoi neighb, -s will create a cycle. Since the up waiting after sampling 32768 vertices.

only edges having vo as one endpoint must have

a Voronoi neighbor as the other eicdpoint, we see 3.2 Revision 1

that no further MST edges can have v0 as an

endpoint. Based on results similar to those in Table 1, we

The performance of this algorithm is poor. Ta- concluded first that it was not clear that our al-

ble I shows the results of running the algorithm gorithm would ever t 'rminate in many cases, and

on 5000 realizations of the Poisson process. In second that even if it did terminate, it would re-

over 30 percent of these (1651/5000) the algo- quire too much computer time. Accordingly, we

rithm terminated after sampling 16384 vertices set out to modify our algorithm.

without determining the vertex degree of v,. By applying principle P1 more than once, it

At our talk in Reston, we showed a video- is possible to use Prim's algorithm to grow more

tape illustrating the performance of this algo- than one tree at a time. We modified our algo-

rithi and the other algorithms discussed below. rithm first to apply P1 to all the Voronoi neigh-

Figure 1 was adapted from the videotape. t,,) is bors of t,, and later so that it "grew" trees wher-

the large filled circle in the center of the figure. ever it could (up to a linut of about 50). We

The small filled circles represent other vertices felt that this might provide more opportunities

in the MST. The edges of the MST are repre- to cross "valleys" in the vertex density. For ex-

sented by line segments. The concentric large cir- ample, consider the unconnected Voronoi neigh-

cles show successive circular subsets. Each subset bor in Figure 1. If a tree is started here, it grows

contains twice as many vertices as the previous to connect all the vertices in the isolated cluster.

one. The outer circle contains 2048 vertices. The The next edge added connects this tree with the

filled circle immediately to the left of v,, is the one tree containing v,,. The final configuration, with

Voronoi neighbor not included in the MST. a single tree containing v,, and all its Voronoi

Reasons for the poor performance of this algo- neighbors, is shown in Figure 2. It contains only

rithm are not hard to find. It is well known (see 512 vertices, a substantial iinprovenient.

for exaninle Bentley and Friednman 1978) thal in In general this extension produced consider-
t,, rnistru, tion r-f minimat spanning zees by able i,,,r,'venv't. . ':able 1 hows, our revised
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Figure 1: Naive algorithin applied to a sample of 2048 vertices
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Proof This is the contrapositive of Lemma 2.1

0 00 0 00of Steele et al. (1987). 0

00 00 0 00o 00 Now consider some circular subsample Vk of
000 vertice., generated by the algorithm of the previ-
0% 0 ~ ous se:tion. The algorithm provides dk, a lower

bound on the degree of v0 , and aset of trees. Sup-
0 0 pose that no more edges can be added to these

0 trees withot sampling more vertices. Instead of
0 c doing this, the revised algorithm remembers the
0o  trees and then uses principles P1 and P2 to turn

0 the trees into the full MST of VL. Provided that
0 0 all the Voronoi neighbors of vo are in Vk, Lemma

3.1 states that the degree of vo will never exceed
0' 0 the degree attained in this full MST, and hence

00' 00 -0° 00 0 o6 0 is an upper bound on the degree of VO in Vk+1,
qVk+2 .... If the degree of v0 is dk in the full MST,

that is, if the degree did not change when the full

Figure 2: The algorithm, including our first revi- MST was built, then the lower and upper bounds
sion, applied to the sample of Figure 1. are equal, and the algorithm can stop. On the

other hand, if edges were added to vo, the up-
per bound is greater than the lower bound. In

algorithm was unable to determine the vertex de- this case, the algorithm must return to the trees
gree of vo in less than ten percent of the sam- saved earlier apply P3, and continue on.
ples (394/5000), and in general needed to look at Figures 3 and 4 illustrate this algorithm in op-
fewer vertices. eration. The dotted lines represent edges added

Unfortunately, the improvement, was not in building the full MST; the circular subsamples
enough. We conjecture that if we let this algo- are respectively the first subsample (Figure 3)
rithm sample up to 100,000 vertices, we would be and the first two subsamples (Figure 4) from Fig-
unable to determine the degree of v0 roughly one ure 1. In Figure 3, the algorithm has started to
percent of the time. With this much uncertainty, build the MST, and has added six edges. An
the simple confidence limits for 0 1, 2 constructed edge has been added to v0 . At this point, the
in Section 4 would always include 5. It might algorithm recognizes that the upper bound on
have been possible to obtain narrower confidence the degree of v0 is at least two, while the lower
limits by treating the unresolved cases as cen- bound is one. Construction of the rest of the
sored in some fashion. We felt that we did not full MST is pointless. In Figure 3, the algorithm
know enough about the censoring mechanism to has sampled more vertices, expanded the existing
make this feasible, trees, and created some new ones. This did not

produce a tree containing t, and all its Voronoi
3.3 Revision 2 neighbors, so the full MST was built again. This

Two very important points provide us with a re- time, the degree of u,, did not change. Thus, the

vised and (at long last) useful algorithm. First, tipper bound on the degree is now equal to the
lower bound, and no further sampling is needed.

as discussed above, the algorithms outlined so

far compute a lower bound on the degree of t, Table shows that this revised algorithm
Edges can be added to u~o at any step, but can needed 64 or fewer vertices to determine the de-
never be deleted. Second, it is possible to com-
pute an upper bound on the degree of v,,. When gree of , in nearly ninety percent of the samples
the upper and lower bounds are equal, no more (4435/5000). The one case requiring more than
vertices need be sampled. 16,384 vertices was resolved with 32,768 vertices.

The upper bound may be obtained from the
following 4 RESULTS AND DISCJSSION

Lemma 3.1 Consider the full miiial spanning In theory, it is oily necessary to sample enough
trees of two sets S and q, of vertices, ,,ith S1  vertices to inake the nearest neighbor distance
S-. Ife {v, ?'} v, an edge of the complete graph less than the distance to the edge of the sam-
on Si uth c V MST(S), then c r, MST(S,). pling region. In practice, the nearest neighbor
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Table 2: Observed Vertex Degree in 1,677,576
Simulation Runs

Degree Resolved Unresolved
k mk mknk+l

1 371032 60
2 948732 53
3 345270 3
4 12424 0
5 2 0

Table 3: Confidence Intervals for ak,2

Degree 95% Confidence
k Interval

1 0.220543 0.221836
2 0.564787 0.566355
3 0.205203 0.206460
4 0.007276 0.007537
5 * *

Figure 3: The final revised algorithm applied to
the first subsample of Figure 1

algorithm that we use (Friedman et al. 1977)
has a high setup cost. To keep the overhead cost

down, we double the sample size 2zh timc -%',
need to sample more vertices.

Bentley and Friedman (1978) suggest that
the performance of their algorithm may degrade
when it is used to construct the MST of a large

set of vertices. We observcd this behavior when
building the full MST, but not when building tree
fragments. This is consistent with their explana-
tion. We found that using an algorithm due to

Dwyer (1987) to build the full MST when the
number of vertices was large (more than 16,384)

made the simulations for large cases run two or-
ders of magnitude faster.

4.1 Confidence Intervals

A summaiy of the raw figures from our simula-
tion study is shown in Table 2. Cases that could
not be resolved by sampling 131072 vertices have
been tabulated according to the lower bound on

the degree of ,(,. In all cases the upper bound

on the degree is one larger. Confidence intervals
for the 0 k.2 are shown in Table 3. Since we ob-
served only two vertices of degree five, we have

Figure 4: The final revised algorithm applied to ntsonacniec nevlfr~ 'h n
the econ subampe ofFigue Inot shown a confidence interval for 0o. . The in-

the second subsample of Figure 1 terva] for aj.1 does not lend support to the spec-

tilation that o l.2

''le confidence intervals were constructed as

follows: Let Itmk be the number of vertices whose
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degree is known to be k, mk,k+1 be the number
of vertices whose degree has not been deternined Table 4: Estimated Values of Qk2

but is known to be k or k+ 1, and m be the total k 6

number of simulation runs. (For our data, m =1 0.221182
1,677,576, ml = 371, 032, m,2 = 60, and so on.) 2 0.565586
Since simulation runs are independent, we may 3 0.205825
view the occurrence of a vertex of degree k in 4 0.007406
a given run as a Bernoulli trial with probability 5 0.000001
ak.2. If we knew the exact vertex degree in every
simulation run, we would estimate ak.2 as

&k.--2 =A = m-1
m a fairly sophisticated function maximization rou-

and then construct confidence intervals using the tine (Gay 1983) and the initial estimates

usual normal approximation. Although we do
not know the exact vertex degree in every run, a 1 .2  -(1 +
we may still construct conservative confidence in- m Ml + m 2

-, r12  )22.3tervals. If all vertices whose degree has not been a 2,2  - " (1 + -- + -- )

determined but is known to be k - 1 or k had m MI + M2 M 2 + M 3
MZ3 M2T2 3  + 7n3. 4

degree k, and all vertices whose degree has not a 3,2  -(1 + - +mT in 2 + m 3  mr3 + mr4
been determined but is known to be k or k + 1 M4 M 3 M3 4 4

also had degree k, we would estimate ak.2 as a 4 ,2 - ((1 + +M + )
in m 3 + in 4  m 4 + in5

5  7n 4.5Mk + Mk-l,k + mk.k+i a 5, 2  = -1 --
Mk,2 - m m 4 + iM5

If all vertices whose degree has not been deter- These initial estimates allocate unresolved cases
mined but is known to be k - 1 or k had degree based on the observed relative frequencies of re-
k - 1, and all vertices whose degree has not been solved cases. The maximization routine was un-
determined but is known to be k or k + 1 had able to do any better than the initial estimates.
degree k + 1, our estimate of ak,2 would be The values of the initial estimates are shown in

Table 4.Mk
ak,2 - -

In either case, the usual normal approximation 4.3 Discussion
may be used to construct confidence intervals.
By taking the union of the two intervals formed The estimates in Steele et al. (1987) agree with
in this way, we obtain a conservative confidence ours to two decimal places for samples as small at
interval for ak.2. 256 vertices, and to three decimal places for sam-

ples of 4096 vertices. This suggests that edge ef-
4.2 Point Estimates fects decrease rapidly as n becomes large. It also

Producing point estimates is more difficult. We suggests that the constants a,,.k,2 approach ak.2
may write a log likelihood function for the ob- at a reasonable rate. Thus, it ought to be possi-served counts as ble to estimate 0k.4 in more than two dimensions

by generating vertices uniformly inside a d-cube,

log £(al,2 , 02.2 , a3.2, 04 2 , a5,2) building the niinimal spanning tree, and tabu-
lating the observed relative frequencies of each

Smlogo k. 2 + vertex degree. Examination of the behavior of

these frequencies should give sonie idea of how

4 large the saniples should be. If we sound cau-

y 4 1 log(ok2 t- kt1.2). tious here, it is because intuition on this problem

has been wrong in the past. Our methodology
also generalizes, and hence our stud *y could he

Finding a maxim umi of this analytically appears rvp-atcd in (say) three diimension-s as a clieck on
to be difficult. We tried to inaximnize this using intuition.
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MATRIX COMPLETIONS, DETERMINANTAL MAXIMIZATION AND MAXIMUM ENTROPY
Charles R. Johnson*, The College of William and Mary

Wayne W. Barrett, Brigham Young University

1. Introduction which "patterns" for the specified entries
A p_..t j.matrix is one in which some ensure an affirmative answer to the matrixentries are (numerically) soecified and the completion problem, as long as specifiedremainder are ueified, i.e., left as free submatrices meet the obvious necessaryvariables over some set (e.g., the field of conditions? The next section will reviewcomplex numbers.) An example is the solution to the completion problem forpositive definite matrices.

2 -0 2. Positive Definite Case (General
? 2 0 Theory)

We begin by defining terms and
introducing notation we need to describein which the "?"'s indicate unspecified these results. A partial Hermitian matrixentries. A comoletiin of a partial matrix is A= (a j) is a square partial matrix whoseL.imply a specification of the unspecified aii

entries, resulting in a conventional matrix, specified diagonal entries are real and suchFor an indicated class of matrices (such as that if a.. is specified, then so is a.., with
positive definite, or rank < k), the matrix a. .=a. . A partialpositive definite matrix
completion problem is to identify partial J j I
matrices for which there is a completion in is a partial Hermitian matrix each of whose
the indicated class. specified principal submatrices is positive

Among the completion problems that have definite. (By a specified portion of a partial
been considered are: positive definite matrix we always mean one composed
completions [B, DGo, GJSW]; inertia entirely of specified entries.) Partial
possibilities [JR1]- contractions with oositive semidefinite matrices are defined
respect to the spectral norm [JR2]; similarly. We say that a partial positive
minimum rank completions [W, JRW]'; definite (positiv, semidefinite) matrix is
positive definite Toeplitz completions completable if it has a positive definite
(Johnson and Rodman have been studying (positive semidefinite) completio',. If A is
extensions of and a converse to the an n-by-n partial (or full) Hermitian matrix
classical Caratheodory/Fejer theorem); and iac{1,2.n} is an index set, A[xlcompletions of a Toeplitz contraction [JR4]; denotes the principal submatrix of Aand completions which maximize the contained in the rows ard columns indicated
minimum eigenvalue of a partial Hermitian by a.
matrix [JR1]. Others which might be We illustrate wi'il the simple special
considered include stability, controllability, case
etc. 

a 1 b1 x
A feature common to many matrix a b 222completion problems is that the class of A a b2  (2.1)matrices of interest has an "inheritance L b2  a

property". Namely, all principal
submatrices or all submatrices of the given in which x is the one unspecified entry.
m atrix are in the sam e class. For exam ple, (T h ich w rs t an unspecified airall principal submatrices of a positive (Throughout we refer to an unspecified pairdefinite matrix are positive definite and all (x, R) as one unspecified entry.) The obvioussubmatrices of a rank < k matrix have rank < necessary conditions that A have a positivedefinite completion 

are:k. This imposes a necessary condition onany partial matrix that it be completable to
a matrix in such a class; namely, any fully 1 2 3specified submatrix of the necessary sort
must be in the desired class. a 1 bI a2 b2>0 0 > 0 (2.2).This raises a natural combinatorial b a b a
question: Given some class of matrices, 1 1 2 3
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By the well known criterion that a completion is again a disc in the complex
Hermitian matrix is positive definite if its plane and the center gives the maximum
leading principal minors are positive [HJ, p. determinant. Again the 1,n and n,1 entries

404], we see that A is completable if x can of the inverse being 0 characterizes the
be chosen so that detA>0. It is a determinant-maximizing completion. This

straightforward calculation (e.g. see case seems first to have been noted in [B] by

equation (5.1) in [BF]) that, different means and from the point of view
of maximum entropy methods. That work,

a 2 b i a2 b2 2  noting the connection between maximum
a b b entropy and determinant maximization,

det A= 1. (2.3) motivated interest i n positive definite
a2  completion.

In [DGo] a square partial matrix is called
bib 2  banded if all the entries within some band

Since a2 >0, we may set x- 2 ensuring width (symmetric from the diagonal) are

that det A> 0. Therefore A is always specified and all entries outside are

comp'etable provided the necessary unspecified. Recall that a full matrix
conditions (2.2) are met. Furthermore, the A = (aij) is called banded with band width k
set of all x which give a positive definite if a. .= 0 whenever Ji - jI > k. The above
completion, ,idiscussion of a single unspecified entry

a, b, a b (whose position could be arbitrary) is just
2 - the special case of an n-by-n partial

b___b_____________ apositive definite matrix with band width n -a:x - - 2  2 J 2
Assuming that A is an n-by-n banded

is a disc in the complex plane whose center partial matrix three principal conclusions
bib 2  are drawn in [DGoJ. (The result (iii) is also

x= a2 gives the maximum possible contained in [BF].)

determinant for a completion of A. We call (i) positive definite completions of A
blb 2  necessarily exist!

the completion with x - the (ii) There exists a unique determinant-
a 2  maximizing positive definite

determinant-maximizing completion of A. completion.
bib 2  (iii) There exists a unique completion

Notice that setting x = is equivalent which is nonsingular and whose
a 2  inverse is banded (with the same
b1  x 1b1  a2  band width) in the usual sense; this

to setting the cofactors a2 b , b 2 is also the determinant-maximizing
2 2 completion.

of A equal to 0, which is the same as We now consider the general question:

requiring that the 1,3 and 3,1 entries of A 1  for which partial Hermitian matrices do
1 positive definite completions exist?

be 0. These are precsely the entries in A Necessarily, the matrix must be partial
which correspond to unspecified entries in positive definite, but is this condition
A. sufficient to ensure a positive definite

Now suppose that A is an n-by-n partial completion? If not, which patterns (in
positive definite matrix with the 1,n entry addition to banded) for the specified entries
as its only unspecified entry. Applying guarantee a positive definite completion?
equation (5.1) of [BF] in exactly the same We first note that positive definite
manner we see that A is completable if the completions need not always exist even
necessary conditions are met. If the when the obvious necessary conditions are
principal submatrices A[{1,2 ..., n - 1}1 and met. It is easy to see ([GJSW]) that given a
A[{2,3 ..., n}] are positive definite the 1,n pattern for the specified entries, the matrix
entry may be chosen so as to make det A completion problems for positive definite
(and all its principal minors) positive. The and positive -semidefinite matrices are
set of all values giving a positive definite equivalent. For simplicity we con'ider the
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positive semidefinite case, and consider the edge between i and j, i j if and only if the
partial Hermitian matrix i,j entry of A is specified. Thus, the partial

matrix B above has the graph
B 1 1 x -112

B= 1 y 1 1(2.4)

11 1 2.41(2.5)

It is partial positive semidefinite as the
only specified principal submatrices are

Undirected graphs are appropriate because

]a[1d1] d[ 11 we assume the partial matrix Hermitian.
Li 1 a -1 1 Without loss of generality, from now on we

assume that all diagonal entries of A are
However x completes both partial principal specified (because a partial positive
submatrices definite matrix is completable if and only if

,he principal submatrix corresponding to the
11 specified diagonal entries is completable.)

B[{1,x2 ,3 1 X We briefly review some basic ideas about3)] i 1 undirected graphs. A oath ( ii, i 2'.... i k) is a

sequence of vertices such that {i , i j-l I is

an edge of G for j=1 ... , k-i. G is
1 x -11 connected if there is a path between any

2 3two vertices in V. A circuit is a path for
B }1 which i k= i and k > 3. A simple circuit is a

-1 1 1
circumt for which i , i  ..... ik-1 are distinct.

11' 2  A chord of a circuit is an edge joining two
Since det B[{-, 2, 3] x- and nonconsecutive vertices in the circuit. A
detB[{2,3,4}]-Ix+l 2  the first c it is minimal if it has no chord. For

submatrix requires that x = 1 for a positive example, in the graph G1
semidefinite completion while the second 2
requires that x =-1. As these are in
conflict, B is not completable to a positive 3
semidefinite matrix.

Of course, some partial positive definite
matrices whose specified entries have the
same pattern as B may have positive 4
aefinite completions. Take any 4-by-4
positive definite matrix C and replace the (1, 2, 5, 4) is a path, (1, 2, 3, 4, 5, 1) is a
secondary diagonal by (Hermitianly) simple circuit, {2, 5} is a chord of this
unspecified entries. Then this partial circuit, and {2, 3, 4, 5, 2) is a minimal
matrix has a positive definite completion, simple circuit.
namely C. The key notion which allows a simple

The interesting question then is: for description of completable patterns is that
which patterns does a partial positive of a chordal araoa : we call G chordal if it
definite matrix always have a positive has no minimal simple circuits of four or
definite completion. This question is more edges. Thus, the graph G, above is not
addressed in [GJSW] and a characterization chordal because of the minimal simple
of completable patterns is given. A natural circuit {2, 3, 4, 5, 2). However addition of
way of describing patterns is in terms of the single edge {2, 4) would make it a
the undirected graph G= G(A) of the chordal graph. A good general reference for
specified entries. chordal (also called triangulated) graphs is

Given an n-by-n partial Hermitian matrix Chapter 4 of [G]. They have been heavily
A, G(A) has vertex set { 1,2 ... , n } and an studied in graph theory and have arisen
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before in numerical linear algebra, in the fact that the key idea is that B-1 has all

study of Gaussian elimination on sparse off-diagonal entries equal to 0.

matrices. It is worth noting that virtually Three distinct ways to obtain the

all computational tasks on chordal graphs determinant of the maximum entropy

can be carried out cheaply. completion M of a partial positive definite

A principal result of [GJSW] is matrix A have been found [BJL] whenever the

Theorem 1: Every partial positive definite graph G(A) is chordal. We summarize these

matrix with graph G has a positive definite here and note that the last also allows one

completion if and only if G is chordal. to obtain the maximum entropy completion

A summary of the proof can be found in itself. In order to describe these results we

[J]. We simply note here that the graph of make another digression into graph theory.

any banded partial matrix is chordal so that Let G be an undirected graph with vertex

this theorem gives a complete set V={1,2.n}. A nonempty subset

generalization of conclusion (i) above from CcV is called a clique of G if {x,y} is an

[DGo]. Note also that the graph (2.5) of the edge of G for all distinct x, Y E C. The

matrix B defined by equation (2.4) is the clique C is called a maximal c if C is

simplest non-chordal graph. According to not a proper subset of any clique. In the

Theorem 1, not every partial positive graph G, above, {1,2,5,}, {2,3}, {3,4} and

definite matrix with this graph is (4,5} are the maximal cliques. Now let

completable, and the matrix B is an example C =C Cm be the set of maximal

of one that is not. It is typical of a general 1'C .

class of counterexamples that exhibits cliques of G. The inte, section araph G. of C

chordality as a necessary condition for is the graph with vertex set C and edge

completability, set C where {Ci I .C C if and only if i j
Provided that it is known there exists a i

positive definite completion to a partial and C. nC C. # 0. A subgraph T of Gc is c,,died

positive definite matrix, conclusions (ii) asoanninaLtee-of Gc  if T is a tree (a
and (iii) of [DGo] carry over irrespective of

the pattern of the unspecified entries. This connected graph with no circuits) with

is another principal result in [GJSW]. vertex set C. Such a tree T is said to

Theorem 2. Suppose that the partial satisfy the intersection property if

positive definite matrix A has a positive
definite completion. Then there is a unique C. n C Ck whenever Ck lies on

determinant-maximizing completion M the (unique) path from Ci to C. in T (IP)

which is also the unique completion whose

inverse has zeros in the positions For example, let C be the graph
corresponding to unspecified entries.

3. Determinantal Maximization
For the reasons suggested in [B] and as in

[DGo] we call the determinant-maximizing
completion M of a completable partial

positive definite matrix A the max im u m
entro.y co ltQn of A. An intriguing

question is: what is the value of det M as a

function of the specified entries of A. The Then the maximal cliques are C1={1 2,3),

simplest example is the case in which only C2={2,3,5}, C3={2,4,5 } and C4=13,5,6}, and
the diagonal entries of A are specified. If B the intersection graph GC is

is the completion obtained by setting all

unspecified off-diagonal entries in A equal C1  C

to 0, then detB=qaii and so by

Hadamard's inequality, B is the

determinant-maximizing completion of A. X
However, this simple example masks the C 3 4
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Then the graph
[i1?? ?

c1 C2 A= 1 3 4 ??46 2

?? 2 1

and that M is the maximum entropy
completion of A. Then

C C

V M 3 6 2 4
is a spanning tree of Gc satisfying the det M= 3-6 =.
intersection property (IP), while the
spanning tree 03-01-02-04, for example, The sets C IC. corresponding to the
does not satisfy (IP). The intersection edges {Ci 0.c e C(T) can be described graph
property is a key hypothesis in several i
papers on determinantal identities and theoretically, and independently of T, as the
inequalities [BJ1, JB, BJ2]. Its significance minimal vertex separators of G(A) [BJL].
in the present context is the following We have taken G(A) to be connected in
fundamental graph theoretic result ([BJL]). theorem 4 for convenience since the

Theorem 3. Let G be a connected disconnected case s easily dealt with using
undirected graph; let C ={C1, C C ) be Fischer's inequality [HJ, p. 478].

2. M There is an alternative to the right handthe set of maximal cliques of G, and let G c  side of (3.1), an "inclusion-exclusion"
be the corresponding intersection graph. representation of the maximum determinant.
Then, there is a spanning tree of G C  Suppose that A is partial positive definite,
salisfying (IP) if and only if G is chordal. G(A) is connected and chordal, C, ..., C are

A consequence fBJL] of Theorems 1-3 and the maximal cliques of G, and M is the
the theorem in section 2 of [BJ2] (a formula maximum entropy completion of A. Then
for the determinant of a matrix based on the
zero pattern of its inverse) is: ([8JL])

Theorem 4. Let A be a partial positive
definite matrix and assume that G(A), the ld' AIC, 1 1 deI A , ,C,,
undirected graph of the specified entries of dct M

ie AIC *' Cl H del~i AI C C C i
A , is connected and chordal. Then if B is any ..... . I, ,

positive definite completion of A,
m After significant cancellation the right hand
Sdet AjCkl side may be seen to be the same as the rightdHt B_ k ] hand side of (3.1), However, this(3.1) formulation does have the advantage of

H1 dt AICi nC i requiring only a knowledge of the maximal
{cic £ M cliques of G(A).

A third way to obtain the maximum
where T is any spanning tree of G determinant has the added advantage that

w Tthe entries of the determinant maximizing

satisfying (IP) and £(T) is the edge set of T. completion are directly calculated at the
Furthermore, equality is attained in (3.1) if same time. The maximum entropy
and only if B is the maximum entropy completion can be considered to be thecompletion of A. solution to a multi-variable mayimization

problem. In the case that G(A) is chordal, it
is shown in [GJSW] (in order to demonstrate

Thus, the right hand side of (3.1) is a
formula for the determinant of the the sufficiency in theorem 1) that there
maximum entropy completion of A in terms eyxicts a sequence of chordal graphs of G
of its specified entries. i 0 ..., s such that Go = G , G s  is the

As a simple example, suppose that complete graph and G, is obtained from G,.1
by adding a single edge. (Such "chordal
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orderings" of the edges missing from a involves a right hand side that is a ratio of
chordal graph are highly nonunique.) principal minors of A. It is clear from
Furthermore, at each step, there is a unique theorem 4 that for any chordal graph the
maximal clique containing the added edge. right hand side of (3.1) gives such an
It is therefore natural to consider a inequality for A. (As noted, the
sequence of one-step maximization connectedness assumption upon the graph
problems in which one selects the value of may easily be relaxed to allow inequalities
the entry corresponding to the new edge to such as Hadamard's as special cases.) In
be the one that maximizes the determinant fact, essentially all such ratio inequalities
of the principal submatrix whose index set may be deduced from these "chordal"
is the new maximal clique. Each of these inequalities [JB].
one-step maximization problems is the
case, discussed at the beginning of section References
2, of picking the maximum determinant
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ALGORITHMS TO RECONSTRUCT A CONVEX SET FROM SAMPLE POINTS

M. Moore, Ecole Polytechnique and McGill University; Yves Lemay, Bell Canada;

S. Archambault, Ecole Polytechnique, Montreal

1. INTRODUCTION An alternative approach consists to formulate

It is easy to imagine situations where one reconstruction algorithms based on the minimal

has to estimate the contour of a region from sufficient statistic, and to evaluate them in

partial knowledge about that region. For example, regard to some cr~teria. Three such algorithms

in mining exploration a geologist wants to are presented in section 4. Suime results of a

estimate the location of an ore deposit, this simulation experiment designed to compare these

from observations made at some points, three algorithms are reported in section 5.

Ripley and Rasson (1977) consider a problem 2. THE PROBLEM

of that type posed by Professor D.G. Kendall. The Let C be an unknown compact convex set in R
2
.

situation is the following: given a realization of Suppose the sample points X1 , . . .., X, (n is given

a homogeneous Poisson process of unknown intensity but can be the value taken by a random variable)

within an unknown compact convex set C C R
2
, we are selected independently according to a known

want to estimate C. Conditionally on the fact distribution function F on R
2  

whose support

that the number of observed points N is n, these includes C. For each sample point it is known,

points x , .. . , xn  are independent and uniformly in addition to its coordinates, if it is interior

distributed on C. The arguments used by Ripley or exterior to C. Based on this information it

and Rasson are conditional on the value of N. is desired to reconstruct (estimate) C. Other

The proposed reconstruction consists in a dilation sampling models could be considered, see De Groot

of the convex hull of x1 . . .. , x about its and Eddy (1983).

centroid, this dilation being such that the area The sample space is

of the reconstruction is (approximately) an S-E (x,i. . ,x,i,):xj ER
2
, ij-O or lj-l. n)

unbiased estim .icn of the area of C. The where ii - 1 if the jth sample point is interior

procedure is affine invariant. to C and ij - 0 otherwise. Let H be the closed
In the situation where one has to reconstruct

convex hull of the interior sample points and let
an interval on the line the criterion to evaluate V be the set of the vertices of H. Clearly H is
a procedure is clear. Indeed if the center and

a lower bound for C. An upper bound for C is given
the length are correctly estimated the reconstruc- by the union, K, of all the closed convex sets Q

tion is good. For a set in R2 the situation is such that H L Q and for which all the xj with

not so simple because here there is a new element, ij - 0 are exterior to Q. De Groot and Eddy

the shape of the set. The shape cannot in general (1983) prove that K is star-shaped from the set

be specified by a finite-dimensional parameter, so H, that is if y a K, z a H and u - ay + (l-a)z,
a criterion to appreciate the estimation of the 0 c : 1, then u(aK. The set K can be const-

shape, that would lead to some workable proce- tructed by noting that the complement of K is

dures, is not easy to find. Moore (1984) proposes

to measure the precision of a reconstruction K - U (y: y - xj + X(xj - z), z e H, A 0)jCe
C by m[C A C], the measure of the symmetric

difference between C and C. There exists a where E - (J: ij - 0, 1 s j s n). Figure I illus-

complete class of solutions (reconstruction rules) trates the sets H and K. The unknown convex

with respect to this loss function, however these set C is such that H C C C K (with probability

solutions dill in general be difficult to obtain, one). Let T be the set of peaks of K, a peak

In the problem considered by Ripley and being a sample point x,, j e E, such that if xj

Rasson the observations come only from the is removed then K is modified. Hachtel, Meilijson

interior of C. In many situations information and Nadas (1981), and also De Giz-t and Eddy

coming from outside of C will also be available (1983) in a more general setting, have shown that

(e.g. in the search of an ore deposit some (VT) is a minimal sufficient statistic for the

observations will fall outside of the deposit). family (PC: C E ), 0 being a class of compact

We will formulate here a problem allowing to convex sets included in the support of F and PC

incorporate this type of situations. For the is the probability measure induced on S by F

pLU -.. .u idered a minimal sufficirnt Ptatisric given C. A reconstruction rule for C should be

to reconstruct C is known (section 2). It is based on (V,T). I . however '7fficult to find

however difficult to find a reconstruction rule, such a rule that would be easy to implement and

based on this statistic, which satisfy a pertinent that would satisfy an attractive criteria. This

criterion. This is briefly explored in section 3. is briefly considered in the next section.
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rectangles with sides parallel to given axes.

This class can be described by the parameters
(t, u, rl, r2 ) where (t, u) are the coordinates

of the center and rl, r2 are the half lengths

of the sides. As a prior we consider the measure

reflecting ignorance. Following Villegas (1977)

this measure (the inner prior) is such that
22

(or I/rlr 2 , the outer prior, if prior indepen-

Figure 1: The convex hull -of the interior dence is assumed for the center and the lengths,

points (+); the set K generated by but here the final procedure will be the same).

the exterior points (-); the peaks are The rectangle C E 0 maximizing (2) is the rectan-

Q gle compatible with the observations and such that

3. RECONSTRUCTION RULES rlr 2  is minimal, that is the smallest rectangle

The distribi,tion of the rah-iL v.tur inl!ding A] tl i,,tcriur sample 'eints Tt is

(Xl, il ...., X, in) given C is interesting to note that the non informative prior

n leads to a reconstruction using only the informa-

j l F(xj)IC(j)(xj) (1) tion provided by the interior sample points.

In some circumstances it might be possible to
where C(j) is C if ij - 1 and C if ij - 0, estimate C by the expectation of the posterior
and IA(') is the indicator function of the set A. distribution (2), Hachtel, Meilijson and Nadas

From (1) it is clear that given the observations (1981) briefly consider this possibility.

(xi, ii . . .. . xn, in) the maximum likelihood 4. ALGORITHMS

estimator of C is any set C such that H C C C K. Since it is in general difficult to derive, a

So the m.l.e. leaves much to be chosen, reconstruction rule from a general criterion, we

As mentionned earlier a natural measure for consider some empirical algorithms. They are all

the accuracy of a reconstruction C is m[C A C] haqed on the statisti, (VT) and Are presented in

or preferably m[C A C]/m[C]. Given a reconstruc- order of increasing complexity.

tion rule 6, that is a function from S <more Alporithm I(AI): The centroid o of H is determined

precisely ((VT))) to the class of the convex sets and the maximal dilation factor, d., of H about

considered, a criterion to assess 6 could then be its centroid, permitted by T, is determined. To

R(C,6) - E[m[C A 6(V,T)]/m[C]] find d. we consider for each t E T the intersec-

the expectation being with respect to the distri- tion ut of the line ot with the frontier of H,

bution defined by (i). A good reconstruction rule then

would be one for which R(C,6) is minimal for a rot,
large class of sets C, or one for which the dm - min O , trT

maximum value of R(C,6) over 
a large class of sets

C is minimal. Unfortunately, except for very The proposed reconstruction is

restricted classes of convex sets, it will be very C - (1 + a(dm-l)]H 0 <5 a 5 1

difficult to obtain explicitly such procedures. that is the dilation of H about its centroid by a

However, for larger classes it is sometimes factor [I + a(dn-l)]. The parameter a is chosen

possible to show that such a procedure exists, by the user, a - 0 corresponds to estimate C by

Let A be a (probability) measure, considered H and a - 1 corresponds to the maximal dilation

as a prior, defined on the class a of the convex permitted. To reflect ignorance the value 1/2

sets considered. The posterior distribution on could be assigned to a; also the choice of a could

is then given by be dependent on the data. Clearly C is convex,

A(C) H C C C K, and the procedure is affine invariant.
if C e C(V,T) Figure 2 illustrates the procedure (a - 1/2).

dA(D) Algorithm II (AID3: With AI the dilation is the
G(Cixl,iI . x,in) - C(VT) (2) same in all directions (isotropic). The informa-

tion supplied by T may indicates somc directions

0 otherwise for which the dilation could be more important.

where O(V,T) is the class of sets C C C which are All takes this fact into account. Let hI .  h.

compatible with the observations (see De Groot and he the doq of H p'.. i, the

Z,; :;- , . io iulustr.te the reconstruction dilation factors permitted for each side,

given by the mode of the posterior distribution

(which maximizes A(C) on C(V,T)), we consider the

following example. Let g be the class of
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A,

/ ,\

.0

Figure 2: Algorithm I. Fiur : Algorithm II applied to the data used

in Figure 2.

inf oI uk :ue h , uk - intersection of1

d.- ifthe line ou with elements are given, some complementary details,
the froi~tier of KJ mainly about steps 5 and 8, can be found ina

technical report available from the first author.j - l,.s. Each side is dilated to become Figure 4 illustrates All1 applied to the data in

hj -[1 + cj(d j-)]hj , 0 aj i , j - 1 . .. . Figure 2.
(if there are not sufficient information to STEP 1. Draw a frame (1, that is a rectangle

determine the dilation factor for a side, then the including all the sample points.
dilation factor obtained for a neighbor side is STEP 2. Let jTJ be the cardinaliy of T. If
used). The proposed reconstruction is the convex JTJ - 0 there is no exterior point, we could then
polygon obtained by extending the hs until they use, for example, the Ripley-Rasson procedure. If

meet (some h3 may be eliminated because they are ITI - I or 2, points are possibly added to T,
too far). The role of the as is analogue to the these are the vertices f 0 not included inK
one played by a for Al. By construction C is (if there are some). In the description of this
convex and H C K. Since All uses only dila- algorithm T will denote the set of peaks augmented

tions by fctors that are invariant under affine as just described. It is easy to see that T will

transformations, the procedure is affine invarian, contain at least two points.

Figure 3 illustrates All (all aa - 1/2) applied to STEP 3. Find the convex hull, W, of the points in
the data in Figure 2, note that h6  is eliminated T.
in the reconstruction of C. STEP 6 Determine if H c W or not. To do so we
6.lorim III (AIII): With Al and All, V is find the number v of vertices of H which are
essentially used to dertermine the shape of C interior to W. If v - fvj then H C W and we go

and T is used to fix its size. We may think this to step 6 (this is the situation in Figure 4). If
gives too much weight to V in the utilization of v - 0 we determine if H n W w or not. If this
(VT). The third algorithm, which is more intersection is empty (this is not possible if T
complex, consider two preliminary estimates of C, has been augmented in step 2) we add points to T
one being simply H and the second mainly obtained as described in step 2 and find W from that
from "I. The finlal estimate is the average augmented set; then H rn W ' 4. If this new W
(Minkowski sense) of these '.o estimates The in~iude H we go to step 6.
Ihope here s tt.,.g the information contained in T STEP 5. If 0 < v < IVI or if W is obtained in
will be used more completely. We describe step by setp 4 and does not include H, the set W is
step (as those in the program for the simul~tion enlarged to produce a convex set H W having all
study) the procedure to obtain C. Only the main its vertices in K or on its frontier.
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STEP 6. Let W be the set W if v - Ivi or the 5. A SIMULATION STUDY

set obtained after step 4 or 5. Consider the set To compare the algorithms presented in

B - 1/2(H 0 W) where 0 denotes the Minkowski section 4 a simulation experiment was conducted.

addition and the 1/2 contraction is with respect The structure of this experiment is the following.

to the centroid of H. The set H C W is obtained A frame 0 is fixed, this is a 10 X 10 square

by finding the convex hull of all the points in (it will be the one used in step 1 for AIII). A

((a+bj):a e V, b T, i-i...IVI, J-i .. polygon is drawn in Q, this polygon is considered
as the unknown C. The sample points considered

where T is the set of vertices of W. The convex are the realizations of a homogeneous planar

set B includes H and has all its vertices in K; Poisson process of intensity A observed on 0. To

however some sides of B may cross K. simulate these data a number n is generated

STEP 7. Find if some sides of B cross K. To do from the Poisson distribution with parameter 100 A
so we determine the number u of elements in T and then n points are uniformly and independently

which are interior to B. If u - 0 the procedure generated on Q. To simulate from the Poisson

is terminated and the final reconstruction is distribution we used the algorithm 3.3 in Ripley

C - B (this is the case in Figure 4). (1987) and to simulate from the uniform we used a

STEP 8. If u 1, B is reduced to form a convex procedure given by Bratley, Fox and Schrage (1983,

set B' including H and included in K. The p. 202). Each sample point is classified as

final reconstruction is C - B'. interior or exterior to C. To evaluate the

quality of a reconstruction two criteria are

considered, a precision criterion: m[C A Cj/m[C,

and a recovering criterion: m[C r) C]/m[C]. It is

to be remarked that

m[CA C] - m[C] + m[C] - 2 m[C n C]

so m[C A C] can be large and still m[C n C]

approximately equal to m[C] i.e. C is almost

recovered but with a much larger set than

I neccessary.
In a first stage we tried to determine the

d \ 
/ main factors influencing the results. Three

/factors were considered: the value of A, the

/ proportion of 0 occupied by C and the number

of sides of C. A 23 factorial experiment was

conducted, the selected levels were A: 0.25, 1;

proportion: 25%, 75%; number of sides: 4,12. For

!each of the 8 experimental conditions 250 indepen-

dent repetitions were made. Relatively to both

quality criteria it was observed that the first
two factors are much more important than the third

and that all the interactions are negligeable.

To compare the three algorithms it was

decided, from the above results, to consider a

Figure 4: Algorithm III applied to the data used polygon with six sides for C and to use three

in Figure 2. proportions: 25%, 50%, 75% and three values for

Because the frame 0 is introduced AIII does A: 0.25, 0.6, 1.0.

not really use only the information provikli by For each of the 27 combinations algorithm -

the minimal sufficient statistic (V,T). However, propoitior. - irtenqity 250 repetitions were made,

we want to note that in many cases (if the sample the 27 x 250 repetitions being independent.

size is large enough) AIII will go through steps Tables I for m[C A C]/m[C], and 2 for

3, 4, 6, 7 without difficulties (e.a. Figure 4), m[C n CI/m[C], present the average of the ?50

anid then the introduction of 0 (step 1) is not resuiLs toi each of the 21 situations. The number

necessary. Also, it may happen that a set o is in parenthesis is 2s/125-, s2 being the sample

already available, it will be the case for example variance.

if the support of F is finite (see next section), Table I reveals that:

or if it is known a prifJri that C is in a given • For a given proportion, the precision increases

boundpd reglon, see Moore and Laniel (1983) for an with A (i.e. when the average number of sample

example in soil studies, points increases). The relative augmentations
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Table 1

Average of the 250 values of m[C A C]/m[Cj

Algorithm I Algorithm II Algorithm III
A

.25 .60 1.0 .25 .60 1.0 .25 .60 1.0
Prop.

.582 .352 .261 .514 .293 .204 .335 .281 .21525% (.022) (.015) (.011) (.022) (.014) (.008) (.011) (.010) (.008)
,406 .230 .162 .349 .168 .123 .203 .134 .109

50% (.018) (.009) (.006) (.017) (.007) (.005) (.008) (.004) (.003)

.335 .172 .124 .262 .133 .091 .155 .090 .065

75% (.014) (.006) (.005) (.013) (.006) (.00 4 )j(.007) (.003) (.002)

Table 2
Average of the 250 values of m[C n C]/m[C]

___ Algorithm I Algorithm II Algorithm III
A

.25 .60 1.0 .25 .60 1.0 .25 .60 1.0
Prop.

.434 .658 .746 .550 .751 .826 .877 .948 .95325% (.023) (.015) (.011) (.026) (.015) (.009) (.011) (.005) (.004)

.604 .775 .841 .676 .255 .895 .866 .944 .964
50% (.018) (.010).(.006) (.019) (.007) (.005) (.011) (.004) (.003)

.668 .832 .878 .744 .879 .920 .868 .940 .965

75% (.015) (.007) (.005) (.013) (.006) (.004) (.009) (.004) (.002)

are more important with AI and All. . With AI and All, again better results are

For a given A, the precision increases with the obtained when a larger proportion of the sample

proportion. When the proportion is augmented points are interior to C. However, AIII seems

and A kept fixed, a larger proportion of the more stable in that regard.

sample points is interior to C. Then H is a . The comparison of the algorithm by pairs shows

better approximation to C (better estimation of that All is always better than AI and AIII

the shape). Also, since it is known here that always better that All. When A or the

C is in 0, the precision gained from inside is proportion is small AIII does much better.

not canceled by the diminution of the number of The remarks made about the variability in

sample points outside C. The fact that AIII regard to the precision criterion also apply

may use 0 explains the relatively more here.

important increase there. From Table 1 and Table 2 it is easy to obtain

The comparison of the algorithms by pairs, for the average of the ratio m[C]/m[C] which indicates

a given proportion and a given A, indicates how accurately m[C] estimates m[C]. We observe

that AIII does always better than Al with some that AI and All underestimate m[C]. This suggests

important differences; All is always better that it could have been advantageous to take the

that Al; AIII is never inferior to All and when a's larger than 1/2, mainly when the number of

A is small AIII is much better than All. sample points is small.

There is an important variation among the To see how each of the factors: algorithm,

sample variances. The variability is more proportion and intensity, contributes to explain

important when A or the proportion is small, the variation among the results, the ANOVA tables

The situation is similar for AI and All but corresponding to a three-way layout model were

AIII appears to be more stable, computed and then the percentages of variation

Concerning the recovering criterion, from Table 2 explained by each factor and the interactions were

we observe +b,4: obtained (Table 3).

Table 3

Variation (t) explained bv each factol

Algorithm Proportion Intensity

(A) (P) AxP AxI PxI AxPxI ERROR

m[C A Cj/m[C] 10.5 24.0 29.5 0.0 3.0 1.0 0.0 32.0

M[r n r]/mSC] 28.5 7.0 25.0 4.0 3.0 0.0 0.5 32.0
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We remark that for each criterion the factors sample size plays the dominant rolr. However, AIII

considered leave a large part of the variation gives acceptable results even for moderate sample
unexplained (error). Due to the geometrical sizes. When the sample size is important it takes

character of the problem it seems difficult to much more time to apply AIII than it takes
determine factors that would be easy to formulate to apply All. One may then think that the gain

and that would explain a larger part of the is not justified.
variation. Indeed, we have noticed that for a ACKNOWLEDGEMENT. This research was supporter by

given C, a given A, and a given algorithm, thf the NSERC grant OGP0008211 and by the FCAR grant

results obtained for different samples were often CRP-2093.
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APPLICATIONS OF ORTHOGONALIZATION PROCEDURES TO FITTING TREE-STRUCTURED MODELS

Cynthia 0. Siu, Johns Hopkins University

Orthogonalization is an important concept in rectangular splits in previous methods. General-

computations for linear model. In this paper, ly, associations are found among predictor

applications of Givens rotations and Modified variables in real data. In the special case of

Giaz _%-midt orthogonalizations to tree- having totally unrelated predictor variables, the

structured regressions are discussed. The splits performed on residual variables will be

resulting procedure generalizes CART's piecewise the same as the univariate rectangular splits.

constant tree model to piecewise linear model. This method provides a simple solution to the

Great versatility is offered by this approach: otherwise difficult problems, such as detecting

regression tree models for quantitative and linear structures that are separated by hyper-

binary data can be handled by one general fitting planes not perpendicular to the coordinate axes.

procedure. In addition, it provides a basis for In addition, this orthogonalization approach

implementing various linear and tree-structured allows tree-structured models to be built and

regression methods under one framework, interpreted within the familiar linear regression

framework. The usual selection procedures for

1. INTRODUCTION stepwise regressions can be used for choosing

Breiman et al. (1984) and Friedman (1979) variables and splitting values in this m-thod. In

described a tree-structured approach to non- the absence of recursive partitioning operations,

parametric multiple regression. Their methods use this procedure is identical to fitting a specifi-

a hierarchy of piecewise constant functions or ed linear regression by forward stepwise

piecewise linear functions to approximate the approach.

regression surface. For these tree models, the This paper describes applications of orthogo-

predictor space X is partitioned recursively into nalization procedures to fit tree-structured

rectangular subregions, perpendicular to the models. The analogy of this approach to classical

original coordinate axes. A separate constant or least squares methods opens many possibilities to

linear model is fit to the subgroup of data generalize the existing tree-structured methodo-

points lying in each of the subregions obtained, logy. Some of them will be discussed here. In

In the author's unpublished Ph.D. thesis at particular, the framework can be used for

the Univcrsity of Toronto, we propose a different developing tree-structured extensions of

tree-structured fitting procedure for piecewise Generalized Linear Models (GLM) (Nelder and

linear model (Siu and Andrews, 1985). The method Wedderburn, 1972). As compared to Generalized

is based on a natural extension of Modified Gram- Additive Models (Hastie and Tibshirari, 1985),

Schmidt Orthogonalization process in linear least this recursive particioning approach uses a

squares method. Unlike the model by Friedman hierarchy of piecewise linear functions to

(1979), the hierarchy of piecewise linear models generalize the linear predictor function in GLM.

is built by adding one predictor variable at a Givens rotations provide the basic algorithm

time to the local models, linearly adjusted for for computing these tiee models. The proposed

the effects of those already included, fitting algorithm is flexible. It can be organiz-

Using this orthogonalization approach, ed to fit a wide class of parametric and non-

recursive partitioning is performed on residual parametric hierarchical models within one

predictor variables rather than on original framework. This includes as special cases

variables. Data points are grouped according to stepwise procedures for generalized linear

a) the nature of relationships among predictor models, as well as the standard recursive

variables, and b) the relevance of these vari- partitioning procedure for piecewise constant

ables to the response y. The resulting recursive model (Breiman et al., 1984) and piecewise linear

partitioning procedure is more general than the model (Friedman, 1979). A simple model specifica-
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tion rule is proposed. It helps clarify the standard tree-structured model. Starting from

properties and uses of these procedures. node 1, each nonterminal node j is split into two

In Section 2, we start with a simple example child nodes recursively. For each predictor

of the standard tree model to illustrate the variable (subscripted v), and for each value

basic ideas behind tree-structured methodology. (subscripted c) of this variable, the set of data

Section 3 describes the linear adjustment points Gk lying in subregion Sk is divided into

approach to fit a tree-structured normal response two parts Sl(k) and Sr(k) - one to the left of

model. This method differs from the one by this value and the other to the righr:

Friedman (1979) in several important ways, will

also be discussed. Section 4 shows how this node j node j

approach can be used to develop the tree-

structured extension of generalized linear 1(j) r(j) 2j 2j+l

models. Section 5 describes the model specifica-

tions for the general class of hierarchical A separate constant function, Ll(k)-al(k) and

fitting procedures considered here. Lr(k)-ar(k) , is fit to the subgroups Gl(k) and

Gr(k) at each cut point indexed by (cv). The one

2. BINARY REGRESSION TREES (c*,k*) which best improves the fit of the model

In regression tree methods, data are recur- to data will be selected to split node j into two

sively partitioned into smaller subgroups to child nodes 2j and 2j+l.

build a hierarchy of piecewise models. A separate

local model Lk is fitted to the subgroup of data Figure 2.1 Binary Regression Tree

points Gk lying in each subregion Sk of the

predictor space X (Figure 2.1). Xp

Collection
Tree-Representation Size of Nodes SS,.G,.L',

(Layer)

(S1. Gi, Li) I/

(3~S. L2 ))(S G3 L3 1 2 2 & 3T// ",,,
(SS,. Ga L51 3 4.5 & 3 L, fS. G.) 1 S,3 G,. L3)

Following the notation in Friedman (1979),

each node k represents a triple (Sk , Gk, Lk)

where

{S.. G. L ,..3L )

Sk - a subregion of predictor space X, i

Gk - a subgroup of data points lying in

subregion Sk, and In summary, the partitioning procedure has
Lk - a local mod-1 to be applied to Gk. three components:

Each tree model consists of layers of nested 1) a method to divide the subresions Sk (Gk)

nodes, where layer is defined as a collection of into two parts Slk and St~)(n hi

nodes in one level of a tree (Siu, 1985). c(k) k (an tcorresponding Cl k  and O~k)
I m(k) r(k)

Figure 2.i illustrates a simple example of the 2) a method to derive new local models Ll(k)
and Lr(k) from the parent model Lk, and
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3) an obiective function to choose the L1()(Xk) - Lj(Xk-l) + s 1(j) + (EQN 3.2a)

optimal partition of parent node J. rl(j)Xv:(k-l) ,  and

Lr(j)(Xk) - L.(xk. 1 ) + Sr(j)l +

Together, they form the basis of tree-structured r r(j)xv:{k-l

methodology for regression problems. There are to GI(j) and Gr(j) respectively. Let (cv) be the

other important issues such as the selection of cth ordered value of the residual variable

optimal-sized subtree. Different approaches have subscripted v, i.e. x(c),v:(k) . Then,

been proposed for this problem. They can be found GI(j) in Sl(j) - data in Gj (EQN 3.2b)

in Sonquist and Morgan (1964), Breiman et al. whose Xv.{kl) < X(c)v.(kl and

(1984), Siu (1985) and Loh and Vanichsetakul (to Gr(j) in St(j) - data in Gj

appear in JASA). whose X(kl } > x()k 1

3. FITTING REGRESSION TREE BY ORTHOGONALIZATION The optimum splitting value (c*,v*) is selected

3.1 Review of Linear Regression after screening all possible cuts (c,v) of node j

Mosteller and Tukey (1977) gave an illumina- (c= I to size of subgroup Gj; and v - 1 to p).

ting discussion of using linear adjustment Tbis systematic screening procedure is applied to

approach to fit a specified regression by stages. each nonterminal node j, until the full sized

The procedure is identical to Modified Gram- tree model is obtained.

Schmidt Orthogonalization process !- least The sweeping operation in (EQN 3.1) is

squares method. Specifically, the method proceeds performed on variables y :(k-1 and xv:(k-l) (v 7

by sequentially sweeping out the effect of each k*) separately for subgroups G2j and G 2j+l. If

predictor variable, and iteratively orthogonaliz- all the data points shown in FigurL 3.1 represent

ing the response y and the remaining variables to subgroup Gj lying in subregion Sj. The piecewise

the variable swept. Let y:[k} be the residual of linear function of Xk.:(k-l) (solid line)

response y orthogonalized to variable subset Xk. represents the partial leverage residual plot for

At step k (k - 1 to p), variable x subscripted kW xk on S2j and S2j+l*

is added to the model L(Xkl) by two operations:

3.3 "Outlier" Detections

FIT- L(Xk) - L(Xk I ) + (EQN 3.1) Stratifying on xv:(k-1) can isolate high

rkp+lxk*:(k-l)' leverage data points indicated by extreme values

and of xv:{k-1)' Let N m. denote the minimum group

SWEEP: x v:(k- xv :k- size to fit the linear functions, LI(j) or Lr(j)'

rk,vx.k:(k-.l} v , k*. in (EQN 3.2a). The first and last few cuts (cv)

of each variable x v:(k- (v - 1 to p) can be

The added variable plot (Cook and Weisberg, 1982) used to check the presence of "outliers" by

for xk. is shown in Figure 3.1 (Dotted line), fitting

3.2 Extensions to Tree-Structured Regression L1 (j)(Xk-1 ) - Lj(Xk-1 ) + SI(j)l' (EQN 3.3)

To apply this linear adjustment approach to Lr(j)(Xk-l) - Lj(Xk-I) + Sr(j)l

fit tree-structured piecewise linear model, the

linear regressions of Y:(k-l) and Xv:(k-l) (v ' to G1(j) and Gr(j) for c < Nmin , and c > Nj-

k*) on xk.:fk-1) in (EQN 3.1) is replaced by Nmin respectively.

piecewise linear functions.
3.4 Force-to-enter Variables

In particular, in splitting node J, the cut at

(c,v) is defined by fitting a piecewise linear Within this framework, local models Lj(Xk. 1 )

(j) r(j) )on Sj. That is, in (EQN 3.2a) can be extended to include q force-

to-enter variables Zq, Let Mj(Xk.-lZq) and Lj(Xk.

1) be the local models on subregion Sj. Then from
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(EQN 3.2a), M2j(Xk,Zq) and M2j +I(XkZq) can be ASSESSINg T.7ATMI NT COVAIAT IN11 t!,At

derived from Lj(Xk. I) as follows, p

M 2j(Xk,Zq) Lj(X k -i) + s2jl + (EQN 3.4) •

2j'k*:(k-l) :(k-1) 2j' . ..-.-. -

H ( X.. .. .. ..1--

M2j+I(X k Zq) - Lj()k I) + s2j+lU +- -

rx +Z tr2j+i-k*: (k-l) 
+ Z:(k-1)t2j+l . ....

-? i c 1 25

In this model, stratifications are performed COdMTI

on residual variables xv :(k (v - 1 to p-q)

whose effects are to be removed, but not on

variables Zu | (u - 1 to q) whose effects are

to be estimated. E represents the estimated
2 j

effects of the force-to-enter variables Zq in

subgroup G2j linearly adjusted for local effects

of the k-i variables selected from previous

splits.
Using this formulation, a fixed set of -2 -1 0 1 2 1 4

coefficient parameters t for Zq will be estimated cI

for each subgroup obtained. For this model, Siu Fig. 3.1 True Model is y = xlX2Z + e

(1985) proposed an objective function to choose

splits which commensurate the bias with the 3.6 Friedman's Model

variance of the estimates E. Friedman (1979) presented an interesting

This force-to-enter option can be particularly approach to build tree-structured piecewise

useful in some applications. Consider the problem linear models. Specifically, a global multiple

of applying recursive partitioning regression to regression

analyze prospective randomized studies. the

resulting tree model would be difficult to L1 (XalI) - pap (EQN 3.5a)

interpret when stratification is also performed

on treatmen variables, is fit to G1 in SI, the entire training sample.

The effects of subsequent splits are to modify

3.5 Interpretations coefficients of these p variables one at a time.

The coefficient parameters in the hierarchy of That is, in splitting node j, the coefficient of

piecewise linear model are interpretable, X is modified by fitting

allowing graphical assessment of nonlinearity in

the data. For example, one can plot the individ- L2 jCX ) LjCXp)+s 2j 1+r 2 jxv+. CEQN 3.5b)

ual effect of zu (u - 1 to q) against Xv (v- I to L2 j 1 (X) - Lj(X) + s + r x- Lj+IX p ) - L(Xp + 2j+ll + 2j+l v.

p) to assess interactions between these vara- to

bles. The interaction plot shown in Figure 3.1 isobandb ltigC the estimated coeffi- G'j nS2j -data in Gj whose (EQN 3.5c)

obtained by plotting Ei,u' Xv. <x (c.),k . ,  and

cient parameter of zu for individual i, versus G*2j+ in S2j+1 - data points in Gj whose

x (i - I to size of entire training sample, vxi,v ' v (c.),k .

- i to p).

Distributions of variables Xp in each subgroup respectively.

provide information on the compositions of these As shown in (EQNs 3.2 and 3.5), the key

optimal partitions. differences between the two tree growing algori-

thms are choices of LI and the orthogonalizatlon
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process applied to the predictor variables X. with the weight and "working response variable"

These lead to some fundamental differences y* - L(XkI) + v-(y -l) evaluated at the mle

between the two methods: 1) the parent model Li rk-i from L(Xk.I).

in this method is not nested within the child

models L2j or L2j+I' 2) rectangular splits are 4.2 Tree-structured Extensions
used here to group data points, via stratifica- This section discusses the use of optimal

tion on the original (EQN 3.5b) instead of the tree-structircd approach for one-parameter

residual (EQN 3.2b) variables, and 3) all of the exponential family models. The generalizations

predictor variables are used for stratification discussed here exploit the close connections

in this formulation. between the stepwise approaches to fit least

The orthogonalization approach (EQN 3.2) is a squares regression (EQN 3.1) and tree-structured

natural extension of least squares method. It normal response model (EQN 3.2a). The two

provides a simple framework to develop tree- procedures for adding variables to the models are

structured methods for estimating iterative identical exccpt the recursive partitioning

weighted least squares models. To build local cerations that lead to the fitting of regression

models Lj in a forward stepwise manner has an tree models.

added advantage. The score test in GLM Drovides As shown by Nelder and Wedderburn (1972), the
the theoretical basis for the splitting rule maximum likelihood estimates of GIM can be

developed in Section 4. From (EQN 3.5), such an obtained through iterative weighted least squares

extension does not seem to be feasible without method. Using the orthogonalization approach, the

major modifications of the fitting algorithm, method discussed in Section 3 can be readily

applied to build tree-structured exponential
4. GENERALIZED REGRESSION TREE MODELS family models. Computation efforts can be saved

4.1 Brief Review by b3ing an objective function analogous to the
A generalized linear model in Nelder and score test in CLM to choose optimal partitions of

Wedderburn (1972) is defined by three components: node j.

the error structure given by one-parameter Following the formulations in Section 3.2, the

exponential family of the response variable y, cut at (c,v) is defined by replacing (EQN 4.2)

the linear predictor L(Xp), and the link function with a piecewise weighted least squares regres-

g(Mp) (i.e. y - kp + i, and g(p) - L(Xp) - rol + sion oi y*l[-l on xk: l That is,

rlxI  + ... + rpXp). fitting

For this model, Peduzzi et al. (1980) suggest-

ed to use the score test (Rao, 1973) for stepwise Ll()(Xk) - a(1 ) 4 S (j)1 + (EQN 4.3)

selection of variables. Full iteration is rln(j)xdka

required only when the selected variable XkL r( L ) ( +s )
1 

+kr-) k1
k* r~j k) LjXkl) + (j)l + ~ r)x,,:(k

enters the model L(Xk l) . but not for screening

competing models. Pregibon (1982) showed that the to CI(j) in SI(j) and GF(j) in St(j) respective-
score test in CLM can be computed using a normal Iv. GI(J), SI(j), Gr(j) and Sr(j) are defined as

linear model setup. In particular, the score in (EQN 3.21). It is obvious that (EQN 3.2a) is a

statistic for Ho: rk - 0 In LXk) i given te special case of (EQN 4.3), where L( and LI
s fv the 1(j) r(j)

additional regression sum of squares due to xk ir. represent the one-step approximat ions to the mie

the weighted least squares regression of y* on Xk of L a (j)

(EQN 4.2). That is, for e N(0,V I
) and V - As in stepwise procedures for GI.M. iterations

v~r(y) . will be performed to obtain the mle of the

selected models. L (Xk) on S and L (Xk) on
2j o 2j adL2j1l

Y* - L(Xk_ l ) + rkxk~lkl) + e (EQN 4.2) S2j4l, where Xk - [Xkl, Xk,. The optimum split

- L'(Xk) + e at (c*,k*) is detined by tl e piecewise linear

modl IL 2J I which vit Ids the largest
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additional sum of squares due to Xk*:(k l) in 3) an error structure (eg. normal, binary

(EQN 4.3). This method is identical to the usual etc.);

stepwise procedure for GLM, if no splitting is 4) types of Predictor function (constant,

performed. linear); and

5) an objective function for choosing the

4.3 "Outlier" Detections optimal partition of each node (eg. score

Using this framework, potential outliers at test, mean square error of the estimates t

extreme values of Xv:(k-l) may be detected by ... etc.).

fitting the weighted least squares regressions of To enhance flexibility of the procedure, three

options are included. User can specify 1) force-

L( L + a 1 (EQN 4.5) to-enter variables, 2) prior weights, and 3) use
1(j) 1(j) 1(j)m

Lr . L + s 1 ol quantile splits. Prior weights can be used to
r(j) r(j) r(j)

obtain test sample error estimate. Issues which we

to GI(j) when c < Nmin , and to Gr(j) when c > Nj do not have space to discuss here include

min practical problems of applying optimal strati-

fications to discrete response models, choices of

4.4 Givens Rotations objective function for choosing the "best" split

The success of this computation intensive of each noue, design of effective output,

method depends on a reliable, efficient algorithm descriptions of intermediate results, strategies

to compute and update the weighted least squares of finding optimal-sized trees ... etc. For the

models. As the cut moves from (c,v) to (c,v+l,, normal response models, some of these points have

one data point is added to LI1Q) and then removed been studied in Siu (1985) . They provide the

from r(j). Givens rotations provide the basic basis for developing the tree-structured exten-

computation method to update the piecewise linear sions of generalized linear models in this paper.

model (L L ) in screening the candidate REFERENCES
l(j)'r(j) Breiman, L., Friedman, J.H., Olshen, R.A. and

splits. Tne method is designed to identify Stone, C.J. (1984), Classification and
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A 5TOCHASTIC EXTENSION OF PETRI NET GRAPH THEORY

Lisa Annebere. Wayne State University

INTRODUCTION

A t-ool of rising importance in the
area of computer software analysis is
the Petri Net. Petri Nets were
developed in 1962 by Carl Adam Petri in
West Germany. Since then. many
applications and methods of analysis CONFLICT CONCURRENCY
have been proposed by Petri and other
authors. Petri Nets are used in In the CONFLICT diagram. ti and t2
m.deling of a system, and then for the will not be able to fire simultaneously.
system's subsequent analysis. Petri The token from P1 can enable them bctn.
Nets have some distinct advantages over but only one transition may fire. In

graphical ,r other modeling and analysis the CONCURRENCY diagram. t3 and t- can
techniques, most particularly the fire at the same time (in parallel) or
ability t - depict concurrency and in some other specified svncnronous
parallelism. Also. Petri Nets allow manner.
modeling at different levels of Formally. Petri Nets are represented
abstra:tion, further extending their by a four-tuple PN
usefulness.

It is proposed to extend Petri nets PN = P. T. I. 0) where
to incluJe elements of stochastic P = (pl, p .pr . the set
behavior and t,: utilize these Petri nets Df n given places
for practical examples. Some elements T = (ti, t2. tm), the set
:f net theory (i] may not be applicable, of m given transitions
tut the cntri ution cf imprcved I = (I ti) I (t2).....I~tm)
graphical representation and the set of input places to
rea chatilitv tree analysis is each transition
-:nsiderable. The stochastic behavior 0 = {O(tl), O(t2).....O(tm)),
p- stulateO answers "with what the set of output places
gr:,ba ilit y will the nodes in this path to each transition
funltii," 'given tre non-determinanly
:,f firing r les, an essential element in The marking Mi is a set expressing
Fe-r ie e token number for every place at a time

i. An example Petri Net is;
PETRI NET DEFINITIONS

Pe-tri Ne-ts ha ve an :utstanhinE
3jvartac :f he abilitv t: sh-,w
arallelism z n:urrent systems, in

addition tr showing elements rf t
-ontrol. This is an especially useful
advantage when discussing computer ;1
hardware c:f LSI or greater omplexitv
'as it is cr should be highly parallel). t -,

Petri Nets are a bipartite graph I
capable of modeling well a wide variety t5
of situations. The two types of nodes
are places represented by circles) and The marking is (1. 2. 0. 0. 0). P
transitions (represented by bars). The (pl, p2. p3, p4, p5). T = (t1, t2, t3,
nodes are connected by (usually t4. t5). 1(tl) = pl. I(t2) = Pi. I(t3)
directed) arcs. Tokens are graph = P1, Iit4) = P2, I(t5) = p3, 001) =
primitives that provide control. The p2, Oit2) = p3. O(t3) = p4, O(t) = p4
tokens reside in tne places and O(ts) = p5.
represent an item or conditi.,n (fcr One popular method of Petri Net

analysis is that of reachabilityexample data or machines). The tokens analysis. Reachabilitv analysis, first
move or flow when a transition 'fires'. proposed by Murata [5], involved the
A transition may fire when each input creation of a p x t matrix. This matrix
place contains at least one token in has n rows, where n is the number of
it. After firing, each outgoing places and m columns, where m is the
place from that transition will number of transitions. This matrix
contain an additional token. Generally, illustrated the 'connections' between
places may contain more than one token, places and transitions. A zero entry
Conflict ad non-determinancv are would occur where the place and
all-wed, and can be advantageous in transition were not connected. In
modeling real systems. The following short the p x t matrix is the incidence
diagrams illustrate this conflict and sot h arxi h niecdiagrmsnc: icmatrix, where places and transitions are
concurrency: connected.
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Reachabilitv analysis can be P(p1)P(tl)P(tl)P(p2)P(p2)P(t2)
utilized to determine system success
paths for reliability evaluation [4]. The interior nodes ti and p2 will have
The state equation is formulated [5]: the probabilities counted twire.

To counteract this effect, a small
AT E = AM routine should be utilized in

conjunction witn the formulation of the
wnere AT is the transpose of the matrix when calculating the path
incidence matrix (p x t). AM is the probabilities:
change in marking, and X is the firing
.ount vector (I when column is included BEGIN
in the path). An example of Read i = 1 m places
reachabilitv analysis is presented ill For i = O(ti) or I(ti) ,
the next section. Delete P(pm) for second

Incidence.
STOCHASTIC BEHAVIOR Read j = 1 n ; transitions

,or j = i or I (pl
Simply stated, a stochastic process Delete P(tn) for second

is one developing in time and governed Incidence.
by probabilistic behavior of some type. END
A Petri Net can be a stochastic process, A routine such as this will
if probabilities are associated with ccunterect the affect of counting each
some relevant features. In the interior node twice (it should be no
literature [1]. probabilities have been mcre than a pair since self-loops are
associated with either transitions or normally not allowed in Petri Nets for

places. It is proposed that both places ease of calculation). As previcusly
and transitions can and should have stated. Petri Nets are advantageous in

associated probabilities. The inherent that much of the analysis is easily
difficulties in the mathematics will not performable cn a computer, and this

be greater. if both node types are routin- clearly is.

considered to behave probabilisticallv. An example of this routine is given
This association will not change the utilizing Petri Nets:

determinancv of the firing of thi
transition, but will state the
probability of firing once 'chosen .

The given p x t matrix for

analysis:
,P(plP~tlp P(pl)P(t2) .P.. P(p1)P(tm

P(p2CP(tl) P(p2)P(t2) ... P(p2CP(tm),P(p3)P(tl) P(p3)P(t2) ... P(p3)P(tm)

and AM for this Petri net are:

:P(pn)P(tli P(pn)P(t2) ... P(pn)P(tm): ti t2 t3 tc t5 t6 t7 t8

Where P(pi is the probability of

success associated with place i and pl: 1 1 0 0 0 0 0 0

P'ti) is the probability of success p2: 1 0 0 C 1 0 0 C)

associated with transition j. For p3: 0 1 1 1 0 0 0 0

example, if place m and transition n are P4: 0 C 0 1 1 1 0 1
connected. and their respective p5: 0 0 1 00 0 1 1

probabilities are .9 and .8, the correct p6: , 0 n i 0 1 1 (

probability of that path operation is
0.72. AM = 1

However, if the path is obtained 0

through this reachabiiitv analysis and 0
the reachability matrix is utilized to 0

determine the total system probability. 0

the non-terminal nodes (thoses in the 1

interior, that is having both output and
input nodes) will have their This methodologv technique, after A7

probabilities counted twice. and & M calculation, is column
To illustrate, the following path: comparison. The comparison is

___ __ __ accomplished via column addition. The

0 t 3 t2 formulation of this problem is as
fC.llows

will have associated reachability
probabilities calculated as:
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SET L column number complex the calculations become.
(transitions number), Associating time, cost, or probabilities

INITIAL L = 1. with the Petri Net may make calculations
BEGIN L = L + 1, complex or theoretical formulations non

Add all combinations of L comlplete.
columns,
Compare to M.
If L = M. success path ACKNOWLEDGMENT: I want to extend my
exists, thanks to Dr. R. L. Thomas and the
If pn = pm (self-loop), Institute of Manufacturing Research, in

disallow success path Detroit. Michigan.
RETURN to BEGIN.
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TIMED %EL;RAL PETRI NET 'Soma, Soma or cell bod16 is the neural process place.
This place receives its input from other neurons

Nazih Chanias' and Harpreet Singh' through the dentrites and transmits the output
through the axon.

'Department of Electrical and Computer D1entrites Dentrites are small. thin branches
Engineering. Way'ne State University. Detroit. around the cellI body. These dentries receive the
Ml -is902 input data froit the synapses and carry them to the

soma.
ABSTRACT Synapses: Synapses are the connection between the

dentrites of one neuron and the axon terminals of an
The concept of a tuned neural Petri Net is other neuroni.

lit Pseiteil which is to be isomorphic to neural net .%xon hillock: Axon hillock works as a threshold 1-0.

afi hotrure, The srindard technique of neural net The output data cannot flow through the axon until
t hircrwe Is applied to this net. This basic Petri its weight is equal to oi exceeds the weight of the
%et concepts have beer) extended. Some examples are axon hillock
presented, Axon: There is one axon in each neuron. An axon is

a thinl. long channel. This channel terminate bv a
INWhODUCTION branch of terinnals. These terminals are inputs to

other neulron.
The Petri Net concept has lit nvet) rnbe a verv The neuron is a powerful cell It is able to receive

powerful toot li modeling parallel. sequential and thousands of inputs and transmit thousands Of
concurrent processing S.-7 Even though standard olitputs concurrently. The capability of this small
Petri Net has a wide range of capabilities loi cell and Mhe archict within the neuiral tier are good
mocdel rn.- svstems. mranv authors found it somewhat areas in research. For muany years. researchers have
restr ict ive f or general s% stemns. Several extenitions been work ing ver% hlard to make macthime Works

tl"Ii oposed Ini this paper we propose another sitruia to the human brain.
Swhich is aimed a: expatiding the nmoideling-

1ipihi litres of Penr I %t and reducring the complexity 1.2 Hilmian) Brain:
In piagallelSil %lost ol wliat has hcen Wi liteii about
the %iii tit es aid rifillerences bet seeti bi a in and Thle humtan brain is one o1 the mlost complex
mlachine 3.-tA have explor ed a uies era in) compuiter sotiuctire nets InI thle knowni universe. Over 100
dtesigns inclutding mnassive par allelism and fuinctional hillion individual neurons are grouped together to
ncdiilai It% create a systemi with liranv separate areas imodules'I

Ini the first section. the basic definitions of the Each area is able to process a specitic type of data
hunat brain and nietti are pii esented. Sectioi, 11 i . The cells in each at ea are grouped Together ito

deals Sith thr basic delinit inns of Petri %et. In ri eae a sibssbteii of Itiet ai rhical supetposri iou.
se, ifii ll Im A lpew Of some extensions to swt,,dlid pet litting intninriatiotr to flow, in a Stratified
Prit Ir hif)11s hoeti presented lilihile In se tifm l\ l ~ nac~ret layer by layer i Each layer is defined AS a
!imArhmta ilt fltirlatton has been del rued. lIn i.Se En Ii level us able ito process data at a rertata

1 Drlk ;ra i illIif, ePi has been piroen Ili 1-6: ne le.~ The lower l2!er has !!e higher
[ to, I FP\l Im titheen ip, .. d I II Hanl examiple dintiliiCS ipi .c ellular initei unnertiotis
1.-- an,[ tiIfll\ sonle fai hisicois irre h,"Me-: and i ittiti . Pi s ii well I igauiized Tile
im n sect 1ori0 XralIi?A[ loll us (coret Sedl of vatallel dliiii

hieiaichical aichitectures Parallel ismu is between
1 %-i1 oil laerS %tile the hie, archifal auclilteriurei is itlhiti

I eilini is thle !lasi, fi) 'itl iui 1)11 11 ihe I'lll cac la~et CoiipiiterS are mukch laster InI Speed. but
!t is slall III at ea andu tololli.. 1,it it I i ll n t 11 Ih % elot Ili iwoi 1\ i,) taskS that ewulate the u1rtiira!1
able to r eceive hulldii edis of nptis thirough the itilot itio piC PSt m6r that huniani lhandle
dIeiti res ant pli; thesili ti !hc (elI hovf% roitinnels The aia~iit braini architecture is thp
TholA07 0e IiIV(S 15u si theilii Wof niii1o The srIv 1 t l Ii If -ri 3aibililfits Reieai ct S h~e ked

IfuTp " 6oe s hI.iug h Ithe ax\on hrI I or \ aon a nd0 ax\onl goodtresit is it) I irIex ratfed i ic I IItfS T hoIIusantd s ofI
terfi[Hi1ial to S0OftIet il ell mif 1S 1-inr 1 itf011S a tI pI CalI jales (-an hp )iti sindle chip less thani rh it)

I 11lunipej The lies, itrhilolog% will r-elut:e the
mv t i',! ! :1 .r 1 t~ I I J t ,tll t~ii :ti;, !ire

\(I ... In/AI0...ie "

.~~I. as, oi" 1, r:i S'. 1rs ,1Su tre et.

-:, !ics? tpart ite reinesented I% cirles is
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elf ,ned as
SPN W.T.A.M..Iii

Where P. T. A. and M are as in (31 and L- lI,...

'o IM ,L is the set of the possible marking-dependent
firing rates associated with the PN transitions.

Many other extensions were Introduced to the
stanldArd PN to Increase the modeling power of (he

Fig !a A Place is anl Fig. 2b. A place is ail tool. Somle of these extensions are the multiple arc.
inu oatransition output of a Tiansitioni inhibitor arc and the modeling of parbegin. and

inputpil tapaend in PN. which will he defined by small

Fi mitl%-l. a Pei ri Net structure consists of three ex\amtples.
tuples. ifIn [the multiple arc, as Shown in Figure 3. more

P% -1P .A IIIIthan one arc is allowed to connect a place to a
I transition and a transition to a place A transition is

enabled when all its direct input places contain at
Where P - p II i2. p0  is the set 01 olaces least the number of tokens equal to the niumber o1

f 11 ti .... is thie set of transitions ir s between the place and the transition. An

And A, iP\Tl is tile set of transit ion input arcs enabled transition can lire, thus removing the
Whlie Ac iTP i s the set of transition output arcs itibtet Of tokens of each place equal to the nuimber

0 it i cs hers ren lite place and thle transition and
and A -4iI' A 0  puting the aircs between (Ihe transition and the place

The places zta rointain tokens represented b,. :tcts. -.

!lt tokens are present Thle Petci N\et is cAlled

inacketi Pt'tri Net The e% eciition ofl, ai Led left Ii
%,- ic. ive, tied h% the tot lowinig: A transition is (.ii.i' '

enabiled when alt o1 its direct inpult places contain at
least Otne token .%n eniahted transition ran lice this

iemoving oiie tokeil front each Inpiut place and placing A 0.\ wLith) 01ultiple ai'rs A InttltIArt leplesentatiln

0n1A toen in each Output place. Alter a It isiliton I~

fifes a nes; distuibut ion of tokens occuis thus
0rOl tic I n-' a lips; tuai k erl ng. Fig 3

inl a mtore formtal wa\ . we ran sa that the mai kes lf \latihnati, at Foimfiiltatill of flei coili 1
P% Is (10l ned as eu~o

p Icoid!e: .he pvti ; "et III Figure I hicii are %ill
decompose In[to d I ItIef eut tevels rhle t II s! Iel is

orItIed h% all the TIi .ulsilllttiuig places.

!1301 Mihele M deiotes the dfist; ibuni. - :skcns tt PI P-1 pi

:11 Exu e insioii; :C Siaulard PciI Z&Xi

t~~~~~~e~9 .i tiC i~.iiS Iii ll tbe intisilm red 'o If:,
I i',1 ; in !mi eas~e Ihe iuiofe I I g IOliet of tufe

tool lhe .'teiisioiS Iisdrll this sectji are
le 'lt u it o ined Petr i et if ITI)N lIlt ipie

Tiiii, usijIall pila'.' *i ilidailienital I tle ;'. the
dls5t tili ot tMh eha%ir of ant i\91tein H ie,

Pi V!,-: dev; bhe oiin% the l~
licti Cl 11,ti l Iiii their Iile elalilatIli ' I ii- .i1' i Peli I Ne: ii.i 'etes Aind

T:I I I .I I: ileieiIt( %.; tO, Ii't OIv k kV;ilie I tto a IASSes

(Iila P% 11odel %lit1 !1~h O lii' I '~' Nj, !ii, Iof Tilt iiloi iatioti i om ni ne ot these pjlates ian.

[ltp.% iamoir beha. ic. (t --millis ai1. tak~es Into lot to a iinei tell place heingiiint, Io Ih, NSt cil

!;,ti! tl i . , "i rottlt il l/ the diii atioril of elc I t111,1viglb all alit 0piii tAIe1 AIuSIIIIin
c ac ,uc p.i?.l iled t- (If, Nii s :~ , IS 'N I-

ftrItll(M Ienilto ,I j P-". Is thuis I.i; tlIOUing P P p

!1.11 .. 111011 irOSbi ohs,; !Ci' t a l th i un e t I lia iol
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nf of hi ier" IsP' I~ l it I( (iinnot ),to% t g tile
The secote !e*.eI wtill he dit (tell ivt 1; 2!a s ea chalitilt~ I!, thje jeak Splse !0i al ia- u

:lei e C ~ ~ ~I n IlVU Ia tr e I h ittl Io rnfila ttIotI a bou 0 h k: I
ahetn I~C... Cfl I the liet in laij,,e lIT, thle Itioiiel afct- cu0I.iol in ,

l\ P! is ( riutiecteil to P, Iitied Neural Peit I. Net !j'Ptt
:1) ;~j)PI I T;P 111 Iple whee is 1)%ld d I ie ,Icur ture 1\pe I dii tie Iai 10, Of Pet i f. Ies

;,to ;.classes. lunrlc T orrteu tal tt I tt tliiias h I ined Pc I Netl

I Iha. heen Modifiedi IC ii' N-ilal Petri~ ;(,I
~l~2 01  det011111 tot01) ITT . tlle iovei "J the i-ol cil if,

i-I 'crotuodate aimni'5t :ijll ( hr llttiii ci (. ih*fcl
hiere K I P, is cotnnected to P s'stem The moottl ttuis aie if ile I iiclils 1ui Ilfe

ilwand ii the transtoifcit i,:itc, * is a i'.11iiif -I,-I

Note that ti hel e I I Il at e tot iiecessarilv rP

iltstrnor hoaeset

V\ iii th"ese p1 elIintatvI cetlItat I Iler cull: V
eltitiotis beiTween level I-I atid leveli c (ifi te writtetn
is follows: 6~ t: A tvpicail T\PN cell

0, PfK '5here k Ecl fi This '-el! tis -.i! jiie l*ie intl one i a:,, ttic
0 ;ceal:l~ '01 erIlti olls l,Pet'se leTvel 1-1I Tile place has 1) ilpis ati rt tl*\ .,iC output The

all eit ~ot. ie it ~ivisit tot hias if, outpt moi oiil% otie input rh e

ni,tk ilins (010otert tokens Each color has a
* fdlit iii wetit,<t The highet weight has the higherP, i-'titi P I-E fIl lt~ f l i ies and rice versa. The output arc

Equtilolls .alto ri pf U1 Ide a step-i% -step T!-i l- a,, i thi eshl-Ii .Tokecns ate not allowsed to
I$ ck-fidhili 111 i tcr the rccnltil:t equation hOV.1ecl 1l1101 if. fiile transitiloll [I nt (lie place uiil tll

cif) two !ecels can bie written weight OePeI~S 01 equals the arc weight. The
N' 41ii l cti I "'Vresenal tols I! !he coit tani 1101 is able to pi ocess ati it afistit the

iIjiti 1j11 l)' ip. hij P.) Jhe Iil win e 21ifl Iorus trAnslerahie token to manv places The refinement
0i1t linte,! Ail a t ePP esenat Iot using5 hoolean it tIlStIct olIS a Stitliet. See Figurle - 9 rhiS suboet
AT itlittetir \ tltt eiI idrulce A trartitoti jiidttI\ consists of Input it atsittoa t antd one output

irdilitirti i Tite itait it disition t rceivtes only one
li- icopy at a t ine and transmits t copies to k places

with entrlIlls .ticilti inrl The otit iiialusittoll is aii OR
!it kE t ,t anlii n Ile I is ettahleti when cinv one of its input

a k - *'t' lk In alt Ie, Then. I is abile to tranismit copies to n

(0 o het vise places and so oil
II he liortialni a leel I i rpreettei IThe Kplaces at e iniput to k Statemlents s s S..s

columnil mail tI\ A- with) entries \ such that. Thle iitainter of siateittentls iii eachi TNPN transition is
if p is loaded Acrifta to hl nuihet ll colot s wshich are used for the

ciloted tcieiis Each stateitent is designed to

0 otherwise process specific colored tolliens For instance. w-hen
Theii .i tr the firin we hare th~e K statemtents I eceive the ki messages only one

ing statemtent is going to process the message. The rest

0 of copies i thie 1k-IlI statemenits will disappear alter
\Ithe life time .

,Now the ttansatinut niatll betweeni level I anid L Fiiiail% the sImilar ities bietween the neul on and
where 1 1, is gtsun by, the TNPN are as follows

f,~ 11 ~ ~tt* 1.1 - The pilare P. epi esents tile cell body isomat. It is
Aide to r ecetre mtanN Inpts anti transmits the

V. eachaliilitt fin the %eaL Sense ouitpuits through one arc
NOW we introduce a net' concept closely relatetd j - The art betseeti the place and the tratition in

that of ireathabilty 2.5 which we shall (l TbNIPN, represents the axon and it is wocking as a
rearhabhil' fit fil weak setike threshold 4,

tL - The arcs from the 1, to the places P,,P- . P are
Consider two places. P IpI similar to the axon terminals.
belonging to levels i and L. respectively. To kno1L - Thel colored tokens represent the chemicals in the

I i neutron.
whether a token originalv ll P can reach P we -ThIpt at cs to the place P retat esent the axon

I k ermialsfrom another neuron
have to0form the matrix MiL Ithe entry aki is

L
equal to I then the token can be transmitted to P
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ESTIMATING STANDARD ERRORS: EMPIRICAL BEHAVIOR

OF ASYMPTOTIC MSE-OPTIMAL BATCH SIZES

Wheyming Tina Song and Bruce Schmeiser, Purdue University

Abstract 2. Summary from Schmeiser and Song

When an estimator of the variance of the sample We summarize here the asymptotic results in
mean is parameterized by batch size, one approach for Schmeiser and Song [141 for comparison to the
selecting batch size is to pursue the minimal mean empirical results in Section 3.
squared error. Recently asymptotic results have been For h =0,1,2, •'•, let Ph be the lag-h
obtained for the mse-optimal batch size. Based on correlation corr(Xi, Xi+h). Define the constants
Monte Carlo experiments we conclude that the
asymptotic formula is an accurate approximation _Y0 = Ph = 1+2 >Ph,
when used with finite-size samples from processes h=-oc h=1
having geometrically decreasing autocorrelations, even
when the ratio of sample size to the sum of and

autocorrelations is as small as five. The study -o

considers three steady-state data processes, four -y V Ih lPh = 2 h h Ph
estimator types, and four sample sizes. Although we h- h=I
don't discuss batch-size estimation procedures, the For examnl, indpendent and identically distributed
formula is a foundation for estimating the optimal
batch size from data in practice. (lid) processes correspond to -f0 = I and 0. These

constants play a central role in determining
1. Introduction asymptotic mse, as shown in Proposition 1.

Let m denote the batch size, Vl(m) denote the
Estimating the variance of the sample mean is a estimator of the variance of the sample mean, and

fundamental problem of statistics. In simulation 'bias(V(m)) = E(1(m)) - var(X) denote the bias.
experiments and some other contexts, the data are For NBM, OBM, STS.A, and NBM+STS.A
sometimes assumed to be from a covariance-stationary estimators, Proposition 1 holds.
process X having unknown mean pi, unknown positive
variance R 0, and unknown finite fourth moment )U4. Proposition 1. If both -yj and the fourth
Various types of estimators have been proposed, moment exist and are finite, then there are
including regenerative [2], ARMA time-series models constants eb and c, such that
(3,4,12], spectral (8], standardized time series [7,13],
nonoverlapping batch means [11], and overlapping lim lim n mbias(1(m))=-eb-lRo, (2.1)
batch means [10]. The batch-means and some

standardized-time-series estimators operate on batches n3

of observations; therefore the statistical properties of lim lim mvar(lV(m))=c,(^OR (2.2)
such estimators depend on the batch size, m, as well

as the process X and the sample size n. and
We study here the mean squared error (mse) of cb 1

2  m c R 2
nonoverlapping-batch-means (NBM), overlapping- mse(V(m)) + R (2.3)

batch-means (OBM), standardized-time-series-area 
n2 m 2  n3 0

(STS.A), and the nonoverlapping-batch-means The optimal batch size, m*, satisfies
combined with standardized-time-series-area
(NBM+STS.A) estimators. We apply these four li) -/3 i2 / (2.4)
estimator types to three data processes, each have i n 2( 0

geometrically decreasing correlation structure, with n e O

Bernoulli, normal, and exponential marginal and the optimal mse satisfies
distributions. Four sample sizes are considered.

Although we report mse's of various combinations lim nS/ 3mse(V7(m*))=R2- J, l2 2,4, 2
of estimator, data process, and sample size, the focus 2 b v

here is on the accuracy of an asymptotic formula for
batch sizes that minimize mse. In Section 2 we state In terms of the correlation structure, the
the result in discrete time from Schmeiser and Song asymptotic bias i. a function of only -y and the
[141. The result originally appeared in Goldsman and asymptotic variance is a function rf only -yo. The
Meketon 16], but in continuous time and without the asymptotic mse, optimal batch size, and optimal mse
explicit constant -f, are all functions of both o and ".
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Goldsman and Meketon provide the constants cb  processes used in the experiments described in Sections
and c, so that we can compare NBM, OBM, STS.A, 3.2 and 3.3. These three processes have identical
and NBM+STS.A estimators in terms of their correlation structure ph = ph, but different marginal
asymptotic mse's. Table 1, from Schmeiser and Song distributions.
[141, reviews and extends their results.

Table 1: Comparison of NBM, OBM, STS.A, and NBM+STS.A Estimators

V NBM OBM STS.A NBM+STS.A

Cb 1 1 3 2

c, 2 4/3 2 1

r 1/3 mm2* 1/3 0.79 0.91 1.65 1.59

n oo 'Yo

n2/

lim 2 /3 n83 [( -Y2)1/3 R2 ]-1mse(m*) (c c2)1 / 3 1.59 1.21 3.30 1.59
n- 3

nm ( 2) am-2 Im-rn (-2)1/3 2.52 1.47 1.21 0.63
S-c b

The batch means methods have relatively little In particular, we compare the (finite-sample)
asymptotic bias; NBM and STS.A have relatively large optimal batch sizes m* to the asymptotic optimal
asymptotic variance, batch size

The optimal batch size constants are shown in e2 .)/3
the third row. The batch means estimators require *1 2n ( ).L , (3.1)
batches about half the size of STS.A estimators. C, 0 J

The optimal mse constants are shown in the
next-to-last row. OBM is smallest, with NBM and which is motivated by equation (2.4) and the fact that
NBM+STS.A a little larger, and STS.A about double, m* = 1 for iid data.

The last row contains a measure of the rse- We also make three comparisons among mse's:
robustness to batch size. Since a practitioner needs to the (finite-sample) optimal mse, denoted by mse(m*);
estimate the optimal batch size, and since the the (finite-sample) mse with asymptotic batch size Mii*,
statistical estimate will not always be correct, an denoted by mse(fl*); and the asymptotic mse
appealing property of an estimator is that it not be evaluated at the asymptotic optimal batch size Wf*,
sensitive to batch size in the region of m*. We use denoted by mle(*) and defined by
the second derivative of the mse with respect to batch
size as a measure of estimator robustness. This (j*-/ 3 2  f/3ml~ff n 8 R02 2 .4 (3.2)
derivative, based on equation (2.3) and evaluated at e 2/3 0
any m* satisfying equation (2.4), is

N 3 1/3 R2 3.1 The Three Processes
)2MSC4 13(p2 )ol

Mn m -)) -(-) 1/ 3 _"YThe Monte Carlo experiment described in Section
a, f2n10/3 3.2 is designed to investigate the effect of sample size

4 and marginal distribution on the accuracy of "-t* as an
The constant ( C- )1/ 3 is shown in the last row of approximation for m* when used with finite samplee c a sizes. The marginal distributions are exponential,

Table 1. NBM+STS.A is the most robust and NBM is normal, and symmetric Bernoulli.
the least robust of the four estimator types. All three processes have the correlation structure

Ph = ph. For such a correlation structure,
3. Monte Carlo Results 0= ( 02- 1)/2, so the optimal batch size for the four

types of estimators we consider is a function of 20 and
In this section, we report some Monte Carlo n only. Therefore, the conclusions may not be true

experiments for finite sample sizes and compare the for other correlation structures.
finite-sample results to the asymptotic results of In the experiments, we want to specify the mean,
Section 2. In Section 3.1 we discuss the three /I (irrelevant); variance of the sample mean, var(X),
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the sum of correlations,y0 , and sample size, n. So for function of n. Other entries are estimated optimal
each of the three processes, we give the structural batch sizes based on the Monte Carlo experiment.
definition and formulas for calculating parameter
values from p, var(X), and -yo. For simplicity, we use

p =_ pl. For all three processes, p = (-o - 1)/(% + 1) Table 2: A Comparison of Finite-Sample
and and Asymptotic Optimal Batch Size

R0 nvar(X) Estimator Type : OBM

1 -- Ph = (0 . 8 18 2)A

1-p )  -- n (1 _p) 2  
n EAR(1) AR(1) S2MC 1i*

EAR(I) process [9]: 50 7 10 12 13

500 22 25 27 27

1000 29-30 31-32 34-35 34
X ) 5000 56-57 57 57-61 58

X+ E w.p. Ip, More than one batch size is shown in the last two
rows (n = 1000 and 5000) because the mse function
becomes flatter with increasing n, making Monte

where cQ is iid exponential with rate X, = R& 2 . Carlo identification of the single best batch size

difficult.
AR(1) process [51: The asymptotic optimal batch sizes for all three

processes should have the same value because of the
Xt = / + P(X- 1 - ki) + E , common correlation structure. Indeed, when

n = 5000 the Monte Carlo estimates are all essentially
where Et is iid normal with mean zero and variance the same and equal to t *.
(1 -p 2 )R o . S2MC converges to 7-V quickest, then AR(1), and

finally EAR(1). Since EAR(l), AR(1), and S2MC have
The Symmetric Two-State Markov Chain (S2MC) 11): different marginal distributions (exponential, normal

Let {Xi}F' be a two-state dependent symmetric and symmetric Bernoulli), the values of the kurtosis

Bernoulli process with state space {c,d and transition (9, 3 and 1) also differ. We know that for finitematrix sample sizes the optimal batch size depends upon thekurtosis; based on these Monte Carlo results we

[(1+p)/2 (1-p)/2 conjecture that the larger the kurtosis the slower the

[ -p)12 (1[p)/2 convergence.
(l-I ( A suboptimal batch size, even if distant from m*,

where c = p - 112 and d = p + R /2 can be quite satisfactory if the associated mse is close
to mse(m*). Therefore, we now compare the

The S2MCresult and the relationships among 0, differences between the optimal mse and the mse
R 0 , and var(X) for these processes are derived in associated with the (possibly) suboptimal batch size
Appendix A. f .

3.2 Experiment 1: Monte Carlo Results for the Three Figure 1 shows the (estimated) mse's for the three

Processes processes for sample sizes n = 50 and n = 500. In
Figure 1 (and in Table 2) the largest difference

This section contains the optimal mse and between the optimal mse, mse(m*), and the mse at

optimal batch-size results of a Monte Carlo the approximated optimal batch size, mse(flt*), occurs

experiment using the three processes of the last section for n = 50 for the EAR(1) process, where the mse at

with lag-one correlation p = 0.8182. The ctimator fff* = 13 is about 20% larger than the optimal inse at

type is OBM. Sample _sizes are 50, 500, 1000, and =7. In the other case shown, the difference

5000. In all cases, var(X) = 1; therefore the variance between mse(m*) and mse(ift*) is negligible.

of the observation R0 is a function of n. The mean is So, at least for this correlation structure, the
(arbitrarily) it = 0. asymptotic batch size formula (3.1) accurately

The results are based on 10000 independent indicates a batch size having near-optimal mse for
observations at each design point. The mse's have sample sizes as small as n = 50.
standard errors smaller than .004. The optimal
batch-size results reported are correct to within about 3.3 Experiment 2: Monte Carlo Results for Four
one unit of the least-significant digit. Estimators

Table 2 shows a comparison of finite-sampie
optimal batch sizes and the asymptotic optimal batch In this section, we investigate the accuracy of the
size ig*. The rows correspond to sample sizes and the asymptotic optimal batch size, q*, in estimating the
columns correspond to process types. The right-most optimal batch size for four types of estimators: NBM,
column shows the asymptotic batch size ff* as a OBM, STS.A, and NBM-fSTS.A. The data process is
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AR(1) with p = 0.8182. The sample size is n = 500. Figure 2 shows rose as a function of batch size m

Common random numbers are used across all for NBM, OBM, STS.A, and NBM+STS.A estimators

estimator types. The mse's have standard errors for n = 500; Figure 2(a) shows the full range of batch

smaller than .004 and the optimal batch size, m*, are sizes (the feasible ranges of batch sizes for four

correct to within about one unit of the least-significant estimators are listed in Appendix B) and-Figure 2(b)

digit. zooms in to show batch sizes in the reg'on of minimal
mse.

AR(I), n 500

OBM Estimators, 
n=50

1.0 2.0

5) ,s 0
L -

- 0.4
0 .4

0.2 E

0.0 0.0

9 T 17 25 33 II 49 2 50 100 200 300 400 499

batch size m batch size m

(a) (a)

OBM Estimators, n=500 AR(I), n=500

1.0 1.0

0.8 0.8,
0.8" _ 

t. --,

A, ., -"

*0 0.6 / --. 0.6

0 0.4 
V"0

-00.2 0 .2.. -

0.0 
0.0

I T R I 167 25P 333 416 490 2 25 50 75 100

ij* batch size m batch size m

(b) (b)

Figure 1. Mse for OBM Estimators applied to EAR(I), Figure 2. Mse's of NBM, OBM, STS.A, and

AR(I), and S2MC Processes: (a) sample size n=50, N M 2-STS.A Estimators:

(b) sample size n =500. (a)m 2, 3, 499, (b)m = 2, 3, 100.
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In this example, for every batch size OBM 4. Summary
dominates both NBM and STS.A; also NBM+STS.A
dominates STS.A. These results are consistent with In this paper, we study the accuracy of the
the asymptotic values in the last two rows of Table 1. asymptotic optimal batch size as an approximation for

In this example, the order of the estimators in finite-sample cases. We consider four types of
increasing robustness (seccnd derivative at m*) are estimators of var(X) that are parameterized by batch
NBM+STS.A, STS.A, OBM, and NBM. This order is size. We consider three data processes, all have
consistent with the last row of Table 1. Visually, the geometrically decreasing correlation structure, but
values of the finite-sample second derivatives appear different marginal distributions.
consistent with the values of the asymptotic second In the examples, the optimal batch size m* and
derivatives. the asymptotic batch size rF* yield essentially the

In this example, the order of the estimators in same mse even for sample sizes as small as n = 50 and
increasing optimal batch size m* is NBM, OBM, sum of correlations -0 = 10. That is, the asymptotic
NBM+STS.A, and STS.A. This ordering is consistent optimal batch size formula (3.1) worked well in our
with the asymptotic order in the third-to-last row of examples
Table 1. Moreover, i* has essentially the same value
as m* for each of the four estimators, as shown in the Appendix A:
first two rows of Table 3.

We show here that for processes with

Table 3: Optimal Batch Sizes and geometrically decreasing correlatioL structure, the
Optimal Mse's for Finite Samples relationships discussed in Section 3.1 between p, yO,

Compared to the Asymptotic Formulas. and R o hold. We also show that the S2MC process
Sample Size n = 500. obtains the correct mean, var(X), and - 0.

Since
Property Estimator Type

NBM OBM STS.A NBM-tSTS.A o 10+2 I h = 1 +2 \ p = 1 +2(

h-I h-i 1

24 27 49 47 -:o -

m 20 25 50 45ave
The steady-state variance of X is

mge(M') 0.141 0.108 0.293 0.141 var X)

mse(ffi*) 0.11 0.10 0.19 0.11 R 0  n -I
____________-- 11+2 1-h /n ),h]

mse(m*) 0.11 0.10 0.19 0.11
R0  n-i

1 +2:(-hln)ph;
In this example, the order of the estimators in n h=l

increasing values of mse(m*) is OBM, NI3M,
NBM+STS.A, and STS.A. This ordering is consistent R0  1 2
with the asymptotic values me(if*) shown in the n 1 -p) n (1 -p) 2

next-to-last row of Table 1. However, except for
OBM, the optimal mse, mse(m *), is significantly lower so R 0  n nvar()-- - (-
(35% lower for STS.A) than the asymptotic optimal n (I _,)2

rose, me(ir ), as shown in the last row and the
third-to-last row of Table 3. Now consider the S2MC process. Let, {X, },'I be

In this example, the optimal batch size m* and a dependent symmetric Bernoulli process with
the asymptotic optimal batch size ffI have essentially parameters li, var(X). and o!0. Let the state space be
the same value, so the associated mse's also have the {cd and the transition matrix
same values, as shown in the last two rows of Table 3.
To what extent would we have cared if the latch sizes (1+p)/2 (1-j,)/2
had not matched? A3 discussed in the last paragraph =(1--p)/2 (1+,)/21
of Section 3.2, all that is important is whether i9* can
indicate a batch size having near-optimal mse for We first show that Ph = h and then show that
finite sample sizes. Therefore, the important c p - Re' 2 and d = p + Re 1 2

comparison is between the last two rows - rnse(m*) Since P is doubly Markov, at steady ;tate c and d
compared to mse(r*), rather than between the last are equally likely (i.e., Pr(X, =c)=Pr(X, =d)=1/2).
row and the third-to-last row mse(m*) compared Let Z, = (d-c)- '(X, - e). Then Z, has state space
to 10~e(i*). {O,1 } and transition matrix P At steady state
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coy (Zi,Zi+h) (2] M.A. Crane and D.L. Iglehart, "Simulating stable
stochastic systems, III: regenerative process and

= E(Z, Z2 ph) -E(Z)E(Z,+h) discrete-event simulations," Operations Research
123 (1975), 33-45.

= (E(Z. Z 5 ~h lZi =0) P(Z, =0) [3] G.S. Fishman, Grouping observations in digital
simulations, Management Science 24 (1978),

+ E(Z, Z,+h 1Z. =1)P(Z =1) -)2 510-521.
2 [4] G.S. Fishman, Principles of Discrete Event

Simulation, Wiley-Interscience, New York, 1978.
P )- - 151 W.A. Fuller, Introduction to Statistical Time

Series. John Wiley & Sons, 1976.

1 [ D. Goldsman and M.S. Meketon, "k comparison
= of several variance estimators", Technical Report

24 J-85-12, Operations Research Department, AT&T

h Bell Laboratories, Holmdel, NJ 07733, 1986.
4) ,71 D. Goldsman, "On using standardized time series

to analyze stochastic processes", Ph.D.

where !Y;sertation, School of Operations Research and
Industrial Engineering, Cornell University,

Pjh) Pr(Z+h =1 iZ =1) Ithaca, New York, 1984.
[8] P. Ileidelberger and P.D. Welch, A spectral

Pr(Xh =d IX, =d) +P1 method for confidence interval generation and

2 run length control in simulation,
Communications of .he ACM 24 (1981), 233-245.

by induction on h. Therefore, [9] P.A.W. Lewis, Simple models for positive-valued
and discrete-valued time series with ARMA

corr(Z, Z,h) = cov(Z,, Zih)- _ ph . correlation structure, Multzvariate Analysis-V,
var(Z) (1/4) P.R. Krishnaiah (ed.), North Holland,

Amsterdam, 151-166, 1980.
Since correlation is scale and location invariant, [101 M.S. Meketon and B. Schmeiser, "Overlapping

batch means: something for nothing?",
Ph corr(Xi, X+) = corr(Z, Z,+h) = ,. Proceedings of the 1984 Winter Simulation

Conference, S. Sheppard, U. Pooh, and D.
Sincc X, = c + (d - c)Z, ana the two states are Pegden (eds.), 227-230, 1984.

equally probable, the variance is R0 - (d - c)' nd [11] B.W. Schmeiser, Batch-size effe-ts in the inalysis
4 of simulation out:,ut, Operations Research 30

the mean is p - 2 . (The variance is (d - c)2 (1982). 556-568.

times the variance of an equally probable Bernoulli [12] T.J. Schriber and R.W. Andrews, ARMA-based

trial.) Solving these two equations for c and d yields confidence interval procedures for simulation

the results. output aialysis, American Journal of
Mathematical and Management Science 4 (1984),

Appendix B: Feasible Regions of Batch Sizes 345-373.
13] L.W. Schruben, Confidence interval estimation

The feasible ranges of batch size m for NBM, using standardiz 1 time series, Operations
OBM, STS.A, and NBM+STS.A are listed below: Research 31 (1983), 1090-1108.

NBM: m = 1, 2, [ n/2, i14 B.W. Schmeiser and Tina Song, "Variance
OBM: m = 1, 2, , n-1, Estimatois of the Sample Mean: Optimal Mean-
STS.A: m = 2, 3, , n, Squared Error Batch Sizes," Technical Report
NBM 'STS.A: m =2, 3, "'', [n/2], where lo] 88-15, School of Industrial Engineering, Purdue

denotes the greatest integer less than or University, West Lafayette, Indiana, 1988.
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SIMEST AND SIIDAT: DIFFERENCES AND CONVERGENCES

E. Neely Atkinson, Barry W. Brown and James R. Thompson
M.D. Anderson Cancer Center and Rice University

Introduction. Stochastic process modeling approaches, e.g., maximum likelihood
has, until fairly recently, exhibited serious estimation, we are quickly bogged down in a
limitations in biomathematics, econometrics morass of' confusion and complexity. For
and other areas of potential application, example, in order to use the maximum
Consequently, investigators have frequently likelihood approach, we are confironted with

been driven to linear regression and other the necessity of computing a number of
ad hoc techniques, with generally poor messy terms. We show one of these in (5).
results. The reason for the difficulty in
applied stochastic process modeling is that r f ws-s'I WI

the axioms, since the time of Poisson, have (5) P(TJ S ,T.2>S}= e IV t;1)pQS':e Ix
been forward in time direction, whereas 0

data analytical techniques, such as those
based on maximum likelihood are c~t-uI _ at-u ]

backwards in time direction. Let us +

consider, for example the following forward as,' - ,

axiomitization of cancer progression H([.(S- S);S':e )H('S- S) e ;u;e +dd +

considered by Bartoszynski, Brown and
Thom pson (1982). . -WSS . at tJ (S-Sp(t;li exp[- 21--e -1]),e- 'x

(1) For each -atient, each tumor originates 0 u a
from a single cell and grows exponentially at
rate u. ;HS'"u,Di H(tS-SJS'"t-,'ldu dt.

(2) The probability that a tumor of size Yj(t),
not previously detected and removed prior
to time t, is detectable in [t, t 4 A, iz "-,(t)

At + o(At. !6 H(s:t:z) =exp ( e at ( - )og[ +e e t Id

a
(3) Until the removal of the primary , the

probability of metastasis in )._ 21 g/I+e (e - lr]J,
[t, t + At! is a Yo (t), where Yo (t) is the

mass of the primary tumor.
at b)z at1

(7) p(1;z) = bze eXJ) I- e - 1)

(4) The probability of systemic occurrence of

a tumor in [t, t + At] is AAt + o(At)
independent of the prior history of the

Y

patient. (8) w(Y) Y C 'f1- -di

Written as they are, in standard 0

Poissonian forward form, the postulates are
extremely simple. However, if we attempt and '(tu) is determined from

to use one of the backwards "closed form"
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U CIs proportion of actual data points fallfng in the
(9) s J 'Ith bin. A major problem with the

0 a + b + s - ae implementation of an algorithm based on

(10) is the fact that fact that, as we proceed
The order of computational complexity from point to point in the parameter space,

here is roughly that of four dimensional the criterion will exhibit simulation induced
quadrature. This is near the practical limit noise. We have addressed this problem in
of contemporary mainframe computers. Atkinson, Brown and Thompson (1987) by
The time required for the estimation of the utilizing a fixed seed approach. Thus, if we
four parameters in the above model was are using, say 1,000 simulations at each
roughly two hours using the robust parameter value, we use the same sequence
optimization routine STEPIT on the CYBER of seeds for each parameter values. Such an
173. A moment's reflection reveals the approach enables us, rather than developing
problem. If a tumor is detected at a stochastic optimization procedures, simply
particular time, we must examine all to use existing deterministic software (e.g.,
possible paths which might have given rise that of Nelder and Mead).
to its origin. For example, it might be a In many applications, we will not simply
metastasis from the primary, or a have a one dimensional response variable
metastasis from a metastasis of earlier (e.g., failure time) but a number of response
origin, or a systemically generated tumor, or variables. Simple Cartesian binning in such
a metastasis from a systemically generated a situation exhibits numerous difficulties,
tumor, etc. Each of these paths is easy to e.g., the empty space phenomenon, namely
write in the forward direction, but when the fact that most of the bins will be empty of
computing the likelihood, we reason data points. The major purpose of this paper
backwards. is to address alternatives to Cartesian

In 1983 and 1987, we have presented the binning in the multivariable response
algorithm SIMEST for dealing with the situation.
backwards/forwards dilemma. In this
algorithm, we have returned to the older Discussion. Let us suppose we have a
goodness of fit philosophy of Karl Pearson. Poissonian model M(e) for which the
Namely, we consider that a set of vector parametero is unknown, but from
parameters is close to truth when which we have a set of n observations of ak-
simulations based on them produce results variate response variable X . We shall
which appear to be sufficiently similar to assume a value of -) and, using this
those of the data. The procedure is based on parameter, generate a set of N simulated
binning "failure times" from the data, and "data points" Y. If the assumed parameter
noting whether the simulated failure times is, in fact, that which generated the actual
fall in the bins in a manner similar to those data, then we should find that the X cloud is
from the data. For example, if we use the indistinguishable from the Y cloud. To
formal goodness of fit criterion, we have determine whether this is so, we might

determine the distance of each of the X
/ (P A 2 points from each of the Y points and from

(10) S Z " ( each other. Such a matrix of distances
Ashould provide all the information we need,
PJ but would require (n + N- 1) n elements

where p sj is the proportion of simulations for each simulation, of which some many
falling in the j'th bin and p1 is the thousands will be required in order to find a
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satisfactory value of 19. Accordingly, absent We note that (12) involves the
the availability of highly parallel computer computation of only n + N distances. For N
architecture with hundreds of CPU's, we large and the underlying distributions
need to seek more economical criteria. Gaussian, the procedure approaches that

We start out with a real world system based on the likelihood ratio test and enjoys
observable through k- dimensional its optimality properties. When the
observations X. We believe that the underlying distributions are not Gaussian,
generating system can be approximately the procedure is no longer optimal, but will
described by a model characterized by the frequently yield the correct value of (9 as
parameter 19 . If we have a data set from n-->. We note that it is by no means correct
the system of size n, we can, for a value of 0, to assume that the test procedure we employ
simulate a quasidata set of size N. Then, we must be based on a consistent
compute the sample mean vector and nonparametric density estimator. In any
covariance matrix of the X data set. Then, event, even when more complex algorithms
we transform the data set to a transformed are required, it will generally be useful to use
set U = AX + b with mean zero and (12) to move the starting value of (9 closer
identity matrix I. We then apply the to truth.
transformation T to the simulated data set. If the distributions of the response
We compute the sample mean X and variables are very different from Gaussian,
covariance matrix Z of the simulation data it may be appropriate to develop a
set. If the simulated set is essentially the nonparametric procedure which can
same as the actual data set, then it should become more and more complex until the
have for its transformed values mean zero number of distances required per simulation
and identity covariance matrix 1. If the can approach that of (N + n -1)n. For the
underlying data distribution is not too first step, we again carry out the
bizarre, we can measure the fidelity of the transformation T mentioned above which
simulation data to the actual data by transforms the data set to one with mean 0
computing the ratio of the Gaussian and covariance matrix I.. We record the
likelihoods of the transformed simulated distances of each of the data points from 0,
data sets using the mean and covariance say /dj}jl,n , and those of the simulated
estimates from the actual data and the data points from 0, say fds 11,N. If we
simulated data respectively. Defining have arrived at the true value of 9 , then

k - when the two distance lists are put into one
(1 Q i-' hi j,= ! y of length n + N , we should expect to find an

equal distribution of simulated and actual
data values throughout the list. Letting IV
denote the sum of the ranks in the total list

where avse lof the n data points, we know that if the true
of Z, we have value of H has been assumed for the

N simulated data set, we have a standard
Hi----xp- (U 2 + U 2 + uI Wilcoxon-Mann-Whitney situation. Thus,

i 2 h 2we let
2

(12) 9 27

fj71 1T7 expf--Q(u, U .
(2 )
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(13) U = nN + ?(n + 1) W; points all to pass satisfactorily the N(0,1)
2 test unless e has been correctly selected.

2 nN(n + N + 1). P nN. Finally, let us consider the possibility of
CU 12 U  2' employing the SIMDAT algorithm in

conjunction with SIMEST in order to effect
U- PU parameter estimation.

Z=

CU Let us suppose we have a random sample

(Xj} i= to n of k dimensional vectors.
If the value of e used in the simulation is SIMDAT generates pseudo random vectors
the same as that in the model, we know that fromr' the underlying, but unknown
Z is normally distributed with mean 0 and distribution that gave rise to the random
variance 1. This gives us a natural stepping sample. First of all, we carry out a rough
rule when changing 1 in the optimization rescaling, so that the variability in each of
routine. the k dimensions is approximately equal.

Interestingly, although when a correct We pick an integer m between 1 and n (the
value of 9 is assumed, Z must be N(O,1), the method of selecting m will be discussed
fact that Z is N(0,1) does not necessarily shortly). For each of the n data points, we
guarantee that we have arrived at the determine the m - 1 nearest neighbors
correct value of 1. Note that we made our using the ordinary Euclidean metric.
decision based on relative distances of the To start SIMDAT, we randomly select one
data and simulated values from the mean of of the n data points. We then have m
the data. It is easy to extend this relationship vectors, the data point selected and its m - 1
to other data points. For example, we might nearest neighbors. The vectors {Xj}j = 1 to m
rank the transformed data distances from 0 are now coded about their sample mean
and pick, as a second anchor point, the point

with median distance from 0. We then m

compute the distances of the data points and (14) X= - Z Xi
the simulated data points from this second m

anchor point. Again, if the correct value of E
has been picked, our new Z must be N(0,1). to yield
Proceeding in this fashion, subsequent
anchor points would be those ranked in (m
distance from the data mean, n/4, 3n / 4, n/8, (j j - = l

5n/8, 3n/8, 7n/8, n/16, ....
One difficulty with the above approach is Next, we generate a random sample of size

that the test statistics for each anchor point ?n from the one dimensional uniform
are not stochastically independent. Thus, distribution
the significance levels cannot quite been
obtained by multiplication of tail area 11 +' _--).

probabilities from the standard normal (16) U(-- 2 - + 2
distribution. In fact, it would be irrelevant to in m m

do so anyway, since it is possible to have
rank matching about several anchor points This particular uniform distribution is
without actually having picked & correctly. selected to provide the desired moment
Generally speaking, however, it will be very properties below. Now the linear
unusual for rank tests about a few anchor combination
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m SIMEST to be essentially indistinguishable.
(17) X' = X UlX,' The means for carrying out this task in a

1=1 computer efficient fashion is a matter of
is formed, where (ulil = 1 to m is a random investigation for us at present. One
samplo from the unifurm distribution in technique which appears attractive is to
(16). Finally, the translation generate many SIMDAT and SIMEST data

sets of size much smaller than the size of the

(18) X = X'+X actual data base and use as a measure of
agreement rankings of distances from the
common transformed origin.

restores the relative magnitude, and X is a

simulated vector which we propose to be
representative of the multivariate
distribution that generated the original data Atkinson, E. Neely, Bartoszynski, Robert,
set. To obtain the next simulated vector, we Brown, Barry W. and Thompson, James R.,
randomly select another point from the (1983). Simulation techniques for
original data base and repeat the above parameter estimation in tumor related
sequence (sampling with replacement). stochastic processes, in Proceedings of the
Although it is very easy 1983 Computer Simulation Conference,
and quick to use, SIMDAT essentially gives North Holland: New York, 754-757.
the same results that one would obtain by
laboriously obtaining the nonparametric Atkinson, E. Neely, Bartoszynski, Robert,
probability density estimator and sampling Brown, Barry W. and Thompson, James R.,
from it. (1983). Maximum likelihood techniques, in

The selection of m is not particularly Proceedings of the 44th Meeting of the
critical. Naturally, if we let m = 1, we are International Statistical Institute,
simply sampling from the data set itself (this Cntrnatin a is t Institu4e7
is Efron's "bootstrap" ), and will experience
the difficulties present when one attempts to Bartoszynski, Robert, Brown, Barry W. and
use a discrete entity to approximate a Thompson, James R., (1982). Metastatic
continuous one. When we use too large a and systemic factors in neoplastic
fraction of the total data set, we will tend to progression, in Probability Models and
obscure fine detail. But the selection of m is Cancer (LeCam, Lucien and Neyman,
not the crucial matter that it is in the area of Jerzy, eds.), New York: North Holland,
nonparametric density estimation. 253-264. Chandler, J.P. (1969). STEPIT,
Experience indicates that the use of m
values in the 5% range appears to work
reasonably well.

In the present application, we note the Efron, Bradley (1979). Bootstrap methods
symmetry between SIMDAT and SIMEST. - another look at the jacknife, Annals of
SIMDAT makes no model assumptions Statistics, 7, 1-26.
beyond continuity of the density function.SIMEST "creates" its own "data" and is Nelder, J.A. and Mead, R. (1965). A simplex

method for function minimization.
completely driven by the model parameter Computational Journal, 7, pp. 308-313.
9. Using a Pearsonian philosophy, we

should select a 1 value which causes thedata clouds generated by SIMDAT and Taylor, Malcolm and Thompson, James R.
(1986). A data based algorithm for the
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generation of random vectors, algorithm for simulation-based estimation
Computational Statistics and Data Analysis, of parameters characterizing, a stochastic
4, 93-101. process, in Cancer Modeling, Thompson,

James R. and Brown, Barry W., eds.,
Thompson, James R., Atkinson, E. Neely Amsterdam: Marcel Dekker, 387-415.
and Brown, Barry W. (1987). SIMEST: an
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ACCELERATION METHODS FOR MONTE CARLO INTEGRATION IN BAYESIAN INFERENCE

John Geweke, Duke University

Abstract E[g(9) 1yT]

Methods for the acceleration of Monte Carlo r
integration with n replications in a sample - J g(O)ir(O)L(y,,l)dO

of size T are investigated. A genural e
procedure for combining antithetic variation

and grid methods with Monte Carlo methods is [rO)L(y 1)dO]-l.
proposed, and it is shown that the numerical T161
accuracy of these hybrid methods can be
evaluated routinely. The derivation indicates In applying the model the functional form of
the characteristics of applications in which L(YTI6) may itself be in doubt. If there are
acceleration is likely to be most beneficial. m such models indexed by j, with prior
This is confirmed in a worked example, in probability ir. then the posterior
which these acceleration methods reduce the probabilities 6f the models themselves are
computation time required to achieve a given proportional to pj 1 jfEj(O)L.(yI 6)d8. In
degree of numerical accuracy by several orders this case E[g(e)IYT], unconditional on model
of magnitude. choice, is the average of conditional

E[g(O) yT], weighted by the pj.

Background
Monte Carlo Integration with Importance

In a statistical model the distribution of Sampling
a vector of random variables YT - (Y .

yT
)  

is assumed to be known up to a vector of In Monte Carlo integration with importance
parameters 6 - (1. 8k The model may sampling a sequence of independent and
be expressed by the probability density identically distributed random vectors {0.Yi}

function whose kernel is the likelihood is drawn from an importance sampling density
function L(YTI0), with the functional form of I(.); typically n is on the order of 104

.

L known and 6 unknown. In Bayesian Heuristically, the importance sampling density
inference the unknown vector of parameters 0 should mimic the posterior density and to this
is regarded as random, and its distribution end define the weight function w(9) -
conditional on the observed vector YT is p(6)/I(6). The value of 9T - E[g(O)IYT] is
derived. If w(O) is the prior probability approximated, numerically, by gn,T -
density of the parameters then the conditional Z9 ig(6i)w(9i)/ZlW(Pi

) . 
Statisticians have

distribution of 6 is p(eIYT) x L(YTI)l(6); 1 g 1 S

P(OIYT) is known as the posterior been aware of this approach for over twenty
distribution of 6. Virtually all Bayesian years (Hammersley and Handscomb, 1964). Kloek
inference problems are cast in the form of and van Dijk (1978) conjectured
determining the expected value of a function n/

2
( , - 2T 2 an v

of interest g(0), under the posterior: n flT gT' cT)

E[g(0)YT] -feg(6)p(01YT)d8, e being the method of approximating aT numerically. This
parameter space. is an important result, for it allows routine

Among the artracLions of Bayesian inference evaluation of the numerical accuracy of gnT
are its provision of a logically consistent It has been further shown (Geweke, 1986) that
approach in complex situations and its if 1(6) > 0 V 9 e 8, then gn,T -gT If in
incorporation in decision theory (Berger and addition Efw(8)- < and Erg2 (6)w(0)] <
Wolpert, 1984). There have been very- - L -
substantial problems in the implementation of then nl/2(g T - N(O, ), where a2

methods for Bayesian inference, however: Ef[g(d) ngTw(). and ifTT

these problems have been approached on a case- --
by-case basis, with limited development ofnT - li[g(i) - gnT]2w(9i)2/[EW(0i)]2

generic methods; analytical results have been then n2 T , o. (All convergence is in n,
obtained only in a limited set of cases; and n T
computations have been slow, relative to the number of Monte Carlo replications.) The
classical methods. The development of conditions for convergence guide the choice of
analytical generic methods is precluded by the 1(0), which is an experimental design problem.
intractability of the integrals in E[g(0)lYT] Over the past two years readily applicable
that emerge in all but the very simplest prob- methods for analytical identification of
lems. families of importance sampling densities that

The generic problem requires determination satisfy the moment conditions have been
of developed (Geweke, 1986). Algorithmic methods

for construction of importance sampling
densities within these families have been
devised and implemented (Geweke, 1988a), but

this work is in an early stage.

587



Antithetic Acceleration A2
an,m,T

There are well-known variants on Monte Carlo
which accelerate convergence, but until quite
recently none has been applied to Bayesian n . 2

inference. A simple generic method is antithe- fZ-Z jzP i J I 2n,m,
tic acceleration, which uses the technique of
antithetic variates introduced by Hammersley [Zm_ }i1

2
l+n '-lW(1 2P

and Morton (1956). A pair of identically _lW(J )]2 i-l
distributed but negatively correlated vectors,
0 and 8B, are drawn from I(.), and the then n&2 2 02
i 6

j nm T amT Hence any acceleration
value of g is approximated numerically by method o "this form can be routinely employed.

The design of nonrandom sampling schemes is
* a question of very great practical importance.
gn,T Grid or quadrature methods provide one basis

for these schemes. To illustrate a simple

-i/l[g(8i)w(i8) - g(8i)w(9i)] grid method, let u* - (u* -, be
cosen at random from the unit h~percube in
R , and define an 1-grid in R by all

w + w()]}l; points of the form u (u I . .. I uk) , u- -
u, + i/I (i - 0 .. Ili modulo 1. Map

and as before we can compute n T  such thatinto points in e via the
^.2 *2 inverse c.d.f. of the importance sampling

nonT ' OT . No matter what the scheme for density 1(6). This provides a feasible
A and method for low-dimensional problems. For

inducingnegative correlation between higher-dimensional problems, this particular

, so long as these vectors are drawn from method is impractical because of the rapid

1(0) the numerical accuracy of the procedure increase in I . In these problems the grid

may be evaluated using this result. In a mesh need not be the same for all parameters;

leading simple class of cases it has been shown grids may be used for some parameters but not

*2 2 others; or, antithetic variates may be used
(Geweke, 1988b) that TOaT lT coverges almost for some parameters and grids for others.

To provide the intuition for the accelera-
surely to a finite positive constant as T i r
and the expression for the limit indicates that tion inherent in grid methods, consider the
the constant is smaller the more nearly linear motivating problem of computing f xdx - 1/2.
is the function g. An immediate implication 1 -l i 0
of this result is that the required number of i and x + (j-l)/m,
Monte Carlo iterations to achieve given j-2 ... , m, and denote xi m-E x. If
numerical accuracy relative to the dispersion the integral is approximated by n-

of the posterior density decreases as sample th i n m
size increases. This raises the possibility n -l'i-li then var(Rnm) - l1(12m n). To
that asymptotic approximations, like those * 2*
developed by Tierney and Kadane (1986), do not achieve var(x n m) - v , n - 1/(12m v
necessarily become preferred on practical Monte Carlo iterations are required. With

grounds as sample size increases. computation time proportional to mr,
computation time required to achieve
var(Xn m) - v* is proportional to l/(12mv*).

Grid Acceleration This suggests that required computation time
with grid acceleration is approximately

Antithetic acceleration is but one example inversely proportional to the number of
of an entire class of extensions of Monte points, that is, approximately proportional to

Carlo. In general, an m-tuple 01, O the mesh of the grid. For the generic case in
i Monte Carlo integration this conclusion seems

may be drawn on the i'th Monte Carlo a reasonable conjecture, because of the local

replication, each 0 having probability linearity of inverse c.d.f.'s and functions of
interest. For mixtures of grids for some

density 1(0), 6j independent of 0k if i parameters and antithetic variates for others
kk, but 6 and 9 are in general the situation is less clear. Yet another- k complication is the choice of since

dependent. The value of iT - E[g(8)] is variance is proportional to n- and m"2

approximated, numerically, by gnT "computational efficiency alone would suggestn-l. Howeer, n > 1 is required in order to
I g(O (Antithetic provide ,m,T an assessment of the

acceleration is the special case in which m - numerical accuracy of the whole procedure. To
h 1 and 2negatively correlated.) explore these practical matters we turn to a

wh aworked example.
It is not hard to show that for fixed m,

nl[,m,T - gT] - N(O, OaT) , and if
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A Worked Example Geweke (1986).)
This procedure determines the importance

We apply these methods to one of the most sampling density I* (p) for p. Let J*(p)
widely used econometric models, the linear be the corresponding c.d.f., and J *- (p) the
model with first-order autocorrelation: inverse c.d.f. Given a preset number of

- Xt + %t; Ei - N(2, 2 (Ip 2
)-;gridpoints m, draw uil - U(O, m

1
) and set

uij - Uil + j/m(j-2 ... m); then Pij -

t-l ;... J (uij). We confine the grid to the single

Tlt - IIDN(0,a
2 )" parameter p. Conditional on p, a and

are independent and conditional on p and a
The dependent variable is yt; xt  is a k x the distribution of 0 is symmetric. Thus,
i vector of independent variables; ct is an 0 appears well suited for antithetic
unobserved disturbance- 6 is a vector of acceleration: if a function of interest is an
unknown parameters; a is an unknown element of f, then antithetic acceleration
positive variance parameter; and the autocor- provides the exact mean of that element condi-
relation parameter p is less than one in tional on p, and the numerical approximation
absolute value. Letting is exact up the approximation of the

unconditional distribution of p.
yl(p) = (l-p

2
)
1
/
2
yl; xt l (P) - (l-p

2
)
1
/
2
xtl; We employ two data sets, each of which is

modelled by

yt(p) - Yt - Pyt- 1 ; xtj(P) - xtj - Pxt-l,j;

xt(P) - Xtl( P ) ..... xtk(P)]" ;  yt - f0 + fixtl + 62xt2 + et,

where yt is the log of consumption of aby a standard transformation (e.g., Theil consumer good, x is the log of income, and
(1971, pp. 250-253)) the log-likelihood i l tl p
function is xt2 is the log of the price of the consumer

good relative to a general price index. In

2 the first example, yt is log consumption of
-Tlog(a) + (l/2)log(l-p 2) spirits, and the data are the 69 annual

observations used in the example of Durbin and
/25T l[Yt(p) _ xt(P),l]2. Watson (1951). The least squares coefficients- /cZ- are b0 - 4.607, b1 - -.120 b - -1.228;

A standard conjugate prior is athe posterior mode is b0 - 2.451 l - .622,

a-1 . Conditional on p, the posterior in a #2 - -.929, - .993. In the second example,

is inverse-gamma, and conditional on p -and Yt is log consumption of textiles, and the
data are the 17 annual observations providednormal. With this in mind, denote the by Theil and Nagar (1961). The least squares

nostriorm Wit tion m and t tcoefficients are b0 - 1.374, b1 - 1.143, b2
posterior distribution of and a - -.829; the posterior mode is - 1.359,conditional on p by #aolp>*( lo, i). It is i - 1.149, 2 - -.827, - -.125.

straightforward to sample from 0(.) and
OJ). Given an importance sampling density To explore the question of computational

I (p) for p, we may choose the importance efficiency as a function of the number of grid

sampling density for all parameters to be points, six functions of interest were

1(0) - I(p, a, p) I * (p)(oIP)( Io, P). selected: the posterior means of 6l, 02 ,and p; the predictive mean of a one-period-Since the range of p is limited, if I (p) > ahead value of yt, taking xt+l at its
VP E [- 1, 1] then E[w()] < -, and for sample mean and f at its standard

most functions of )nterest it will be readily deviation; and Pimp[ < .11 and PIp > 0],
verified that E[g (O)w(O)] < -. A normal L

li each computed under the posterior. In the
importance sampling density is therefore a s irits example P[IpI < .1] - 0 and
reasonable candidate for by a). Pip > 0] - 1, and the latter two functions of

The posterior mode is found by a global interest are not reported. In each case, n -
Hildreth-Lu (1960) search in p, followed by 2,000. In one set of experiments was

local maximizatiog with a convergence 2,000. In one s oneerimen # was

criterion of 10- in p. For local values sampled by simple Monte Carlo, and in the

of p, the posterior was maximized in P and other antithetic acceleration for f was

a, and the log posterior was compared with employed. Software developed by the author

its value at the global maximum. For each reports the posterior Tean, the posterior
such comparison, a normal density with mean at standard deviation, an T, and computation
the global mode may be fit to the two points; time. Given these, comufation time required
the standard deviation of this density is for an mT to fall to one-percent of the
greater, the smaller the difference in the log posterior standard deviation was computed for
posterior at the two points. The standard the first four functions of interest, and
deviation of the importance sampling density computation time for an,m T to fall to .005

is taken to be the largest such standard was computed for the two piobabilities.
deviation, over the range for which the Results are reported in Tables 1 and 2.

difference in log posteriors is less than 20. Computation times are given in seconds, using
(Choosing the largest standard deviation is a MicroVax II and double precision arithmetic.

likely to reduce E[w(B5], as discussed in (Each valuation of the posterior density for a
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different value of p requires re-solution of of length .007, the grid is poor, indeed, for
the least squares normal equations.) Not values of p above , until m is large.
surprisingly, without antithetic acceleration This difficulty could be obviated by suitable
computation times for E[,6] and E[62] are transformation of p; but note that the prob-
unaffected. Increased m provides some lem affects only the conjectured -relationship
reduction for the prediction which involves of computation time to m -- the validity of
p, in the textiles example but not the the numerical procedure itself and computation
spirits example. With antithetic acceleration of an,m, are not in question.
the general pattern of reduction in computing
time is the same for all functions of Conclusion
interest. In practical terms, the reduction
in time afforded by the combination of grid The results here suggest the possibility of
and antithetic acceleration is quite very substantial gains in computational
substantial. The textiles example requires efficiency from acceleration methods. More
about three minutes with no acceleration; with investigation is clearly warranted. The
in = 25, ten seconds suffices to produce n = foremost problem is that full grids are
20 and meet the chosen numerical accuracy impractical in more than one dimension: with
criteria. The spirits example requires about 2 grid points in each of k dimensions and a
fourteen minutes with no acceleration; with full mesh, computation time is proportional to
m - 25, twelve seconds suffices to produce n 2 k- /v*. Hence more sophisticated strategies
= 20 and meet the accuracy criteria, for grid construction bear investigation. The

As expected, increasing the value of m worked example was tailored to a specific
beyond 25 further reduces computation time. problem, and more generic software is required
However, the need to have some minimum number to learn about appropriate design of grid and
of n, the number of Monte Carlo iterations, antithetic sampling in various models. Among
limits these gains as a practical matter. If the issues to be investigated are the
one uses a rule of thumb that sets a minimum possibility of algorithmic choice of different
value of n (here we use n - 20) then grid meshes for different parameters, or axes,
nothing is gained by increasing m over the to increase efficiency; and the potential
value needed to achieve the required numerical additional increase in efficiency afforded by
accuracy in the minimum number of Monte Carlo suitable preliminary transformation of
iterations. Put another way, standards for parameters. A general proof of the propor-
numerical accuracy and the requirement of a tionality of computation time to grid mesh
minimum number of Monte Carlo replications to would be enlightening, although it is not
assess numerical accuracy reasonably well necessary for the implementation of these
imply an optimal value for m. Here, that methods.
value appears to be about 25, but of course Reduction of computing time from over ten
this result is specific to the two examples. minutes to under ten seconds on desktop

Based on a very simple motivating example, machines, as reported here, underscores the
we conjectured that required computation time fact that innovations in algorithms complement
would be approximately inversely proportional ever faster hardware. These complementarities
to m. Evidence on this conjecture is provided will increase with innovations in hardware
in Table 3, which reports the product of m architecture. In particular, grid methods are
and computation time given in Table 2. For the well adapted to vector or parallel processors,
textiles example this product is roughly because once the random numbers for each Monte
constant across m. For the spirits example Carlo iteration are chosen, the evaluation of
the product declines as m increases. The the posterior density and functions of interest
explanation for this behavior lies in the at different grid points typically involve
appeal to a local linear approximation in precisely the same computations (but with
applying the motivating example to the much different parameter values). Since vector and
more complicated problem worked here. In the parallel architectures are now accessible, this
spirits example, the normal density I (p) is seems an opportune time to pursue the
centered at - .993, with a standard devia- implementation of acceleration methods on these
tion of .053. Since the log posterior density machines in anticipation of their wider
declined from its mode to -- over an interval availability in the intermediate future.
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Table 1

Computation Times, Without Antithetic Acceleration

Textiles example

Function of
Interest m-i m-2 m=5 m=12 m=25 m=50 1=100

E(fI) 202.231 181.796 174.000 173.215 175.402 165.480 169.534

E(02) 202,437 184.914 171.478 160.684 164.977 162.552 156.317

E(p) 178.036 89.000 39.032 18.375 8.784 3.860" 1,680"

Prediction 193.592 146.717 123.079 116.280 115.735 117.563 111.185
P(IPj < .1) 181.952 66.712 21.692 8.994 4.236* 2.896k 0.523"
P(p > 0) 156.567 107.887 18.792 14.066 6. 717" 3.021* 2.29n

20 replications *8.744 *17.458 34.890

Spirits example

Function of
Interest m-I m-2 m-5 m=12 m=25 m=50 m-00

E(01) 818.197 803.833 785.122 747.708 727,303 764.308 735.952
E(62) 820.990 806.643 769.044 750.209 803.173 729.340 768.943
E(p) 443.002 395.034 144.442 25.712 6.163* 1.437* 0.405*
Prediction 911.174 887.308 807.634 755.261 724.942 808.616 787.963

20 replications *11.164 *22.318 *44.599

Computation times are given in seconds for a MicroVax II using 64-bit

arithmetic. Trailing asterisks denote times that imply fewer than 20 Monte
Carlo iterations; computation time for 20 iterations is indicated by the figure
with leading asterisk at the bottom of the column.

Table 2

Computation Times, With Antithetic Acceleration

Textiles example

Function of
Interest m-1 m-2 M-5 m=12 m-25 m-50 m-100

E(fI) 1.606 0.959 0.409* 0.191* 0.088* 0.033* 0.01'2"

E(82 ) 12.072 12.829 9.279 6.080 4.879* 3.406* 2.121"
E(p) 174.867 91.394 40.863 18.355 9.447 4.161" 1 80."
Prediction 60.502 27.948 9.935 4.063* 1.787* 0.694* 026'45

P(IpI < .1) 173.620 70.353 22.259 9.649 4.226* 3.051* 0.616
P(p > 0) 151.789 113.245 20.698 13.882 6.856* 3.279 2.385

20 replications *1,855 *4.415 *9.163 "18.295 *36.564

Spirits example

Function of
Interest m-1 m-2 m-5 m=12 m-25 m=50 m-100

E(,I) 55.486 41.986 13.208 2.369* 0.592* 0.140 0.03" 
'

l

E(0 2 ) 51.896 41.185 11.833 2.097* 0.515, 0.11 7" 0.03.

E(p) 475.000 427.113 143.177 25.872 6.550* 1.495" 0.'.??
Prediction 5.045 4.138 1.598 0.342* 0.092* 0.023K 0.006

20 replications *2.348 *5.567 *11.570 *23.092 *46.182

Computation times are given in seconds for a MicroVax 11 using 64-bit

arithmetic. Trailing asterisks denote times that imply fewer than 20 Mont,
Carlo iterations; computation time for 20 iterations is jndic:ilted by the fir xui'
with leading asterisk at the bottom of the column.
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Table 3

Computation Time Scaled by Grid Size, With Antithetic Acceleration

Textiles example
Function of
Interest m-I m-2 m-5 m-12 m-25 m-50 m=100

E(fI) 1.606 1.918 2.045 2.287 2.203 1.640 1.187
E0 2 )  12.072 25.658 46.394 72.966 121.967 170.306 212.078
E(p) 174.867 182.788 204.317 220.265 236.187 208.068 180.196
Prediction 60.502 55.895 49.673 48.752 44.683 34.695 26.544
P(IPI < .1) 173.620 140.706 111.293 115.793 105.658 152.572 61.632
P(p > 0) 151.789 226.489 103.492 166.585 171.402 163.939 238.467

Spirits example
Function of
Interest m-1 m-2 m-5 m-12 m-25 m-50 m=100

E(fI) 55.486 83.973 66.039 28.429 14.799 6.996 3.895
E(02) 51.896 82.371 59.164 25.169 12.864 5.858 3.385
E(p) 475.000 854.227 715.884 310.467 163.748 74.763 42.437
Prediction 5.045 8.275 7.990 4.101 2.304 1.130 0.569

Figures given are the product of those in Table 2, with the corresponding
value of m.

References Hammersley, J.M., and K.W. Morton, 1956, "A
New Monte Carlo Technique: Antithetic

Berger, J., and R. Wolpert, 1984, The Variates," Proceedings of the Cambridge
Likelihood Principle, Hayward, CA: The Philosophical Society 63:449-475.
Institute of Mathematical Statistics. Hildreth, C., and J.Y. Lu, 1960, "Demand

Durbin, J., and G.S. Watson, 1951, "Testing Relationships with Autocorrelated
for Serial Correlation in Least Squares Disturbances," Michigan State University
Regression, Part II," Biometrika 38:159-178. Agricultural Experiment Station Technical

Geweke, J., 1986, "Bayesian Inference in Bulletin 276, East Lansing, Michigan.
Econometric Models Using Monte Carlo Kloek, R., and H.K. van Dijk, 1978, "Bayesian
Integration," manuscript. Estimates of Equation System Parameters:

Geweke, J., 1988a, "Exact Inference in Models An Application of Integration by Monte
with Autoregressive Conditional Carlo," Econometrica 46:1-19.
Heteroskedasticity," in E. Berndt, H. 1heil, H., 1971, Principles of Econometrics,
White, and W. Barnett (eds.), Dynamic New York: John Wiley and Sons.
Econometric Modeling, Cambridge: Cambridge Theil, H., and A.L. Nagar, 1961, "Testing the
University Press, forthcoming. Independence of Regression Disturbances,"

Geweke, J., 1988b, "Antithetic Acceleration of Journal of the American Statistical
Monte Carlo Integration in Bayesian Infer- Association 56:793-806.
ence," Journal of Econometrics 38:73-90. Tierney, L., and J.B. Kadane, 1986, "Accurate

Hammersley, J.M., and D.C. Handscomb, 1964, Approximations for Posterior Moments and
Monte Carlo Methods. London: Methuen. Marginal Densities," Journal of the
(First edition) American Statistical Association 81:82-86.

592



MIXTURE EXPERIMENTS AND FRACTIONAL FACTORIALS USED TO TAILOR COMPUTER SIMULATIONS

Turkan K. Gardenier, TKG Consultants, Ltd.

ABSTRACT (b) show relative efficiencies among several
experiment design plans.

Large scale computer simulations are in wide-
spread and growing use in government, business Two ways of structuring statistical experiment
and science. Within the Department of Defense designs as pre-processors, an integrated tool
the use of simulation Is particularly crucial denoted as Pre-Prim by the author, will be de-
because the real-world scenario of the battle monstrated. The first deals with independent
cannot be reDlicated. Environmental and health input vector parameters; the second deals with
simulations for risk assessment have complex constrained mixture experiments.
determinants of pollution and target sites.
Large number of parameters may initially appear PRE-PRIM AS A NEW CONCEPT
to be needed in simulations, and experiment
designs achieved through response surface method- Pre-Prim, as an integrated set of statistical
clogy, can reduce the final set parameters to an tools, offers the capability of mechanizing +he
efficient minimum. decisions of the simulation user. It offers the

feasibility to:
This paper presents the use of several experi-

ment design procedures, including fractional fac- (a) analyze a maximum number of input parame-
torials, mixture experiments with contrained op- ters with a minimum number of simulation runsl
timization and Hadamard matrices as pre-proces-
sors to computer simulations. These methods (b) incorporates non-linearities and synergies
have been used by the author to (a) minimize of input variables into the mathematical regres-
the number of computer runs, (b) conduct an sion models
Input-output analysis of model subroutines and
measures of merit, (c) check for computational (c) assures stability and minimum variance in
model validity, (d) design interactive graphical the coefficients of the metamodel or surrogate
evaluation schemes for the simulation developer model.
and user. The use of experiment designs as pre-
processors resulted in cost-savings as well as Pre-Prim also offers a protocol for sequencing
efficient interpretations for battle management. the simulation runs. Thus, if trials were to be

interrupted at certain nodal points during the
INTRODUCTION sequence of total experimentation, there would

be a minimal impact on parameter efficiency.
As the number of parameters increase in com-

puter simulations, the direct or Indirect rela- Pre-Prim works Interactively with the user In
tionship between input and output becomes dif- order to formulates
ficult to quantify. The necessary costs to run
the simulation model increases in parallel. (a) the minima/maxima of the input variables

which, in essence, determine the re-ion of the
To a statistician, experiment design as a response surface explored;

discipline seems the most natural way to approach
a screening effort for relevant variables. A (b) the nature of the function relating input
simulation setting is the most natural context to outputl i.e., whether the relationship can be
for collecting the relevant data, analyzing and represented by a linear function, second order or
interpreting them without having to defend "mis- higher order polynomial;
sing cells." In a previous report Gardenier
(1982) illustrated the use of statistical prin- (c) whether 2, 3, or higher levels should be
ciples in the study of complex relationships associated with the input variables, as decided
among simulation input variables. Since then, upon in point (b) above;
considerable emphasis has been placed on formu-
lating surrogate models or metamodels--"models" (d) what mode and pattern of interactions
of simulation models--which reduce the input- among input variables need to be explored.
output relationships to the framework of a reg-
ression equation (Friedman, et. al, 1984: Klelij- The total number of input parameters, con-
nen, 1982). Biles (1979) also stressed the im- sisting of main effects or linear terms, inter-
portance of using statistical principles in de- actions, and non-linear terms, determine the
signing simulation runs and interpreting the out- design matrix. The design matrix itself deter-
put of simulation experiments, mines the degrees of freedom available to esti-

mate the error variance in the multivariate
The objective of the present paper is to: regression metamodel or surrogate model. For

statistical efficiency purposes, it is essential
(a) demonstrate how the principles of experi- to formulate these criteria prior to starting

ment design, multivariate data analysis and opti- simulation runs which estimate model sensitivity.
mization techniques can be applied to simulation The pre-processor design matrix needs to main-
models; tain the criteria of balance and orthogonality.
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PROTOTYPE DESIGN PLANS have been requiredt Hadamard matrices could have
reduced the sample size to 10. Both-of the above

Pre-processing design plans can be categorized plans would have stimated only linear effects
by the number of "levels" in input variables and factorials would have given the full set of inter-
their particular mix. Pre-Prim has grouped them actions, Hadamard matrices no interactions. The
into the following categories. special Pre-Prlm plans shown in Table 2 require

only 8 s -- aon runs and enable non-linear ef-
(a) 2 or 3-level screening designs estimating fect estimation for 2 of the 9 variables.

main effects orly;
In constrained sum designs solving for opti-

(b) 2 or 3-level designs estimating interac- mal preferences among input variables, the effect
tions as well as main effects; of 3 variables can be determined with 7 simulation

runs, the effect of 4 input factors with 15 runs,
(c) mixed level designs combining 2 and 3- and the effect of 5 variables can be determined

level input variables; with 21 runs. An example of this application is
shown below.

(d) designs involving a constrained sum of

preference decisions, based upon mixture experi- AN APPLICATION TO MAN-IN-THE-LOOP EAITLE MANAGEMENT
ments.

Let us consider the case of a simulation model
The first three types assume that the input where various reentry vehicle (RV) and platform

variables relate as independent vectors to the characteristics are being analyzed as to their
output. The last type of designs solve for the effect at v.rious phases of the battles (a)boost,
optimal preference mix in inputs. (b) post-boost, (c) midcourse and (d) terminal.

After reviewing where each relevant subroutine Is-
Full factorial designs estimate all main ef. pacts the output parameters (KubeJa, 1987), each

fects and all possible interactions up to order input is related to nodes in the battle-phased

k-1 (k refers to the number of variables). The output. Figure I shows these results. For examp-

total number of necessary simulation runs in a le, platform characteristics affect all nodal pha-

full factorial design is represented by Ik, where ses; RVs, Target Type and Time of RV Impact affect

I corresponds to the number of levels. boost, midcourse and terminal phases respectively.
The Target Types impacted also had 5 optionsi

Fractional factorial designs reduce the simu-

lation run demands to a fraction of what would (1,) mssile silos;

be needed for a full factorial trading, in return C sites;

for estimable parameters, economy in computer 3 bomber bases;
run cost. Most main effects, and some of the (4 other military targets;

most important 2 or 3-factor interactions are ( urban industrial locations.

estimated, the choice determined through user
interface in Pre-Prim. An example of this type For a first stage analysis, three RV and two

of design, as presented in Broule and Gardenier platform characteristics shown in Figure 1 were

(1987) is shown in Table i. chosen. A second stage analysis was then formula-
ted for the five options of Target type, holding

If no interactions, but only linear main ef- all other first stage variabLes constant. Our
fects are to be explored, it is possible to use decision was reachec after considering various

the principles of Hadamard matrices and estimate options for pre-processor design. These, and the

the effects of uD to k-1 input variables with as associated simulation run requirements, are shown
few ar k simulation runs. These designs are in Table 3.
denoted as "screening designs" because they allow
for no interactions. They use only two levels The two-stage constrained sum design selected
for each factor, a feasible minimum and maximum. represents less than 1/1000 cf the simulation run
Thus they do not allow for estimation of non-line- requirements of option :A, only about Or of op-
arities. tion IB, 6? of option II, and 17( of option II.

Savings in computer run time and related data in-
Pre-Prim Includes several plans which allow terpretation are substantial.

for the estimation of non-linearities but which
also result in cost-savings similar to those Results for the design selected can be analyzed
offered by fractional factorials and Hadamard in two ways. The first is the regresiion-oriented
matrices. Table 2 shows an illustration of the approach where the input design matrix is submit-
variable/level combinations in these plans. For te-1 to multivariate regression and analysis of
example, in line 3 we see that a total of 9 fac- variance, ANOVA. The coefficients obtained by
tors can be screened with as few as 8 simulation matrix inversion are (a) scanned for statistical
runsIn this plan, 7 variables have 2 levels, one significance, (b) regression is implemented again,
varla~le has 3 levels (thus allowing 'or non-li- keeping the significant variables, (. the coef-
nearity estimation) and cne variable has 4 levels. f1cients are used as the terms of the metamodel.
4-2evel variables may involve categorical data Hypothetical data have been analyzed by this pro-
such as types of aircraft, cedure and are shown in Table 4. The results

show the hypothetical output using 5 Input varl-
In the example above, if we had used a full ables from the 5 input variables in the Stage 1

factorial design estimating only linear effects mixture design regressed against percentage total
for each variable, 512 simulation runs would leakagu during th, battle. All input variables
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are statistically significant, with confidence co- ACKNOWLEDGEMENTS
efficients, -<X ranging from .82 to .9 I am grateful to IT Research Institute for

These results are not as informative as the initiating my interest in the use of statistical

query of what mix among input variables optimize experiment design principles to multivariate reg-

the criterion output. For example, one question ression oriented studies. Many of the application

in battle management is to solve for the number of contexts to simulation models were rovided by
decoys which are optimal for a specific attack ANSER Corporation. Some of the applications were

scenariol another is the differential benefits sponsored, in part by the Strategic Defense Ini-

of the use of maneuvering versus electronic coun- tiative Organization contract MDA 903-85-C-0049.

termeasures, ECM. In the present application,
the query was the optimal mix of preferences in REFERENCES
the utility function scale ranging from I to 10.
A prototype analysis of hypothetical results is Gardenier, T. K., "Some Uses of Statistics in
shown in Table 5. Simulation," in Computer Modeling and Simulations

Principles of Good Practice. J. McLeod (ed), La
In this example, the sum of the weight prefer- Jolla, CA, Society for Computer Simulation, 1982,

ences was set to 20. The optimal mix which would pp. 129-139.
minimize the leakage of attacking RVs is shown in
the first column under "value at Minimum." The Friedman, L. W., and Friedman, H. H., "Statisti-

optimization module was successful in maintaining cat Considerations in Computer Simulationm The

leakage during battle at less than .0001. The State of the Art," J. Stats. Computer Simulati-
appropriateness of model fit was checked by a on, Vol. 9, 1984, pp. 237-263.
plot of residuals or deviations from the responsesurface. Xleijnen, Jack P. C., "Regression Metamodel Sum-

Marization of Model Behavior," Encyclopedia of

Another tool for evaluating the response sur- Systems and Controls, M. G. Singh (ed), Oxford:

faceobtained from the analysis is triad plots Pergamon Press, 1982, pp. 1-21.

(Scheffe, 1963.) Figure 2 includes two hypothe-
tical results for prototype diagrams. These can Biles, W. F., "Experimental Designs in Computer
assist the simulation users in decidinp among Simulation," Proceedings of the 1979 Winter

various alternatives. Te letters in the triad Simulation Conference, LaJolla, CA, Cociety for

plots refer to values of the output criterion Computer Simulation, pp. 3-9.
variable, leakage, held at values .00 - .75 in
Intervals of .15. Individual codes are shown ?rouse, D., and Gardenier, T. K., "Regression
next to subfiqure I. The vertices in each triad Metamodels for Strategic Defense Simulation
correspond to one of the five alternative inputs. Analysis," presented at the t987 Summer Compu-
Three vertices are shown, two variables are held tbr Simulation Conference, Montreal, Canada,
constant. At the corner of each vertex, maximal August, 1987.
weight is apportioned to that variable. Kubeja, K., "The Flue Defender odel Utility

Evaluating sub-fixtures I and II we note that Function," presented at the 1987 Summer Compu-
it is more eneficial to choose the strategy of ter Simulation Conference, Montreal, Canada,

sub-figure II. In this hypothetical dataset, as Auzust, 1937.

we increase the relative weighting scheme to
Platform Resources, leakage values approach zero, 3cheffe, H., "The Simplex Centroid Deslqn for
we see more C-coded values in contrast to the Experiments with ixtures," J. Royal Stat.

D- and E-coded values we noted in sub-figure I. Soc., Ser. B, 19n3, pp. 235-23.
The essential difference between sub-fisures I
and IT Is that Tarret Type became a player In
subfigure 17, replacins Number of RV's in sub-
figure I.

Interactive graphics of this type, combined
with pre-processors and surrogate modeling-
related analytical techniques, can aid man-in-the
loop related strategy decisions.

CONCL7DT'C REMARKS

This paper has demonstrated how statistical
experiment design principles, used as a Pre-Prim
interface to large-scale simulations, can dras-
tically reduce the simulation run costs. Reg-
ression oriented surropate modeling r ietamode-
line can mathematically represent the relation-
ship between input and output variables. ]raph-
Ical techniques and optimization alrorithms can
solve for the best mix among strategies, thus
helping the user in tradeoff decisions.
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TABLE 1
PROTOTYPE FRACTIONAL FACTORIAL DESIGN

USING SIX INPUT FACTORS AND
EIGHT TWO-FACTOR INTERACTIONS

------------------------------------------ .IX MATRIX) -------- T--------------I X--------------------- -----------

(1) (2) (3) (4) (5) (6)

PLATFOIRMS TBHREAT P(KILL) P(TRACK) WEAPON ACTIVA-
OBJ RAPGE TIO TIME INTERACTIC"

TRIAL

SEQUENCE X1  X2  X3  X4  X5  X6  XIX 2  X1 X3  XIX 4  X1 X5  X1 X6  X2 X3  X2X4 X2X,

1+ + + + .+

2 + + - + + +

3 - + + +

4 + ' +

5 + + + + -

6 4+ + 4--

7 4+ 4 + + 4
8 • + 4 - - 4 4
9 + + + +

10 + + - - +
11 + 4 - + + +

12 + + + + +

13 4 -+ + 4 -

14 m + + + + +
is + + + + + +

16 + + + 4+ + + +

17 + -- + + + + +

18 + + + + +

19 - + + + + - + +

20 + + + + + - - + + +

21 - - + + + - + +

22 + - + -+, + +

23 1 + + + + +

24 + + + + + + + + +

25 + + + + - +

26 + + + + - + + + +

27 -+ + + + + +

28 + -+ + + + .
29 - - + + +

30 + m + + + + + +

31 - + + + + + + + +

32 + + + + + + + + + + .+ + +

Table 2

Nonlinear Preprocessor Run Requirements In Some Pre-Prim Designs

Simulation Runs Variables (V)/ Levels (L) Total Variables

V L V L V L

9 4 3 4 2 8

18 7 3 7 2 14

8 1 4 1 3 7 2 9

16 5 4 5 3 15 2 25

32 9 4 9 3 31 2 49
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Figure I

DECISION WEIGHT CRITERIA
Simulation Phases

PHASE
Criterion Post Mid

Boo Boost Course Terminal
RV CHARACTERISTICS
.#RVs on Bus --.. .. ..

Time before
Booster Burnout X .. .. ..

* Target Type . . --

* Time RV Impact .. .. ..
PLATFORM CHARACTERIST.
a Kill Probability X X X
* Platform Resources I X X X

Table 3
Possible Alternative Pre-Processor Designs for Nan-in-the Loop

......................................................................

Pre-Frocessor Alternative Number of Simulation Runs

1. FULL FACTORIAL: 2 STAGES

10

A. 3-level variables (3) - 177,147

10

B. 2-level variables (2) - 1,024

5

II. FULL FACTORIAL AND CONSTRAINED SUM (2 X 21) - 672

III. HADAMARD SCREENING AND

CONSTRAINED SUM N1I X 12) - 252

IV. TWO-STAGE CONSTRAINED SUM (2 X 21) - 42

......................................................................
Table 4

Regression Coefficients for LEAKAGEPERCENT

Standard Confidence
Coefficient Term Error T-Value Coef <) 0

0.2998 RVNMH8ER 0.1764 1.700 89.5%
0.5780 TARGETTYPE 0.1764 3.277 99.7%

0.7219 IMPACTTIKE 0.1764 4.092 99.9%
0.9697 ILLPROS 0.1764 5.497 99.9%
0.2520 PLATFORKRESOUCE 0.1764 1.429 82.4%

Confidence figures are based on 16 degrees of freedom

Analysis of Variance for LEAKAGEPERCENT

Source df SS MS F-Ratio

Total (corrected) 20 1.3001

Regression 4 0.4980 0.12451
2.484 (13

Residual 16 0.8021 0.05013

(1) Implies 91.4% confidence regression equation is nonzero.
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Table 5

MINIMUM LEAKAGEPERCENT
.=n.................

A minimum of 0.000073 was achieved under the following conditions.

Value at Lower Upper
Minimum Limit Limit

Factors
0.484 RVNUMBER 0.000 1.000
0.609 TARGETTYPE 0.000 1.000
0.466 IMPACTTINE 0.000 1.000

0.0468 KILLPROB 0.000 1.000
0.778 PLATFORMRESOUCE 0.000 1.000

LEAKAGEPERCENT.RES

.......... ....
0.200 - -

IL I 1

0.160
IL I 1

0.220
IL I 1

0.080
I I

0.040
ILLLLLLLL I 8

0.000 •
ILLLL I 4

-0.040 ,
ILLLLL j 5

-0.080 •
IL I 1

-0.120 -------------- --
21

Figure 2
Prototype Diagram of Hypothetical Data Used to Illustrate Use of Triad Contours

LEAKAGEPERCENT

RVNUMBER - 0.6000
IMPACTTIME - 0.0000

PLATFORMRESOUCE - 0.0000

•3. A: 0.000
.£E . 8: 0.150
.8 C: 0.300

D. D: 0.450
." DO • E: 0.600
EEE DD C. F: 0.750

EER DD CC.
EES DD CC B.
• EE DD CC B.

FF EE DDDCCCBBAA'

........................ LEAKAGEPERCENT
RVNUMBER - 0.0000 RVNUMBER - 0.0000 ..............

IMPACTTIME - 0.6000 IMPACTTINE - 0.0000
PLATFORkMRESOUCE - 0.0000 PLATFORMRESOUCE - 0.6000 TARGETTYPE - 0.6000

IMPACTTIME - 0.0000
TARGETTYPE - 0.2000 PLATFORMRESOUCE - 0.0000
KILLPROB - 0.2000

..D
.D

CC.
CCC

CC 88.
CCC 8B
CC BB
CCC 88 A.

.C CCCC 888 k.
-CC CCCC BB A-
.................. o

TARGETTYPE - 0.0000 TARGEITYPE - 0.0000
IMPACTTIME - 0.6000 IMPACTTIME - 0.0000

PLATFORLMRESOUCE m 0.0000 PLATFORMRESOUCE - 0.6000

RVNUmBER - 0.2000

KILLPROB - 0.2000
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SIMULATION AND STOCHASTIC MODELING FOR THE SPATIAL ALLOCATION OF MULTI-CATEGORICAL RESOURCES

Richard S. Segall, Uni-ersity of Lowell, Lowell, MA 01854

I. Ba-kground . = total capacity demanded by origin i
This paper extends a mathematical model call- i

ed DRAM (Disaggregated Resource Allocation ',ijk = maximum flow from origin i to destination
--DA Dsgrgtd eoreAlcto j in category k

Model) which was formulated by Venedictov et al.
(1977) and later refined by Gibbs (1978) and Lik = maximum length of stay for category k
Hughes (1980) at IIASA (International Institute fr-m origin j

for Applied Systems Analysis) in Laxenburg, Model Objectives:
Austria. Austria.To evaluate the values of Tij k and 9 ik that

Even though the DRAM model was a product of to te the vaus o T 1 and (th

the Health Care Systems Modeling Task Force at satisfy the following guations (1) and (2)
IIASA, its applicability to other types of subject to constraints (3) and (4)
resources is unlimited. Basically, the DRAM w T (i
model is a simulation model which predicts how ik ijk

a large-scale capacity system with constraints
on supply would respond when resource avail- W = S (2)
ability changes. k ik ik i(2

Mayhew (lBla) further extended the DRAM
model to account for multi-specialty modeling O<Tijk< "ijk (3)

of patient flows over a geographical region with
a model called DRAMOS (Disaggregated Resource 0 

1
-ik < Lik (4)

Allocation Model Over Space). The DRAMOS model
is really a hybrid model between DRAM and a Below are deterministic and stochastic
model called RAMOS (Resource Allocation Model versions of a non-linear preference function
Over Space) which was developed and successfully originally developed by Hughes (1930) for the
tested by Mayhew (1980a, 1980b) to model single consumer's zone i of residence. 11-e optimiza-
category flows as an aggregate over geographical tion problem is formulated with either of these
regions in England and other countries with two versions of the objective function subject
capacity constraints. to the constraints given by equations (3) and

Segall (1982, 1983, 1984, 1987a, c) and (4) above.
Rising et al. (1984a) further extended the RAMOS The first version is used when the service
model and successfully arrliad it to actual data and demand benefit functions are known precisely.
for the State of Massachusetts as representative This situation is modeled below by equations
of a large scale system which is not capacity 16) and (7), and requires the knowledge of an
constrained, but rather is affected by market immense amount of parameters; which is usually
forces, not the case. The second version overcomes

This paper intends to refine the DRAMOS model this difficulty by allowing both the preassign-

for application to market systems by assuming a ing of parameter values as well as the pro-
demand constraint on the origin of the consumer babilities of parameter values. The latter
instead of a supply constraint for the place of version is useful for planning of large scale
economic consumption. This is analogous to the systems when parameter values are subject to
distinction between the destination and origin change over the planning horizon rather than

constrained forms of the RAMOS model as tormu- being held fixed.
lated by Mayhew (1980a). Additionally, pro-
babilistic assumptions are made on certain Define:

parameters of the modeling to make a stochastic = relative importance parameter of
nature of its applicability possible. ik servicing maximum flow of specialty k

from origin i (ai .0).

If. Mathematical Modeling 
ik

Y = relative importance parameter of having
A. An Origin Constrained DRAMOS Mode] ~maximum demand for specialty k from

o elow is an origin constrained formulation origin i ()ik 0).

of the DRAMOS model which is an rxtencion of
the Mayhew (1981a) destination constrained model. qg(T i3k = service benefit function
Define: h(? A) - demand benefit function

i = origin zone (1_i i m) C. = mariinal unit cost of demand in each1

I destination zone (I- j n) origin ;one i

k =spciaIty cateory (1 k -10 VERSION 1: DETERMINISTIC NONLINEAR OBJECTIVE
FUNCTTON

Tij k = flow from oriin i to, dlestination '
in category k ) ki ijk + k ijk ik

k = aiverge leng th of stay for categjory k
from orilin i

Wik lemand from origin i of cat,eiory k
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Tk - 1kBecause usually the values for ijk, Lik and
g(T ikj ) - Li Tik (6) ik will be given assumptions of the problem;i ik their associated respective probabilities would

L) be 1.0 and hence further simplification of
h(ik ) ik I [- iik\ -ik equation (14) would be possible.

ik k Lk) 1()Using equation (7),P[Tijk. h~iik)]j P(Tijk=G). P(hC ~ik)=H) (15)
Analogous supply driven expressions for 

the

above benefit functions of equations (6) and for prespecified values of G and H for given
(7) can be found in Gibbs (1978, p.8-9), i,j, and k.

Taking summations of equation (15) yields:VERSION 2: STOCHASTIC NONLINEAR OBJECTIVE
FUNCTION ZE P Tijko h( ik)J E PGjk' PHjk 16)

jk jk
It should be recognized that realistic model-

ing requires integer values for the variable Combining equations (14) and (16) yields the
Tijkl which counts the number of consumers general form for the stochastic version of the
migrating from i to j for commodity or service nonlinear objective function.
type k. That is, Tijk is a discrete variable
as given by B. Mathematical Solution to Model

Tijk = 0, 1, 2, ... , n (8) 1. Overview

This paper will only present the mathe-
We can assign probabilities for the values matical solution to the model with the deter-

of Tijk as being equal to each of these ministic nonlinear objective function. Solution
integer values, by the following of the stochastic version would be quite

P 
T i jk 

= 0, 1, 2 ... , n analoqous. Below is a concise modified deriva-
I tion based upon work of Gibbs (1978) and Mayhew
n (9) (1981a) for the case of constrained demand,
EP Tijk  which is really the scenario in the UnitedStates for whose application the original

models were not intended. The reader is refer-
n (10(a)) red to Gibbs (1978) and Mayhew (1981a) for a
Z P ijk9 "  more detailed derivation of the solution to the
= supply constrained model.

Using standard optimization techniques for

where 0 S Pijkl< 1 and .EE ijkl = 1.0. constrained functions with Lagrangian multi-wherel0Pijkl pliers Xi for li~m, we form the Lagrangian:

(10(b)) H T ,X
(i b) H. (T,l,A)=U. (T,l) + X. (S. - W ( ) (17)

1 1 i k i

Similarly we can extend a probabilistic 
k

interpretation for the nonlinear objective To maximize the nonlinear preference objective
function by taking probabilities of both sides function, it is necessary to solve the equations:
of equation (5):

P Ui(T, [ PZ g(Tijk)] + T H 0 for all i,j,k (18)
kj ijk

p[ T ij
k 

h(Z ik ) I Ii.j 0 for all i and k (19)

=E P g(Tijk ] + EE PT h(. ) (12) ik
kj kj ijkIli,

Using equation (6), 1 0 for all i (20)

P 1 1

P g(Tijk) ] = P(ijk=A)- P(Ci=B)P(Lik-C)

-l (13) Equations (17), (5) and (18) yields:(PQik-=D) -j ik

ik ijk ijk ik =F) dqg(Tijk)
= I - h ) (i (21)

where A,B,C,D,E, and F are prespecified values I Tij k  i 'ik ik

for given i,j, and k.

Taking summations of equation (13) yields: Equations (17), (5), and (19) yields:

"Z P/q(Ti )/ T .P .P .Pdh()
jk ]jk jk Pk Hi Ck Dk ik - w W ((14) d ik ik = 2

"E "F i
jk 

jk
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Substituting equation (7) into equation (22) binations of Wik and capacity S..
yields upon rearrangement: 1

X(i i) ()I1. Some Results of Simulation

ik iki k )The goodness of the parameters estimated
are determined by performing simulations on

Substituting equations (6) and (7) into equa- actual input data and comparing these predicted

tion (21) yields1 Tijk flows with the actual flows. Several

(a +1) standard statistical tests can be used to

T. i(i) ik (24) determine the best set of parameter values. In
ijk 3k ik Table 1 below, results are presented using the

wr R
2 
statistic, which as usual gives the propor-

where (ik i1 tion of explained variance.

Yik In Table 1, some results are presented for
=1 ( l i  (25) simulation runs of using the deterministic

Wik Yik • DRAMOS model in its destination constrained

form with data representing hospital discharges

Equations (23), (24), and (25) provide the in multi-category specialties for the State of

solutions to the decision variables which mini- Massachusetts in 1978. Three parameter

mize the nonlinear objective function given by estimation techniques were used for model

equation (5) subject to the constraints given calibration as shown in Table 1: slope=l.0

by equations (2), (3), and (4). calibration, maximum likelihood, and maximum
R
2
. These simulations show that the maximum

2. Parameter Estimation by Log-Linear R
2 
calibration method yielded the highest R

2

Regression values and maximum likelihood generally
yielded the lowest. In Table i, the parameter

The empirical elasticities for the P is the calibration coefficient value of
lengths of stay (b ) and the number of ad- multi-categorical extension for model of Mayhew• ' W i.k
missions (b ik) to the facilities from each (1980a), which yielded the corresponding R

2

origin i of each category k can be evaluated value.

using log-linear regression as described below.
Taking logarithms of equation (2) with res- Table 1: Calibration of DRAMOS using 1978 in-

pect to the variables 
9
ik and Wik respectively, patient discharge data from

and extending all variables into dimension of Massachusetts
time t yield the following two equations:

log T-ikt = a + bi (log Sit) + Uit (26)k iSLOPE= 1.0

W (27)CALIBRATIONlog Wikt = + W (log Sit) + Zit (27) Category Number of

of patient patient 
2

In equations (26) and (27 , Ut and Z are care discharges R

stochastic error terms; a and a are constant; Total (all 851760 .1600 .8407

and 2ikt, Wikt, and Sit are actual observations patients)
on average lengths of stay, generating factors,
and total capacity respectively, as consumed by Medical- 658942 .1600 .8395

those originating from zone i in specialty k Surgical

within planning horizon of duration t. The Obstetric- 88192 .1900 .8920

slope coefficients b., and b W of equations Maternityik
(26) and (27) respectively are precisely the
empirical "elasticities" as defined previously. Pediatric 84391 .1500 .7678

Psychiatric 20182 .1900 .8635
C. Algorithm for Parameter Estimation of Origin

Constrained Model: Both Deterministic and
Stochastic Versions Category MAXIMUM LIKELIHOOD

of patient CALIBRATION
I. Estimate T.. using origin constrained care R

model as formulate h
k 

by Mayhew (1980a). Total (all .1175 .8577
2. Estimate empirical elasticities by patients)

log-linear regression. Medical- .1151 .7998

3. Determine which parameters can be esti- Surgical
mated or if probabilistic assumptions need be Obstetric- .1408 .8588
applied, i.e. select deterministic or stochastic Maternity
version.

4. Using these parameter values predict ik Pediatric .1112 .7245

and Tijk solving equations analogous to Psychiatric .1392 .8664
equations (23) and (24) for either version. It
may be useful to perform sensitivity analysis
for predicting k and Tijk under varying com-
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Category of MAXIMUM R
2  

I.J. Rising and L.D. Mayhew, The Spatial

patient All ation of Medical Care Resources in

care R Mas husetts: An Application of RAMOS,
WP-,3-38 (IIASA, Laxenburg, Austria, 1983).

Total (all .6100 .8803 E.J. Rising and R.S. Segall, A Model of Patient
patients) Use of Hospitals in Massachusetts, Proceed-

Medical- .6100 .8759 ings of Hospital Management Systems Society

Surgical Annual Conference, San Francisco, CA,
February 1984a.

Obstetric- .5100 .9218 E.J. Rising and R.S. Segall, The Calibration of
Maternity an Origin Constrained Gravity Model to

Pediatric .4100 .8350 Predict Patient Flow, Proceedings of the
Third International Conference on Systems

Psychiatric .8100 .9053 Science in Health Care, Munich, Germany,

July 16-20, 1984b.
IV. Conclusions and Future Directions R.S. Segall, Models of Area Wide Medical Care

This research extends a simulation model Delivery, Ph.D. Thesis, University of

for predicting multi-categorical flows within Massachusetts at Amherst, MA, 1984.

large-scale market oriented systems. Both R.S. Segall and E.J. Rising, Some Strategies
deterministic and stochastic simulation ver- for Using an Origin Constrained Gravity

sions have been presented with some results Model for Decision Making of Hospital Capa-

for the former version. city, Proceedings of Northeast American

The future directions include more exten- Institute for Decision Sciences, Williams-

sive simulation runs for the deterministic burg, VA, March, 1986.

version. Also the mathematical solution to R.S. Segall and E.J. Rising, A Model for Fore-

the stoch'qtic version of the model should be casting Hospital Bed Requirements, Event
completed inorder to provide some results of WC14.2, Seventh International Symposium on
stochastic simulation. Forecasting, Boston, MA, May 1987a.

R.S. Segall, Mathematical Programming for the
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A Monte Carlo Assessment of Cross-validation and the Cp Criterion
for Mode Selection in Multiple Linear Regression

Robert M. Boudreau, Virginia Commonwealth University

1. Introduction This seems more realistic in the sense that it will be our
parameter estimates that will be used. One would like to pick

Consider the situation of fitting a multiple linear regression to the fitted model with the smallest conditional mean squared
a set of data. The data consists of n observations on some error of prediction (CMSEP).
response variable, together with corresponding observations on p The results of sections 3 and 4 show that the Cp criterion
predictor variables. The ultimate use of the fitted model will be (fixed predictors) and cross-validation (random predictors) are
as a prediction equation. The current data is to be used to assess uncorrelated with the CMSEP's for the fitted models. These
and select the "best" subset of the predictor variables, and to criteria therefore cannot be interpreted as estimates of the
provide estimates of the regression coefficients for these variables. CMSEPs for a particular data set. I point out here that these
"Best" might be defined in terms of smallest mean squared error results are for multiple linear regression with normal errors.
of prediction (MSEP), or smallest mean absolute deviation of Cross-validation has wider application. It is an open question
prediction (MADP). Keep in mind that the "true" model is not whether cross-validation is uncorrelated with CMSEP for more
necessarily the "best" model for prediction purposes (p 248 general regression functions, errors, and approximating prediction
Montgomery and Peck, 1982). The goal here is different than functions (Efron, 1983).
the model building of a researcher/scientist seeking to explain
and understand the relationships between the predictors and the 3. Fixed Predictors: Cp
response variable. There the model sought should contain the
correct or complete set of regressors, with accurate estimates of Let the current training data for assessing and selecting a
the coefficients. The distinction is useful because the different prediction equation satisfy the following:
criteria used for model selection are usually motivated by and
align with one or the other of these intended uses of the fitted
model. y = X 3 + (+)

;1X nxppxl nxl
2. Unconditional vs Conditional MSEP

where y is a vector of responses, X is a fixed full rank matrix of
No fitted model ever contains the exact values of the predictors, and the elements of are iid N(0,a 2 ). Predictors for

parameters, since these are estimated from the data. The a submodel proceeds as follows. Select a subset of k variables,
parameter estimates are unbiased if we overfit, and biased as form Xk by including only columns of X from these variables,
estimates of the true values of the parameters if we underfit (p and fit a prediction equation by least squares:
247 Montgomery and Peck, 1982). This unbiasedness or
biasedness refers to the average behavior of parameter estimates Yk = Xkdk Pk y  

(2)
averaged over many researchers, studies, or data sets. Similarly,
a prediction equation is unbiased or biased on average for a where
response to be predicted depending on whether we've overfit or
underfit. t

5
k = (XkXk)-IXky

In terms of squared error of prediction, there is an average, or -IX
unconditional mean squared error of prediction (MSEP) in using Pk = Xk(XkXk)Xk y

a particular subset of variables. Mallows Cp (Mallows, 1973)
(p 252 Montgomery and Peck, 1982) is often motivated as an E['k] #i/1 k
estimate of NISEP when the predictors are fixed.

A natural, related question arises. Since the parameter Paralleling Efron (1986), consider predicting new studies to be
estimates are not exact, and are conditional on the training sets, conducted with the same design matrix X as the training data,
which estimated model best predicts new responses? The new with responses y0.
responses adhere to the "true" model, while our fitted model
differs conditional on the training data (see below). y, = 

X3 + o (3)

12 Then the CMSEP for the training set (1) in predicting new
responses is given by

CMSEPk FoLIlyl - 4'kl2

= I ))X, - Xkdk0' + "
2  

(0)

where 1k is fixed. Then averaging over training data sets (1)
4 yields tie average CMSEP

2] MSEPk = ,[CMS[F Pk] k IIXi - IkX l? + ,_ e 2 (5)

0 2 4 6 1 t0

603



MSEPk is the mean squared prediction error for the subset of k Also available are an AIC assuming multivariate normality
variables if all researchers use these variables. (Aikaike, 1973) and an AIC without assuming a particular

As pointed out by Efron (1986), the statistic covariance structure for X (comment by Aikaike on Rao, 1987).
For a more general (possibly non-linear) unknown true

y _XkH 2 + 2k&2  (6) regression function of y on X, assessing the performance of a1 Ii~ - Akk'linear prediction equation cannot be assessed by the above

is equivalent to Mallow' Cp for the k variables, criteria. Various non-parametric estimators of the prediction
error have been proposed, including the jackknife, the bootstrap

where &2 = nIp Il - X,3112 (using all predictors) (Efron, 1979 and Efron and Gong, 1983), and cross-validation
(Allen, 1971; Stone, 1974; Geisser, 1975). This paper

- n IlY - PY2; investigates a property of cross-validation as a method of
n--p assessing a prediction equation when the multivariate normal

and P = X(X'X)-X 1 . linear model holds.
It is easy to show that The version of cross-validation considered here is the leave-

one-out at a time method. One observation and the
E[Ck] = E[CMSEPk] = MSEP corresponding set of predictors is omitted. The remaining data,k k k consisting of n-i observations on responses and predictor

Thus Ck unbiasedly estimates MSEPk = E[CMSEPk]. variables, is used to fit a least squares linear prediction equation
Asymptotically Stone (1977) showed that the Cp, AIC (or any general prediction equation). The regression parameter

(Aikaike, 1973) and Cross-validation (CV) (Stone, 1974) are estimates thus obtained are used to predict the omitted response.
equivalent. Nishii (1984) showed that asymptotically the Cp The squared difference is recorded. The process is repeated,
and CV don't underfit, but they do overfit with non-zero omitting each response/predictor pair temporarily until each
probabilities. Li (1987) showed that the Cp and CV response has been predicted using the remaining n-i. The
asymptotically yield the best CMSEP. process mimicks the process of predicting new observations. The

For smaller n, are Cp and CMSEP related? First note that apparent error rate
for training data (1), Ck of (6) expands as 1 11X~kI

2  
(10)

C i2k 
A,

Ck = n Y( I - Pk)Y + n(y-_p)Y(I-P)y which is closely related to the usual regression mean residual sum
=/3'X'(lPk)X/ + 1t(lPk)¢ of squares, is known to considerably underestimat- the actual

i k +prediction squared error in the random regressor ca-" (Efron,

+ -3x(-Pk) + ,(l-P), (8) 1986). This stems from two problems. The data is used to
+ - predict itself, so tends to be optimistic. Further, because future

The random part of Ck involves a sum of two quadratic forms predictors are random, the training set of predictors, X, doesn't
and a linear form in f. Similarly, CMSEPk of (4) expands as represent the full variation of future observations unless n is very

large. This underestimation is one of the basic motivations for
CMSEPk = lIx3 - Pk(X 2 + + bias correction such as the jackknife and the bootstrap.Let Xk(i) be the matrix composed of columns of X

corresponding to variables in some subset of k of the total p
predictor variables, but with the ith row deleted. Similarly, 1t
y(i) be the vector of responses with the ith response omitted.

1j IiX'(lk) + o,2 + 1 t p (9)()
-Pk)X + k( (9Then fitting

Observe that
Y(i) - Xk(i)ok + (

k(1 k k =0 yields

Pk ( I - P )  Pk-Pk =0 = (X' X -1XI
0 k(i) = k(i) k) k(i)Y (I)

Next noting conditions for independence of quadratic and
linear forms in normal variables (Rao, 1973), we have that Ck The least square predictor of the omitted response, yi, using
and CMSEPk are in fact uncorrelated (independent). Ck must the above estimated parameters from the remain ing n-I
exclusively be considered an estimate of MSEPk = E[CMSEPk], observations, is the product of the observations on the k
not (MSEPk. Mallows Cp recommends a set of variables to the predictors for the i-th response times the corresponding regression
wider community. Ck is an estimate of the MSEPk. Whether coefficients (11). Denote the predictor by . i
your CMSEPk for those variables is higher or lower than average The average of the squared prediction err, called PRESS by
(MSEPk) you don't know. Allen (1973), and called CVAE by Rao (1987) abbreviating

Stone's (1974) cross-validatory assessment error, will be denoted
4. Random Predictors: Cross-validation. here as

= 2
Next consider developing a linear least squares prediction CVk =-n (Yi -Yi(-i)) (12)

equation when the matrix X of predictors in model (I) is
random. This is usually the case in practice. When parametric As was pointed out by A.P• Dawid in his comment on Stone's
model (1) is true, then various criteria derived assuming this are 1974 paper on cross-validation, and also by Efron (1986), CVk is
available and appropriate. Sp(reviewed by flocking, 1976 and an unbiased estimate of the unconditional mean squared error of
Thompson, 1978) is an estimator of the unconditional mean prediction when selecting a training set of random predictors of
squared error averaged over multivariate normal predictors and size n-I to develop a prediction equation, then using that
response. It is directly analogous to Cp for fixed predictors. equation, to predict new observations. The unconditional mean
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squared error of prediction when predictors are random will be Given a new observation
denoted MSEP+.

In the present context, the subset of the variables chosen is Yo = xt'1 + (15)
the subset that minimizes CVk of (12). Having chosen a subset,
the full training set on all n observations is then used to estimate the predicted value using the k subset is
the parameters to be used for prediction. Both Dawid and
Efron, in the papers just referred to, point out that CV is based = x0~k (16)
on training set of size n-1. Consequently, CV underestimates, Yok = k+

or is biased downward, for the unconditional MSEP+ for a given Averaged over new observations, the CMSEP+ for the k
subset because the final parameter estimates will be based on the subset based on the training data (14) is
entire training set, which has size n. Dawid's exact expression in
the multivariate normal case, and Efron's (1986) simulations for CMSEPk+ = Exc[(y -Y 0 )IX'(-

a linear fit to a quadratic (true but unknown) regression function
indicate that the bias is small, as might be expected. =ExOFxo3+ 0 % - xol3k+ )2X,

The same question as in section 3 arises here concerning
conditional mean squared error of prediction (CMSEP&). The =

prediction equations use estimated parameters. Which
conditional prediction equation, conditional on the current
training set, yields the smallest CMSEP+? Thompson (1978)
motivates Sp and PRESS (same as CV) as estimates of
CMSEP+. Picard and Cook (1984), Efron (1983, 1986) and Rao C + Ni ( + rM'2c (17)
(1987) also view CV as an estimate of CMSEP+. In what
follows evidence is given to suggest that a CV assessment where M, and M 2 depend only on X.
obtained from a given data set for a subset of variables is Conditional on training set X, it can be shown that:
uncorrelated with the CMSEP+ for that data set. This runs
counter to intuition since CV actually simulates the process of QkM = 0
prediction by withholding independent observations to be used
for prediction. As in section 3, the results that follow are QkM2 = 0
restricted to multivariate normal predictors and response. The
behavior of CV in the general case is ultimately of interest Thus CVk (13) and CMSEPk+ (17) are conditionally (locally)
because that is the more appropriate situation to use cross- uncorrelated for every set of predictors (14). In general,
validation. The multivariate normal case is a first step. conditionally uncorrelated does not imply unconditionally

CVk of (11) expands as (eg. p 430, Montgomery and Peck, uncorrelated. Based on simulations, however, there is strong
1982) evidence that CVk and CMSEPk+ are unconditionally

v I runcorrelated.
CVk= - i - ) The following are the results of two of many simulation

results the author has run. The interpretation is the same in
SY'(I- Pk)(l-Dk 2  

-Pk)Y every simulation that has been tried. The simulations were

performed in SAS PROC MATRIX, with 1000 Monte Carlo
= T(X13+c)1Qk(X)

3 + t) iterations per experiment. In the first two experiments below,
training sets of sample size n=30 with 5 multivariate normal

l 3UX QkX3 + 2 /3 XQk + k (3) predictors with means equal to 0 (wlog), and a dependent
response were generated. The last two variables are superfluous

where by design.
Dk = diag (I-Pk)

= Xk(Xk Xk)Xk Experiment #1

= (-Pk)(I-Dk)-
2 (1POYi = .1 + X, +.5X 2 +.25X 3 +0X 4 +0Xs + (i (i --.,30)

where
Like Ck, CVk is also a sum of a quadratic and linear form in

f. The difference is that X is random, so that the coefficient 1 .2 .2 0 0
matrices of the quadratic form and the linear form are random. I 1
They are fixed exactly like Ck, conditional on X. .2 1 . 0

Let training set of size n be given by Cov(X ,....,X5) .2 .2 1 0 0

y = X 3 + (14) 0 0 0 1 0

nxl nxppxl nxl 0 0 0 0 1

where X is multivariate normal N(p,F)
is a vector of iid N(0,o 2 ) independent of X and ni N(0, 0.25).

There are 26-1 possible subsets of the variables (constant
Fit a linear regression to a subset of k variables as in (2), included). Presented here are the results for 6 of these as typical

yielding coefficients #1 (size kxl). Form pxl vector akf, by cases.
putting elements oJ 0k in the appropriate posions In a hierarchical fashion:
corresponding to the k variables in the subset, then setting the
remaining values to 0. Fitting a constant yields ('V 0

Fitting a constant plus X, yields CV,
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Pitting a constant plus X1, X., yields CV2 Fitting a simiple linear regression to this quadratic (non-linear
data

i-=3, + 3,Xi

Fittng costat pus 1,X,,...X.5yieds V5.has a corresponintg cross-validatory assessment (CV. lie

Each of the 6 fitted models has a corresponding ('NlSEPn+. following, reproduced fromt Efron (1986), gives the first 10 of 20

After the 1000 iterations, the correlations between the CV's and] Moiite Carlo trials, plus a summinary of all 20 trials. Err+ mieans

CIMSEP+'s are given below, the same as CMISEP+ in this paper. The fundamental difference

REARON CRREAIJO CO-ICINIS/ PRB >in experiment #3 is that Efron's true simulated regression is
t90 UNDER He2 PH3 /~ CI'109 quadratic while the model fit is a linear one, Ile also cotmpares

C~o , C2 C C', C 5the bootstrap estimate of ('MSEP+.

C.EO .) 82447 0 01704 6 03730 a 6379a 0 e4.74 0 0305,
0 4395 0 5905 0 2375 S 230, 0 151. 0 335, CV '?" r

4t1 -0 04434 0 01126 -0 09762 0 00076 e @0097 -0 00032 (7.70) (B - 400) (7.14)
0 '012 0 6907 0 025 0 9080 0 9750 041 -_________________

C-.Stoz -o e55.5 -0 04019 -0 62625 -0 01572 -0 02532 -0 03t@7 33 3.19 3.42
0 0913 e '44- 0 407@ 0 6'9' 0 '237 0 326. 3.84 2.97 321

'C0St03 -0 03039 0 06300 0 05045 -0 0126. -0 01989 -6 02385 4.73 4.48 2.79
e 3770 0 9029 0 0740 0 6050 0 5299 0 4513 4.09 3.66 3.42

COStO4 -0 01983 8 03205 e 14780 ''-30 0 80816 -0 00320 2.84 2.67 3.11
e 53,e e 3113 a s0e, 0 0003 e 7967 0 919. 4.80 4.22 2.86

c.~SC05 0 00402 0 03056 0 18511 0 6- 07112 -0 01128 2.31 2.17 3.46
0 egg, 0 223' a eo,0 0 000, e 0205 0 7217 3.01 2.54 2.72

The striking feature is that the estimated correlations between 43 3.14 3.72

('' and CMNSE Pk+ are all very small, with p-values all larger 2.3 .94 3.39

than 0.4. The same is true for the remaining 57 possible subsets AVE 32 (2-987 (3-4

(i.e. none having correlations significantly different from 0). T'he2DTl SD:(.5 (.8(54

null hypothesis that CV and CMSEP + are uncorrelated is

accepted (statistically speaking) .Notice that the CV is nearly uniuased for average ('MSEP+.
while the bootstrap is biased downiward considerably more. On

Experiment # 2 the other hand, the bootstrap is closer to CN'.ISEP+ its a miean

squared error sense than is CV (see Efron 1986 for details).

Yi=.25 + .5XI + .1X2 + X 3 + OX 4 + OX5 + ( i 0 . 0 Efron gives evidence that the bootstrap is a "somewhat" better
estimtate of CMSEP+ than is CV, althiough not strongly so

where judging by his simulation.

The point made in this paper is that computing theF 1 .5 .5 .2 I correlation between CV and CMISEP± in Efron's simulation

.5 1 .5 2 1yields r = -A .1 and p-value = .72. There is again evidettce that
CV amid CNISEP± are uncorrelated. this time when the true

Cov(X .....X) = 5 .5 1 .2 1 regression is non-linear. This author miaintains that it is

2 .2 .2 1 1 awkward to interpret one random variable (CV) as an estimate

.1 1 I Iof another ranidomn variable (CNISEP±) when the two are
L 1 1 AJ1 uncorrelated. The mean squaredc error of their difference comes

solely from their respective variances and the squared difference

in their expected values. One doesn't track the other in any

and f. N(0. 0.25). discernible way if they're uncorrclated. Cp and CV ttust be seen

as estitmates of the iuconditional tmeani squared error of
PCARSQO CORRELATION COErrICIEtl47 / P00 > 101 UN4DER 0 O-0 /~ N4- 0 predictiot of a subset of variables.

CIIO CIII C42 CI'S C-I CI'S

CustO6 6 035086 063835 6 0410 0 0456@ 0 64302 0 02405
* 20'7 6 2250 0 1300 0 15-3 0 790 e 4325 Rleference-

C.S(P1 0 06244 0 01109 0 01519 -0 00308 -0 8090 -a o,265

*UEP 0404 0 7120 6 6315 8 9225 0 7772 0 0094 kie 1 17) Ifrainter n netnino h

C662 0 03526 0 806006 -0 0317S -0 01825 -0 02749 -0 024006kie I 17) Iiomto hoyai netnino h
0 2640 0 0281 0 3159 0 5044 0 3652 0 .472 maxtmutm likelihood principle." 2nd International Symposium

CwSEP3 -0 0604 -0 62915 -0 03424 -0 01284 -0 01900 -0 02305 on Information Theory 267-28 1. (lIN. P~etrov and F. ('tziki,
0 .030 0 357, 0 2704 a 695 0 5299 0 4513 es.AaeiiKa6 uaet

C65604 -e 61057 0 0062 0 02354 6 114306 a00816 -0 00320els.Aamii idoBupst
* 7385 0 7655 0 4571 0 0003 0 7967 6 919.

COSEPS 6 00467 0001:42 000425605 0546 6012. -0.91;21 Allen, D. (1971). The prediction sutn of squares, Pus a criterion
0 679 as 600 765 so ,0 60 0 21 for welecting prediction variables. UnriV. of KentuckN, Dtept. of

As in experiment # 1, and in every case tried, the correlatiotnsStiscTehcaRpoN.23

between ('V and CMSF.P+ are not, significantly different frrn 0. Efromi, BI. (1979), "Bootstrap Methods: Another Look at thme

Jackknife." Annals of Statistics, 7, 1-26.
Experiment # 3 (Efron, 1986)

(19831). -Est imat ing t he Error Rate of a Predict ion

Yi=X+0.01 X?+ (I1, .- 20 Rule: Improvements on CosVa dtin"Journal of the
i I i 2)CosVldto,

American Statistical Association, 78, 316-331.
Xi N(0, 102) , . N((), I
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IT'S TIETO STOP
by

Flubert. Lii liefors
'Ihe George Washington University

-\BST'RAC'l: Simulations are frequently used to e-valuated at the population quant-11P.
estimate ceirtain characteristics of A distribution.A
quiestin that arises is how large a sample should Two density estimators were used, tho Siddiqui
we use? kWe consider specifically the estimationi of (lYL;O) estimator and a new least squares estimator.
populat ion q nan tiles. The pr'ocedurie presen ted here rliesi are Jlisc usse-d in the neoxt sec tiwo.
relies onl the large sample normality of sample
quantiups. This requires ant estimate of the density T he procedure has two stage-s. Ill the first stage
fiinctio~n evaluiated at the qluantile. An apparently a preliminary samp~le is drawn to pro-, ide an
Ile, estimatiir is used and is compared to the estimate of the density function evaluated at the
Sidd iqui estimator. Simulation results are used to quant Il of interest. ('sing this estimate, and (2. 11
compare the estimators aiid also to compare several an estimate is obtained of th e required total
stoppiiig pmocediiies. amipe size, and hence the size of the additional

1. INTRODUCTION: Simulations are frequently sample needed. The second sample is drawn and
used to estimate certain characteristics of' a t he s.-m ple quaiitile is determined from the
distri bitioni such as the mean or the median. Ii, oniihinied sanmpies to provide an estimate of the-
the case explicitly considered it) this paper, the poptciat ion o ucaotrle.
estimated characteristics are the (ltIt, 95th an11d

9 9ith qlu an1t iIe s w hich 1 "Are0 appr-c wite wheil A ( i tee stage)I variation on this pt)ced ore was
generatingq critical values for some test statistic, also tried in which, after the second sample is
The test statistic is generated indepen!en t I.y a rawn, weP ngain0 estimate the deitsity funrctmo aid,
iairge numher of times and the- the sample qumantmle If a larger sample is determined to be necessary
is uised as an estimate' of the popuilation quaoi le,. w~e drwanuithcr' sample.

The qcmestioi) is : how large is large. 1<Ie ii can
the simii at ion he stopped" Shlin d t here hie Stit I DENSITY ESTIMATORS: Ill order to) use 12.1) to

repetitions'.' or 5t)i re pot It io rs" ( Ii )oo,omt determine when to stop the simulation, an estimate
repetitiuon"? incj approach is tc gecieratp Is reiqiried for the reciprocal of the demisit y
confidence i icifs seqc titally un't il a presc~ri bed fi oct ion evaIluated at the quantile of interest.

fixed w idth is ohbtainied. This is d isrijsse, i Law Theic. has heen- a grePat deal of work1 on estimatingq
nd bocc I I i8 for- estimation of the mears oA a delsltv fimict ionls. Silverman (V4986) provides a

istri-jicitirin laii aa efeoces, are aisic g~iven), goof grecceral desc-ription of the basic technique.

Recent ly Dlial and Wilkinson I 19W;1 used t his t 'ype Aii or' tit,'se teehimiqjues tnight, he used to ohtaiio
of 1 i'tl-Ilr '0 r 6 'n qmaitile i-stinat on. They stai'ted ar, es.' mate if the chersitl% fuinction and then

%Ih a sample sizep of 500t00t arid compmi ted a 95% eva nate this estimated densi tv frij ction at the
cconciemo oteiv al for the 99th ciantile. If' the est imiite of the quantile.
x' it th of the Interval x% is less than some( A rat her clever procedunre c'hiich avoids usig
proescrc bed -wid ti Ithey uist( .0101) the:- stopped. t,,o( estimates xwas sujggestedl by ' % iddiiqii i 19601,

(ithterk ise they adtded another -121000 to the stny, ftirthem' devePloped byN Bloc h and i;astwirth (98

ail tmiw' I igain. li:.cootiiued cniciti ectlcci' heir -u) , v lcfmjigei' 119751. \ second c'stinitou, whbich
mniihico was satisfied :r they cc-ac(hed 111 i1i lit pe I'le s- a feast squares calciilatiion (see alIso

hind oii the .,tilll- silo. l-ltcssoiutv. I 198:51) was suggePsted byv the Pc-ir cof

tlhe 2riddiqii estiniator. Iliese are- desc ribed hl\

InI tis :Ipr anatraieli-~'sciie ) SIDDIQUI ESTIMATOR: We follow)% tnhe
p -. dci-eI- ir ~ t' fcci'.tciiimi'h' , d cviloprnrot iii lfoficiger (19751) with slivht chcoiecs

st 0 1 a s"I I a .,t Ion h, t .I(, t he pI~u cI c c t~~ to Ii he0I

smruccltici i to, '-,tiriate ca popiml.0ric 1 ictl' Ihi- -Idillic .- sti.rcacii' for I/f(\,) is

f th e % acc ' d c f, i ai d e l "I : Ia p p r - c t l v c1% 111w -'s tir 1ia tir

parrt muiicIr quiii t i I,-. I he nut hod fa% c-ier %n isi r''tfvoa
!o the Dawhire il is tO-~l- muifllli '-'i/i'

limil.-' similnitcii. I he ,;inmv rn-,'tl cc niht hie iisi'clN p~,)+

ci r'- iibiI 'ii c I I, dh-:cii,, t d, c i th eqiaticic fir Ilc)

1THE NEW PRO(CEDURE: IVhe ailt u ii y c rcliii,'

makes isc *if thi: - xI'l kicc, ie. ;i mpr~titc iicriil (21! l'cw'in"ci) 2

clist ritliticin of samcpli qimnt iles tsee foci ei'\ll
Itavict I 971)). If we r'eciiri- a tta-% pirhaii0 ' i t chata Ic i il -i cs t flt as~ c pt t tic (III t tp
the sniplc. ciiiitile is withini a distance 1 I r)t ti[tiiiii )r.S.c'. ',''isil \ uin f- o I"is
:ccipimlait ioi ~o rtl t hii'i ii,' sImpce sizie '~lii'c

eSt iat''01 is ofc'el,' ti i' t, hi' olti '- it .c IIIc ci I
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The table below shows the v alIues - f'or (a) It is morp nicrurate base-d on a rat hei. limit el

calculated from (3:.4). The values oIf these (optimal) simulation.

values for C do not change a great deal as we goc (b) it is less selsitixe- t, the c li, me it' d I

from the heavy tailed exponential distribution to eqixiivaleiitly to the rhoule of the enid poits of' the
the liht taled Webull with shape paramotrer interval - but see t hi d isci ssi-ii belIow o

the lightribtion. ibl si mul(ation reslt s w it h the I--,po.ie iI t Ia I

d istribut ion.)

For the interval of x -,aluies, -e uise an irite rval

TA\BLE I OPTI AL 'CAl.) FO. PCI? of thel sa me( foria a s i hat for the Sidd iqui
-st imratni' (see 02.Zl and (3:1))1 ar-id tI'v diffe rent

1L A NT I L F' values for F' (see C1.3)).

4. SIMULATION TO DETERMINE THE VALUE FOR
ISTl?11 TlION .50 .9 .95 .1 C : A s imuiila t)in was used t o d et er m ine the

sensitivity of the Stddiqiii estimator to the choice
FCponenitial .5880) .1622 .0 932 .02 57 of (C arid to deteirmine which value of C t( ise

Norml .447.187 .142 027with the least squares estimator. The simulation
Noral 644 .176 101:1 O -,was performed foir each of thier (list riti ut i,Wi

'rnging froml ligfit tail (1%eihil) to, hreavx t i)
WeitllI =1) .22 X6 .1314' .0)415 (EI"x -,pinejitial). In each case thle sample, sr'.- usod III

Mnak ing the 7Ostirwate %, as (900o and t hero %,ore Q5uit)
Intuitively it is fairly clear %,hy the Sidd i 1uii repetit ions.

e stimator works. If fr x in some region -BJ 'DeitvFnLoISime't-1
<in ( ( x4.) (where Xini and xi,i are( the (l~'2 est u~ioPIiaea 1

order statistics defined above)I the cinu (ati, Quaint le fur W eibul II istri buition

d istiribut ion function, FWIx, is appro imat ely linear, with shiape parameter 4. The actual

theni the- slope of that line is tie density fu ic ti'in, -,alue is .748.

fWx , and if %p ( the p t0 qilantile) lies with in that SD I ~ LE %ST S(?UARES

iiiterval f(i x) will equial that sloipe. T hius we :i it LST IM>ATO* E ST I ZIATORP

to take an interzval narrow eniough so that the \\*ItFA(;F MS E .- kER A G NIS F

appro irmate linearity holds~. .1 74 .0217 82 07
.1 .76(1 .0111 .78.1 .0)162

hI LEAST SQUARES ESTIMATORS We note that .17' .7 31 .0067 .7712 .0)098
there will he manyi data poiints betweeii xin) aod .Z0 . 0 1051 .767 .007:i

,i.i, hut that for the Siddiqui estimator we simply z2 .681 .00176 1.b61 .0057
cr1oi n (C t t he t wo extreme points to, _get ail .31) .; (5* _ .0)129 .762 o.147

approximation to F~x I in that interval (arid thei) .:1 .5 i2 .02;L) . _601 .00:i9
use the slope of that line. as the estimate for the .1o1 .389 . 13018 .737 2 Oi)

density functioni fI ,l I. * (Optimal C' from 0(34) is .ZZ9

1AI)IAK ;b Diensity Function Estimate at .90
Fwo- possihilities occur immediately: Q11intile foir Nori'mal Distribution.

10) The straight line approximation is goind, hutAculvuei.16

why riot use all the data'.' Using the samie notation SIDDIl1IU LLAWi' S1Wt APFS
as in (2.1) above, we use the end points and 18 1-.SlI \Al'01'* LSllI A.ToI
leveolY spaced) additional points between N in) and C -N I:.\(l A IS F sE At kAA. " >S F
\ (ml for a total of 2(0 pocints anid theii use the .) .176i .()()I19 .191 .00t20t9
ordinary least squares procedfure to fit a straight . .178 .001060t .181 .001((44
line to the danta. This seemed to work about as .15: .171 .0008(2 .181 .000.55
well as the Siddiqiii procedu re, hut wa s oI Z(1) .(t68 .00WO~2 .180) .0(0042
improvement. i'siog all the points between xinu, and ". .15l_8 .000t48 .18(1 .00031
-<imi gave almost exactly the same results hut .3(0 A49 .0(18t; .8( .0(0029
required considerably more tilne for the- . .11 .0(12 13 .1719 .00(101 I
co~mputations, IA weighted least squjares might haxo .40 .0)85 .0(082K .1 71 .0)011
given an improlvemenit but was iiot tried.) Optimal C from (3,3241 is .188

00i If a straight line approximation to FWx works I NBLE,. 2c Diensity I' unct ion Estimate at .90
well, then why not try a quadratic approximation lWuantile for- xponential Pistrihution

using the ordinary least squares fit to the 20 Actual value is .10.
points as described above. This will give Sll)DIQIT I (EAST SQUAUFlS

P STIMAT0)I? I;ST IMArYOl

FW- b bx'2% Ak FIA(;E >SE AVEPIAOi'2 >15t
adfo thsf (x) = ho + hixb 2x2 o15 .1(1( .00(04:1 .109 .00(173

andfrm hi fx): 1  2~x.10 .101 .1(0021 .106 .1110:32

and to estimate flxp), the density funrc tion .215 .1(961 .0)0015 .10)4 .0111(1

evaluated ait the pth quantile, the pt0 sample .25) .093 .10015 .1014 .0001 1

quantile as an estimate of the pt' population .21 .089 .0)1(157 .1015 .1)(1

quantile. .~ .019 .00015 .11(5 .0013
.415 .0:16 .01251 101 .010

This seems to have two advantages oiver the .0 .3 0_1 1 .8 0

Siddiqui estimator: *Optimal U from 1:3.31) is .16:1
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5. SIMULATION FOR STOPPING TIMES: Four
procedures for determining when to stop a TABLE~ 3lc Results of' Stopping Time Simulations
simulation are compared using (of all things~i a frEpnniLDsrbtosimulation. Each procedure was repeated 5000 frEpnni[Dsrbto

tie.Proportion Average Standard
Times.oedrsee Within .120 Sample Dev\iation of'

(a) An initial sample of si ze 1000 was selected. tie rxeu.of90(ani Sz Smpese
used the Siddiqui density estimator with C=.Z and Siddl(Vuj (a) .961 28(6 586
then using equation (2.1) obtained anl estimate of
the sample size necessary for a 95% probability of lkeast Sq (h) .939 2280 386
being within a prescribed distance of the .90
quantile. The required additional sample waEs then Least Sq (c) *!J-6 2370 352
drawn and using the combined sample the quantile (3 Stages)
was estimated. For each repetition we record thle Cont mIt (d) .943) 2552. 632
sample size used and whether the estimate is
within the prescribed distance of the actual .90 Least. Sq le(* .970 3073 509
qua ntile. * To indicate how sensitive the results can be to

(b) ame s () exeptthatwe ued he Last the choice of' C, we also ran this with C=.4 with
Sb)uaes (a)it etcepto th we=se. th5 Las considerably different results than under (b1 with

Squars desityestimtor ith.35.5

(c) Same as (b) except that after the second Ini order to show what happens when the
sample is drawn we again calculate a (least procedure causes the simulation to stop with a
squares) estimate of the density function and smialler sample size we also include Table 4. A
using equation (2.1) again, if we need a larger similar table is given inl Ltlliefors (1987).
sample than has already been drawn ie draw the 'Ibis table- gives the breakdown of the proporticon

reurdadditional observations. This is called the of the quantilt estimates that are within the
3 stalge least squjares. Iliesc ibed .065j of the .90 quantile for the Normal

distribution according to sample size Intervals )eg
dl Start ing with an initial sample size of 100O we ~1250l, between 1 25t0 and 150(1, etc-

caltilaeda 9.--% confidenice interval foir the .90
quacitile. If the half width of the interval was less (able 1 B~reakdown by sample size for Confidence
ban the presci ted distance used withl the, other Il) erval Priocediure for normal d istihution

procedures we stopped. If not we draw io
-idditional 200 obseivatilos and using thf- combhined ;arl ,1e Sizef number Number khithiin Propor-tion
samiple determine again the confidence in terval aiid of .06.5 of .910 wi thin .06.5
again compared the half width to the previ )usly Samples Qimantile of Qiiantil

prescribe-d distance. I his is repeated until the half '51-151)1 30 :1 .782

width of the inte-rval is less than the pi'esc rihed 15-15 12 0 8
distance. 'Ibis follows the Ilallal and lIilkinson ()I-150 126 468 .91

(198l61 proce-dure. Al.I-22M00 .114 .468 .91

l'I i a pf.Itil I ot*snpli Time itol- ~2. 1 -2 511 6;20 585 .. 44
Stol)Piii8~ 1imlt ~ 2l -3000tl 1546 14X4

I or t1. I bul lltst i but ior, :0o) 3(1 85 _)3 83 3.8
Prt pxrt ion Average 3tudi t:501-4000 6(328 614.3

Iihio .11: Sap , Ile\ I i i ot ) 4000 16 1 16(1 .991
Pr-. I; oF, 10ijart i It- Si a a I

S.I ddill 1mIa) t . lah ous a . DISCUSSION OF RESULTS:
(a) (-irs) of all it shculd he notetd that this has

~~~~~~ 7' 11 248 2)1' ei a rather limited oprsn I do, have some
adljitional results fi the .45 riianiille %whit I are

Sq( I 1' 1 (1 252rpilv Much Ii acor'd w'ith(le.

,Fif. itn il (d) 19 281: 687 (h) -,,Il a firti n1 osulIt I tII i I all 11.1
(I~~~~( %r,01s'k n ~ol reason1ably %m(H

I V~l.(, "t, eI i& Stoping 'Ilile Sinitil;,it u1'.Th -ral differenice h.in~enl te

tiq \rtnnlI Di t -II i 1,f.e~ iiit ial piocedlii' aid the enI'%

tr ~ - (Ii ''i A%~ Itndr liI iii' t hal ;ir, coiisiit ied is, iii t-i ms 4t the,
W4ith(in ;" I)[S - . I t DI. \ia sli,. ti'it,( df-V~latlo 0 f the( Siample size. I In-

Sl pi (, .)5 ~ (i.a, ip ti dis sin It. dA,-usitt' o .- imnatisr,. \ls tt

(187) the propiu of tieiv--als thtii
I) 8: :8r ~ r li (t. t, the 111illiil :1 dii' 1

YI 7 7 h-It sajiiple siie h. ing stacll ii b e inuch It-ss tIan)
I. s

t  
:~ , 18 2lllIll(b uioli'';l 9,%. ;(,- ;ilsn (Sihin I for ;II.-t-Icr I-

(. -lt i l o. ) -,4(,(u j ~ i
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(d) As nioted previously, it appears that the let.1 Da\ id, (l.A. (19701, "Order Statistics", l Dv
squares estimator is better than the Siddiqui
estimator. It is generally less sensitive to the value Fldossoul~y, S.A. (1985), "Stepwise lRegression I'sinlg
of C (which determines the interval width) and [east Absolute Value Criterion", unpublishedJ DSc
provides an estimate with a smaller standard dissertation.
deviation.

La w, A. NI. and I heltoni,W.D. (1982) -"Simu Cat 00l
Rote re nces: Modeling and An1alysis" ,McGraw thu.l

Bloch, D.A. and (iastwirth,J.L. (1986), "()n a Simple ).illiefcrs, 11. (1987), "Old Simulation HE-so Its and
Estimate of the R~ecipr'ocal of the Densit.) Wh,'n to Stop", he -Nmerican Slatistician,41.
Function." Ann "lath Statist, 39, 108:3-108.5.

qudiju, %1. C 190(), ''Distribution of ',Qu~ntilos ir.
ilofingei', Eve (1975), "Estimation of a Densityi Samples from a Divariate Populatin, J. Res. Nat.
Function (Isinq Order Statistics'', \ust cal ian .1. Bur. of' Standards, B64d, 115-150
Statist., 17111), 1-7.

Si \e rmani, B.W. 119861, "Den0sity )'stiinawion for
Dallal,6. F. and t'ilk insoni,l,. (1986), ''An i,nnly tic Statistic., and Data Anialysis'', Chapain anid Hlall.
%plproxirmatioc, to the ((istrihut ion of tLil liefcors's
Trest Statistic for Nni'inalitv ", ie( A in r i'a,
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SIMULATING STATIONARY GAUSSIAN ARMA TIME SERIES
Terry J. Woodfield, SAS Institute Inc.

Box 8000, SAS Circle, Cary, NC 27512-8000

1. INTRODUCTION P
Y1 IiYC Yi4 ,+ 8e ,, t=p,p+l,...,n-1. (2)

Many instructors and researchers often find that the simula-

tion of time series data is a necessary part of their work. The pro-

liferation of textbooks that describe the Box-Jenkins strategy for We may treat the methods as differing only in how they produce

modeling time series has popularized the use of time series models starting values Y0 , Y,, ... Yp-t. Note that for the two exact ineth-

having a stationary autoregressive moving average (ARMA) struc- ods, this recursion is described in the context of the method em-

ture. Accurate and efficient simulation algo:ithms for Gaussian ployed and is somewhat different than is given in eouation (2)

ARMA processes are required for many applications. There are algorithms that do not depend on the ARMA recursion

The literature on simulation of stochastic data is vast, but spe- relationship; for example, an efficient algorithm exists that uses

cific articles focusing on time series simulation are rare. The algo- the Kalman Filter. Also, some applications have employed the al-

rithms discussed in this paper have been extracted from a variety gorithms discussed to generate the entire series and not just the

of secondary sources. Primary sources are scarce, perhaps because starting values.
the algorithms are straightforward and easily derived and hence Typically, all algorithms will have a branch such that if p = 0,

not suitable for publication in scholarly journals, then the simple moving average recursion is employed oir a white

There are three components of a time series generator. noise sequence of length n + q. The algorithin is

1. Algorithm to generate pseudo random numbers.

2. Algorithm to convert pseudo rai.dorn numbers to pseudo 1. Generate c-s, -1+,.--, t, I using an appropriate ran-

random norInal deviates. dori normal generator such as the one proposed by
3. Algorithm to convert pseudo random normal deviates to a Marsaglia as described in Kennedy and Gentle (1980).

tinie series. 2. Form

Eticent and practical solutions to components 2 and 3 have0.1

existed for some tine. Component 1 has been investigated exten- Y -. 1

sively, but choice of an optimal pseudo random number generator

is still an open question possibly having no unique solution. The

current practice scents to be to declare a random number genera-

tor to be adequate unless it can be shown to have poor properties.

Thus, our research is motivated by the concern that a pseudo ran- 3. SIMULATION ALGORITHMS
dour number generator that has passed existing tests roay fail to

produce reasonable time series data. Intuitively, pseudo random In this work, four methods are discussed for simulating an

number generators that have good n-space uniformity should pro- A RMA(p,q) process.
duce white noise sequences that are adequate for generating ARMA

tiie series. This paper provides some preliminary results that sup-

port this conjecture.
3.1 Appro.xiiat-e Methods

2. THE MODEL
The sinplest approxinrat.on n cthod rises start rig alues I

Tre unisariate AWMA model for a stationary time series is -pl = ... = Y. I = 0 and employs the recursions (if equation (2)

to generate the series realization. Since the first few valirs in the
0( 3) (Y,-) O(B)tt, (1) simulated series will be effected by the null starting Val ues, the

point at which the cffect of these %allues is minimal will be used as
where the starting point for the series.

The effect of starting values Y_,, k = 1,2. I, can be non-

1. B is the backshift iperator defined by BY, = Y, itored using the following algorithn. L.et 4'tk he the coeficent

2. ORB) - ., o r + 2 B'+..+ (ABP
O (B ) 

= 0o +0,rB representing the effect of Yk on future value ),. and let Or, be

0 B
2 
+ ... , OB1, where 60 = 00 = 1. the ,.otticiet representing the elect of t, on It. The relation-

3. {,1 is a white noise series, i.e., independently arid nor- ship I,,tre in , the starting salric.. air
t 
thc innfl',nttiiis is ives

rally distributed with mean zero and variance a2 > 0. by

I The zeroes of i,(B) arid O(B) lie outside the unit circle. P

ard P(R) and Of B) have no common zeroes " l' Yb - V i-.,, (3)

Tue {r4} s,.ries ic re.fer red to as the ertr,,r seqrernce or tire irinnova-

tion sequence. ThI,. notation ani terminology employed 1 prirrar The weights ',k and O. are obtained using the following recur-

iIV that 'If BoX arid Jenkins (1976) loweer, not,. that Hih signs if sion5.

th ' irrilcil ,',e!ic ri.nts are opposrte thse gisri ry B x and Jeik. k 1,2

Ins

lh," i ,th ,,,l ,t,.srrlne, will gn,.rate a s ,.rs with , i Y 1 0,0 O , k - 1. 2. . .

i ant rrrr,,.arnrn rlnc. 
2  

1 o ohita/n a tin,r Series 1) 0,, - i k = 0, ,2,. ,

with spc i'eranI p and error standard d siatirlnr a 0, rise the

transformation I t , - a), n In I, narinrnce ,l It" will lie cr tunes 'O 'pt - \ ' ,Asr-,.s

the variance of VC. For spcitife, vIr an,e 0,, . II 
- ,  

transforniation ,

. ,11 .p, where k = \/r ,,,/ r 9

All iuetiodi s ray ise the followng re,. rru ru to guer'rate 0r- ' - V , s , k K q. .

I i. 
1  

Itr,.

0, ,2 0,1.
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where any coefficients with subscripts out of bounds are taken to 1. Obtain F = (Cov(Y,,Y,)) = (-O), 0 < ii < p- I For

be zero. For example, consider the model a method to compute the autocovariance function of an

A RMA(p,q) process, see McLeod (1975,1977).

(1 - 0.4B - 0.32B
2

)Y, = (I -0 311 - 0.1B2)0. 2. Form the Cholesky root of F, that is, find H such that

F = HH', where H is a lower triangular matrix.

The 4' matrix is given by 3. Generate 0, (i. -i, using an appropriate random
normal generator.

0.40000 0.320000 4. Form Y = (Y0, Y,. .., ,-1)' using Y = He, where e
0.48000 0.128000 ( . I-i)'-

<1D = 0.32000 0.153600 5. Generate p_,, cp-q+l,,..., cn-, using an appropriate ran-
0.28160 0.102400 dour normal generator.

,'0.200 0.530 ,.Gnrt p,(qi euiganaporaern

0.21504 0.09012, 6. Generate Y., Yp,.., Y,_1 using recursion equation (2)
above.

where rows are numbered t = 0,1,2,3,4, and columns are num-
bered k = 1, 2. The 0 matrix is given by This algorithm will be called the Approximate Autocovariance

Method in this work.
-0.10000 -0.30000 i.0000 0.000 0.00 0.0 0.0 Note that air eq'rivalest but conmpuitationally more inten-
-0.04000 -0.22000 0.1000 1.000 0.00 0.0 0.0 sive iethod can be based on steps 1 through 4 using an n

0 = -0.04800 -0.18400 0.2600 0.100 1.00 0.0 0.0 by n covariance matrix rather than a p by p covariance ina-

-0.03200 -0.14400 0.1360 0.260 0.10 1.0 0.0 trix. The iethod using the full n by n covariance matrix is ex-

-0.02816 -0.11648 0.1376 0.136 0.26 0.1 1.0 act. Otherwise, this method is not exact because the error se-
quence e = (s,0,-., .- i)' is independent of the innovation

where rows are numbered t = 0, 1,2,3,4, and columns are sequence p_, -t, p. _ E. ,.- The innovations used to ,,in-
numbered k = -2,-1,0,1,2.3, 4. Hence, the series Y pute 

1
),.r, .. .,+, do not take into account the covariance

(Yo, Yi,... ,Y,.)' may be formed using E(Y,+Aet) between the innovations and the time series. To get an

exact ARMA(p,q) realization, the first q innovations must be gen-
Y = Se + 4 y, erated having the appropriate covariance structure with the time

series. A method that accomplishes this task is described below.
where e = (e-q, 1-1+ .. .,), and y = (Y-I,Y-2

Note that the last row of 0 converges to the infinite MA rep-
resentation of the model. When the last row of 4, is negligible, 3.2 Exact Methods
then one may assuime that the etlect of the starting values has van-
ished and that steady state has been reached. lowever, when start-
ing values of zero are employed, steady state is not reached until anex uini eaidation of n A nM transposaibnohbtai ned irsinrg aii enhIanced ye rsionr of thre linear transfo r inat ion

the last row of the 0 matrix closely matches the infinite MA repre- algorithm employed above. The inethod is implemented as follows.
sentation of the model. In practice, the approximation methods are
not very competitive because of the computational burden of de-
termining ' in order to deterinire where the actual series that is 1. Obtain F5 = (Cov(Y, I")) = (-yj), 0 < i,j K<p - I.

generated is to begin. 2. Let rm max(1,q - p - 1), and obtain psi weights
A more convenient approach to that of computing the -' na- 01, 2..,-- given by equation (3) above. Form the

trix is to obtain starting values using a truncated infinite MA rep- matrix

resentation for the ARMA(;,,q) model. Let AP(B) = O(B)/(B)
where / 'o 0 0

01 00 0 ... 0

T(B) - %.P tl,[ 2 + li,,B B . y1. (3) 01 Vk
2  

0i.o

i'q - -q - - n- - 2 ... ii

The algorithm may be implemented as follows.
where ¢'o = 1 and rj = 1 if ir = I, ri7 0 ,,therwise. If

p > q place p - q rows of zeroes at the beginning of ' so
1. Find k such that 1J'1 TOL and Ok+2, V2,+p+q that

are all less than TOL in absolute value for some specified
tolerance TOL. 0 0 0 ... 0)

2. Generate e-k, f-+,..., e o, (I, C . ,F,... - using air ". 0

appropriate random normal generator. 0 0 0 ... 0

3. Form Y, 
= 
at + 1Pt-t + 02(t-2 +..-+ O -Atk , fort = Vo 0 0 ... 0

0,1,. p- I. '' = - -0 Vo 0 0

4. Generate Y,,Y+i,...,Y,_- using recursion equation (2) 02z t' tn . . 0

above.
0

This algorithm for generating a time series will be referred to - t'q-,u- ¢'r-..2 . . .

in this paper as the Psi Weight Method. Note that using starting 3. Forms tire covariance matrix
values of zero is inferior to using starting values generated by the
Psi Weight Method. (F r)

The Psi Weight Method is a useful "quick and dirty" algorithm. Fr = (" I)

It may be programmed quickly in a matrix language or a lower level
computer language. It requires no laborious calculations and can where 1q is the ( by q identity matrix.

b, speeder up using a fast finite Fourier transform algorithm. 4. Form the Cholesky root H of F.

Another approach uses a linear transformation of p white noise 5. Generate c_-, -9+1,. , , , (p_, using an appropriate ran-
values based on the autocovariance function of an ARIM A(p,q) pro. dorn normial generator.
ces The method is implemented as follows.
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6. Form S = (q li8' S fiHe, where Vo j'_ljt V11 II i'Iig

e = (., q .. ) Let

W=(S-qi-PS..q.,p+t.--S ,,i -d

7. Form

A, = V0V Itk = 0, 1.0 n -
k=0 4. RAN DOMN 'NUMBER GENEB ATION

8Form
The algorithis disciissed abiove itiplItIt ititl ieindent nor-

Ye=S,, = 0,1._ 1, ionil randomti dev iate geniriitir. lt- aluorillill f Marsaglia ;,.. de-

P scribedl ini K~ennedy anditltl ( 1050 It.,, lwei m tentioned as a silt-

YI - t.P - Ok sYe - k, t = V P .+ .1 able noirmial dleviate ,- .xrator Since Mitrsaglias% algitritltini is elfi-

k-i Cittit and
1 

prtovides it lietiltitvi i'l that have ait -exact nttrnial

,histrilbotioii, we ill tot c itiIr cit tpetitig ex act or approximiate

mtethods. Inisteadl, we wvill fo~cus on pseudo random numiber gen-

Tihus, the volutes Yil, 'ii,. ... Y,_1 colte directlyv fromii tlt t rans- er ators t hat utay be potentLi al cand (id ates for use with M arsaglia's

formnationi using the Chole~ky factoiain Y t~ , Y, P I4- omldv ,gnrtr

C~ti fo i te ecrio rlaiot athte lols Iiitot it fAlinear cot grute itil pseudo randtIomt nit in e r generator emniploys

thle expanded covariance matrix, anid Y.,,5, Y I 1 ttle the recursiont

from tilie recuiirsiott relation. In tis taper, thec abov e ;l'o ri thnt is

called the Exact Autocovariance Mleti( .1. The- E sact Aito, ovari- X, = - otA, -I -+- c( itod il)

ance Met hod is probaly tilie titlst popiula r s imla t itt it icliiu Wil Vhen c = 0. thle getter ato r is c ailed a mtul tipl icativec congruen-
wted iii practice. For example, Anisley Andt Newbold (1980) de- tial pseudo ranidomt number getierator. The cotistant m is called
sc rible use of tilie algotrithmt it ;it attpp tenix, atnd ht an l i exmIr te iiit iplie r attd .11 is called the miodu lus. The choice of .niulIti-

the algorithnm programmttedl in SAS/IM Lil be David M. DeLotigpieindtriesherorisofhegeao.Fsh nad
is given in the SAS/IMilL User's Guide ( 1985a). ooere (182 19ter )ievas t the erteor fo gnrtost coFismntly

The last tme thod to he c oilside cred is dlesc ribled in a Ito ttCne rk ex - Mogge i182 19d 6 evauat tie Itio pliers.s cmmnl

ercise in IBrockwell atid Davis ( 1987, palge 264, problemt 8.17) aitt sugeted Tauwthlerse orno e enrtri pca

isbse nth ooslo~uAio~hii iei nfiietiei9ype case of the Getneralized Feedback Shift Register (GFSR) algorithm
d ic tiotn. The tme thod is related to th lini ear prediction ap proach hiwsadPye17).KneyadGnl (90 rvd on

los.etdb isn(98.Te ehdi mlmne fl pater codle for a sitmple Tauiswurtlie generator that uses the printi.
lw.tive poyoilp(t) x z r z2 + I.

For details on pseudo ranidom number generators and how they

1. Generate (f), tl. . ,-Iusinig ati appropriate randoms nor- may be testeid, see Ketnnedy atid Gentle (1980) or Knthl (1981).

nial generator. Note th at for any pseudo rando tnutttber generator, a starting

2. Let mn = ttiax(p, q). Fortm value X 0 is reqitiredl. For somte getterators, choice of starting value
has ain effect ott thle properties of the pseudo randomt sequenice pro-

duiced. A nuitmber of theoretical and enipirical tests exist to eval-

Ii, Ot ~ 6, - t ., .I.ate ridoin numbtter generators. Wue will evaluate several gener-

ators %ith respect to tile quality oif AltNI A Litme series produced

uisinig the generators.

where the coefficients 0, andt C, ire oubtainied using t6e 5. EVALUATING THE ALGORITHMS
recuIrsion

For algorithits thtat dependl on recuirsioin (2), the sequences pro.

r~l, I), ildiced will converge to a commiton timte series if a common error se-

qulence is used in the recursiotn. Usitig early values before thle timte

k (ri~ 1,. k - 0, k.-,,, i~< /yi series ia~s retached steady state is not recottttended. Assumiting

tial any itmplemoentatioit of an ARNIA titte series generator will

k -0, 1 , n .etnsuire that Onily steady state values are used. any other conipari-
sttti ofthle algutritlins shtould lie biased ontly ott niumterical properties

iT,~ z l~o lu I - \'6~ ~'related to their tiiplemtetitation ott fitnite precisioni idigital cottiput-
irs.

-r it, liehItasior ofatty given Ltime sCeri es getter ator ultLimnate ly de-

with the, covariantce fmtictitin lFt.j) defitned by peniis oni the ( hoice of itiilrtin raiulottitiuttber genierator to be coti-
ploi1 t H len c e, stat ist ical evaluion oif Litile series getnerators w ill

[(z, j) y, .d/cI, _ij -_ t, 1- icarriedl oit tisilig a desiguei elriietiivvtig typ 1f1ii1i

frm genieratotr as a primiary factotr of itnterest. Given tile eqtiiva-
±Y - . i + 01,11 leticet(if thie alcuirttits after steady state is rea-bed, thte expertiment

iinlm. ) ot - maxti.ij) -' 2nt, il-rrilciell il lie tet sectiomi will emlploy omilY tile Exact Autoco

11'k *~,. niin(i, j) mvariantce MIetl-il

-0 oitherwise To ilt-moire the quiality of a genieratedl titie series, gooltiess of-

Theva~i~ f usd t cmpte ~ij)areth at ..... fit criterioni are tdevelop~edl. Otie appiroach to mieasiurinig goitthiess.

variatnces fttr the origitial ARMA(p,q) proress, intla Is offit maktes comlparisois bietsweena thle sample auttocovariances atnd
the trite aiitoririilcts. TNwit measutres tif clttseties are

thte error variancte
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1 -- 1tigated by Fishmn and Moore (1982, 1986). Generator (1) is tile
UlSE =- Z: (-I - j),notorious RANDU generator. Generators (2) and (3) are avail-

k~o able in IMSL®9 (1987). Generator (3) is also available in SAS

-- 1 (19851b). Fishmnan and Moore (1086) suggest that generator (4) is

ill D = : z - superior to generators (1) through (3). Generator (5) is known to
or, have poor runs properties and is included as a control. If genera-

tor (5) cannot be judged significantly worse than the other genera-

where _Yk is thc theoretical autocovariance function at lag k, ji is tors, then one should look for flaws in the Monte Carlo experiment

the sample autocovariance function at lag k, and m. is chosen so and at the very least view the results with caution.

that values of the true autocovariance sequence beyond lag m are In addition, twi, facto-s saiiple size arid ARMNA model emn-
relaivey sall Intitiely th samle utoovaiancs wll on-ployed, are required to attempt to generalize the results to a wide

verge to .the true autocovariance function, so the nieasures MSE variety of situations likely to be encountered in practice. The sam-

and J.4D will reflect whether the series generated comes from the pie sizes coinsideredl are T1 = 50. 101), and 500. The niodels em-
specified model. As series length increases, MSE aiid AlAD should ployed are:

get smaller. Hence, the use of JUSE and MlAD is mrore meaning- 1. Anle and Nes bold (ll1j1
fiil for evaluating the quality of long generated series. If MSE and
M fAD do not approximate a monotone decreasing sequence for in- (I - 0 SOB13 -U- J6 5B 2 )V =c,
creasing n, then the simulation algorithm employed is unaccept-
able. . Ansley and Newbold (1981)

One problem with tile autocovariance approach to measuring
goodness-of-fit is that the values MSE and MAD may not pro- Y! I - 1.2 51B2 0. 35 B
vide a true iriasure of closeness for small series because the au-
tocovariance estimator is biased. Thus, it is conceivable that a 3. Anley and Newbold (91
generated series slaY be better than another series iii soiiie sense,
bitt may prodluce a biased estimate of the autocovariauce function (l - .95B)Y, =(I ' .~5)e
that is scorse than the biased estimate produced by the other se-
olierce. While it is unlikely that the bias will uniforrrl v favor orie -. WVoodward arid (;ray (1981)
method over another even when that method is inferior by most cri-
terion one might devise, one should nonetheless be made aware of (1 - 1.5B) - 1.21 B2 - O.SBl 1 . 0.21B 0.B-
the potential pitfalls in this method of comparison. If significant
differences are noted, one explanation is that the better iiethod5.rcwelad avs(9)
prodluces sequences that nminimrize bias in estimation. BokeladDvs(97

Note also that for fixcd series length n, ,I1SE ur MIAD may fa- (I1 - 0 243')Y' = (1 -0.-41) 0.213' - 0.lB 3
)ct

var a series that is generated to have smaller innovation variance
thiani another series. This is primarilY because AISE or MAD 6.5 Newton aid! T'ar auo (19.83)
miay be smiall when ik is close to zero. On the other hand, MSE

and MlAD values will tend to remain constant in such cases across ( .351 .81[2 01503+0257'Y
all samnpl-e sizes, whereas series generated using the correct inno-(I-u.1) 0S2 15O)--O2t3) 4

Y
vation variaiice wuill experienice MSE and AD 4 values that get I1 - O 6O,713 + O058l11) * 0 1031)2),,
smaller with inc reased series length. This fact also negaites the po-
tent~ial negative effect of bias in measuring good ness-of-fit., since a
faulty generator is unlikely to produce tulle series with biased au-
tocovariance estimates that uniformly beat the estimates produced [Tin rep~licationis iwere p.-rfornwdi for each factor level combina-

by a better generator across all sample sizes. Recall that for large tioii. Ili all ca-ses, seeds were trainsmiitted froin une routine to the

sismphe sizes, the bias factor tends to be relatisely small, next with no atteiii pito control seed values or synchronize the se-

Otlier approaches exist for mieasuring goodness-of-fit of gener- ries generated. Tile responise variab~les ;ire .!S F and .11 AD defineid

ated tiiie series. Mlost approaches will have the samne pitfalls as above for the aritocovariance function. The value mo usied to trim-

those discussed above. The niumrerical overhead required in iriiplc- cate tile autotcariance s,-li,-ce %as clioseii sii that I- ' < 0 00001

iiien tinrg many good iiess-of- fit iea~ u res places a sever e penalty on for all k - ini, eac,,t it or tilie liii- rM IA ini ot I ". is wch c Iase 'in

their lise in large stale~ sinmulatioii studies, was arlritrard lv set to tel. Table 1 list, the values o1 in (truinca-

tioii lag cahsei anit -allies if 1SE (nciai stun (it' strar.-s) and

Ml ID1 (nrcan aloliite Nahwu,) with v1- ettal h, zer,i for all ke.
f3. A MONTE CAR)LO EXPERIMENT Tables 2 anh 3 trctidl,Itttiny- if il- generators that pr1idlIC~d

thit limtest or hiehthis -i! ,,It -aii timr ill, gives santiplv ie by niotiel
An experimniirt has lieern performued to inivestigate piroperties of etsriiliatioti. \'hits tle r-ttils tin thtie lo~ksci i ill ear, (toc not itp-

tiiiie series ge-nerators. Thle fator oif iterest in thle expe-rimient is pear to lie randlotilv lisp- r',t in dic ta it,,-i table ltiiliM17ri11

the tpt- (if rifiurin generator irtlioved . There are six levels for tilitihi 1111b ft1 Itotes tali 11 -wrat,,r ui had ,' iIlli-it mtlt-
factor I correspioning to six algorithiris tr generating pseudo ran- values that will riot lead to rejection of a null livp-irtlesis that thre
tldrrnti iibers 'Thle six psetidi ranittrt nuimiber geiteratormsronsid- ltowest cell ican is distribuited uriiformirl across generators.

ered art-More insight is obtainedl front table 3. Tb.- results clearly reject

uinifitririti, arid strongly imply- thrat geneutrator 5 is inaidequtate. Ge-
I iitiphtratise corigmrit-itial genierantor tcitlt ill 5.739 erattirs -I aknd 6 also ha've anl tluusuallv high nirirbir of cotitts. al-

2 multiplit- cotugriteitial g,-iutratitr wuith ms - IST though the e-xperimnt is trio stina
11 

tot allow tire to thaw saci strunc
3 !itltihtanic- tonegruenttial genieraitor Still, mi z :9720.10!4L conrclursioiis.
4 'onlihlciic-ttgrticrrlia g-ucrattir %vith ii 12113121;' Table -4 also proirs strong esideitre that generaltir 71 is inal
- itmititlit-attc.- ctertetn neitrattir ithl iii 3? :1 quate giuen that it fails iii several sitltatittlo, ti adetlliatelc genrue

lat iirib, eliwrat,,r i hKttiiedv ;iii,[ 1ii. 11 ) ate serie s that e-xhiibit rthe mrontone lecreasin biehacicor Iliere

stronse variabiles. The lion-starred itetis iii tabile -1 reptresenlt cast'

Ihicnitolirlrs ur gneraors(I) lirought(TIis..l * ~ -whetri- iorotoniily Sets viotlatedl. bitt onlc for sample sizes of 50o

Hlenct-. tht-se generatoirs are appropriare fctr comrputt-rs having 32 ant 0I0 The iitti-ttarretl itents alsi refleict sinai! tiicrecises iltatt

bit words. Norte that gt-riratunrs (t) through (-1) have keen icvs- are prtthtbnhlY a result (if saiilhtl errori ratheir thtair gelierator leti-

ciescics.
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Since the Monte Carlo results may not satisfy the assump- REFERENCES

tions to carry out the usual parametric ANOVA, a nonparametric

ANOVA was performed based on replacing response values by their Ansley, Craig F., and Newbold, Paul (1980). Finite sample proper-

Blom normal scores. Initially, all F tests exhibited p-values smaller ties of estimators for autoregressive moving average models.

than 0.01. Examination of the cell means revealed that model 3, Journal of Econometrics, 13, 159-183.

having roots near the unit circle, produced MSE or M AD val- Ansley, Craig F., and Newbold, Paul (1981). On the Bias in Esti-

ues considerably higher than those for other models. As indicated mates of Forecast Mean Square Error. Journal of the Amer-

above, generator 5 also consistently produced unusually high val- ican Statistical Association, 78, 569-578.

ues for most models. When model 3 and generator 5 were deleted Box G.E.P., and Jenkins, G.M. (1976). Time Series Analysts:

from the study, the model by generator and model by sample size Forecasting and Control. Oakland, California: Holden-Day.

interactions were significant at the five percent level. However. Brockwell, Peter J., and Davis, Richard A. (1987). Time Series:

there is not enough evidence to reject any of the remaining gener- Theory and Methods. New York: Springer-Verlag.

ators as being inadequate. If all generators are basically of equal Fishman, George S., and Moore, Louis R. (1982). A Statistical

quality, it is not surprising that a statistically significant model by Evaluation of Multiplicative Congruential Random Number

generator interaction is observed. Generators with Modulus 231 - 1. Journal of the American

Fina!ly, since the response variables MSE and MAD are more Statistical Association, 77, 129-136.

appropriate for larger sample sizes, we carried out the ANOVA for Fishman, George S., and Moore, Louis R. (1986). An Exhaus-

the case n = 500. Both response variables lead to the conclusion tive Analysis of Multiplicative Congruential Random Num-

that there is a statistically significant interaction between model ber Generators with Modulus 2-1 - 1. SIAM Journal of Sci-

and generator. In the presence of interaction we can only draw entific and Statistical Computation, 7, 24-45.

conclusions about the effect of the generators for the particular IMSL(®) (1987). STAT/LIBRARYT
M1 

User's Manual. Houston:

models in the study. There is no compelling evidence to imply that IMSL.

any of the five remaining generators may be consistently superior Kennedy, William J., Jr., and Gentle, James :. (1980). Statistical

or inferior to the others. Computing. New York: Marcel Dekker.

Most results were consistent whether MSE or MAD was used Killam, Baut (1987). An Overview of the SAS System Random

as a criterion measure. Any discrepancies may have been due to i mbr (1987). rvies of the Twelfti Andoni

MSE being more sensitive to outliers than .M AD. Results also Number Generators. Proceedings of the Twelfth Annual Con-

supported the consistency of the sample autocovariances. In this ference, SAS Users Group International. Dallas, Texas, 1059-

regard, only generator (5) can be declared unacceptable by this 1065.
Kiiuth, Donald E. (1981). The Art of Computer Prograiming, 2nd

analysis. While the RANDU generator is generally considered to be dition).er of omuer Algrm ing,

inadequate, it was not rejected in our study. This is not surprising Massachusetts: Addison-mesley Publishing Company.

because RANDU has bseen found to be adeqtuate for iiany specificMascuet:AdonW lyPbihngCmn.
appicas tha areno nd adversely effec te foranyspeloorficLewis, T.G., and Payne, W.I. (1975). Generalized Feedback Shift
applications that are not adversely effected by RANDUs ioor Register Pseudorandom Number Algorithm. Jouminal of the

space uniformity properties. Further research is warranted isiig a Association for Computing Machinery, 20, 456-168.

variety of criterion neasures and a larger experiiiental design. McLeod, Ian (1975). Derivation of the Theoretical Autocovariance

Function of Autoregressive-Moving Average Time Series. Ap-

plied Statistics, 24, 255-256
7. CONCLUDING REMARIKS (1977). Correction to MLeod (1975). Applied

Statistics, 26, 194.

When choosing aii algorithm for simulating a stationary Gauns- Newton, H1. Joseph. and Pagano, Marcello (1983). The Finite

sian APMA time series, theoretical considerations narrow the Memory Prediction of Covariance Stationary Time Series.

choice to efficient exact algorithms, although the Psi Weight SIAM Journal of Scientzfic and Statistical Computing, 4. 330-

Method is ideal for providing a quick method for generating time 339.

serisin almost any computing environment. Choice of psehdo ran- Priestley. M.B. (1981). Spectral Analysis and Time Series. New
don, numb.'r generator become ,- e- "' ;d. esigning a York: Academic Press.

simulation routine. A Monte Carlo stuoy provides evidence to in- SAS Institute Inc. (1985a). SAS/IML® User's Guide, Version 5

dicate that some of the more popular multiplicative congruential E,lition. Cary, North Carolina: SAS Institute Inc., 73-75.

generators may be adequate for simulating time series data. Kil- SAS Institute Inc. (1985b). SAS® Language Guide for Personal

lai (1987) indicates that the non-statistical tests used by Fish- Computers, Version 6 Edition. Cary, North Carolina: SAS

man and Moore (1986) may not be as meaningful for generators Institute Inc.

employed in many statistical applications. Our preliminary work Wilson. G.T (1978). Some Efficient Computational Procedures for

supports this view. Iliih Order ARMA Models. Journal of Statistical Coriputa-

For future study, known properties of statistical estimators lion and Simulatzon. 8, 301-309.

should be investigated with data simulated using the algorithms Woodward, Wayne A., and (;ray, H.L. (1981). On the Relation-

discussed in this paper. A larger study employing more genera- ship Between the S Array and the Box-Jenkins Method of

tors is warranted. Only when expected behavior is observed to A RMA Model IdenTification. Journal of the American Sta-

within an acceptable tolerance should the algorithms then be used titicl As.ociaion, 76. 579-r,87.

to gain insight into statistical procedures that do not have ade-

quate theoretical underpinnings.

1. True Autocosariance Function Summary Values

Sirmilations described in this paper were carried out on aii Truucati, ,n Mean Sum Mean Absolute

Apollo workstation using the SAS Systeiii and SA SI M L software, M,d., iag Valu- of Squares Value

Version 6.03. 1 55 0,16742 0.15111

SA S and SAS/1MI, are, registered trad,marks of SAS Institute 2 10 1 01794 0.47225

Ine IMSL is a registered trademark of IMS1, Inc 3 294 42 83101 2.38645

.1 Fi; 6 14362 0.73537
7, 29 4.86766 0.98871
6i ,19 0 02877 0.04132
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2. Summary Tables From Monte Carlo Experiment 4. Cases Where MSE or MAD Were not Monotone Decreasing

Table entry is the number of the generator with model generator model generator model generator

lowest mean MSE. 1 3 3 5 5 5 -
1 4 3 6 (NSE) 6 2 (MAD)

n\ model I 1 1 2 I 3 I 4 1 8 I 6 1 1 6 4 8 * 6 6 (MAD)
......... +....-........-- ....----- -----. + 2 6 4 6 6 6

so1 SI 11 41 61 61 51

100 I 1 I1 I 2 1 2 I 6 I 3 1 In all cases except for the starred items, the

So0 3 I 4 I 2 1 I I 3 1 2 I case n=500 had smallest NIE and MAD values.

Table entry is the number of the generator with

lowest mean MAD.

n\ model l 11 2 1 3 1 41 SI 6 1

sol 1 11 41 61 61 81

1001 31 11 21 21 6 1 31
Soo 1 3 1 4 1 2 1 1 1 '! 1 3 1

-- +-------+ ----------- - -+

Table entry is the number of times the given

generator had lowest mean MSE or MAD.

generator: 1 1 2 1 31 4 I 8 1 6 1
----- ---------------- +-

3 1 4 1 3 1 3 1 2 1 3 1

3. Summary Tables From Monte Carlo Experiment

Table entry is the number of the generator with

highest mean MSE. (When S is the generator with

highest MSE, the number of the generator with

ne.ct highest MSE is given in parenthesis.)

n\ model l 11 2 1 3 1 4 1 SI 6 1
--- +-----------+-----+-+--+

80 I 2 I 6(3)1 5(6)1 6(4)1 5(2)1 4 I
100 I 4 I S(6)1 8(6)1 5(4)1 s(1)1 6 I

00 5(4) 1 5(2)1 5(3)1 8(4)1 (1)1 5(1)]
-- - - -- ---+- - -- -- ----+- + - + - + - +- -+

Table entry is the number of the generator with

highest mean MAD. (When £ is the generator with

highest MAD, the number of the generator with

next highest MAD is given in parenthesis.)

n\ model l 1 I 2 1 3 1 4 1 5 I 6 1

so I 2 I 5(3)1 5(6)1 5(4)1 5(2)1 4 I

100 I 6 I 6(6)1 5(6)1 S(4)1 5()1 6 I

500 I (4)1 5(2)1 5(3)1 5(4)1 8(1)1 6()1

------- ------------------ +--

Table entry is the number of times the given

generator had highest mean MSE or MAD. (Value

in parenthesis is numberof times if generator

6 is omitted.)

generator: 1 1 2 1 3 1 4 1 5 1 6 1

--------- 4--4 ------ +-

MSE: 0(3)1 1(3)1 0(2)( 2(6)1 14 I 1(4)1

------ -4-- ------ 4-4--

MAD: 0(3)1 1(3)1 0(2)1 1(S)l 14 I 2(5)1

.-...... +..-...+.......------.+-.+
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ON COMPARATIVE ACCURACY OF MULTIVARIATE
NONNORMAL RANDOM NUMBER GENERATORS

Lynne K. Edwards, University of Minnesota

Abstract

There are two easily accessible methods of from a typical skewed distribution found in
generating multivariate nonnormal psychological and educational research with
distributions using the IMSL. They are: a skewness of 0.7-1.0 and kurtosis of 2.0-5.0.
multivariate extension of a power method with Another nonnormal distribution frequently
an intermediate correlation matrix adjustment used in simulations is a Laplace, but a "cusp"
and a normal-mixture method. Neither these is almost never found in real data. Still
methods can produce all possible another frequently used nonnormal
combinations of marginal skew and kurtosis, distribution is a chi-square distribution with
but they have an advantage over the known degrees of freedom ranging from 2 to 3.
extreme distributions when a multivariate Although it can be rescaled, limited
nonnormal distribution with specified combinations of skewness and kurtosis can be
intercorrelations and specified marginal generated.
moments is desired for simulating a plausible Various algorithms such as the Johnson-
nonnormal situation. The MSE and se(MSE) system, Burr-system, and Shmeiser-Deutch
for the four marginal moments and for the system for generating flexible distributions are
intercorrelations were compared between the well established for the univariate disributions
two methods. The Fleishman-type method (Rubinstein, 1981; Burr, 1973; Tadikamalla,
produced a much smaller bias in correlation 1980; Schmeiser & Deutch, 1977). Although
coefficients than the normal-mixture method the multivariate extensions of such
but the reversed trends were found for the distributions are discussed in Johnson (1987),
marginal skewness and kurtosis. they tend to be computationally involved.

An alternative approach is to extend the
Keywords: simulation algorithms; empirical univariate normal-mixture method. This
moments; MSE method has an intuitive appeal because we

can think of a marginally skewed dataset
1. Introduction either in test scores or in a repeated measures

design, as the data obtained from three
Multivariate nonnormal random numbers .distinct subpopulations; each with a normal

are sometimes generated to simulate a distribution with a different mean and a
realistic nonnormal distribution with specified variance but with the same correlation matrix.
four marginal moments and intercorrelations. One of the drawbacks of this method is that it
As in the case of univariate nonnormal may generate multi-modal distributions.
distributions, the known multivariate Yet another approach is to use an
nonnormal distributions have highly desirable approximate distribution, an extension of
properties, such as density functions. But they Fleishman's univariate power method
are often far from the plausible nonnormal (Fleishman, 1978), to a multivariate situation.
distributions that are encountered in testing Vale and Maurelli (1983) have shown that the
and experiments. A statistic may be robust for multivariate extension works reasonably well
all practical purposes under plausible with their intermediate correlation adjustment.
nonnormality conditions, while it may exhibit The last two methods provide an intuitively
nonrobustness under extremely nonnormal simple extension from the univariate to the
conditions which are almost never multivariate in simulating testing situations
encountered in real studies. where three parallel tests are given to the

The extension of known extreme same subjects, or in general when the same
univariate distributions to multivariate subjects are repeatedly observed.
distributions is an obvious option but it has
several shortcomings. An extreme distribution The purpose of this study is to compare the
provides implausible skew and kurtosis and it Fleishman-type power method and a normal-
is often difficult to specify the desired mixture method, two relatively easy methods
intercorrelations among the variates. For of simulating multivariate nonnormal
example, a log-normal distribution with A = 0 distributions with specified moments and
and 0 2 = 1 is often used as a rig ht-skewed intercorrelations. It is of interest to test their
nonnormal distribution but it has skewness of relative accuracy on the marginal moments
6.18 and kurtosis of 113.94, a far departure and intercorrelations.
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2. A Power Method 3. A Normal-Mixture Method
A multivariate extension of a normal-

A multivariate extension of the Fleishman's mixture method (Everitt & Hand, 1981) is as
power method (Vale & Maurelli, 1983) is as follows:
follows:

1. Generate a multivariate normal distribution:
Univariate procedure:Y = a + bx + cx2 + dx3  Normal p(x; I, 1) x - N (g, 1)

1. Solve the following nonlinear equations 2. For a symmetric leptokurtic distribution,
(Fleishman, 1978). solve for 1 l, H[2, .II, 2 and for a skewed

b2 + 6bd + 2C2 + 15d2 
- (;2 = 0 distribution, solve for H1, -' 2' [I3 ' g Y_ 1 t 2

2c(b2 + 24bd + 105d 2 + 2)-7 1 -=0 andl, 2E
Tailed p(x; p., £) = I[ p(x1; p., £.1)

24[bd + c2(1 + b2 + 28bd)

+ d2(12 + 48bd + 141c 2 + 225d 2)1 - y2 = 0 + 1H2 P(X2; '1,2).
Skewed p(x; g., E) = 171 P(xl; pgj, "1)

a = -c if p. 0
+ nH2 P(X2; p 2 ' Y-2) + rH3 P(X3; 93' -3)"

2. Generate a unit normal variate, x, for each 3. If a multi-modal distribution is to be avoided,
variate needed. a sufficient condition has to be satisfied

3. Solve for the intermediate correlation (Everitt2& Hand, 1981).
matrix in x's for the obtained coefficients: a, b, (912 - Pl <1 27 021&22/4(02k + 022)
c, and d. The matrix elements below and the
polynomial function for solving for the Table 1. The parameters for the mixed
correlations in x's to be specified are fully distributions used
reported in Vale and Maurelli (1983), but the
conditional expectations can be easily applied type-mar-"'nal components
to solve for them. The intermediate g 72 n 2

correlations are typically larger than the
specified values to counteract the attenuation
in correlations resulting from the power
transformation of x's. tailed 0 1 0.00 3.1212 0.80 0.0 0.49

0.20 0.0 3.04
1 0 1 0

R = 1E'' 0 skew 0 1 1.062 2.4366. 0.33 -0.4 0.25
R Xx2') = xlx2 3Px1x2 0.33 -0.2 0.25

1 0 p2x1x2+1 0 0.33 0.6 1.94

[0 3Px1x2 0 6p3xx2+9pxlx2 -

4. Data Generation

r YIY2 = E(Y1, Y2') = E(w'ixix' 2w2) = w',Rw2

Px1x2 (bib2 + 3bld 2+3d 1b2+9d1d2) Two plausible nonnormal distributions with
3 specified moments (Table 1) were generated

Px1x2(2cC 2) + Pwith the IMSL (IMSL, 1986) by a power
P3XlX2(6dld2) method and a normal-mixture method. The

correlations were set to P12 = 0.79, P13 = 0.53,
4. Apply a triangular decomposition and P23 = 0.73. Although a univariate unit
(Cholesky's) to the obtained intermediate normal can be used for generating x's in the
correlation matrix R, and produce x* = x L' power method, the multivariate unit normal,
where LL'= R. GGNSM, was used in order to reduce

variances in comparing the two methods. For
5. Apply the coefficients a,b, c, and d to x*. a normal-mixture method, GGNSM, GGBN,

and GGMTL were used to generate the mixed
Y = w'x*, where w = [a,bc,d] and distributions.

x*' 1 , x 2 , x
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The first simulation was conducted with the more stable across independent simulations
Cyber 855, simulating N=2000 with 50 as indicated by small se(MSE)'s.
replications. Because a negative bias in
kurtosis and huge MSE's in kurtosis and 6. Acknowledgment
skewness in the power method were noted, 50
new independent simulations were conducted The generous computer funds from the
with the Cray 2/4 to ascertain the accuracy of Minnesota Supercomputer Institute and from
the results and to obtain the se(MSE)'s (Table the University of Minnesota Academic
2). These 50 independent simulations Computing Center are duly acknowledged.
represent 50 independent sets of N=2000 with Special thanks are due Gyenam Kim for her
50 replications each. Randomly chosen 50 assistance in programming. The author
seeds were used to generate these thanks Bruce Schmeiser and Tina Song for
independent simulation sets across four valuable suggestions and criticisms. The last
distributions. The figures reported in Table 2 but not least, the author thanks Betty Jo
represent the average of such independent Johnson for editing the earlier draft.
experiments. The se(MSE) is the variability of
simulations across 50 independent 7. References
experiments. Burr, I. W. (1973). Parameters for a general
5. Simulation Results system of distributions to match a grid of

(z3 and a4. omm unications in Statistics,
Both Fleishman's and mixture methods are 2, 1-21.

limited in the type of nonnormal distributions
they can generate. However, they are easy to Everitt, B. S., & Hand, D. J. (1981). Einite
use with the help of the IMSL and are of mixture distributions. New York:
reasonable accuracy for researchers needing Chapman & Hall.
plausible nonnormal distributions with
specified marginal moments up to the fourth, Fleishman, A. I. (1978). A method for
and with specified intercorrelations. simulating

non-normal distributions.
Within the limits of the distributions tested: pchometrika 4i,521-532.

1. Fleishman's method is superior to a mixture
method in generating the data with IMSL (1986). IMSL user's guide. Houston:
intercorrelations close to the population Author.
values and with smaller MSE's. In particular, a
mixture method produced highly positively Johnson, M. E. (1987). Multivariate statistical
biased intercorrelations when each marginal simulation. New York: Wiley.
was skewed in the same direction.

Rubinstein, R. Y. (1981). Simulation and the
2. A normal-mixture method, a three- Monte Carlomethod. New York: Wiley.
distribution mix for a skewed distribution, and
a two-distribution mix for a tailed distribution, Schmeiser, B. W., & Deutch, S. J. (1977). A
was superior to Fleishman's method in versatile four parameter family of
generating data closer to the specified probability distributions suitable for
skewness and kurtosis and with smaller simulation. AIIE Trnsactions, 9,
MSE's. 176-182.

It is understandable that a power method Tadikamalla, P. R. (1980). On simulating non-
produced a set of intercorrelations close to the normal distributions. Psychometrika, 45,
specified values because of the intermediate 273-279.
correlation adjustment. If a robustness study
involves a statistic which is highly dependent Vale, C. D., & Maurelli, V. A. (1983).
on the sample intercorrelations, a power Simulating multivariate nonnormal
method may be more desirable than. a normal- distributions. P4ychometrika., ,465-
mixture method. On the other hand, if 471.
specified skewness and kurtosis accompanied
by small MSE are required in a simulation, a
normal-mixture method which has finite higher
moments for each component normal
produces smaller biases and variances and is
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Figure 1. Mean Figure 2. Variance
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Figure 5. Correlations in a Skewed Distribution
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Figure 7. Bias
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Table 2. Mean MSE and se(MSE):
Average of 50 experiments for N=2000 with 50 replications

Mix-Tail F-Tail Mix Skew F-Skew

Parameter 00 0.0 -. 0
Mean -0.000630 -0 000432 0000316 -0000450
MSE 0.000484 0000471 0000495 0000474
se(MSE) 0.000018 0000016 0000016 0000016

Parameter 1'0 1.0 10 10
Var 0997878 0999318 0999242 0 998956
MSE 0.002532 0002714 0002271 0002218
se(MSE) 0 000062 0 000061 0 000060 0000053

Parameter 00 00 1 062 1 062
Skew 0003381 0000689 1059118 1 056038
MSE 0028467 0039084 0009048 1 131984
se(MSE) 0000664 0001193 0000261 0005053

Parameter 31212 3 ;212 24366667 24366667
Kurlosis 3091182 3032055 2.421257 2391851
MSE 0278781 10744024 0119259 6633025
se(MSE) 0008050 0315243 0004014 0148044

Parameter 079 079 079 079
corr12 0789920 0790241 0829288 0790128
MSE 0000152 0000092 0001638 0000097
se(MSE) 0000004 0000002 0000015 0 000003

Paramneter 053 053 053 053
corrt3 0529925 0530370 0617893 0530445
MSE 0000532 0 000289 0008074 0000322
se(MSF) 0.000016 0000009 0 0000118 0000010

Pararnetpr 0 73 073 073 073
carr23 0 730281 0 730270 0 780562 0 73039.1
MSF 0000223 0000130 0 002697 00001,14
,eIMSF) 0,000006 0 0(0004 0000025 0 000.004

Nole The 'ray2i4 was liped fr this marn The reari, variance . ,krwiro
and kurtlosi; for the irI variate are reporled The averann of 50
independnt simjlaions, earh wiltl i=J-2"]0 repeated 0(j Iil, ic roinrl f
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ROBUSTNESS STUDY OF SOME RANDOM VARIATE GENERATORS

Lih-Yuan Deng, Memphis State University

Abstract In this paper we are concerned with the quality of a given
Empirical study using computer-generated random num- random number generator under the situation that we failed

bers have been widely used where the mathematics of ana- to generate a truly uniform random numbers. Note that if
lyzing a statistical procedure become intractable, a truly uniform random numbers can be generated, then all

There are several generating methods to produce a ran- proposed methods will yield the desired distribution. And
dom sequence with the given distril ution. Most, if not all, the only criterion to compare generating methods usually is
of the methods are based on the gei eration of independent "efficiency". As we shall see in Section 3, that the resulting
variate from an uniform random distribution. Comparison distributions may be quite different under the "alternative"
of the different generating methods usually is done under distributions. In the next section, we will consider two sim-
the criterion of "efficiency". With the wide availability of a ple generating methods of a special beta distribution, with
wide variety of computers, the cost of computing is reducing a = 1, b = n.
dramatically. Computational efficiency should not be the 2. Comparisons of Generating Methods
only criterion in choosing among different random number It is easy to see that the following will generate a random
generators. We will propose a new criterion,"robustness", variate with distribution beta(1,n):
to compare the performance of different generating schemes.

They are two basic techniques for generating variates
from U(0,1): the congruential methods and feedback shift X = max(U1, U2 ,...,Un) (A)
register methods. None of these is known to generate a
"true" random sequence. In this paper, using beta random and
variate generating methods as an example, we will compare Y = U (B)
the performances of "robustness" of several generators. It is
shown that some methods will perform poorly in the sense where U1,U2,. ,Un i. i. d. U(0,1) and U - U(0,1).
that it will quite differ from the specified distribution when One can easily see that
the uniform generator fails "slightly". (1) When n is small, method (A) will be more efficient
1. Introduction than (B) because n-th root computation will take

The beta family of distribution with the p.d.f. given as a longer computing time than sorting a small array
of numbers.

r F(a + b) (2) When n is large, method (A) will be less efficient

fx(X) r (1 -- x)b-, 0 < z < 1, than (B) because n-th root computation will take
a shorter computing time than sorting a large ar-

I. 0, elsewhere ray of numbers. The computing time of method
(A) is known to be proportional to n log n, where

was used to model random processes with a finite range method (B) computing time is independent of the
because of its various values of the parameters allow many size n.
shapes of the p.d.f. (3) Another advantage of method (B) over method

There are several popular generating methods for ar- (A) is that it can still be used even when n is non-
bitrary value of the parameters. Based on the rejection integer, where method (A) will fail for non-integer
method, J6hnk(1964) first develop a generating method for 1.
arbitrary a, b. Ahrens and Dieter(1974) proposed a more In the next section, we will consider the question of "robust-
efficient generating method when both a, b are greater than ness" of these two generat( rs. That is, if U,'s do not follow
one. Other methods will be more efficient under some spe- an uniform distribution, thei which generators will produce
cial type of the parameter values, see Atkinson and Whit- random variates with distrib ition closer to beta(1,n) distri-
taker(1976). Cheng(1978) compared these and other method bution?
for generating beta variate based on the criterion of effi-
ciency. 3. Robustness of Generating Methods

Note that all the methods are based on the successful Note that the distribution of X and Y will follow a
generation of independent variate from an uniform random beta(n,l) distribution if U1 , U2,... U, and U in (A) and (B)
distribution. i.e. The theoretical distribution of the variates follow an uniform distribution over [0,1]. We will assume
generated by each method will follow the beta distribution that
with the given parameters a, b, if one can generate a truly UI,U 2 ,. U, i. i. d. - F8(t)
uniform numbers. They are two basic techniques are widely and
used: the congruential methods and feedback shift register U - Fe(t)
methods. None of these is known to generate a "true" ran- where F(t) is the cdi. of a distribution over [0,1] which is
dom sequence. In fact, an uniform random number gener- cloe t is the f distribution , wh ere sator passed a sequence of statistical test TI ,7 2 , ...Tn,, there close to but not exactly the uniform distribution, where 9
ato gasedratequne ftatwipsicalfu test T2,Tn. t e can be considered as parameter of the family of "neighbor-is no guarantee that it will pass a further test T,,. - In hood" distributions around uniform distribution. Withoutpractice, an uniform random number generator will be con-
sidered "random" if several statistical tests has be passed. loss of generality, we assume when 0 - 0, F(,(t) is the c.d.f.sideed randm" f svera sttisicaltess hs bepasedof the uniform distribution. One. can easily derive the cu-
Another problem of an uniform random number generator is ui distribution Oncf a followig:
that it may sometimes display some locally non-random be- iulative distribution function(c d.f.) as following:
havior , i.e. a block of numbers toward some bias, whereas FX(t) -'r(max (U , 1..,) t
next block toward the opposite bias. For further discussion n
see Knuth(1969) anl Kennedy and (entle(.)sn). Pr(U <)

4 (1)
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and From (7), we have, for 0 < t < 1,

The c.d.f. of Z -beta(n,1) is given aF F0 (t) G (t)
Fz(t) = 0n .  (3) t t

To study the relationship among Fx(t), Fy(t) and Fz(t), Applying the Mean Value Theorem, we have
we will make some assumptions about F0 (t). Let fo(t) be
the p.d.f. of Fo(t) and for 0 < t < 1,

fo(t) = 1 + go(t). (4) Go(t) = Go(t) - Go(0) = (t - 0)go(A), for some A C [0, t].
(12)

Note that go(t) represents the "deviation" of f(t) from the Plug (12) in (11), we get

p.d.f. of the uniform distribution. We will assume that
go(t) is bounded and continuous function both in t and in Fo(t)
0. Denote the maximum positive and negative deviatior of = 1 + g(A), for some A G [0, t].
fo(t) as

C+ = max go(t) (5) and therefore
O<t<l

and <fg6 (It)(3
-co = min go(t). (6) (1- ) < t  (1i+c ). (13)o<t<l

The c.d.f. Fo(t) can be written as Inequalities in (9), (10) follows easily from (13). 1

= t+ G(t), 0 < t < 1, (7) Theorem 1 shows that has a tighter bound than

where F.--t t Therefore Fy(t) can be much closer to FZ(t) than

0f g(u)du. (8) FX(t) to Fz(t) and the difference will be more dramatic
Jo when n is large. We will show in our next theorem that

It is easy to show that the same conclusion holds true when comparing their cor-

responding p.d.f.'s.

LEMMA 1. ~ 0, > 0 and (1 - -) < fo(t) ( hc+.~ Let fx(t),fy(t) and fz(t) be the p.d.f of Fx(t),Fy(t)
>0, 0and FZ(t), respectively. Taking the derivatives from their

PROOF: Using (7), we can see that Go(o) = G0 (l) = 0. c.d.f.'s in (1)-(3), they can be written as the following: ( for

From the Mean Value Theorem, we have 0 < t < 1) = n]Fo(t)j''fo(t), (14)

0 = Go(1) - Go(0) = (1- O)g0 (A) 'or some Ac 0,1] fy(t) = nfo(tn)tn -
I  (15)

Therefore, we have shown that and fz(t) = ntO -1  (16)

mm, g(t) ! 0 = go (A) < m a x gThe relationship among fx(t),fy(t) and fz(t) is sum-
0_ <t<o -<t<l marized as in the following theorem:

Lemma 1 follows from (T)-(6). THEOREM 2. For 0 < t < 1, we have

The relationship ammong FX(1), Fy(t) and Fz(t) is sum- -fx() <

marized as in the following theorem: (1-o) f _ ( l(17)

THEOREM I. For0 < t < 1,
and

(1n < -1." f(t < ( 1))(
(1 __ < _~~ < (1r )(9) f-" (18)

PROOF: Form (14), (15) and (16), %e can see that

and FY(t) ""( S "(10) fX_(t )  F,0 (t) ,

( -(t)  f )( (19)

PROOF: From (l)-(3), we have, for 0 < t < 1,
f( ()t) (t)'n). (2)

'~!: [lidt~)] 'I (t)
bh'z(t)

From lemma 1, we know that

and
t '(t) Fo (t'  b1 ,, (t), f,(t )  (1 ,) (21)

k'Z (t) t"

The'orem 2 follo s v;uily fra i (19)-(21) I
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Theorem 2 again shows that 1 has a tighter boundfz~ttREFERENCES

than . Therefore fy(t) can be much closer to fz(t)

than fx(t) to fz(t) when the true distribution of the "uni-

form generator" is not really uniform, especially when n is Ahrens, J. H. and U. Dieter (1974), "Computer Methods
formgeneato" isnotfor Sampling from Gamma, Beta, Poisson and Binomial

large. Theorems 1 and 2 show that method (B) is more "ro- foributing frompamma, 2P-2 di.

bust" than method (A). One intuitive argument that (A) Distributions, " Computing 12, 223-246.

is not as robust as (B) is because X will follow beta(1,n) Atkinson, A. C., and J. Whittaker (1976), "A Switching
only when eachofUi i. i. d. U(0,1), whereas Y - beta(1,n) Algorithm for the Generation of Beta Random Vari-
whenever U - U (0,1). ables with at Least One Parameter Less than 1, " Jour-

An extensive empirical study of comparing the robust- nal of the Royal Statistical Society(A) 139, 462-467.

ness of beta random number generators as well as other ran- Cheng, R. C. H. (1978), "Generating Beta Variables with

dom number generators has been under investigation and Non-Integral Shape Parameter, " Communications of

will be reported elsewhere. the ACM 21, 317-322.
J6hnk, M. D. (1964), "Erzeugung von Betaverteilter und

4. Summary Gammaverteilter Zufallszahlen. " Metrika 8, 5-15.

We have shown that if the true distribution of the so- Kennedy, W. J. Jr, and Gentle, i E. (1980), Statistical

called "uniform random generator" is slightly different from Computing, Marcel Dekker : Ne.. York, NY.
U(0,1), then various generators may yield quite different Knuth, D. E. (1969), The Art of Computer Programming,

distribution than the one we try to generate. With the wide Vol 2: Seminumerical Algorithms, Addison-Wesley

availability of the cheaper and faster computers, one should Reading, Mass.
not be concerned mainly with the cost of computing time.
That is, the efficiency should no longer be the only criterion
to compare the performance of the generators. We propose

in this paper to adopt a new criterion like "robustness" to

compare the performance of different generating schemes.
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A RATIO-OF-UNIFORMS METHOD FOR GENERATING EXPONENTIAL POWER VARIATES

Dean M. Young, Baylor University
Danny W. Turner, Baylor University

John W. Seaman, Jr., University of Southwestern Louisiana

1. Introduction Step 3. Test of acceptance/rejection: If
ln(R) > (-IX r + X2/2B2 + A - .5),

The standardized exponential power distribution then go to Step 1. Otherwise, return X.
(EPD) family has probability density function

In this paper we develop a simpler, ratio-of-
1 uniforms method of EPD random variate generation

ga(x) - exp(-I x r), -w < x < -, a > 1 and compare it to Tadikamalla's ED and EN
2r(I + 1/a) algorithms for 1 a : 6. It is found that

generation times for the ratio-of-uniforms method
This family is symmetric about zero and contains are uniformly better than ED and EN in this
members with a variety of tail shapes from the range.
uniform (a - ) to the normal (a - 2) to the
double exponential (a - 1). Because of the 2. The Ratio-of-Uniforms Method for EPD Variate
diversity of available tail shapes, the EPD Generation
family has proven useful in robustness studies.

For a review of such applications and others, see In this section we shall briefly review the
Box and Tiao (1973) and Tadikamalla (1980). ratio-of-uniforms (ROU) method and apply it to EPD

Johnson (1979) and Johnson, Tietjen, and variate generation. For a more thorough review of
Beckman (1980) have provided direct transformation the ROU method, see, for example, Devroye (1986).
methods for EPD random variate generation. First proposed by Kinderman and Monahan (1977),
Tadikamalla (1980) has derived generalized the ROU method has been studied by several
rejection techniques for EPD random variate authors, including Kinderman and Monahan (1979),
generation. He has provided two algorithms, Cheng and Feast (1979), Robertson and Walls
called ED for 1 : a < 2 and EN for 2 : a : 6. (1980), and Barbu (1983). The method is based on
(Values of a greater than 6 are of little interest the following result, due to Kinderman and Monahan

because of their extreme kurtosis values.) (1977).
Tadikamalla has found the combination of ED and Theorem 2.1 Suppose f is an nonnegative
EN, hereafter referred to as ED/EN, to be superior integrable function on the real numbers. Let the
to the gamma transformation methods for 1 a s 6. random vector (U,V) have a uniform distribution
For convenience we present ED and EN below. See over the set
Tadikamalla (1980) for more discussion of these
algorithms. We denote the uniform distribution D - ((u,v): 0 5 u 5 \/ f(v/u) }.
over a set S by US. We denote the normal
distribution with mean m and variance v by Then, V/U has density f/c, where c - 2[area(D)].
N(m,v). Th basic idea is to enclose D in some simple

set E, generate observations from a uniform
Algorithm ED: (for 1 a < 2) distribution on E, and apply the rejection

t  
principle. The following result is proved in

Step 0. Compute A - 1/a, B - A Devroye (1986, p. 195).
(Required once for each a). Theorem 2.2 Let f and D be defined as above. Let

b, a-, and a, be constants such that
Step 1. Generate a double-exponential variate X:

a) Generate U from U(0,1). b ! sup \/f(u),
b) If U > .5, then X - B(-n(2(l-U))). u

Otherwise, X - Bln(2U). a. : inf u\/f(u), and
U

Step 2. Generate R from U(0,1). a. ? supu u\/f(u).

Step 3. Test of acceptance/rejection: If Let E be the rectangle formed by the Cartesian
S n(R) > (-IX + IX /B -I + A) then go product [O,b) x [a.,a,]. Then, the set D can be
to ~ S 1. Oerw iseI/ 1 A), te enclosed in E if and only if f(u) and u

2
f(u) are

to Step 1. Otherwise, return X. bounded for all u. With these theoretical

results in place, we now present the general ROU

Algorithm EN: (for 2 !5 a )algorithm. Again, we denote the uniform
distribution over a set S by US.

A
Step 0. Compute A - 1/a, B - A

A .

(Required once for each a). Algorithm ROU:

Step 1. Generate X from N(0,B
2
). Step 0. Compute b, a., and a, (required

once for each a).

Step 2. Generate R from U(0,1). Step 1. Generate U from U[Ob).
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Step 2. Generate V from U[a.,a.]. generators "[simplicity and readability are]
perhaps the most neglected in the literature."

Step 3. Set X - V/U. Algorithm ROU should certainly be selected over
ED/EN on the basis of these criteria.

Step 4. If U2 
S f(X), then return X. Otherwise, We now consider efficiency of the algorithms.

go to Step 1. Devroye (1986, p. 196) has derived the expected
number of iterations per variate produced--the so-

For the EPD application, we called rejection constant--for the general ROU

take f (x) - exp(-1 x P). 1/a algorithm. Its general form is given below:
It is easy t,Show that b - i, a. - (2/ea) a, b(a - a-) 2b(a. - a.
a- -(2/ea) satisfy the conditions of Theorem r
2.2. Note that only one calculation is required ROU area(R)
in Step 0 since a. - -a. and b is constant for all Jf(u)du
a.

3. Comparison of the Algorithms Written as a function of a, the rejection
constant for the EPD family is given by

We begin by considering ease of implementation.
Set-up times for ROU and ED/EN are comparable, 2(2/ae)l/a

requiring the generation of one constant rROU(a) - 0 : a < .

involving a single exponentiation (Step 0 in each r(I + 1/a)
algorithm). However, in simulations involving
more than one a value, one must decide whether to Tadikamalla (1980) has provided rejection
use ED or EN according to the value of a so that constants for ED and EN. As functions of a they
set-up for ED/EN is slightly more complicated. may be written as the following:

Algorithm ROU requizes the generation of two
unifurm random variates (Steps I and 2) which must 1/a
be combined in a ratio (Step 3). One comparison (i - I/a)
is made (Step 4) involving an evaluation of the rED(a) e 1 i5 a < 2,
function f (x). In contrast, an application of ED a(l + 1/a)
requires tfe generation of two uniform random and
variates (Steps 1 and 2), both of which must be
evaluated in a logarithmic function (Steps 1 and \//2(I/a) l/a(. 5 - 1/a)
3). Furthermore, two comparisons are required rEN(a) - e , +1/a).

(Steps 1 and 3), one of which (Step 3) requires r( + l/a)
the evaluation of a function more complicated than
f (x). Algorithm EN is similarly complex but We shall use these rejection constants as
involves the calculation of a uniform and a normal measures of efficiency, where efficiency is
deviate rather than of two uniforms. Clearly, ROU defined as the reciprocal of the rejection
is much simpler than ED/EN. Devroye (1986, p. 8) constant. A graph of the efficiency functions
has noted that among factors that play an 1/r o 1/rED, and 1/r f, is shown in Figure I for
important roles in the choice of random variate varlous values of a. Fr the values of a that are

FIGURE I
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of interest, ED/EN is uniformly more efficient Box, G.E.P. and Muller, M.E. (1958). A Note on
than ROU. However, efficiency is a function of the Generation of Random Normal Deviates.
expected number of iterations per variate. It Annals of Mathematical Statistics, 29, 610-
will be seen that the greater complexity of 611.
algorithm ED/EN requires longer time per iteration
relative to algorithm ROU, thus negating the value Box, G.E.P. and Tiao, George C. (1973).
of higher efficiency. Bayesian Inference in Statistical Analysis,

To compare generation speeds, we have coded the Reading, Mass.: Addison-Wesley, 149-202.
algorithms in SAS-PROC MATRIX on an IBM 4381 Model
P22. Algorithm EN requires the generation of Cheng, R.C.H. and Feast, G.M. (1979). Some
normal random variates. The SAS function RANNOR simple gamma variate generators. Applied
has been utilized for this purpose. The PROC Statistics,28, 290-295.
MATRIX implementation of each algorithm has been
used to generate 50,000 variates in five Devroye, L. (1986). Non-uniform random variate
independent runs of 10,000 variates each for generation. Springer-Verlag: New York.
1 s a : 6. Extreme generation-time values have
been trimmed from each set of five runs. Figure I Johnson, M.E. (1979). Computer Generation of the
gives the trimmed average generation times in Exponential Power Distributions. Journal of
seconds for each algorithm. As can be seen from Statistical Computation and Simulation, 9,
Figure I, algorithm ROU exhibits uniformly faster 239-240.
performance than algorithm ED/EN.

Johnson, M.E., Tietjen, G.L., and Beckman, R.J.
4. Conclusions (1980). A new family of probability

We have presented a ratio-of-uniforms distributions with applications to Monte Carlo
algorithm, called ROU, for exponential random studies. Journal of the American
variate generation and have compared it to a Statistical Association, 75, 276-279.
generalized rejection method, called ED/EN,
developed by Tadikamalla (1980). We have Kinderman, A.J. and Monahan,J.F. (1977). Computer
demonstrated that while ROU is inferior to ED/EN generation of random variables using the
with respect to efficiency (iterations required ratio of uniform deviates. ACM Transactions
per random variate), it is markedly superior in on Mathematical Software, 3,257-260.
generation time, which is, practically, the most
important measure of performance. Furthermore, a Kinderman, A.J. and Monahan,J.F. (1979). New
direct comparison of algorithms ROU and ED/EN methods for generating student's t and gamma
clearly indicates that ROU is far more simple and variables. Technical Report, Department of
easily implemented. Devroye (1986, p. 11) notes Management Science, California State
that, "It is a general rule in computer science University, Northridge, CA..
that speed can be reduced by using longer, more
sophisticated programs." Happily, our comparison Kinderman, A.J., and Ramage, J.G. (1976).
of ROU with ED/EN seems to provide an exception to Computer Generation of Normal Random
that rule. Variables. Journal of the American

Statistical Association, 71, 893-896.
5. Acknowledgement

The authors wish to thank Professor Luc Devroye Robertson, I. and Walls, L.A. (1980). Random
for his helpful comments and encouragement. number generators for the normal and gamma

distributions using the ratio of uniforms
References method. Technical Report AERE-R 10032, U.K.
Barbu, G. (1983). On computer generation of Atomic Energy Authority, Harwell, Oxfordshire.

random variables as a ratio of uniform random
variables. Economic Computation and Tadikamalla, P.R. (1980). Random sampling from
Economic Cybernetics Studies and Research, the exponential power distribution. Journal
Academy of Economic Studies, Bucharest, Vol. of the American Statistical Association, 75,
18, 33-50. 683-686.

629



AN APPROACH FOR GENERATION OF TWO VARIABLE SETS WITH A SPECIFIED

CORRELATION AND FIRST AND SECOND SAMPLE MOMENTS

Mark Eakin, Ph.D. and Henry D. Crockett, C.S.P.

ABSTRACT The proof consists of finding the value of c
such that the correlation of z and (zI c +

Certain simulations require the generation z2 ) is r . The values of z and (z 1 c + z2
of correlated variables with a prespecified are then adjusted to give tAe necessary
first and second moments. The first step
involved the random generation of two means and standard deviations. The proof
standardized variables. Secondly, the first starts by expressing the square of the
variable was replaced by a linear combina- correlation between z and (z c + z2) in
tion of the two variables such that the terms of sums and proAucts anA squares
coefficient of the linear combination and (usually this is expressed in terms of
the second variable. The variables can then deviations from the mean but both z and
be adjusted to give the required first (z c + z2) have mean zero):
second sample moments without modifying the 2
correlation equations. [ z1 (zI c + z2)/(n-1)]

INTRODUCTION rx2 = [ zl2/(n-1)] [ (zI c + z2 )
2
/(n-1)] (7)

This paper presents a way of generating two
real-valued variables that have a fixed Multiplying the terms together in the
sample correlation. Edwards (1959) and numerator and denominator of (7) and
Searle and Firey (1980) discuss procedures recalling that the variance of z I is one
to generate two integer valued variables gives 2
that have a specified correlation. Both [ (c z I + Z 1z2 )/(n-1) I
procedures require several iterations in 2 = [1] [(c2 z12 + c z1z2 + z22)/(n-1)] (8)

order to achieve the desired correlation. rx
However, in large-scale simulations the The following identities will be substituted
iterative approach is not efficient. into (8):

Kvalseth (1979) developed a procedure to
generate a pair of normally distributed 4 = z'/(n-1) (9)
variables that had a specified sample 3 1 z 2

correlation value.

The following procedure gives a closed-form z1 2/(n-1) i and (10)
solution to the problem of achieving a fixed
sample correlation between two real valued' z2/(n-1) 1 (11)

variables. The two variables do not have to 2
be normally distributed but may have
prespecified sample means and variances. obtaining

The problem: generate two variables, x and 23 + r ]2
x 2 ' from samples of size n such that i the r2 3  (
mean of x I and x 5 are AM1 and A 2 ' x [c

2 
+ cr + (2

respectively; (27 the standard deviations 3

are s and s , respectively, and (3) the
correlation Between x I and x2 is rx. Squaring the numerator of (12), multiplying

both sides by the denominator, and then
The solution: (i) generate two variables i 1 gathering all terms on the left hand side
and 22 and standardize their values using aobtains
sample of size n; (2) calculate the correla-

tion, r3 , between zI and z2; and (3) let 22 2 2

and X, z 21 a1 + k 1 (1) (c + 2cr 3  + 1) r - c 2cr 3  - r3  = 0. (13)

2 (z I c 2) 2 +A ~2 (2) Rewriting as a quadratic function of a c

results in

where c = (-K2 + (K 22- 4 K I K3) )/(2KI) (3)

K 2 1 (4) (rx -1)c+2r3 (rx -1)c+(r x-r) = (14)
K= r - x

(r 
2_  

The solution to (14) can be found using the

and K2 = 2r3  (r (-) quadratic formula for the following

K = (rx
2
- 2 (6) quadratic equation

K c + K2 c + K3 = 0 (15)
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where K1 
= 

r 
2 
_ 1 (16)

2

K2 = 2r3 (r 
2
- 1) (17)

and K3 = (rx
2
_ r32 ) .  (18)
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GAMMA PROCESSES, PAIRED COMPARISONS AND RANKING

Hal Stern, Harvard University
Ir i . Conceptually p")' is the marginal probability that "

Introduction ii

In non-parametric statistical procedures the n ob- is ranked before j in the distribution pl') (7r). It can also
servations in a sample are often replaced by their ranks be derived by considering a comparison of two indepen-
within the sample. Under the null hypothesis, the dis- dent gamma random variables with shape parameter r
tribution on the ranks is assumed to be uniform over and differing scale parameters. In this case
permutations of the integers from I to n. Other distri-
butions on the permutations are of interest as alterna- p =Pr(X, < X,)
tive descriptions. Mallows (1957) introduces a variety
of alternative distributions. In this discussion we con- AX te-, , z ,-'e-A, ,
sider models for rank data which are derived by con- = dz, dx, (2)
sidering permutations of gamma random variables. It 0 F(r)r(r)
turns out that these models include the two most pop- 0 0
ular ranking models. After some discussion motivating _ ,
the use of gamma random variables, the gamma models z'- e-z'- e-  ,

are applied to paired comparisons experiments. In these [ /)Fr dz, dz,
experiments only two of the set of objects are ranked at r 0 (r)r(r)
one time. This simple case leads to some theoretical

results about gamma models. Finally, a data set con- (Ai/Aj)
sisting of the results of horse races is analyzed using themethods described here. The gamma models are used For fixed r, the probability that i defeats j is increasing
to model the observed distribution on permutationss in the ratio Ai/Aj. This is consistent with the interpre-

tation of A, as the rate at which points are scored by

Gamma Comparison Models player i. It is also true that for fixed ratio A, /A, greater
Suppose that k individuals are to be ranked ac- than one, the probability that i defeats j is increasing in

cording to the waiting time for r points to be scored. the parameter r which measures the length of the game.

If the e"' individual scores points as a Poisson process More complicated models can be developed to take into

with parameter Ai (the time between points is an expo- account covariate information or the possibility of ties.

nential random variable with mean A-') then the time Examples
until r points are scored has the gamma distribution The parameter r determines the shape of the gamma
with shape parameter r and scale parameter A,. By variables to be compared. By considering specific val-
also assuming that the waiting times for the k individ- ues of r some natural models are obtained. If r is equal
uals are independent we can compute the probability to one then the probability that i is preferred to j is
that the k individuals are ranked in any order. Let A,/(A, + Aj). This is the Bradley-Terry paired compar-

r - (7ri, ... ,r,) be a permutation of the integers from ison model (Bradley and Terry (1952), Bradley (1953,
1 through k and let X,....., X, be independent gamma 1954, 1955)). The Bradley-Terry model has a long his-
random variables with shape parameter r and different tory of derivations and interpretations including Zer-
scale parameters A,. ., Ak- The probability that indi- melo (1929) and Ford (1957). Of the many alternative
vidual 7r, is ranked first, 7r, is ranked second, etc. is derivations it is important to mention the convolution
given by the k-dimensional integral type linear model approach discussed by David (1963),

p"' (7r) Pr (X,, <X, < ... < X (1) Latta (1979) and Bradley (1953). If player i's score has

the extreme value distribution with location parameter

This heuristic derivation is restricted to integer values In A, and player js score has the extreme value distribu-

of r. Other values of r can also be considered if the point tion with location parameter In A, then the probability
scoring process s das an that i defeats j is given by the Bradley-Terry model.scorg process.is modeled asaansindependent increments It turns out that for any value of r there is a convolu-
gamma process. T1he gamma process is a stochastic pro-tinyplnermdlwchseqvantotegmaccss with parameter A, GA (r), such that G (0) = , tion type linear model which is equivalent to the gamma
G (r)-GA (r) is independent of , ( u at )-G (r,,) when- paired comparison model (Stern 1987). For other val-
ever r,), <r, )< is indepden o- G, (r,) (r, whe n- maues of r the extreme value distribution is replaced by a
ever r,, < ri < r2 and CA (r,) - C, (r,) has the gamma different translation family of densities.
distribution with shape parameter r2 - r, and scale pa- Other integer values of r can be easily interpreted
rameter A. Then the probability of a particular permu- in terms of the Poisson point scoring model. When r
tation is defined for all positive values of r. equals two, the probability that i defeats j is the prob-

Paired Comparisorns ability that player i scores two points before player J

In many experimental situations it is not reason- does. This can be computed directly from gamma ran-

able to rank more than two objects at a time. In rank- dom variables with shape parameter 2 or indirectly as

ing tennis or chess players the only observations are the a sequence of comparisons with r:-l. Noninteger values

results of matches between two players. From these re- may also be considered. They are included in this dis-

sults, we hope to rank all of the players. This is an cussion by virtue of the independent increments Gamma
exatsple oapie o arislon teperm . hii anprocess described earlier.
example of a paired comparison experiment. A bibli- When large values of r are considered, the gamma
ography of the paired comparison literature is provided paired comparison model tends to the Thurstone-
by )avidson and Farquhar (1976). Mosteller model (Thurstone 1927, Mosteller 1951). Thur-

Suipposs.- that the k players Or Objects to be com1-
pared are identified by the nmbers I j. The proba- stone (1927) assumes that comparisons between two oh-

bility that a is preferred to j in a comparison is denoted jects are determined by comparisons of two normally
pdistributed random variables. Five diffrrent models are
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derived by making different assumptions about the joint
distribution of the normal random variables. Mosteller where 5l, .. , A, are the maximum likelihood estimates.
(1951) discusses various properties of Thurstone's model For large samples Q has a chi-square distribution with
V in which the normal random variables are assumed (k- 1)(k-2)/2 degrees of freedom. An alternative good-
to have equal variances. The distribution of the stan- ness of fit procedure is described by Mos&eller (1951).
dardized gamma random variable with shape parame-
ter r and scale parameter A tends to a standard nor- Applications to Data
mal distribution as r gets large. Thus comparisons be- In the 1986 National League baseball season each
tween gamma random variables lead to the Thurstone- National League baseball team played between eleven
Mosteller model for large values of r. The gamma model and eighteen games against each of the other eleven
is again found to be equivalent to a convolution type lin-
ear model. More details of the relationship between the teams. The results are stored in the following matrix
Thurstone-Mosteller model and the gamma model with
large r are found in Stern (1987). - 8 12 10 12 17 7 8 7 10 9 8

As a last special case, consider comparisons of 10 - 6 10 8 11 6 5 9 6 7 8
gamma random variables with shape parameter near 6 12 - 9 7 11 5 5 7 7 4 6
zero. The distribution of the logarithm of such a gamma 8 8 9 - 10 11 4 5 5 4 7 7
random variable tends to the exponential distribution. 6 9 10 8 - 7 4 5 6 6 6 3
Thus a paired comparison between two such gamma
random variables is equivalent to a comparison of two 1 7 7 7 11 - 6 2 4 8 4 7
:xponential random variables with different location pa- 5 6 7 8 8 6 - 14 9 10 10 13

rameters. 4 7 7 7 7 10 4 - 9 9 10 12

Inferences in Paired Comparisons 5 3 5 7 6 8 9 9 - 10 10 11
Given the results of a series of comparisons involv- 2 6 5 8 6 4 8 9 8 - 12 6

ing k objects, the statistical experimenter would like to 3 5 8 5 6 8 8 8 8 6 - 8
predict future comparisons or find the optimal ranking 4 4 6 4 9 5 5 6 7 12 10 -
of the k objects. In an experiment using gamma ran-
dom variables with shape parameter r and scale param- where the i, Ih element is the number of times that
eters A, ... , Ak, estimates of the parameters are required team i defeated team j. The gamma paired comparison
and goodness of fit tests can then be used to determine model was fit to this data (Stern 1987) with r=0.1, 0.5,
whether the model is appropriate. The usual formula- 1,2,3,5,10, 20. In each case the goodness of fit statis-
tion of the experiment treats the series of comparisons tic indicates an adequate fit. Also, the predicted results
as independent binomial trials. If r and A1,..., Ak are h,, = n. (A,/A) differ by at most 0.1 over the range of
considered fixed then the probability that object i is r's considered. These results are consistent with the re-
preferred to object j is p -' = f', (A,\/A,). Let rn, be the suits obtained from other baseball, basketball and foot-
number of comparisons of objects i and j and let aj be ball seasons. Simulations also indicate that models with
the number of times that i is preferred to j. Then the different values of r lead to similar fits unless the sam-
likelihood is ple size is extremely large. This is consistent with theobservations of Latta (1979), Burke and Zinnes (1965),

and Jackson and Fleckenstein (1957). Each of these au-

f1 I- thors found that the Bradley-Terry model (r=l) and1I l (, I ." (3) the Thurstone-Mosteller model (r large) lead to similar
i= ,a,, fits for a given data set.

Why do all paired comparisons models lead to sim-
ilar fits for moderate sample sizes? The answer to this

The shape parameter r may be considered fixed or question can be determined using the triples function
treated as a parameter to be estimated. In the for- or composition rule of a model. The composition rule is
mer case r determines the nature of the comparison and the formula that is used to determine p,k, the probabil-
may be chosen before the experiment is carried out. The ity that i beats k, from p,, and Pk. Each model has a
maximum likelihood estimates for A1,...,A may be de- different value p,, for a particular pair of values of p,,
termined using ordinary numerical algorithms when r and Pik. However it turns out that the different values
is known. Ford (1957) describes a procedure when r is are quite close. Thus large numbers of comparisons of i
equal to one. The asymptotic normality of the maxi- and k are required in order to distinguish between the
mum likelihood estimates follows from the usual maxi- models. Simple calculations (Stern 1987) indicate that
mum likelihood theory (Lehman 1983). The calculation 500 or more comparisons of each pair of teams are re-
of estimates is more complicated when r is treated as a quired.
parameter to be estimated. Typically several values of r
are considered and the r which achieves the largest max- Ranking
imum value for the likelihood is the estimate. Prior be- Given the similarity of the gamma paired compari-
liefs can be incorporated ih a Bayesian analysis (David- son models for a wide range of r, it is natural to wonder
son and Solomon (1973), Leonard (1977), Stern (1987)). if the models corresponding to different values of r have

In applications it is often desired to compare the fit different properties in the general ranking problem. Re-
of a variety of models. Here we would like to compare call that the gamma model with parameter r for permu-
the fit for several values of the shape parameter r. The
usual log-likelihood ratio statistic is tations of k objects is obtained by taking the probabil-

ity of the permutation ir to be equal to the probability
that k independent gamma random variables with shape

k parameter r and different scale parameters are ranked
a,, In a,, /n,, (4) according to the permutation 7r. The probability of thej (A) permutation 7r (7r1 .  rk), in which 7r, is the index of
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the object with rank i, is denoted by pl')(7r). Marginals r equal to two. The probability of the permutation 7r
of this distribution are represented by identifying the under the gamma model with integer shape parameter
particular event whose probability is being described. r can be calculated using a counting argument. To de-
Thus we write p 'i) for the probability that object i scribe this argument suppose that there are k players

each attempting to score r points. Each player scores
is ranked first (7r, = i) and p(') (ij) for the probability points as a Poisson process and the k processes are in-
that i is ranked first and j is ranked second. We can take dependent. Player i scores points at rate A,. At first all
7r-I i to be the rank of object i, that is to say 7r- ' i = j k players are attempting to score points simultaneously.
if and only if 7r, = i or equivalently object i has rank This can be viewed as a combined Poisson process with
j. Then p(')(r-'i < r-1 j) is the probability that i is rate F_ , A,. The probability that a point in the com-
ranked ahead of j. bined process is scored by player i is proportional to

Again the case r equal to one corresponds to the A,. Successive points are scored independently due to
most commonly used ranking model. It represents the the Poisson processes involved. When the first player
natural generalization of the Bradley-Terry model to has accumulated r points, the corresponding process is
more than two objects (Bradley, 1965). Let A,...,A1  removed from the combined process. Now k-1 players
be the scale parameters associated with the k objects. compete simultaneously. This counting argument leads
Then pi'(r) to a complicated expression for p(')(7r) (Stern 1987). A

similar expression is obtained by Henery (1983). As a
A,,, A,, A,,, A....A,,k particular example if k=3 and r=2 then p' 2 '('r) =k I, ... , A . (5)

E~~~A \, 3 )% A2 A , + 2 4A, +1I 2A,

s=_ -I3 =k-( A + 2 + (7)

This formula has a natural interpretation in terms of where A - A
a sequential ranking procedure. The probability that where -. ,, + A,, and without loss of general-
object 7r, is ranked first according to the gamma model ity we have set A,, + A,, + A,, = 1. The justifica-
with shape parameter one is equal to the probability tion for introducing this constraint appears in the next
wtht saepa onenisteqal tondom va th prbabityr section. These models no longer have the sequential
that an exponential random variable with parameter or conditional properties described previously for the
A,, (mean A;,') is the smallest of k exponentials with model with r equal to one. However, applications are
parameters A,, ... Ak. This is precisely the first factor of
p"I (7r). The second factor is the probability that ob- given later in which they lead to better fits.
ject ir2 is ranked first in a comparison of theremaining
k-1 objects (those not ranked first). The marginal prob- Inference in Ranking Models
abilities are easy to specify due to this property. For In a sample of n random permutations we denote
example the empirical distribution by p, (7r). The log likelihood

- A, under tire gamma model with shape parameter r is

-npo(r) In p('(7r) + C (8)

and
where C is a constant that does not depend on r or

A,A, the parameters A,..., 1 . For large k it is usually
p ) A_ (: A. not feasible to record the entire empirical distribution.

Instead several marginals of the empirical distribution
are recorded. For example we may only know p, (1),

Henery (1981) discusses the derivation of (5) using ex- .... ,p,(k), the frequencies with which each object is
ponential random variables as we have described here. ranked first in the data set. Estimates of A,,... ,\

This model also has the property that the conditional are computed using maximum likelihood methods. Of-
probability of some events can be written in the same ten the E-M algorithm (Dempster, Laird, Rubin (1977))

form as p(') (7r). Suppose that we condition on the event can be used.

that object i is ranked first, then Maximum likelihood estimation is particularly
straightforward when the empirical distribution is known
for k marginals which are mutually exclusive and which

p") (7r 1r = i) -p (r) ... , (6) exhaust the possible permutations. The example cited
p(, (j) E'k A. above would be such a case. In this case the likelihood

- Aequations reduce to a particularly simple form. Esti-

is precisely the probability that the k-i remaining ob- mates are obtained by solving the system of equations
jects are ranked according to the permutation i = obtained by setting each empirical marginal probability
(7r.,... ,7r ,). Harville (1973) proposed the formula (5) equal to the marginal probability expressed in terms of
based on this property. the parameters. We consider two examples which are

Gamma models for distributions of permutations then used in an applicati,n.
with shape parameters other than one are difficult to In both examples, the empirical probabilities
work with because there are no simple expressions for p, (1),... ,p, (k) are assumed known. For the gamma

p') (ir). The cases in which r tends to oo and r tends model with shape parameter one the maximum likeli-

to zero can be analyzed by considering the equivalent hood estimates for A,, .. -A are obtained by setting the

translation family models. Thus as r tends to infin- theoretical probability equal to the empirical probabil-

ity the gamma model resembles the extension of the ity
Thurstone-Mosteller model proposed by Daniels (1950). A,/ ,, = p, (i) i=1,., k. (9)

As a last example of gamma ranking models we con- A/ A
sider integer values of r greater than one, particularly
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It is easily seen that the A's are not uniquely determined, it is not possible to do much better than Pt (i) as an
This is true of the entire model; the scale parameters estimate of the probability that horse i wins.
can be multiplied by a positive constant and the proba- As in Harville (1973) and Ziemba and Hausch, we
bilities (1), (5)-(7) and the likelihood (8) are unchanged. use p, (i) as the empirical probability although it is actu-
Typically the parameters are chosen to satisfy the con- ally the public's estimate of the probability that i wins.
straint A. = 1. In this case the maximum likeli- Then p (i) and the gamma model with shape parameter

one are used to estimate the probability that horse i fin-
hood estimates are Ai = p, (i). If the shape parameter ishes second. From the previous section, the maximum
is two, then the system of equations likelihood estimates are

k

A2(k! A, +-..+2! ZA ,+1) =p (i) (10) Az=p,(j), i=1,...,k.

Let fit') (- i) be the estimated probability that i finishes
i= ,.. • k second under this model. Then according to the Harville

formulas (the gamma model with shape parameter one),

must be solved. An iterative algorithm is required to
solve this system. (( i) = W = p,(i)

The Horse Race 1 roblem ,, 1-A, - p  l

The problem in which the marginal probability of
finishing first is known for each object can be called the As an alternative we fit the gamma model with shape
horse race problem since this is approximately the case parameter two to the same data. We consider P, (i fixed
at the racetrack. The argument supporting this state- and use an iterative procedure to solve the likelihood
ment is described in more detail later. The horse race equations (10) for the maximum likelihood estimates.
problem is studied extensively by Ziemba and Hausch The estimated probability that i finishes second accord-
(1987). Fither the true probability that horse i wins or ing to this gamma model is computed by summing the
the empirical probability that horse i wins is assumed to estimated probability of all permutations in which i fin-
be known for each of the k horses. Ziemba and Hausch ishes second. Let the estimates from this gamma model
then use the gamma model with shape parameter one be it2)(. i). The estimates for both models computed
to estimate the probability that each horse finishes sec- for a sample race are:
ond or third. They use these estimates to compute the
expected return on place and show bets. A place bet or
horse 1 is won if horse i finishes first or second. A show Sample Horse Race Data
bet is won if the horse finishes third or higher. Here
we compare the estimates provided by the model with 2

" Race, January 9,1987
r equal to one and the model with r equal to two.

The results of horse races at Bay Meadows race- Horse 0, p,(i) tI(. i) 32(
• i)

track in California during January and February 1987 1 8.9 0.084 0.107 0.113
were collected from the newspaper. For each race the 2 19.8 0.040 0.053 0.059
track odds and the result of the race were recorded. 3 1.1 0.395 0.280 0 266
The odds are determined by the ariount of money bet 4 3.3 0.193 0.217 0.214
on each horse to win the race. Approximately 20% of 5 5.2 0.134 0.162 0.165
the wagered money is kept by the track in the form of 6 4.4 0.154 0.182 0.183
the track take and breakage (rounding off tYhe odds).
The remaining money is split among those who bet on
the winning horse in proportion to the size of their bet. Those horses with large probabilities of winning have a
Suppose that there are k horses and the odds for horse lower probability of finishing second when r equals two.
i are 0,: 1. A $2 bet on horse i to win the race returns Due to the complicated calculation required to com-
$ 20, + 2 if horse i wins the race and nothing if horse pute the estimates when the shape parameter is two,
i loses. Let Pt (i) be the proportion of the total number we restrict attention to 47 races in which there were
of dollars bet on horses to win the race which is bet on 6 horses. For each of the 47 races, estimates of the
horse i to win the race. Without the track take, pt () probability that each horse finishes second are available
and the odds 0, would be related by p,(i) - (0, + 1)- t under two different models. The true probability that
Since the reported odds are adjusted for the track take each horse finishes second is unknown, only the iden-
we take tity of the actual second place horse is available. The

number of times that a horse with a given estimated
l/(k, + 1) probability of finishing second actually finished second

A W 1 ,is compared to the expected number below. There are a
1) total of 282 horses in the 47 races. Horses with similar

estimated probabilities of finishing second are grouped
The collection pt (i),i -- 1,...,k represents the prob- together. The expected number of second place finishes
ability estimate of all the bettors considered together. for a particular group is computed as the sum of thc
Ziemba and tlausch study the estimates p, (i) ard find estimated probabilities for the hors-s in that group.
that they provide good estimates of the probability that
horse i wins the race. They find that horses with high
probability of winning win more often than pre(icted by

the bettors and horses with low probability of winning
win less often. People are attracted by the potentially
large payoff in the latter case. Despite this inaccuracy.
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Expected and Observed Second Place Finishes Daniels, H. E. (1950). Rank Correlation and Population
Models. J. R?. Statist. Soc. B 12, 171-181.r= I r =2 David, Hf. A. (1963). The Method of Paired Comnpar-

Observed Expected Observed Expected isons, Griffin, London.
0.00-0.10 6 4.15 4 3.75 Davidson, R. R. and Farquhar, P. H. (1976). A Bibli-
0.10-0.15 7 7.69 9 7.94 ography on the Method of Paired Comparisons.
0.15-0.20 13 8.56 13 9.97 Biompetrics 32. 241-252.
0.20-0.25 12 12.54 13 14.10 D~avidson, R. R. and Solomon, D. L. (1973) A Bayesian

>0.25 9 14.06 8 11.23 approach to Paired Comparison Experimenta-
tion. JBioinetrika 60, 477-487.

Note that the observed second place horse is put into Dempster, A. P. ,Laird, N. M. and Rubin, D. B. (1977).
a group based on the estimated probability of its fin- Maximum Likelihood from Incomplete Data via
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A MODULAR NONPARAMETRIC APPROACH TO MODEL SELECTION

Michael E: Tarter and Michael D. Lock

Department of Biomedical and Environmental Health Sciences,
University of California, Berkeley

A two stage approach is introduced which allows a researcher to choose
from among ten alternative families of models for conditional
"slices" and individual component "sections," of a mixture of marginal
or conditional densities. The general concept of logmodel is
introduced and it is considered that the pair of models, normal-
lognormal is only one of at least five classes of general logmodel
systems. A functional, referred to as R(x), is introduced which allows
one to determine model-class membership without the need to conduct
multiple trials with arbitrarily selected pretransformation location
parameters, e.g., the constant C of the transform Log(Y - C). The R(x)
functional is applied to the problem of parameter estimation for a
system of models which is the dual of the Johnson family of models.
Conditions for the existence of the above type of functional are
derived and an example of a model is given for which it is shown that
no functional exists which has the properties of R(x) constructed from
logmodel systems.

KEY WORDS

Lognormal; Logmodel; Loglogmodel; Conditional estimation; Mixture
decomposition; Transformations; Model-free methods.

0. Introduction: It is common in the difficulty of dealing with a mixture of
early stages of a statistical distributions by examining the
investigation to construct a histogram conditional distributions of Y given X1
or scatter diagram. This process is and Y given X2 , for example by
usually performed for the purpose of constructing two histograms. However, in
checking the assumptions upon which many realistic data analysis situations
later stages of the data analysis one will not initially be aware of the
process will be based. Note the existence of a variate whose values,
importdnt fact, that when the like X 1  = i and X2  = x2  index
statistician plots a histogram, it is distributional identity. Even in the
usually the nature of a marginal and not situation where the existence of such a
a conditional density that is being variate is known, unless large numbers
checked. However, it is more often a of replicates are available at
conditional density, component of a particular values of this variate, the
mixture of marginal densities or even a investigator must rely on the analysis
mixture of conditional densities that is of regression residuals to check
the most appropriate target of the model assumptiuns about the underlying
selection process. distribution. One trouble with this

approach is, that in order to analyze

Consider, for example, the simple case the distribution of residuals about a
of linear regression where the regression line, an investigator must
observations are divided into two sets rely on some simple and usually linear
of replicates, i.e., assumption about the functional E(Yjx).

E(Yij )  = a + PXi, i=1,2; j=l,..,ni, Useful though it is in some situations,
where X, is not equal to X and , ni  residual analysis often leaves one
and n, are nonzero. Even in he commoly uncertain as to whether it is the model
assumed situation where for a given for E(Yjx) itself, or the model for the
value of X1 or X-, the variate Y - is distribution of the residuals from
normally distribuied, the marginaiy of E(Y' x) or perhaps both models that are
the popullation of all Yi variates will suspect.
he ,i mixture of normals. l4encPr, iii order
to chock assuroptions about Y , the In addition to this difficulty, another
re earcher faces the ta : of probl em is somet imes encountered in
characterizing a mu It i component conventional regression analysis. As
distriihut ion. In the above scenario the i] li,;trat e in Ta rte r, ol 1 1 i ,r- and
resear-her may he able to ci(,rumvont the F -' in l ] the relat icnahip Ih tween
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two variates may not only be nonlinear, today. Many of the applied scientists
but a single-valued function which with whom the authors work make
adequately describes this relationship extensive use of the logarithmic
may not even exist. In view of the transformation. Thus, while we feel that
substantial interest in mixture neither the logarithm or the normal
decomposition and cluster analysis distribution is in any sense sacred, we
techniques, it seems understandable that do feel that there is as much
any study based solely on an analysis of justification for the selection of a
the residuals from a single-valued locus single transformation as a common
of E(YIx) evaluations may be overly element as there is for selecting a
sirplistic. single model.

The methodology described in this paper As an example of this approach consider,
seeks to overcome the difficulties as will be detailed in section 4, that
inherent in the use of residual analysis one can interpret the relationship
to characterize the underlying between the standard uniform or
distribution, as well as to investigate rectangular density model and the
the possible existence of unanticipated exponential model, to be analogous to
independent variates. A systematic the relationship between the lognormal
process allowing the researcher to and the normal model. The negative
select an appropriate model or logarithm of a standard uniform variate
transformation for his or her data is will yield a standard exponential
proposed. variate in exactly the same way that the

logarithm of a lognormally distributed
The methods detailed in sections 3 and 4 variate will yield a normal variate.
are all two step processes. The first Thus, the details of a process by which
step always consists of estimating the one can conduct a search for the most
entire joint distribution of the appropriate model will be given in
observations in as general a manner as section 4. This process takes advantage
is possible, given the amount of of the fact that not only the
available data. Since all properties, rectangular distribution, but also the
curves and functionals of statistical exponential distribution, can be treated
interest can be defined in terms of the as a special case of the general power
joint distribution of all variates, once distribution family of models.
the underlying distribution function is
estimated, one can proceed to the second There are several other commonly
step of obtaining what can be referred encountered pairs of models which have
to as "secondary" estimators. the above type of relationship. The

logarithm of a Weibull variate minus a
The problem targeted by this paper is. constant is known to be an extreme value
How can secondary estimators be used to variate (Johnson and Kotz, 1970, page
select from among a wide spectrum of 272) . There has also been some
distributional models? In particular, consideration of what could be called a
one would like the search for an answer loglogistic model and, as will be shown
to this question to proceed in a below, there is no reason why one cannot
systematic fashion which takes advantage conceptualize a logcauchy model.
of the interrelationships between
certain general classes of statistical The lognormal is obviously by far the
models. most commonly assumed of the logmodels.

It is also very often used
l.Models and Logmodels: One basic inappropriately due to the need in many
characteristic differentiates the situations, to estimate an appropriate
proposed model selection process from constant for subtraction from the
previously considered procedures such as pretransformed variate as a preliminary
those treated extensively by Johnson to calls to the log function. It will be
(1949). As detailed in section 4, the demonstrated below that this constant
logarithmic data transformation will be plays an important role in other
a common element. Thus, the new logmodels and thus, for the purpose of
methodology can be interpreted as being ease of reference, this constant will be
the dual of the Johnson approach in the called a "pretransformation location
sense that one commonly used data par.ameter", symbolized by Ki" For
transformation will be associated with a completeness, once the exact value of
spectrum of models. (The Johnson the pretransformation location parameter
approach can be characterized as the has been subtracted from the lognormally
consideration of a variety of distributed variate, the natural log of
transformations to yield data which the difference will be said to be
conforms to a sinqle model, the normal.) distributed with scale parameter a and
,s suggested by Thompson (1988), the "posttransformation location parameter"
Johnson "family" was proposed at a time 42.
when the normal model held a much more
prominent position in the pantheon of A common graphical procedure which is
underlying distributions than it does often used to check nn the vali dity of
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the lognormality assumption, is the which underlies the lognormal plot, one
lognormal plot. Even after the advent constructs the functional R(x) by
of sophisticated personal computer following the following two steps: Step
graphical packages, one still might find 1; substitute the unknown cumulative
it useful to hand-plot an estimated cdf y = F(x) into y, (to detect membership
cn graph paper whose abscissa is within the power-exponential family),
graduated by a log scale and whose into minus ylog(y) (to detect membership
ordinate is graduated on a standard within the Weibull-extreme value
normal cumulative scale. An example of family), into y(l-y) (to detect
such paper is given in Dixon and Massey membership within the lglgstic
(1983) page 488. family), into (l+[tan (x-l/2)]-) /71 (to

detect membership within the logcauchy
One could select the particular family); and Step 2; divide the above by
functional associated with the lognormal the unknown density f(x) where
plot as what was previously referred to f(x) F'(x) one finds the following:
as a "secondary estimator." However, 1) Whenever the true distribution is
when implemented in the usual way, there exponential, (or for other special cases
is an important weakness to this of R(x) , extreme-value, logistic or

approach which, as will be shown below, Cauchy) the functional will be identical

is not associated with a second, and to a horizontal line of height equal to
closely related functional, the value assumed by the scale parameter

of the model.
Consider that the lognormal plot 2) Whenever the true distribution is
utilizes the human visual system's power, (or Weibull, loglogistic or
sensitivity to the straightness or lack logcauchy) the functional will be a
of straightness of a line and that, as diagonal line whose slope and Y-
is well known, in two dimensions, a line intercept are determined by the scale
is characterized by two numbers, for parameter and pretransformation location
example a slope a and a Y-intercept parameter 1i1.
P. The lognormal model is characterized 3) In the above cases, the R(x)
by three numbers: a scale parameter, and functional will be unrelated to the
two location parameters, 1±i and 42 . For value of the posttransformation location
the following reason the parameter ±2.
posttransformation location parameter g2 4) The above properties apply to the
is much easier to estimate than the normal and lognormal models for the
pretransformation location parameter 41: special case of the R(x) functional

In the case of lognormal data, once 4, described in section 3 of this paper,
is determined, one can take the which, unlike the other four examples
logarithm of the underlying variate described in this paper, cannot be
minus this known value and be certain expressed in closed form in terms of
that the resulting variate will have a elementary functions but instead must be
normal distribution (or in the case of expressed in terms of the normal inverse
the four other distribution systems cumulative.
considered below, an exponential,
extreme value, logistic or Cauchy 2. The Loqtranformation as C increases:
distribution). In other words, once We will now show that in one important
one's data have been transformed to sense, the role played by the
normality, the estimation of the pretransformation location parameter
posttransformation location parameter 1i 2 - c is in actuality the opposite of
has been reduced to the extremely well w at one might suspect it to be. It is a
studied problem of estimating the mean large value for C rather than a small
of a normal variate. Hence, one finds value which yield. a log transtorm which
that a kind of Catch-22 applies to minimally affects the pretransformed
lognormal data analysis. The normal variate. This observation can be
probability plot can be used to considered to be a corollary to the
ascertain the value of the easy-to- following theorem:
estimate parameter 42, but requires the A lognormal cumulative with
clumsy expedient of repeated trials with pretransformation location
a variety of choices for the value of 1I parameter -C, posttransformation
in order to choose between alternative location parameter [log C + g/C] and
values of the 1±I parameter. Clearly, it scale parameter a/C, approaches a
would be preferable for a graphical normal cumulative with location
procedure to estimate the values of 4 parameter i and scale parameter a as C
and a, rather than the values of 1± an approaches infinity.
o, and leave the problem o? 12

estimation to the solution of an easily Proof: Consider that a lognormal
solved, rather than, as is the case of cumulative F(x), as defined above, can

I estimation, the solution of a be expressed a5 t(v(x)) where v(x) is
difficult problem (Cohen 1951, Aitchison identical to
and Biown 1957). [og(x4C) - loC]/C - 

- 1}/0 and 0

represent:; the standard normal
If as an alternative to t.ie functional cumulative. By applyinq P'Bospital's
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Rule twice, one fincs that the limit of following notation and assumptions will
[log(x+C) - logC]/C -  as C approaches be utilized:
infinity equals x. Now consider the 1) The symbols 0, 4 and §-i will
following series expansion for §(x) represent the
given in Kendall and Stuart (1958) p standard normal, i.e. Gaussian, density,
136: )- (1/2)+ cumulative and

(27) -1/2(X_[x/6][l-(3/lO) (x2/2!)+...]} inverse cumulative respectively.
Each term of the bracketed series is 2) The symbols g, G and G-  will
less than or equal in value to a represent respectively
consecutive term of the power series the standard forms of the density,
expansion of cos(x). By Abel's Theorem cumulative or inverse
the power series expansion of cos(x) cumulative of any one of the following
converges uniformly for any value of x five distributions: Positive
and thus, by the comparison test, the exponential, extreme value, logistic,
above power series expansion of it(x) is Cauchy or normal, defined over an
everywhere uniformly convergent, interval (a,b) where G-IG(x) is
Let §'(x) represent the n-term partial identically equal to x for any x within
sum of the above power series. Consider (a,b). -1
the double limit 3) The symbols f, F and F will
Lim Lim n(({log(x+C)-[logC+±/C])/(o/C)), represent respectively
expression (1), where the inner limit is the density, cumulative and inverse
taken as C approaches - and the outer cumulative such that
limit is taken as n approaches -. for some G defined above, F(x) is
Each individual ' (x) is a finite sum of identically equal to
powers of the curly bracketed expression G([log{x-L 1 )-42]/o). Tarter and Kowalski
and thus the inner limit equals (1972) considered the case where G is

§n((X- )/o)  since the limit of identical to §. It was shown that the
C[log(x+C) - logC], as C approaches c, functional R(x) defined as 0,
was shown above to equal x. From Theorem F(x)/f(x) has the following three
7.11 of Rudin(1953), since §n approaches properties:
4 uniformly, the order of the two limits PROPERTY 1: R(x) = a for all finite x if
of expression (1) can be reversed which and only if F(x) is a normal cumulative
proves the theorem. with standard deviation o.

PROPERTY 2: R(x) = o(x-a) for any x > a
Since unlike the normal cumulative t, and zero elsewhere if and only if F(x)
the other four loqmodels considered in is a three parameter lognormal

this paper have cumulative distribution distribution function as defined above
functions which are closed forms of for G identically equal to D
elementary functions, one does not need PROPERTY 3: R(x) = c(x-a) for all
the elaborate argument presented above finite x if and only if F(x) is a three-
to prove that the above feature of the parameter reciprocal normal distribution
limit of the log transformation as C function i.e. , if and only if F(x) =
approaches infinity applies to these [((a-x)- - I)/o].
models. PROPERTY 4: R(x) ( -x)/(4 -2)

for l <x< 12 and zero elsewhere if and
3. Classes of Loemodels and the R(x) only ii F(x) is a distribution with
functional: A. C. Cohen's (1951) associated random variate X which can be
pioneering paper begins with the transiormed to a normal variate Z by the
sentence: "The logarithmic normal transformation Z = Log((X- I)/(j-X)).
distribution provides a useful The remainder of this paper wil
theoretical model for studying a number consider choices of the function gG- 1
of biological populations, certain within the definition of R(x) , other
economic populations involving income than the function 04,-1. It will be shown
distributions, and others in which the that properties one and two have several
standard deviation of individual useful extensions to a variety ot
observations is approximately statistical models. However, befor
proportional to the magnitude of the turning to applications of gG-?
observations." The last part of this alternatives, it seems useful to
sentence is puzzling since it is hard to reconsider the Cohen statement tha't the
see how in individual observation can "standard deviation of indiv.idual
have a standard deviation. However, it observations is approximately
will be shown below that: There is a proportional to the magnitude of the
property of the lognormal model which is observations."
both linear and connected with the
standard deviation. There is exact, as Notice that one can t;oat, jPRepERTY 1 as
opposed to approximate proportionality the limiting cane of PROPERTY 2. This
involved; and, in the opinion of the obsrvation imp]irm in turn thit the
authors most importantly, this property normal density ca n be treated as a
is shared with at least four other special ca'e of the lognorma 1 dencity.
important classes of distributional (Ncte that a linear P (x) wi th an
models C.ext rome 1 y na I I bhtt nnnolero 1 I, e
In the remainder of this paper the
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characterizes a lognormal, while a the first order differential equation
perfectly horizontal line characterizes which defines R(x), the only analytic
a normal model). cdf which can determine such a

horizontal R(x) within the small
There is a concrete way to view the interval, must be identical to
relationship between F-type and G-type F(x) = G([x-i 3 ]/a ) for some value of
models where F(x)=G([log(x-±l)- L 2 ]/o) 43 and for ca identically equal to
and G represents the cdf of either an (xa+6/2 - l) times a. In other words, the
exponential, extreme value, logistic, scale parameter ca is a linear function
Cauchy or normal variate. Consider a of Xa.
technique for simulating data from a
specified distribution referred to in The above explains the previously
Tocher (1963) pages 22-24 as the "Method referred to characteristic of the
of Mixtures." The method is based in lognormal model suggested by Cohen. and
part on partitioning the support region shows that this characteristic is shared
of the distribution from which data are by all logmodels, each of which can be
to be simulated into class intervals, in thought of as a composition of "parent"
a manner similar to the procedure by model evaluations where the scale
which conventional histograms are parameter of the parent model increases
constructed. linearly. In essence, the R(x)

functional, is this linear relationship.
Let the symbol xa represent an The term "parent" model corresponds to

arbitrary left end-point of a class some G defined above, while the term
interval and xa+E represent the right "composition" refers to the limit, as E
end-point of this same interval, where approaches infinity, of some function
of course, e > 0. Furthermore, define dhich in any interval [Xa,xa+6] is
A = G([log(xa-al)-4 2]/o) and identical to G([x-1 3]/ca).
B = G([log(x +6- l )-I2]/o) to be the

areas under the density from which data To clarify Cohen's statement, it is not

are to be simulated, to the left of the the data points themselves which have an
left and right class interval endpoints increasing scale parameter, but the

respectively. Now suppose that as one pieces of the above-defined density
would do by the method of mixtures, one mixture. Furthermore, all five of the

wishes to simulate data from one of the logmodels considered in this paper, and

above loqmodels by using data generated not simply the lognormal, have this

from the associated model. To assure relationship. One can of course

that the probability mass over the above generalize Cohen's statement for the
class interval equaled B-A, one could case of any cumulative G(fv(xa-4l)-
solv? the system of two equations, p.2]/a) where v is monotonic function
o aG (A) + 4a = xa and OaG- (B) + 4a = with a first derivative v' for which a
x + E for the constants 9a and oa and = c[v' (xa-4±l)] - . It is the fact that

find that the reciprocal of the derivative of the
Ta = (/[(log(x +E-gl)-log (xa-p,) )/o]. function v(x) = loq(x) equals x, that

If one applies l'Hospital's rule one underlies the convenience of the R(x)
finds that as the length of the graphical approach.
interval, E, approaches zero, the scale
parameter aa approaches (xa-_kL)a, i.e., 4. Examples of logmodels: In order to
one can use the method of mixtures to demonstrate the generality of the
simulate data from any logmodel by using modular estimation of R(x), it seems
data generated from the associated appropriate to detail the application of
parent model and linearly varying the this functional to the goodness-of-fit
scale parameter of the parent model of a sequence of model families more
data. general than the five models described

in section 1. Suppose 0, ', G, g, F, and

An alternative view which can be used f are all defined as in the previous
to visualize the above relationship is section except that
as follows: For a small ositive value F(x) = H[(Log(Log(x-4l)- 2 - 3)/o]
of c, consider R(x) = gG F(x)/f(x) for = H[Log(Log(x- JL_-2 /0-4 3/0]
x within the interval [xa,X +E] Since where G(x) = H[Logx ] H{(l/o)Log(x)
as defined above, F is the cdf of either and H, rather than G, is a standard
a power, Weibull, loglogistic, logcauchy exponential, extreme value, logistic
or lognormal variate with scale Cauchy or normal cdf. For these
parameter a, R(x) will be a line with "loglogmodels," the gG -I component of
slope equal to Consider the line the R(x) functional is identical to
segment that connects the point hH 1 (y)exp[H_ (y)]. Hence, not only can
(Xa,R(Xa)) to the point (Xa+E,R(xa+E)). one apply the R(x) functional to the
Suppose that this line segment i problem of graphically selecting between

rotated about the point five commonly used logmodels f, but one
(xa+F/ 2 ,R(x +E/2)) in order to form a can use an approach similar to the

horizontal line segment whose height is conventional application of the
identically equal to R(x +E/2) . By the lognormal probability plot to estimate 0
uniqueness of the general solution of and the three additional parameters
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j = 1,2,3 of any loglogmodel. Instead of 5. Conditions for the Existence of an
selecting a trial value for the R(x)-type Graphical Method: In order to
pretransformation location parameter Ii consider the general properties of the
and checking the straightness of the previously described modular methods, it
resulting lognormal probability plot, is useful to represent the functional R
one can: 1) select a trial value for the by R[f(x;8 1,82 ),F(x;8 1,82 )] where f and
scale parameter a; F represent the hypothesized pdf and cdf
2) check by the straightness of the R(x) of the underlying random variate which
functional on the accuracy of this are specified up to the values of the
choice for a; two unknown parameters 81 and 02. The
3) when a straight R(x) is obtained, one following question then arises: For what
can estimate the parameters il and 12 in classes of statistical models, will
terms of the estimated slope and there exist a differentiable function R
y-intercept to R(x); with the following two properties:
4) in the univariate case, once I is 1; For a fixed value of 82, R will be
estimated, one can transform each data identically equal to a constant for all
point X. to Log[X i - i* ] where 4i* values of the random variate X = x.
represents the graphically obtained 2; For a fixed value of 82, the value of
estimator of p and finally; R will not change, i.e. R will assume a
5) now that the problem of estimating constant value, for any value assumed by
the parameters of a loglogmodel has been the parameter 81. These are two of the
reduced to the problem of estimating the properties which make the R(x)
parameters of a logmodel, one can use functional particularly useful. For
the R(x) functional again to check, by example, in the case of the normal model
the straightness of R(x), on the ([(x-4)/o])/o, 81 = 4 and 82 = o, the
validity of the choice of the underlying value assumed by R is equal to a for any
h as one of the five model families value of x, i.e., Property 1, and R is
considered above, functionally unrelated to p , i.e.,

Property 2.
It is appropriate to point out that by
extending the derivation detailed in If one restricts R and F to the class of
section 3, one can show that each differentiable functions, it is easy to
logmodel is a special limiting case of a obtain necessary conditions for R to
loglogmodel. Consider the Pearson family have Properties 1 and 2. Let u and v

and most other methods used to represent the two arguments of the

'generalize the normal model. In the case function R. By the chain rule,

of the Pearson family, it is the Properties 1 and 2 imply that

coefficients of terms in a quadratic (6R/6u)(6f(x;8 1 ,82 )/Sx)+(6R/Sv)
denominator whose common zero value f(x; 0,89) =0
reduces the general model to the special (SR/8u)( f(x:8 1 ,82 )/68 1 ) +

normal case (Elderton, 1953, p.49). In
both the logmodel and loglogmodel (6R/8v)({F(x;8 1 ,82 )/68 }) = 0

systems, it is the value infinity which The truncated exponential model provides

"reduces" the general model to its an example of a parametric family which

special case. However, unlike the does not satisfy the above necessary

Pearson family and any other generalized conditions. Specifically, suppose

model family with which we are now f(x) = (b/o)exp(-x/o)Iro B(x), where

aware, only the loglogmodel system has I represents the indi'caor function

both the normal and the lognormal as of0& closed interval [0,B], and b is

special cases, chosen to assure that the definite

It is also of some interest to compare integral of f over [0,B] equals one. For

the approach to model generality this choice of f, the above necessary

considered in this section to the conditions imply that

Johnson Family of Distributions (Johnson (8R/8uH( -b/a2 ) + (8R/6v)( b/ao = 0 and

1949, Tapia and Thompson, 1978, p 30- (8R/8u)(l(/o)exp(-x/o)+
33). Consider that there are two basic (6R/6v (l-exp(-x/°) )=0,

assumptions involved in use of the which in turn implies that

lognormal model. It is assumed that:(1) -exp(-x/o)/[l-exp(-x/o)] identically

a logarithmic transformation will, (2) equals one. Hence, there cannot exist a

transform one's data to normality. In differentiable function R which has

essence, the Johnson Family approach propertie; 1 and 2 for the special case

generalizes assumption (1) while the of the truncated exponential model. On

methodology considered here generalizes the other hand, for any functions g, G
assumption (2). In the next section of and G-1 defined in section 3 and h, H

this paper the question of the and H I where h(x) = g([x -1/o)/o, H(x)
generality of the R(x) function itself = G([x-1/o) and H (y) = + oG (y),

will be considered and it will be the necessary conditions imply that
asserted that the connection between (8R/6u1/(6R/bv) equaIs -h(x)/h'(x),
this type of graphical method and the which is satisfied by R(u,v) =

logarithmic transformation is not G- (v)/u.
necessarily shared by alternative
distribution systems.
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6. A Description of the Modular Model models or logmodels. The choice of color
Selection, Slicing and Sectioning is used to identify the model upon which
Program: The principal goal set during an estimated R(x) and fitted density are
the construction of this program was based. A dotted line is used to graph an
that the model selection process was to estimated logmodel while a dashed line
be based on either an estimated slice, of the same color is used to identify
i.e. conditional; section, i.e., the associated model.
separated distributional subcomponent
or; (and in the authors' opinion, the One major practical problem was
least applicable case) an estimated encountered when the primary bivariate
marginal. Thus, the program differs estimation subroutines were combined
radically from previous goodness-of-fit with the sectioning, slicing and R(X)
subroutines, such as that included model identification subroutines. The
within STATGRAF (1988) which can only be standard forms used to represent each of
used to check on model appropriateness the five model systems considered in
for univariate data. section 4 in no way took into account

the problem of comparing te fit of

The main menu of the program allows a these models. One of the authors of this
user to select a file of univariate or paper had encountered this difficulty
bivariate data and estimate a marginal twice in the past. In Kronmal and
of either of two variates or Tarter (1968) it was found that in order
alternatively estimate a conditional to compare the Mean Integrated Squared
slice of one variate given any selected Error characteristics of nonparametric
value of the second variate. The first estimates obtained from normal and

call to the conditional slice subroutine Cauchy data, one needed to introduce a

initiates the computation of those variant of the Cauchy "standard model"

bivariate sample Fourier coefficients that was comparable to the standard
(trigonometric moments) found to be normal, P, in the sense that the two

appropriate for the estimated standard-form models had the same first,
distribution and available sample size. second and third quartiles. In Tarter

(Tarter and Kronmal 1970, describes the (1968), the optimal scale parameter
theory which underlies this procedure.) coefficient of the standard logit,
For samples larger than one thousand log(y/(l - y)) was found which provides
from multicomponent mixtures, the the best fit of this model to the
execution of this one step can take as inverse standard normal cumulative based

long as three minutes on an IBM AT on the integrated squared error metric.

compatible PC with a 6 MHz clock. It might also be pointed out that th
However, since for any given set of constant two, chosen as a divisor of -x
data, all subsequent slicing, sectioning wiThin the "standard" normal exporent
and model selection procedures are based -x /2, serves the sole purpose '.

on this same set of estimated Fourier assuring that the scale parameter c of
coefficients, all further calculations the nonstandard normal is identical to
can be performed with only from two to the property of the distribution usually
fifteen second response time delays on referred to as the "standard" deviation.
the 6MHz AT-type PC. In fields such as optics, where the

normal is used without need for the
One of the main menu options is labeled convenience of scale parameter and
CONTRAST. This option allows a user to standard deviation identity, the
enter a value of a constant which standard distribution is defined without
separates individual estimated the constant two.
distributional components. (Details of
this procedure, but not the model Since the property, standard deviation,
selection process, are described in does not exist for the Cauchy model, the
Tarter 1979, section 3.) If the CONTRAST standard form of this distribution is
option is selected immediately after a usually chosen for reasons of simplicity
conditional slice has been estimated, a and unlike the normal, no attempt is
user can section a conditional in made to identify the scale parameter
exactly the same way that he or she can with a property of the distribution.
section a marginal, if the CONTRAST This means that there is no particular
option is executed immediately after a reason to expect that the standard form
marginal is estimated. of the Cauchy will be in any way

comparable to the standard form of the
The two options listed in the program's normal.
main menu which are most germane to this
paper are labeled R(X) and FIT MODEL. The logistic inverse cumulative, i.e.,
Each of the five model-logmodel families log(y/[l - y]), is so simple a function,
considered above is keyed to a that no attempt is usually made to see
particular color. By using a combination that the scale parameter of this model
of R(X) and MODEL SELECTION options, a is identical to any distributional
user can graph any combination of property or comparable to tye stindard
estimated R(x) functionals or fitted normal invorse cumulative - Only the
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exponential model seems to share with estimated by changing K to some smaller
the normal the distinction that its value, e.g., 2K/3. Due to the choice of
standard form allows a parameter of the the mean integrated squared error
nonstandard form to be associated with metric, MISE, which underlies most
an easily interpreted property. kernel and series density estimation
Specifically, if f(t)= procedures, estimators can be said to be
exp(-rt)Irn ,i(t), then T=i/E(t), Gross "center-weighted," in much the same way
and Clark~i945), p.52. that the automatic exposure meters built

into many current 35mm cameras are
One can use the fact that families of designed to provide the most accurate
logmodels have the above-mentioned estimates of light conditions near the
arbitrariness to one's advantage, by image center. Thus, one can be fairly
comparing two alternative R(x) sure that as the constant K referred to
functionals which are graphed so that above is reduced, one's estimator
they assume approximately the same value accuracy will improve. Of course there
at the estimated mode of one of the are limits to the effectiveness of this
densities. In the case where a model is procedure since, as is true in
correctly selected, Property 2 of photography, peripheral information may
section 3 implies that the true R(x) be important even if it is slightly out
functional will be a line with slope of focus.
identically equal to the scale parameter
of the model. It should also be In the context of alternatives to the
mentioned that the above dependence of a R(x) approach, one could choose to
graphical method on the definition of modify the Chi-squared goodness of fit
the "standard model" is shared by test, and only compare observed to
conventional graphical methods which fitted model frequencies within a

rely on a plot of estimated cumulative subinterval of the model's support.
probability on a y-axis which has been However, when one chooses to do this,
transformed to "standard" normal scale, one is faced with the dilemma of whether
against a transformed scale, e.g., log or not one should base the estimation of
or square root, on the x-axis, as the parameters of the fitted model upon
illustrated in Dixon and Massey (1983) a data set which is censored to solely
page 488. If one were to prepare Cauchy include values which lie within the
or logistic probability paper to compare restricted subinterval. In the
normal to Cauchy or logistic fit, one univariate case, one could attempt to
would find that the slope of the plot use BLU procedures to obtain estimates,

obtained under the null hypothesis of but in the case where it is a truncated
true fit, would be dependent upon the conditional, i.e., slice or single
definition of scale parameter of the section of a multicomponent density that
nonstandard model, i.e., F. is fitted, it is hard to see how one

would proceed to solve this problem,
The R(x) functional has a slope equal to even if one could modify the, K-S or
zero in the null hypothesis case for any Chi-squared goodness of fit procedure to
of the five parent models considered in deal with slices or sections. Even if
this paper. Hence, besides being far one could find a variant which would
less dependent on choice of standard apply to sections or slices, in the
model than is the conventional process of generalizing these two
lognormal-type plot, it also tends to procedures, one would assuredly lose the
circumvent a subtle problem associated major advantage that these two methods
with the Kolmogoroff-Smirnoff, K-S, or have over the use of R(x) when the
Chi-square goodness of fit procedures procedures are used in the univariate
included in such packages as STATGRAF case. Specifically, it is hard to see
(1986). To use these two procedures, the how accurate significance levels could
parameters of the "fitted" models must be obtained for these generalizations.
be estimated before comparisons can be
made. In essence, this restriction Besides their reliance on model-specific
confounds the problem of estimator estimation procedures, it is also
efficiency with the problem of model relevant to point out that both the Chi-
specification. (Tapia and Thompson 1978 square goodness of fit and the K-S
section 1.4 contains an excellent method are associated with particular
description of this form of choices of nonparametric estimators.
confounding). The same estimators of the Through its dependence on class interval
pdf f and cdf F are used to estimate all frequencir;, the Chi-square method is
R(x) curves and thus, the methods closely connected with the conventional
described in this paper tend to histogram while K-S methodology is of
circumvent the problem of specification, course dependent upon the sample
parameter-estimation confounding. cumulative step 'unction. In Tar-ter and

Kronmal (1970) it is shown that in terms

If the estimator of f or F is poor at a of the underlying MISE metric, there
distance plus or minus C from the will alwIy. exist a Fourier ;eries
estimated mode of f, one can simply dIn:ity (,!;t imitur which is superi or to
shorten the region over which P(x) is its limiting case, which in the (70e ot
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ROBUSTNESS OF WEIGIITED ESTIMATORS OF LOCATION: A SMALL-SAMPLE STUDY

Gregory Campbell and Richard I. Shrager, National Institutes of Health

The problem of estimation of location is interest Is the effect on these estimators In
considered in the context of known as well as small-sample cases when the weights are
misspeclfied weights. For the one-sample misspecified.
problem, the studied estimators Include weighted
analogs of the mean, the median, the median of 2. THE ESTIMATORS
the Walsh averages, and luber M-estimators, as
well as a computer-intensive procedure which The estimators considered in this paper are as
minimizes the weighted sum of absolute values of follows:
pairwise sums and differences of deviations. For I. weighted mean (WMEAN)
estimators which employ a weighted median,
interpolation to improve performance Is
considered. The estimators are evaluated by 2 2

computer simulation with respect to robustness to
weight misspeciflcation as well as robustness to WMEAN =

outliers. These simulations, together with the - 2

Kantorovich inequalities for bounds on the wi

asymptotic Inefficiencies, provide Insight
concerning the performance of these estimators where, hero and throughout the paper, an
with misspecified weights. inlabelled sum runs from I to n. This est imator

is the weighted least squares estimator for the

I. INTRODUCTION squared weights. In addition, if the
observations are from normal distributions with

There are many situations in which there is a the same location but different standard
natural weight associated with each of the deviations o, i and if the weights are optimally
,observations. (hfere the weight refers to a fixed specified (wI=1/o ) this estimator is not only

weight attached to each observation as opposed to i

*he W-estimates of Tukey or to the Iterative unbiased but uniform minimum variance unbiased
reweighting schemes so useful in the calculation estimator, the maximum likelihood estimator,
of some estimators.) For example, if each and asymptotically optimal for the location.
:,bservat ion is the summary measure of location 2. weighted median (WMED)

fr a group of data, one might use the inverse of
some measure of dispersion for the weight. Or in WMED = med fXI with wt wif
the regression prootem there are cases in whicn
the optimal weights -f the pairwise -lopes depend This estimator minimizes the weighted sum of
on the spacing of the design (Independent) absolute deviat ions. It is median unbiased,. if
variables; see Jaeckel (1972) and Scholz (1979) the distribution Is double exponential (laplace),
for details. In proportional sampling this estimator is maximum likelihood and has

situat ions, it is often the case that the weights maximum efficiency.
are merely the known probabilities associated 3. Hthber's weighted M-est imator (WIIIl)
with the sampling plan. WHiS is the implicit solut ion of v iT

In the early 1970's, the Princeton Study

(Andrews et al., 1972) looked at the question of i- V
robustness for the one-sample location problem. Twiwtp(wj ) 

= 
n

Of part icular interest in that study was the

robustness o1 the estimators of location to the

presence of outl iers, and to a lesser extent , to where
the misspecification of the distribution. In I1 if z'1.5
addition to those varieties of robustness, the
present study considers the behavior of 0(z) z if 17z11.5
est.imators of location for the situation In whIch -1.5 if z'-1 '

the o iservat ions aive weights attached to them
but the weights are oit.her known and correctly and 0 is defined iterat ively bV
spc IfIed or else misspecIfled. For example,
suppose that the observnt ions are weighted iut med lwIixI-III
the weights are Ignored and an equal-weight = .6754
estimator is employed. low robust Is such an
estimator to this misspocificat ion? Also of

interest Is the robustness to dIstribut ion and to where .674, is the median of IZ!, for Z a
out I I e rs. It is I mposs 1i)l e to st udy every st andarid normal random van iI l IP as sgges t Pd iv
est imator; ii, part. icular , most estimators wh lii lampel ii, Andrews ct. al (1972). This is the
ar relatively Inefficient but have a very high weighted analog of Itubor's est rimator with value c

breakdown constant are riot included, In that for of 1.5, lienc:e tHe abbrovlat ion Will'. For tile
contaminnt ion rates neaur ")0. it is riot clear what eqtaI weights (cise, it Is the maximum 1 tkoel .h..i(
is contamInat Ing what. As for roiustness to oet Imate for the least Informat lye ilstrhiuit ion
distribution, suppose, for example, that tile anid it minimizes the Fisher informa In n (1hb-1,
'ist ribut in is thought ti) he ,hi ,li o oxpo entnI al 1981).

but really tuir7* out to he normal? tf primary
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4. weighted pseudo-median (WPHED) I. Normal (NOR)

2. Contaminated normal (CNOR) -- 20%

contamination of a normal distribution with

wiXiw i another normal with the same mean and three times
WPMED = med with wt.= wj+wj the standard deviation.

iNJ wi+w 3. Double exponential (DEXP)

4. Logistic (LGST)

This estimator minimizes the absolute value of 5. Uniform (UNIF)

the pairwise sums given by: All were selected to have theoretical variances

of I. One thousand replications of each sample
wi(x ) 

+  
(x ) I of size n were performed. In order to evaluate

I<j estimators, for each sample of size n, the

estimator is calculated. For the thousand
This is the weighted median of the weighted Walsh estimators of the known quantity, the variance is
averages and reduces in the equal weight case to calculated and used to compare estimators.
the median of the Walsh averages, the

lodges-Lehmann estimator associated with the 4. CONSIDERATIONS FOR WEIGHiTED MEDIANS

Wilcoxon signed rank statistic. As such it
relies on the symmetry of the distribution about Because several of the estimators involve
the unknown parameter. For equal weights, it is weighted medians, important choices confront one
an asymptotically efficient R-estimate for the when considering the small-sample behavior of

logistic distribution (Huber, 1981). such estimators. In large samples these

5. Weighted pairwise Least Absolute Value Sum- considerations are of littla importance, in

Difference (WIAVSD) that the estimators are asymptotically

WIAVSD is the implicit solution to the equivalent. But the choice is quite important in
minimization of the following function in v: small samples. The issue is whether or not one

x - w should interpolate to obtain the weighted median,

- I x.1 x. ) and, if so, which one of a number of
interpolations to employ. With arbitrary weights
or a different number of points, differences
become apparent. Define the weighted empirical

4 w I (x-t) - w (xj-iP) (sample) distribution function as follows:

Vi 0 for x<x 1

This also minimizes the weighted slim of the Fn(X) s for x <xx j=l ,. n-I

ordered absolute residuals, it can be calculated n j )4-l'

as a weighted least absolute value minimization 1 for x-x

problem on the n2 sums and differences, with J
weights; hence, It is very computattonnlly

intensive. In the case of equal weights., WIAVSI) where s. = W/W n and WI =2 wt. This function

reduces to the median of the Walsh averages, and i=l
hence can be thought of, along with WPMED, as a
general izat ion of PMED. is a disr.rete, step flon t ion. It might be

Those five are the weighted estimators expected that a continuous version might nut-
studied here. The estimators corresponding to perform it. Consider the following possible
the equal weights are denoted with the prefix W interpolation schemes, based on the samp!e

cmitte d: MEAN, HEll, Ill, and PHED. Admittedly weighted distribution funct ion F (X), where

there are other appropriate estimators which one without loss of generality, tHie data are x <
-i Pht have also included. Of part icular interest I ?

in this study is the examinat ion of the ... < x  tind w is the weight ( ,rlspnndTlg to X

one-sample behavior of est imators which will he A. simpl- --- always use 1.'-1. f I ' ( x)-.,

generalizabie to the regression so.ting. it Ii

for xi<x'xi+ ,  then by crtierit ion the " irnple

metldi is (xit-xi. l)/2.

3. SI. I;I.AT ONS i i+

Simtlat ions were performed to evaluate the H,, mid-data --- using the sImple
ethose various timators tierd thle ,i, t r i but ion ftlu t ion nd plni t in only th,behavio)r of ths midpoitsuin he ht imotiorii uon sements

correct weights and also under Inriorrert ones. midpoints ill ie hopitit t ;ilt igmpttsa

Ieu rl)t ing tie minimum of th, n weights by I

and the maximum b H ( R , ( Ih,, following weight
si ime - 

we.'. usIo, wher, w -I/M, ftor the Inowix
Xl'X x x

tnri,H~rd 1,-vintlIon a i X l x x

1-- all wr-ights equal to I tIiR= .
2. Extreme -- haIf the weigits at 1, hril f at R,

3 t11iform -- ,,qttlly spa-oid, I to H R 
5

-1 n
Tlhe fol lwitg dlist ribit ons were useod to o l1

general ,, psutdo-raluti-m tntm o i n itus inrg t I t N t,
stat1St ical routties, (1151., 19ttt:
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and connect by line segments. The mid-data were calculated. From the 1000 replications, the
median is the unique inverse at .5. mean and variance (based on the known location)
C. mid-weight --- using the sample distribution were calculated and reported in the tables that
functions and plotting only the midpoints of the follow. Note that simulations were carried out
vertical line segments, linearize. In other for n=10 and n=20. In addition, the asymptotic
words, use the table below and connect by line variances where known are also reported.
segments. Consider Table 2 which reports the variances of

the estimators in tloe equal weights case. Note
for this unweighted cpe that the MEAN performs
quite well for the distributions NOR and UNIF.

x x ... x Furthermore, the variances for MEAN do not vary
S x2  3 n much for the other distributions. For the...... .. heavy-tailed distributions CNOR, DEXP, and LGST,

s2 s2s3 n-l+Sn the estimators MED and PMED appear to performs 1 2 2 3 - quite well, with MED doing slightly better for2 2 2 2 EXP and PMED for LGST and CNOR. Comparison of

..... .the behavior cf the estimators for n=l0 and n=20
and the asymptotic variance is Instructive in

The mid-weight median is the inverse at .5. evaluating the differences between the
D. mixed --- using the sample distribution small-sample and Lhe asymptotic performance of
function and plotting the midpoints of the these estimators. In Table 2, the approximate
horizontal and vertical line segments, linearize; standard deviations associated with the mean for
i.e., merge the above two tables the distributions NOR, CNOR, DEXP, LGST, and UNIF

depend on tht- kurtosis of the distribution; they
are (xlOOOn) 45, 66, 70, 57, and 28 respec.ively.
Note that these standard deviations values do not

x +x2 x2+x 3  depend on n, and, in general, cannot be expected
x Xl -- 2-- x2  2 x ''" x to converge to the reported asymptotic variance

n as n, the size of the sample, tends to infinity.

.. -It is noteworthy that small-sample variances for
1 sl+S2 s2+s3 Sn-l+Sn MED are quite different from the asymptotic

2I s3vaiace and to a lesser extent for PME). For
the medians and, to a lesser extent, the

-- Ipseudo-nedians, it is conjectured that as n
increases the sample variances associated with

and connect by line segments and take the inverse the replicatio'- tend to decrease to values that
at .5 to obtain the mixed median, vary about the asymptotic variances reported In

Note in the equal-weight case that the usual the table. Also included in this table are the
median convention is obtained only in the simple results of the simulations reported by Andrews et
and mixed cases and not In general in either the al (1972). A quick glance confirms that similar
mid-data for odd n nor the mid-weight cases for results are obtained here as in their study. For
tied x's. Differences between these two flawed a related study of the small-sample behavior of
interpolations and the mixed interpolation median the associated tests for the estimators MEAN,
are illustrated in Figures 1 and 2. Table 1 MEt, and PMED for the distributions NOR, DEXP,
reports the variances associated with the ,GST, UNIF, and the Cauchy, there is the report
simple versus mixed interpolated weighted medians of tho empirical powers in Randles and Wolfe
using 1000 simulations for n = 10 and R = 4 for (1979).
the equally spaced weights. Note that the Consider Table 3 In which, for extreme weigits
mixed median variance is 10% smaller than the and R=4, the variances are presented for t'e
simple for NOR, CNOR, and DFXP and even more fo: unwptght-d and weighted estimators. Among the
(INIF. Such superiority of the mixed median weighted estimators (and hence all estimators
ca.nnot be ignored in the calculat ion of weighltd since each weighted estimator outperform, !ts
medians and hence in all simulations that follow, unweighted :n.-og), notv that WMEAN is lest for
the mixed interpolated median is used. NOR and UNIF, that WMl) is host for DEXP. and

that WIAVSI1 and, to a iesser cx' ent, WPMFID
perform well for I.GST, as one might exje., t from

TABIE I: VARIANCES (xl0000) FOR EOUAI.,,Y SPACEDt Table 2. If attention is turned to t he
WFIGIITS (R=4) FOR SIMPIE AND MIXED ostImators which ignore ti weights (the
INTERIOrATED MEDIANS (n=10) est imators without the prefix '), then MEAN is

very poorly behaved, even for the NOR
NOR CNOR PiEXP LGST UNIE distribution. Al:.o, MED Is 'lniformly bost of the

four inoeoight, d estimators for eao-h of fhe
SIMPI,E MEDIAN 2142 1222 1I1"3 1699 3427 d is rt r I ho! nP The asympt t ic variance rows aRe

(ltn ied us tog the asympiot il- d i trilit ion for
MIXEI) MEDIAN 1905 1 0 1041 1590 29 79 the we ihteod est iator tIased ,n a fixed numoi ,

n,. of weights and Iet I fig t Ile number of

oliservat kos, 1, at eac h wo ight t ,'i to 11it Nlty
S. COMPARISON OF TliF ESTIMAIlIRS arind miI i pl ing Ithl. ayVmptott' vt r Ilnlo iy

l(lonfli. Note thal for t .i ,xt irme we I gh t , s

For e , i sampleP of sIze n, all 9 est Imntor )i thIf -l, i 'mlttl i var iIln o elil o iot idICtlInt
MEAN Ills IMEIi MElt WMAN W111s W I?) WIAV D W1ME]: I'll 1 As in "rbl- 2, 'I-E,) raioI riw W1,M h y
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small-sample variances which are much larger than clearly depends upon the quantification of the
the asymptotic ones for DEXP. likely weight misspecification as well as the

For Table 4, for equally-spaced weights and possibility of outliers or deviation from
R=4, note that the variances are generally believed distribution. For small R, weights play
smaller than observed in the extreme weight case a less important role, and for large R, the
for the same R in Table 3, as one might have possibility of misspecification becomes crucial
expected. Among the weighted estimators, WMEAN in the selection of a one-sample estimator. As
is best for NOR and UNIF and poorly behaved for advocated by Tukey and as mentioned by Cressie
DEXP and CNOR. WMED performs fairly well for (1980) for R<2 the mean has some advantage and
DEXP for n=10 and n=20, although not as well as only for larger R does the median assert itself.
the asymptotic result might have one believe. This is certainly seen In this study for R=4 with
Note that in this case of equally spaced we'ghts these two weighting schemes. Note for equally
the asymptotic variances are different only for spaced weights and R=4 that PMED competes quite
WMED for n=10 versus n=20. WLAVSD performs well well with MED when one takes into account the
for LGST, CNOR and DEXP. It is no surprise that poor efficiency behavior of the MED to PNED for
WNEAN is not robust to the heavy-tailed NOR, CNOR, LGST and UNIF (recall the asymptotic
distributions whereas both WMED, WLAVSD and WPMED relative efficiencies of MED to PMED for these
are. Among the estimators ich ignore the four distributions are 2/3, .79, 3/4 and 1/3,
weights, MED does well for AOR, DEXP, LGST and respectively).
PMED performs well for NOh and UNIF. As in Table
3, the MEAN is dismally behaved for the 7. CONCLUSIONS
misspecified weights. It is interesting for UNIF
that WMED has larger variance than PMED and H15. Weights, even if hidden in an estimation

problem, can play an important role in the
6. KANTOROVICH'S INEQUALITY selection of the estimator Failure to recognize

the existence of unequal fhits can be
Cressie (1980) considered weighted disastrous even if the distribution is correctly

N-estimation and its large-sample behavior identified. In particular, the mean is terribly
relative to weight misspecification. As non-robust with respect to weight
mentioned there, for known weights wi, misspecification, even with data that are normal.

Kantorovich (1948) proved that the measure, r, of The median, on the other hand, while robust with

inefficiency, given by the ratio of the variances regard to weights and with regard to outliers,

of the unweighted MEAN to the optimally weighted does have some poor efficiency properties if the

WMEAN, Is bounded by: distribution is not heavy-tailed. A compromise
might be to use the Hodges-Lehmann, pseudo-median

2 2 estimator (whose weighted analogs are WLAVSD and

r(MEAN,WMEAN) 5 1 + (R2") (-) WPMED), which has reasonable robustness to

4R2  outliers and distribution and which is more
robust to weight misspecificatin than either the

where R = M/m, N = maxfw 01 and m = mInjw a . mean or the Huber N-estimate.
xI mIii The small-sample behavior differs from the

For the median, Tukey has shown, as mentioned by known asymptotic results for several of the
Cressie, that studied situations. In particular, one

surprising result is the margin by which the
2 small-sample estimated variance differs in the

r(MED,WMED) 5 1 (R-1+ 4 (2) case of the median from the asymptotic
4R prediction. Th's substantial discrepancy Is

expected to widen if one were to examine
where R is as above. (Cressie also reports a related estimators in the simple linear
Kantorovich inequality for M-estimates, but it is regression problem. It is also interesting that
inappropriate here in that the weighted there is a difference in the other direction with
M-estimates considered by him are either in the regard to the normal and uniform distributions;
homogeneous variance case or have a psi function namely, that the observed small-sample variances
which is homogeneous with regard to internal are smaller than expected from the asymptotic
weights and unfortunately the influence function prediction. These results may not seem so
for the H1S is not homogeneous.) surprising If for the median one recalls that the

For R = 4, the Kantorovich bounds in equations asymptotic approximation Is influenced by the
(1) and (2) are 4.516 and 1.5625. These can be smoothness of the density in the neighborhood of
compared with the small-sample inefficiencies as the theoretical median.
observed by the ratios of the estimated variances In conclusion, It appears that there is no optimal

of Tables 3 and 4. These ratios are reported in resolution concerning the selection of an
Table 5 (xlOOO). As is no surprise, the estimator that is robust with respect to weights
small-sample inefficiency ratios are larger for as well as to outliers. The choice of an
the extreme weights than for the equally-spaced estimator depends upon the weights, their spacing
ones; in fact it is exactly the extreme weights and range R (even if not identified), and the
that give the bound for the inequality. I is behavior of the distribution in the tails.
interesting to note that while MED has the best The authors gratefully acknowledge the
observed efficiencies across the five technical and editorial assistance of M. Hodges
distributions, PNED is somewhat competitive, of the Division of Computer Research and
qspecially in the equally spaced weighting Technology.
situation. The choice of which Pctimator lo ,qp
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TABLE 4: VARIANCES (xIOOOOn)--EQUALLY (asym) 2513 1287 800 1945 4800
SPACED VTS (R=4) SMEAN (n-10) 1155 1190 1067 1266 1155

NOR CNOR DEXP LGST UNIF (n=20) 1235 1157 1228 1194 1228
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PKED (n=10) 2299 1461 1517 2070 2880 WLAVSD (n=10) 1225 864 849 1218 1363
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WI15 (n=l0) 1467 1049 1038 1427 1555 NOR CNOR DEXP LGST UNIF
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WPMED (n=10) 1556 1047 1044 1463 1784 MEAN 4739 4271 5124 4652 4993

(n=20) 1492 986 1107 1369 1684 HIS 3429 2887 3335 3031 4269

PMED 2708 2353 2797 2605 3386
WLAVSD (n-10) 1510 1039 996 1423 1670 MED 1544 16qA 1KI 144/, 1547

(n20) 1452 973 1084 1313 1586

EQUALLY SPACED WTS (R-4)
WMED (n-10) 1978 1089 1001 1661 2943 EAN 2053 1885 2191 2059 2143
(asym,n10) 2192 1122 698 1696 4186 HIS 1622 1509 1588 1502 1805

(n=20) 2044 1110 1002 1625 3516 PMED 1477 1396 1453 1415 1614
(esys,n-20) 2219 1136 706 1718 4238 MED 1209 1178 1238 1183 1223
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Figure 1. An example showing mid-data (- -- . .. - ) and mixed
.- - - - - - - - - ) interpolated medians for n = 4. When w, = w2

w4. the mixed median is always x3 (where the short dashed line crosses s 0.5),

bu the a.d-dsta median depends on the spacing of the x's.
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FIgua.t 2. A- ::amp]p showing mid-weight ( ) and mixed
( - - ) ) interpolated medians foi o=4. Whlw W = w3-+w4, the

mixed median is always (x2+x3)/2 (where the short dashed line crosses s 0.5),

but the mid-weight median depends on the spacing of the s's.
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APPROXIMATIONS OF THE WILCOXON RANK SUM TEST IN SMALL SAMPLES WITH LOTS OF TIES

Arthur R. Silverberg, Food and Drug Administration

Abstract

The Wilcoxon-Mann-Whitney rank sum test for approximation. It is not clear from the
two independent samples is frequently used doumentation if a continuity correction is
with data having ties. Although there are used. SAS [10] provides the the normal
computer programs to calculate the exact approximation with and without continuity
randomization test, even for small samples, correction, and a t-distribution approximation
computer packages use approximations based based on n,+n,-l degrees of freecom.
upon the normal, Student's t distribution, or SPSS-X [121 gives a normal approximation with
the distribution without ties. For each of no continuity correction and for n +n 2<30 the
the small sample sizes considered in this tabular p-value from a table assuming no ties.
paper, all distributions of obtaining ties InL [5] uses three normal approximations
were considered, as well as all permutations without the continuity correction. Ties are
of the ordering of the ties. The exact broken to give both the highest nd lowest
distribution with ties was compared to, the possible statistics. The approximtion is then
tK,;latet4 'lu, withnout tic7, n^-rl applied to these LWO sL.aLiSticS ab Well b L
approximations with and without continuity original data with ties.
corrections, and Edgeworth expansions with and This author has written a computer program
without continuity corrections. The purpose to calculate the exact value of the
of looking at all these distributions was to Wilcoxon-Mann-Whitney statistic with ties for
quantify the accuracy of the common IBM-PC compatible computer based upon the
approximations, rather than to develop any new Mehta, Patel and Tsiatis algorithm. The
approximations. program was written in compiled Turbo Pascal

Version 3.0 and is available to interested
1. Introduction parties who mail a formatted diskette (either

3.5 or 5.25 inch) in a self-addressed mailer
Recommendations for approximations to the to the author.

Wilcoxon-Mann-Whitney rank sum statistic in
the case of ties vary. Conover [2] suggests 2. Exact Distribution Under Ho
using the normal approximation with no
continuity correction when there are ties. Let us denote the smaller sample size by n.
Klotz [6] found that the Edgeworth and the larger sample size by n2,nl+n2N. Le
approximation gave only a small improvement
over the normal approximation, both W= Z R. when R. is the rank of observation i
approximations used a continuity correction. i=1 i
Hollander and Wolfe [4] suggest the use of the from the smaller sample and let t. j=1 .. c be
exact tables for no ties, when ties are the number of observations from bth samples
present and the samples are small. When the that are tied in category j, R <Rj+ I . It is
samples are large, the normal approximation well known that
with no continuity correction is suggested.
When the largest proportion of sample values p=n 1(N+l)
in a tied category is not close to 1, 2
Lehmann [7] suggests the use of the continuity
corrected normal approximation. Emerson and and
Moses [3] recommend using exact calculations c 2
unless both sample sizes are at least 10. n n I t.(t -1)
They state that the normal approximation is C2= 1 2 [N+Ij=1_ J

unreliable when over half the observations 12 N(N-l)
fall into one category. Although Emerson and
Moses state that the use of the continuity It can be shown that
correction makes little difference, they
recommend against the use of the continuity n n2(n -n c
correction because of the unequal spacing of n3=  c 2 (R.-N+l)t (t 2-1)]

the statistic. 4N(N-1)(N-2) jl 2
Klotz [6] provides an algorithm and flow

chart for calculating thp exact probability of This formula for p3 seems new. It is easy to
the Wilcoxon-Mann-Whitney statistic. A see that P3= when n.=n or if
network algorithm for the Exact Wilcoxon-Mann- pointed ou by Klotz [61. i c+l-j
Whitney test with ties is found in Mehta, The formula for p4 as given at the bottom
Patel and Tsiatis [9]. This paper contains of the next page seems to be new.
some typographic errors. A fuller explanation For each total sample size considered N,
of the network algorithm, in the case of 2xk all distributions of ties were considered.
contingency tables, is found in Mehta and The number of such distributions, p(N) is th
Patel [8]. number of unrestricted partitions of N. For

Major computer packages use a variety of example for N=5, p(5)=7 since
approximations. BMDP [1] uses a normal
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1) 1+1+1+1+1=5 Approximation N0 is the normal approximation
2) 1+1+1+2=5 with no continuity correction. Approximation
3) 1+1+3=5 N is the normal approximation with the

14) 1+2+2=5 continuity correction based upon assuming the
5) 1+4=5 lattice spacing A=l. Smid [11] has shown that
6) 2+3=5 the spacings of the exact distribution of the
7) 5=5 Wilcoxon-Mann-Whitney statistic is a multiple

of the greatest common divisor (gcd) of
For small N, .5 x gcd{t +t, ..,t +t }. Therefore taking

1.,2' 'c-i
the suggestion of Klotz [o] we use

N 4 5 6 7 8 9 10 11 .25 x gcd{t +t ,*'t W} as a continuity
p(n) 5 7 11 15 22 30 42 56 correction in i . e have the following

ocdrelationships among these approximations,
N 12 13 14 15 16 17 15 19 N^<N., N^<N and N <=>Ncd depending on
p(n) 77 101 135 176 231 297 385 490 w~et~er ?<=Y x gcd g+t '"t +t I

e. 1 2 C- c
Three approximations were based upon the

Ties may be in any order. So for each Edgeworth approximation, E0 1 E1 and E .E0, gcd
distribution of ties, we considered all defined in an analogous way to NO, N1 and
c!/((#t.=I)! x ... x (#t.=N)) permutations of N Therefore, E <E , E <E and E =>E1c 0 1 0 gci I gc
the ties. For example t =t2 =1 and t =3 d pending on whether
therefore, 3!/(2! x 0! x 1! x 0! x 0?)=3. 1<=>.5 x gcd{t +t ,..,t .+t }.

The Edgeworth approximatLon is given by
R R R RR ( 5(1 5 2 _

1) 1x() 2 4x(3) 4  4  E(x)=&*x)-(X3 /(6K 2  ))(x -1)Z(x)

2) 1 3 3 3 5 2
3) 2 2 2 4 5 -(K4/(24K22))(x3-3x)Z(x)

The Wilcoxon-Mann-Whitney rank sum -(K3 2/(72K 2 3)(x 5-lox 3+15x)Z(x)
statistic was computed for all possible
samples of size n .n The exact 64x) and Z(x) are the normal cumulative2.

probabilities were compared to a number of distribution function and the probability
approximations explained below when either the distribution respectively, and K. are the
exact value or the respective approximation cumulants.
was less than .1.

4. Accuracy of Approximations
3. Approximations

The tables give the maximum absolute error
All comparisons were for one-sided tests I(estim .ted-actual)l, and relative error

and p-values were for the alternative j((estimated-actual)/actual)[. The sign is
hypothesis of the location of population one given or + when the largest positive error
smaller than that of population two. equals the largest negative error. A value 0

Two approximations were based upon the means that either all probabilities were
standard Tables that assume no ties, and are estimated correctly or, there were no
denoted as approximations T and T . For estimated and no exact p-values less than 0. 1.
approximation T , look up tAe statistic in the Computations were performed on a VAX 8530
Table and find ihe p-value corresponding to using a Basic language compiler at the Food
that integer, or the next larger value if the and Drug Administration.
statistic is non-integral (it must always be Table IA show the largest absolute error
either an integer or an integer plus one-half) over all partitions when either the true or
because of ties. T is the same as T except estimated p-value is less thn or equal to 0.1.
that linear interpolation is performeA for Even for the sample sizes that are not too
non-integral values, small, the largest errors are large. The

Three approximations were based upon the approximations based upon the standard tables
standard Normal distribution, and are denoted are conservative in that the largest absolute
as approximations No, N1 and Ngcd. errors tend to occur when estimated>actual.

u4 =nln 2 (N+1)f[nln 2 (5N+7)-2N(N+1)]
240

nn 2 [N(N+1)-6nn 2] c 2 2
- _ _ _ _ x Z t (t -1)(120Rj(R -(N+I))+3t 2

240N(N-1)(N-2)(N-3) j=1

c 

c

nln J=ittj- x [5(nl1-l)(n 2_1) 2 ij(tj2_)
+ .-1 x

240N(N-1)(N-2)(N-3)

-42n 1n2-10nIn2 (N+1)(N 2-19N-18)-N(N+1)(20N 2+80N+13)
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The normal and Edgeworth approximations are to be better than the normal approximations in
not conservative for absolute errors since the terms of largest relative error, with E =E
largest absolute errors tend to occur when usually better than E. Approximations N0

g
0,.0

estimated<actual. The best approximation in gives the poorest perrormance for n =1 in
terms of overall absolute error seems to be, terms of largest relative error of ihe no ties
T2 when n=n 2, T whenn n2 n.=1 ,2, N gcd when partition, while approximation N,=N . gives
nI<n, n1=A,4,5, and E1 wien n 1 n 1n>6. the poorest performance for n2. gcd
Approximaioti N0 gives the poorest performance
in terms of overall absolute error. 5. Recommendations

Table IB shows the largest relative error
over all partitions when either the true or If there are no ties, the Edgeworth
estimated p-value is less than or equal to approximation with continuity correction,
0.1. The largest relative error tends to E =E is recommended when tables are not
occur when the actual p-value is smallest, as avai ale. Since none of the approximations
opposed to the absolute error that does not are accurate when there are ties, even for
have this tendency. The larger sample sizes moderate size samples, the calculation of the
tend to have larger relative overall errors. exact probability of the Wilcoxon-Mann-Whitney
All approximations studied are conservative in statistic is recommended.
that the largest relative errors tend to occur
when estimated>actual for n1 >3. The best References
approximation in terms of overall relative
error seems to be, T1 for n =1,2, N for [1] BMDP Statistical Software Manual (1985).
n=3,4, and E0 for n >5. & approximations "Subprogram P3S," Berkeley, California.
tiat gives the poorest performance in terms of [21 Conover, W. J. (1980). r )-r
overall relative error seems to be N0 for Nonparametric Statistics, New York:
n 1=1,2, and TI and T for n >3. John Wiley & Sons.

Table 2 shows the largest-absolute and [3] Emerson, John D. and Moses, Lincoln E.
relative errors for the partition when there (1985). "A Note on the Wilcoxon-Mann-
are :., ties and the true or estimated p-value Whitney Test for 2 x k Ordered Tables,"
is less than or equal to 0.1. The table Biometrics, 41, 303-309.
look-ups of course have zero error so are [4] Hollander, Myles and Wolfe, Douglas A.
excluded. (1973). Nonparametric Statistical

The first four columns of Table 2 contain Methods, New York: John Wiley & Sons.
the absolute errors over the no ties partition [5] IMSL User's Manual (1987). "Subroutine
when the true or estimated p-value is less RNkSM/DRNKSM," Houston, Texas.
than or equal to 0.1. The largest error of [6] Klotz, J. H. (1966). "The Wilcoxon,
the no ties partition is usually at least an Ties, and the Computer," Journal of the
order of magnitude smalller than the errors American Statistical Association, 61,
shown in Table IA. The two normal 772-787, corrigenda, 62 (1967),
approximations, and approximation E0 tend not 1520-1521.
to be conservative in that the largest errors [7] Lehmann, E. J. (1975). Nonparametrics:
occur when estimated<actual. Approximation Statistical Methods Based On Ranks,
EI=E tends to be conservative, the largest San Francisco: Holden-Day, Inc.
errodoccur when estimated>actual, for the [8] Mehta, Cyrus R. and Patel, Nitin R.
larger sample sizes given. Approximation (1980). "A Network Algorithm for the
E 10E . is the better of the two normal and Exact Treatment of 2xk Contingency
two Egeworth approximations in terms of Table," Communications in Statistics,
largest absolute error. Appproximation N0  Series B9(6), 649-664.
gives the poorest performance in terms of [9] Mehta, Cyrus R., Patel Nitin R. and
largest abLolute error over the no ties Tsiatis, Anastasios A. (1984). "Exact
partition. Significance Testing to Establish

The last four columns of Table 2 contain Treatment Equivalence with Ordered
the largest relative errors of the no ties Categorical Data," Biometrics, 40,
partition when the true or estimated p-value 819-825.
is less than or equal to 0.1. The largest (10] SAS User Guide: StaListics (1985).
error of the no ties parititon is frequently "Proc NPARlWAY," Cary, North Carolina.
nearly as large as the errors shown in [11] Smid, L. J. (1955). "On the Distribution
Table IB and in fact in some cases the largest of the Test Statistics of Kendall and
error in Table 1B was from the no ties Wilcoxon's Two Sample Test When Ties are
partition. The two normal approximations tend Present," Statistica Neerlandica, 10,
not to be conservative for larger samples in 205-214.
that the largest relative errors occur when [12] SPSS-X SPSS Statistical Algorithms
estimated<actual. Approximation E tends to (1986). "M-W Subcommand of the NPAR
be conservative in that the lqrges? relative Tests," Chicago.
errors occur when estimated>actual.
Approximation E =E does not seem to be
easily classifilbli s being either
conservative or not conservative in terms of
largest relative error for the no ties
partition. The Edgeworth approximations tend
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Table 1A: Signed(MaxiEstimated-Actuall) All Partitions of Ties
n l +n 2 T1  T2  N0  N1  Ngcd E0  E1  Egcd

n =2

8 -.036 -.036 -.208 -.17b -.129 -.191 -.116 -.125
9 +.028 +.028 -.192 -.168 -.103 -. 185 -.147 -.i01

10 -.044 -.044 -.177 -.160 -.137 -.166 -.145 -.134
11 -.036 -.036 -.186 -.152 -.110 -.180 -.141 -.108
12 -.060 -.060 -.226 -.145 -.143 -.153 -.134 -.139
13 -.051 -.051 -.217 -.137 -.123 -.177 -.125 -.120
14 -.066 -.066 -.208 -.187 -.162 -.187 -.137 -.157
15 +.057 +.057 -.200 -.182 -.168 -.181 -.159 -.152
16 -.075 -.075 -.202 -.178 -.168 -.176 -.157 -.148
17 -.066 -.066 -.186 -.173 -.165 -.174 -.155 -.143
18 +.065 +.065 -.218 -.169 -.162 -.166 -.153 -.147

La =3
8 +.107 +.107 -.277 -.099 -.107 -.170 -.099 -.108
9 +.190 +.190 -.255 +.137 -.143 -.163 +.151 -.142

10 +.192 +.192 -.237 -.205 +.113 -.212 +.146 +.127
11 +.194 +.194 -.221 -.196 -.126 -.201 +.138 -.128
12 +.195 +.195 -.208 -.188 -.115 -.191 -.163 +.115
13 +.196 +.196 -.197 -.181 -.118 -.183 -.161 -.121
14 +.195 +.195 -.187 -.173 -.140 -.174 -.157 -.141
15 +.196 +.196 -.177 -.167 +.120 -.172 -.153 +.125
16 +.195 +.195 -.169 -.160 -.130 -.158 -.149 -.132
17 +.194 +.194 -.161 -.154 -.146 -.159 -.144 -.147
18 +.194 +.194 -.218 -.148 -.124 -.174 -.137 -.126

nl=4
8 +.100 +.100 -.193 -.124 -.136 -.148 -.116 -.130
9 +.095 +.095 -.190 -.103 -.101 -.185 -.095 -.094

10 +.138 +.107 -.181 -.096 -.102 -.170 -.097 -.103
11 +.121 +.121 -.271 -.122 -.129 -.165 -.122 -.130
12 + 194 +,194 -.255 -.147 -.155 -.168 +.139 -.155
13 +.225 +.200 -.241 -.216 +.110 -.215 +.137 +.122
14 +.204 +.204 -.229 -.208 -.126 -.206 +.132 -.130
15 +.229 +.208 -.218 -.201 -. 145 -.198 -.175 -.147
16 +.210 +.210 -.208 -.1946 -.108 -.191 -.171 -.113
17 +.230 +.212 -.200 -.187 -.125 -.185 -.168 -.129
18 +.213 +.213 -.192 -.181 -.140 -.178 -.164 -.144

n =5
10 +.127 +.099 -.188 -.134 -.144 -.151 -.126 -.137
11 +.104 +.104 -.186 -.115 -.114 -.180 -.107 -.106
12 +.126 +.107 -.180 -.100 -.106 -.169 -.095 -.100
13 +.124 +.124 -.175 -.115 -.121 -.165 -.116 -.122
14 +.136 +.136 -.267 -.153 -.142 -.162 -.135 -.142
15 +.202 +.202 -.255 -.149 +.107 -.172 -.139 +.120
16 +.208 +.208 -.243 -.224 -.116 -.217 -.137 +.119
17 +.214 +.214 -.233 -.216 -.125 -.209 -.135 -.129
18 +.218 +.218 -.224 -.209 -.141 -.203 -.182 -.144

n =6
12 +.106 +.106 -.185 -.140 -.149 -.153 -.132 -.142
13 +.113 +.113 -.184 -.123 -.122 -.177 -.115 -.114
14 +.118 +.118 -.179 -.109 -.115 -.169 -.102 -.108
15 +.129 +.129 -.176 -.159 -.115 -.166 -.111 -.116
16 +.157 +.141 -.277 -.157 -.133 -.163 -.128 -.134
17 +.150 +.150 -.265 -.153 -.150 -.160 -.144 -.150
18 +.210 +.210 -.255 -.236 +.105 -.174 -.142 +.117

n =7
14 +.132 +.113 -.183 -.1451 -. 152 -.171 -.137 -.145
15 +.122 +.122 -.182 -.129 -.129 -.175 -.121 -.121
16 +.141 +.127 -.202 -.164 -.121 -.168 -.109 -.114
17 +.130 +.130 -.176 -.162 -.110 -.166 -.108 -.112
18 +.145 +.145 -.172 -.159 -.126 -.163 -.122 -.127

n1=8
16 +.121 +.121 -.181 -.148 -.155 -.170 -.140 -.147
17 +.129 +.129 -.180 -.166 -.166 -.174 -.126 -.125
18 +.136 +.136 -.198 -.165 -.127 -.168 -.114 -.120

n =9
18 +.096 +.092 -.180 -.1671 -.157 -.169 -.142 -.149
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Table 1B: Signed(Max((Estimated-Actuail/Actual)) All Partitions of Ties
n1+n2 T1  T2  NO  N1  Ngcd E0  EI Egcd

n =2
8 -0.33 -0.33 -0.89 -0.79 -0.83 -0.81 -0.68 -0.73
9 +0.33 +0.33 -0.92 -0.84 -0.84 -0.80 -0.69 -0.72

10 -0.33 -0.33 -0.94 -0.89 -0.91 -0.83 -0.72 -0.74
11 +0.33 +0.33 -0.96 -0.92 -0.92 -0.84 -0.77 -0.73
12 +0.50 +0.50 -0.97 -0.95 -0.96 -0.84 -0.80 +0.81
13 +0.50 +0.50 -0.98 -0.96 -0.96 -0.83 -0.81 -0.75
14 +0.50 +0.50 -0.99 -0.97 +1.25 -0.83 -0.80 +1.10
15 +0.60 +0.60 -0.99 -0.98 +1.26 -0.85 -0.78 +0.96
16 +0.60 +0.60 -0.99 -0.99 +1.67 -0.88 -0.77 +1.39
17 +0.60 +0.60 -1.00 +1.08 +1.61 -0.92 -0.81 +1.44
18 +0.67 +0.67 -1.00 +1.25 +2.12 -0.95 -0.86 +1.74

nl=3
8 +1.20 +1.20 -0.77 +0.89 -0.70 -0.80 +1.03 +0.80
9 +2,29 +2.29 +1.13 +1.64 +1.38 +1.30 +1.82 +1.55

10 +2,88 +2.88 +1.43 +1.99 +1.70 +1.63 +2.i8 +1.90
11 +3.56 +3.56 +1.72 +2.32 +2.01 +1.94 +2.53 +2.23
12 +4.30 +4.30 +2.01 +2.63 +2.31 +2.23 +2.86 +2.54
13 +5.09 +5.09 +2.27 +2.93 +2.59 +2.51 +3.17 +2.83
14 +5.92 +5.92 +2.53 +3.21 +2.86 +2.77 +3.45 +3.10
15 +6.85 +6.85 +2.76 +3.47 +3.10 +3.01 +3.71 +3.35
16 +7.79 +7.79 +2.98 +3.71 +3.33 +3.24 +3.95 +3.59
17 +8.80 +8.80 +3.25 +3.95 +3.59 +3.45 +4.18 +3.81
18 +9.88 +9.88 +3.53 +4.24 +4.04 +3.65 +4.38 +4.01

n =4
+1.40 +1.40 -0.72 +0 Q1 +0.72 -0.79 +1.09 +0.85

9 +2.00 +2.00 +0.86 +1.36 +1.29 +0.99 +1.54 +1.43
10 +2.86 +2.86 +1.22 +1.77 +1.48 +1.37 +1.98 +1.67
11 +3.75 +3.75 +1.56 +2.17 +2.09 +1.75 +2.41 +2.30
12 +4.89 +4.89 +1.89 +2.54 +2.23 +2.11 +2.83 +2.46
13 +6.10 +6.10 +2.28 +2.94 +2.80 +2.46 +3.22 +3.11
14 +7.55 +7.55 +2.70 +3.40 +3.16 +2.79 +3.60 +3.18
15 +9.08 +9.08 +3.09 +3.85 +3.68 +3.17 +4.00 +3.82
16 +10.92 +10.92 +3.47 +4.27 +4.42 +3.55 +4.42 +3.97
17 +12.86 +12.86 +3.92 +4.72 +4.54 +3.91 +4.82 +4.47
18 +15.07 +15.07 +4.36 +5.21 +6.27 +4.25 +5.19 +4.71

n =5
10 +2.17 +2.17 +0.99 +1.49 +1.50 +1.01 +1.56 +1.56
11 +3.14 +3.14 +1.54 +2.13 +1.83 +1.51 +2.16 +1.82
12 +4.25 +4.25 +2.13 +2.81 +2.45 +2.04 +2.77 +2.39
13 +5.67 +5.67 +2.73 +3.49 +3.10 +2.56 +3.38 +2.99
14 +7.30 +7.30 +3.33 +4.17 +3.74 +3.08 +3.98 +3.51
15 +9.27 +9.27 +3.92 +4.83 +4.36 +3.57 +4.55 +4.04
16 +11 50 +11.50 +4.47 +5.45 +5.45 +4.04 +5.08 +4.54
17 +14.15 +14.15 +5.15 +6.17 +6.57 +4.48 +5.58 +5.01
18 +17.14 +17.14 +5.86 +6.93 +7.91 +4.90 +6.05 +5.45

n =6
12 +3.29 +3.29 +1.79 +2.41 +2.11 +1.58 +2.24 +1.95
13 +4.50 +4.50 +2.50 +3.22 +2.95 +2.13 +2.89 +2.57
14 +6.11 +6.11 +3.25 +4.08 +3.73 +2.67 +3.54 +3.16
15 +8.00 +8.00 +4.02 +4.95 +4,53 +3.21 +4.16 +3.66
16 +10.36 +10.36 +4.77 +5.80 +5.41 +3,71 +4.75 +4.30
17 +13.08 +13.08 +5.66 +6.76 +6.85 +4.18 +5.29 +4.72
18 +16.46 +16.46 +6.63 +7.85 +8.91 +4.62 +5.80 +5.28

n =7
14 +4.62 +4.62 +2.97 +3.74 +3.62 +2.20 +2.98 +2.57
15 +6.33 +6.33 +3.91 +4.82 +4.47 +2.76 +3.65 +3.29
16 +8.40 +8.40 +5.00 +6.06 +5.52 +3.36 +4.35 +3.84
17 +11.00 +11.00 +6.33 +7.56 +8.06 +3.99 +5.10 +4.53
IR +14.08 +14.08 +7.73 +9.12 +9.90 +4.57 +5.79 +5.16

n 1 =8
16 +6.44 +6.44 +4.71 +5.72 +6.49 +2.82 +3.73 +3.38
17 +8.60 +8.60 +6.11 +7.30 +7.15 +3.47 +4.50 +3.96
18 +11.36 +11.36 +7.80 +9.21 +10.08 +4.08 +5.24 +4.63

ni =9
18 +8.70 +8.70 +7.48 +9.02 +10.87 +3.48 +4.54 +3.99
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Table 2: No Ties
Signed(MaxlEstimated-Actuall) Signed(Max([Estimated-Actuall/Actual))

nl+n2 NO  Nl=Ngcd E0  EI=Egcd NO  Nl=Ngcd E0  EI=E

n =2
8 -.0516 -.0046 -.0442 -.003 2  -0.363 -0.065 -0.447 -0.10
9 -.0395 -.0173 -.0348 -.0014 -0.355 -0.155 -0.390 -0.04

10 -.0375 -.0134 -.0276 -.0083 -0.341 -0.151 -0.328 -0.09
11 -.0304 -.0117 -.0250 -.0067 -0.320 +0.241 -0.303 -0.09
12 -.0377 -.0096 -.0209 -.0052 -0.293 +0.362 -0.290 +0.15
13 -.0318 -.0156 -.0258 -.0038 -0.276 +0.490 -0.274 +0.23
14 -.0268 -.0134 -.0224 -.0072 +0.295 +0.627 -0.255 +0.32
15 -.0272 -.0113 -.0208 -.0065 +0,431 +0.772 -0.233 +0,41
16 -.0235 -.0114 -.0184 -.0057 +0.573 +0.924 -0.222 +0.50
17 -.0278 -.0099 -.0211 -.0048 +0.724 +1.084 -0.216 +0.60
18 -.0246 -.0136 -.0191 -.0068 +0.881 +1.252 +0.307 +0.70

n =3
8 -.031 -.0034 -.0296 -.0021 -0.293 -0.048 -0.463 -0.11
9 -.0326 -.0055 -.0204 -.0015 -0.272 +0.184 -0.405 -0.05

10 -.0224 -.0059 -.0194 -.0015 -0.251 +0.359 -0,341 +0.06
11 -.0204 -.0047 -.0168 -.0014 -0.231 +0.560 -0.271 +0.11
12 -.0218 -.0068 -.0176 +.0015 +0.381 +0.785 -0.232 +0.18
13 -.0202 -.0050 -.0157 -.0016 +0.606 +1.037 -0.217 +0.28
14 -.0198 -.0046 -.0149 +.0016 +0.856 +1.317 -0.200 +0.38
15 -.0195 -.0050 -.0124 +.0016 +1.133 +1.625 -0.187 +0.49
16 -.0158 -.0054 -.0121 +.0016 +1.437 +1.963 -0.174 +0.61
17 -.0156 -.0056 -.0116 +.0015 +1.771 +2.333 +0.258 +0.73
18 -.0152 -.0055 -.0109 +.0015 +2.136 +2.734 +0.363 +0.86

n =4
8 -.0255 -.0030 -.0219 +.002 4  -0.271 +0.063 -0.471 -0.12
9 -.0244 -.0063 -.0215 -.0018 -0.256 +0.258 -0.421 -0.07

10 -.0179 +.0031 -.0155 +.0010 -0.229 +0.492 -0.365 +0.07
11 -.0222 -.0036 -.0180 +.0008 +0.345 +0.771 -0.306 +0.11
12 -.0200 +.0028 -.0162 +.0007 +0.628 +1.098 -0.246 +0.17
13 -.0168 -.0045 -.0136 +.0007 +0.959 +1.477 -0.204 +0.23
14 -.0153 -.0044 -.0123 +.0007 +1.341 +1.913 -0.188 +0.31
15 -.0170 -.0034 -.0130 +.0007 +1.781 +2 413 -0.169 +0.39
16 -.0149 -.0036 -.0113 +.0006 +2.285 +2.981 -0.152 +0.47
17 -.0137 -.0044 -.0104 +.0006 +2.857 +3.624 -0.140 +0.55
18 -.0124 -.0039 -.0092 +.0006 +3.504 +4.348 +0.153 +0.62

n =5
10 -.0238 -.0036 -.0200 +.0011 -0.223 +0.535 -0.375 +0.06
11 -.0167 -.0033 -.0142 +.0009 +0.425 +0.874 -0.331 +0.10
12 -.0173 -.0041 -.0142 +.0007 +0.775 +1,283 -0.293 +0.15
13 -.0173 -.0033 -.0137 +.0006 +1.198 +1.774 -0.264 +0.20
11 -.0147 -.0037 - 0115 +.0004 +1.703 +2.357 -0.249 +0.24
15 -.0143 -.0040 -.0112 +.0004 +,e.303 *.3046 -0.254 +0.28
16 -.0143 -.0032 -.0109 +.0004 +3.012 +3.854 -0.286 +0.31
17 -.0120 -.0035 -.0093 +.0004 +3.844 +4.797 -0.350 +0.32
18 -.0121 -.0029 -.0910 +.0003 +4.814 +5.892 -0.454 +0.32

n =6
12 -.0151 -.0031 -.0126 +.000 =  +0.824 +1.345 -0.311 +0.14
I -.017q -.0030 -.0114 +.0006 +1.317 +1.922 -0.313 +0.17
14 -.0159 -,0030 -.0105 +.0005 +1.922 +2.626 -0.346 +0.19
15 -.0145 -.0028 -.0096 +.0004 +2.661 +3.4/9 -u.4,s +0.19
16 -.0134 -.0027 -.0103 +.0003 +3.557 +4.508 -0.559 +0.16
17 -.0124 -.0027 -.0094 +.0003 +4.639 +5.742 -0.769 -0.28
18 -.0116 -.0026 -.0088 +.0003 +5.935 +7.212 -1.000 -0.57

n =7
14 -.0145 -.0025 -.0116 +.0004 +1.995 +2.715 -0,382 +0.17
15 -.0122 -.0030 -.0099 +.0003 +2.841 +3.698 -0.520 +0.13
16 -.0124 -.0025 -.0097 +.0003 +3.892 +4.909 -0.753 -0.30
17 -.0107 -.0028 -.0084 +.0003 +5.188 +6.394 -1.000 -0.65
18 -.0109 -.0024 -.0083 +.0002 +6.779 +8.205 -1.000 -1.00

n =8
16 -.0114 -.0028 -.0090 +.0001 +4.004 +5.044 -0.822 -0.37
17 -.0108 -.0028 -.0085 +.0002 +5.468 +6.726 -1.000 -0.85
18 -.0102 -.0027 -.0079 +.0002 +7.300 +8.818 -1.000 -1.00

n =9
18 -.0096 -.0025 -.0075 +.0001 +7.476 +9.025 -1.000 -1.00
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A COMPARISON OF SPEAIMAN'S FOOTRULE AND RANK CORRELATION COEFFICIENT

WITH EXACT TABLES AND APPROXIMATIONS

LeRoy A. Franklin, Indiana State University

ABSTRACT Ury and Kleinecke (1979) tabulated the exact
c.d.f. for D for n = 2(1)10 and gave an

Spearman's Footrule, D, is the sum of the approximate table for the c.d.f. for D for
absolute values of the differences between the n=1l(1)15 generated by Monte Carlo

ranks in two rankings of n objects. For the approximation. They also conjectured about the
case of equally likely permutations, tables of rate of convergence to an approximating normal

the exact cumulative distribution function distribution and that an improvement in the
(c.d.f.) of D are given for 11 < n < 18. For approximation could be accomplished by using a

both Spearman's Footrule and Rank Correlation standard half-interval continuity correction of

Coefficient the maximum difference between the +1 to be applied for the c.d.f. of D. Diaconis
exact c.d.f. and the normal approximation is and Graham (1977) calculated the asymplotic mean
given as well as the maximum difference between and variance of D a9 d showed 0 < D < n /2 for n

the exact c.d.f. and the normal approximation even and 0 , D , (n 1)1/2 for n odd on the even
with correction for continuity and comparisons integers. Spearman (1904) and Kleinecke, Ury
made. and Wagner (1962) derived the exact mean and

variance of D given by

I. Introduction
E(D) (n - 1)/3 (1.4)

Given two rankings of n objects or and
equivalently, two permutations p and q, a widely Var (D) z (n+l)(2n + 7)/45. (1.5)

used non-parametric measure of association
between the rankings is Spearman's , given in 2. Calculation of gxpct Tables of the Null
unnormalized form as S, where Distribution of S and D for n : 11(1)18

n Assuming the null distribution of S or D

S (p,q) X (p, - q,) . (1.1) means all possible n' permutations are equally
I likely. By calculating each possible

permutation and comparing it to a base ranking

S is related to Spearman's R9 k Correlation 1,2,3 .., n the corresponding S or D can be
Coefficient by . = I - 6S/(n -n) and its calculated and counted, yielding the frequency

derivation along with many of its properties and distribution of either. Dividing each frequency
moments can be found in Kendall (1970). In by n' gives the corresponding probability
particular it is shown 3there that S is density function for S or D and suming yields
distributed from 0 to (9 -n)/3 on the even the exact c.d.f. While conceptually easy, a

integejs with a mean of (n -n)/6 uind variance of straight forward approach for calculating the
(n -n) /36(n-1). exact c.d.f. when n a 17 requires 35, 568, 728,

An equally simple but neglected competitor is 096, 000 permutations to be calculated, each
Spearman's (1904) footrule given by D, where involving the finding the sum of 17 terms of

absolute values of differences for C or the sum

n of i7 terms of squared differences for S. This

D (p,q) "p, - q . (1.2) would involve staggering amounts of computer

i1 time. ow-ver, Table 1, which displays the
exact c.d.f. for D for n up to 18, was

The footrule has historically not been an calculated utilizing permutations, combinations,
i"-ortant measure of association because of a and stored arrays as outlined by Franklin

lack of desirable statistical properties (cf. (1987). In that paper the exact c.d.f. for S
Pearson, 1907 and Kendall, 1970). Diaconis and was presented f,\r n = 12(l116 using the same
Graham (1977) recently revived interest in D by method. A later paper by Franklin (1987)
treating it as a metric on the set of extended the table for S to n = 17 and 18 again

permutations, establishing its limiting using this technique.
normality by use of Hoelfding'6 (19511 In this technique first k was chosen
combinatorial central limit theorem and siow it (approximately n/) anu then all the k' and (n-
to be related to Kendall's T given by T, where k) permutations of (1,2,..,k) and {l,2,..,n-k)

were stored in matrices A and B (respectively).
n-I n Next, a k-sized combination of integers from

T(p,q) = :. sign (p1 -pj ) sign (q1 -q J). (l,2,...nI and its resulting combination of
i=I j=i+l (1.3) (n-k) integers (the "remainder") was determined.

All possible k! permutations were formed of the

They were able to show T ( D < 2T and k-sized combination with each permutation
concluded that S is probably the better metric compared to the base ranking of 1,2,..,k and a

with D and T roughly the same. While D is corresponding sum of absolute differences
somewhat easier to interpret directly, T had the calculated and stored in a matrix S . Then all
advantage of having the exact table tabulated possible (n-k)! permutations of the "remainder"

for the c.d.f. for small sample sizes (Cf. were found with each permutation compared to the

Kendall, 1970). base ranking of k+l,k+2,..,n and a corresponding
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sum of absolute differences calculated and 4. Conclusion and Recomendations
stored in a matrix S2 . Multiplying the counts
of S (i) by the counts of S (j) and placing the The exact c.d.f. of Spearman's footrule and
resuiting count in S(i+ ) results in an Spearman's Rank Correlation coefficient should
equivalent process' g of (k!) x (n-k)! permuta- be used for n < 18, since they now exist. For
tions for S. li',ally sumnation over all ( ) n) 19, the straight normal approximation for 0
combinations gi.ds the complete n! permutations should be avoided in favor of the normal approx-
for the t- 1 distribution. (Copies of the imation with continuity correction factor. For
program are available from the author.) All all n > 19, such an approximation will have an
calculations were done in _ padruple precision error of ( .006 for any value of D and will have
allowing accuracy of 1 x 10 on a Harris 1000 even smaller error (-- .003) for most upper and
"Super Mini" computer. Internal checks on the lower tail values. Convergence to normality of
number of permutations and external, theoretical Spearman's footrule is significantly slower than
checks on the cumulative distribution assured the convergence of Spearman's Rho.
complete accuracy. Use of this technique allows Seven different approximations to S have been
several orders of magnitude of decrease in presented by Franklin '1987). The clearly and
calculation time. dramatically superior approximation was shown in

Comparison of the exact distribution of Table that paper to be a Pearson Type II
I with the table produced by Monte Carlo approximation. For further discussion of that
simulation by Ury and Kleineche (1979) shows approximation see Olds (1938) and Zar (1972).
remarkable accuracy. The largest difference For that approximation the maximum absolute
was .003 with most entries differing by .001 or error is given by .000158 for n = 18.
less for n < 15.
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Table I

Exact cumulative null distributor of 0

d/n 11 12 13 14 15 16 17 18

0 0.25-7 0.21-8 0.16-9 0.1-10 0.8-12 0.5-13 0.3-14 0.2-15
2 0.28-6 0.25-7 0.21-8 0.16-9 0.1-10 0.8-12 0.5-13 0.3-14
4 0.19-5 0.18-6 0.16-7 0.13-8 0.10-9 0.7-11 0.5-12 0.3-13
6 0.93-5 0.98-6 0.93-7 0.81-8 0.65-9 0.5-10 0.3-11 0.2-12
8 0.38-4 0.43-5 0.44-6 0.40-7 0.34-8 0.27-9 0.2-10 0.1-11

10 0.13-3 0.16-4 0.17-5 0.17-6 0.15-7 0.13-8 0.10-9 0.7-11
12 0.39-3 0.52-4 0.61-5 0.63-6 0.60-7 0.53-8 0.42-9 0.3-10
14 0.0011 0.15-3 0.19-4 0.21-5 0.21-6 0.19-7 0.16-8 0.13-9
16 0.0026 0.39-3 0.53-4 0.63-5 0.67-6 0.65-7 0.58-8 0.47-9
18 0.0056 0.94-3 0.14-3 0.17-4 0.19-5 0.20-6 0.19-7 0.16-8
20 0.0113 0.0021 0.32-3 0.44-4 0.52-5 0.57-6 0.55-7 0.50-8
22 0.0211 0.0042 0.70-3 0.10-3 0.13-4 0.15-5 0.15-6 0.14-7
24 0.0368 0.0080 0.0014 0.23-3 0.31-4 0.37-5 0.40-6 0.40-7
26 0.0606 0.0143 0.0028 0.47-3 0.67-4 0.86-5 0.99-6 0.10-6
28 0.0946 0.0244 0.0051 0.92-3 0.14-3 0.19-4 0.23-5 0.25-6
30 0.1403 0.0395 0.0090 0.0017 0.28-3 0.40-4 0.51-5 0.58-6
32 0.1990 0.0611 0.0150 0.0030 0.53-3 0.80-4 0.11-4 0.13-5
34 0.2700 0.0907 0.0240 0.0052 0.96-3 0.15-3 0.22-4 0.27-5
36 0.3522 0.1295 0.0370 0.0086 0.0017 0.28-3 0.42-4 0.55-5
38 0.4420 0.1782 0.0550 0.0137 0.0028 0.51-3 0.79-4 0.11-4
40 0.5363 0.2369 0.0791 0.0210 0.0046 0.87-3 0.14-3 0.20-4
42 0.6295 0.3049 0.1102 0.0314 0.0073 0.0015 0.25-3 0.38-4
44 0.7180 0.3807 0.1490 0.0454 0.0113 0.0024 0.42-3 0.67-4
46 0.7955 0.4619 0.1958 0.0640 0.0169 0.0037 0.70-3 0.12-3
48 0.8617 0.5455 0.2506 0.0878 0.0246 0.0057 0.0011 0.20-3
50 0.9120 0.6281 0.3127 0.1174 0.0350 0.0086 0.0018 0.32-3
52 0.9498 0.7063 0.3808 0.1535 0.0486 0.0126 0.0027 0.52-3
54 0.9740 0.7771 0.4531 0.1960 0.0660 0.0180 0.0041 0.81-3
56 0.9895 0.8383 0.5277 0.2451 0.0877 0.0253 0.0061 0.0013
58 0.9960 0.8888 0.6018 0.3001 0.1144 0.0348 0.0088 0.0019
60 1.0000 0.9281 0.6735 0.3602 0.1462 0.0470 0.0125 0.0028
62 0.9569 0.7400 0.4243 0.1834 0.0623 0.0173 0.0041
64 0.9766 0.7999 0.4908 0.2259 0.0812 0.0237 0.0058
66 0.9886 0.8515 0.5580 0.2736 0.1040 0.0319 0.0082
68 0.9953 0.8946 0.6242 0.3258 0.1310 0.0422 0.0113
70 0.9989 0.9284 0.6876 0.3819 0.1624 0.0550 0.0154
72 1.0000 0.9545 0.7466 0.4408 0.1984 0.0706 0.0206
74 0.9725 0.7999 0.5013 0.2387 0.0894 0.0273
76 0.9850 0.8467 0.5623 0.2832 0.1115 0.0356
78 0.9925 0.8863 0.6222 0.3314 0.1373 0.0458
80 0.9971 0.9188 0.6799 0.3828 0.1168 0.0583
82 0.9989 0.9443 0.7340 0.4364 0.2001 0.0732
84 1.0000 0.9636 0.7838 0.4915 0.2371 0.0907
86 0.9776 0.8282 0.5471 0.2777 0.1112
88 0.9871 0.8670 0.6022 0.3214 0.1348
90 0.9932 0.8998 0.6556 0.3678 0.1615
92 0.9968 0.9269 0.7066 0.4164 0.1914
94 0.9987 0.9484 0.7542 0.4665 0.2246
96 0.9997 0.9650 0.7978 0.5174 0.2607
98 1.0000 0.9772 0.8369 0.5682 0.2997
100 0.9861 0.8712 0.6182 0.3413
102 0.9919 0.9006 0.6667 0.3849
104 0.9957 0.9252 0.7129 0.4302
106 0.9979 0.9452 0.7562 0.4766
108 0.9992 0.9611 0.7961 0.5234
110 0.9997 0.9733 0.8322 0.5702
112 1.0000 0.9824 0.8643 0.6163
114 0.9889 0.8923 0.6611
116 0.9934 0.9162 0.7040
118 0.9963 0.9362 0.7445
120 0.9981 0.9526 0.7822
122 0.9991 0.9656 0.8168
124 0.9996 0.9758 0.8481
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Table 1 - Continued

Exact cumulative null distributor of D

d/n 11 12 13 14 15 16 17 18

126 0.9999 0.9835 0.8759
128 1.0000 0.9892 0.9002
130 0.9932 0.9211
132 0.9959 0.9388
134 0.9977 0.9535
136 0.9988 0.9654
138 0.9994 0.9748
140 0.9997 0.9821
142 0.9999 0.9877
144 1.0000 0.9918
146 0.9947
148 0.9968
150 0.9981
152 0.9990
154 0.9995
156 0.9997
158 0.9999
160 0.9999
162 1.0000

Table 2
Maximum I c.d.f. exact - c.d.f. approx. I Over All Possible Values of D

n 10 11 12 13 14 15 16 17 18

Normal .046 .040 .035 .031 .028 .025 .023 .021 .019
Approximation
at D = 30 36 42 50 58 68 76 86 96

Normal .015 .014 .013 .012 .011 .011 .010 .010 .009
Approximation
with C.C.
at D 34 42 50 58 68 78 88 100 112
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THE EFFECTS OF HEAVY TAILED DISTRIBUTIONS ON THE TWO-SIDED k-SAMPLE SMIRNOV TEST

Henry D. Crockett and M. M. Whiteside, University of Texas at Arlington

Abstract: This paper presents the problem that sample less frequentl, than the p.d.f.s with
the k-sample Smirnov test has in discriminating smaller tails. In this way, extreme values in

the ranking of samples from heavy tailed the samples could greatly affect which one of

probability distribution functions. The test the samples was chosen as the "largest" sample
results for 1000 tests are presented for each of (Fig. 1). Therefore, since the true "largest"

seven levels of variance and five scaler offsets sample is determined less often, the test

for the two distributions, statistic is comparing two samples from truly
I. Introduction. Given nk random variables equivalent distributions; therefore, the

{X i}, i=l,..,n,jl,..,k, which represent k probability of failing to reject should equal
random samples of equal size n from an I-a, when in fact the null hypothesis is false.
absolutely continuous distribution function In order to show how these differences affect

F.(x). The k-sample Smirnov test is used to the two-sided K-sample Smirnov test, a
d~termine if the population distribution simulation was performed. The two p.d.f.s which

functions F(x) are identical. Thus the were compared were the uniform distribution and

hypotheses would be: the double exponential distribution. These were
performed on sample sizes of 6, 12, and 30. For

H0 :FI(x) = F2 (x) ... = Fk(x) for all x, each distribution and each sample size, several

levels of variance and scaler factor movement of
H :F +(x) = Fu(x) for some t, u, and x. one of the three samples were considered. The

levels of variance were 10, 25, 50, 75, 100,
In order to perform the test, the sample must be 150, and 200. The scaler factor added to one of
ordered within themselves, so that the rth the samples drawn were 0, 1, 2, 4, and 8.

ordered sample is Z < Z ..<Z . Then Z. is Random number generation and test results fortheit ode satstc f2r "" n
the ith order from the rth sample, and 1000 tests for each level of sample size,
Z is the extreme of the rth sample. Thus the variance, and factor were performed using thenr.
empirical distribution function of the rth Statistical Applications System (SAS). The null

sample would be: hypothesis is that the population distribution

functions are identical at the a=0.05 level of
F r(x) = 0 if x < Z ir, significance.

3. Simulation Results. The result of the
Fr(W = a/n it L <= x <= A a+l,r, simulation were mixed. The expected results

would be that the Smirnov test would detect a
F (x) = I if Z <= x. scaler factor change in one sample moi, often

for a uniform distribution, and would herefore
The samples are then ordered among themselves on reject the null hypothesis more often AIan the
the basis of their most extreme points, samples from double exponentials. The- tests
Therefore, if S is the set of extremes from the were all performed at the a=O.05 level tI the

k-samples such that S =JZ 
n 

, r = 1,..,k}. The percentage of rejections were determiner -or
set S is then ordered to de ermine the smallest each level (Tables 1-6). Also for each vel
and the largest Z , the sample related to the the percentage of times the sample which td a

slilest Z is ten the sample of rank I or scaler factor change was chosen as the laiest

F (x), an the sample related t)the largest sample is shown in parentheses. The resul,'3
Z is the sample of rank k or F (x). The appear to be conflicting I-ecause although fornrsttsiT
test statistic T is then defined by Conover each level of all factors the uniform
(t5O) as thekaximum vertical distance between distribution correctly chose the true larges'

F 'Cx) and F (x). Mathematically this is sample more frequently than the double

stated as: exponential, it also appears that the rejection

(F ) W rate was larger for the double exponential than
T 1 = supx[F( W - F (x)). for uniform distributions.

Upon closer inspection of the distribution
This test statistic would then be compared to functions, however, this result appears to be

a table value to obtain a decision for a given justified. From Figures 2 and 3, it is apparent
level of a. that given two distributions functions of

2. Effect of Heavy Tailed Distributions. uniform density, one of which has been adjusted
The method for choosing the largest and smallest by a scaler, the distance between the two
sample for comparison appears to be susceptible distributions is much less than two double
to error when choosing among heavy tailed exponentials that have been separated by the

distributions. These distributions are more same amount. Therefore, even though the correct

likely to have extreme values due to the nature largest sample was chosen more often from the
of their probability distribution functions samples of the univarite p.d.f.s, the decision
(p.d.f.s) than a more leptokurtic p.d.f. This to reject the null hypothesis may not have been

would indicate that if k samples were drawn from made due to smaller values of T1 .

populations with the same p.d.f.s, of which one 4. Conclusions and Speculation. Since the
differed from the oth.rs only by some scaler assumption that keptokurtic distributions will

factor, the p.d.f.s with heavier tailed correctly identify a similar distribution
distributions would choose the true "largest" function which has been adjusted by an offset
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more often than a platykurtic distribution was References

shown I be correct, further investigation is

warranted. The next step in investigations will Birnbaum, Z. W., and R. A. Halls, "Small

be to compare distributions which are more Sample Distributions for Multi-Sample

similar in shape, but one of which has more Statistics of the Smirnov Type," Annals of

extreme values than the other. This will Mathematic Statistics, Vol. 31, pp. 710-720.

probably show that distributions which have more Conover, W. J., Practical Nonparametric

extreme values also have a much greater chance Statistics (2nd ed.), John Wiley & Sons,

for Type II errors than those without. Another 1980, pp. 382-384.

avenue of investigation might be appropriate in Conover, W. J.., "Several k-Sample Kolmogorov-

order to determine a methodology of choosing the Smirnov Tests," Annals of Mathematic

largest and smallest sample which is less Statistics, Vol. 36, pp. 1019-1026.

susceptible to extreme values. A suggestion for David, Herbert T., "A Three-Sample Kolmogorov-

this mig'.t be to obtain the three largest Smirnov Test," Annals of Mathematic

observations from each sample, rank these, and Statistics, Vol. 29, pp. 842-851.

then determine which samples have the smallest Kiefer, J., "K-Sample Analogues of the

and largest sum of ranks. This would appear to Kolmogorov-Smirnov and Cramer-V. Mises

address the problem of an outlier in one of the Tests," Annals of Mathematic Statistics, Vol.

sets of samples. 30, pp. 420-447.
Figure I

icretyidentified

as the 'lage "t' sa.ple

F(X)

X

i Table 2

UNIFORM DISTRXBUTION (k=3,n=6) DOUBLE EXPONENTIAL (k=3,n=6)

FACTOR FACTOR
0 1 2 4 8 0 1 2 4 8

0.044 0.055 0.104 0.323 0.951 0.040 0.067 0.168 0.536 0.932

10 (0.347) (0.646) (0.826) (0.962) (1.000) 10 (0.357) (0.429) (0.567) (0.784) (0.957)
V ---- ----- -- - - -- -- -- - - - - -

0.038 0.047 0.066 0.128 0.468 - 0.036 0.051 0.085 0.238 0,637

A 25 (0.331) (0.562) (0.688) (0.883) (0.996) A 25 (0.336). (0.390) (0.459) (0.619) (0.814)
-..... i-- ------- ------ ---- ... ..... . ....... - -....

R 0.036 0.043 0.063 0.085 0.268 R 0.044 0.047 0.069 0.144 0.428

50 (0.325) (0.489) (0.598) (0.779) (0.950) 50 (0.340) (0.376) (0.432) (0.512) (0.727)

I .....------- ---------------------- I -

0.035 0.039 0.031 0.072 0.205 0.039 0.042 0.058 0.114 0.303

A 75 (0.342) (0.453) (0.581) (0.724) (0.929) A 75 (0.346) (0.367) (0.409) (0.497) (0.644)

N 0.u41 0.036 0.036 0.058 0.151 N 0.040 - 0.046 0.045 0.090 0.238

100 (0.334)1(0.431) (0.538) (0.679) (0.874) 100 (0.351) (0.336) (0.373) (0.486) (0.644)
C - ---------------- ------- ------- --------- C - - -

0.044 - 0.042 0.058 0.063 0.130 1 0.043 - 0.049 0.038 0.062 0.170

E 150 (0.308) (0.457) (0.485) (0.659) (0.809) E 150 (0.333) (0.338) (0.377, (0.444) (0.580)

0.034 - 0.041 0.039 0.048 0.080 0.037 0.036 0.049 0.069 0.137

200 (0.332) (0.417) (0.487) (0.612) (0.788) 200 (0.334) (0.341) (0.371) (0.421), (0.543)
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Table 3 Fable 4

UNIFORM DISTRIBUTION (k=3,n=12) DOUBLE EXPONENTIAL (k=3,n=12)

FACTOR FACTOR

0 1 2 4 8 0 1 2 4 8

0.032 0.070 0.171 0.638 1.000 0.03 0.102 0.283 0.696 0.935

10 (0.346) (0.783) (0.934) (0.999) (1.000) 10 (0.328) (0.456) (0.562) (0.778) 0.931)
Vd v

0.031 0.057 0.099 0.273 0.833 0.035 0.069 0.112 0.413 0.809

A 25 (0.312) (0.649)- (0.854) (0.972)-(1.000) A 25 (0.341) (0.388) (0.464) (0.628) (0.829)

R 0.029 0.038 0.065 0.158 0.517 R 0.037 0.032 0.079 0.214 0.612

50 (0.333) (0.603) (0.761) (0.926) (0.993) 50 (0.340) (0.363) (0.436) (0.518) (0.726)
I - --

0.032 0.044 0.060 0.111 0.339 0.030 0.043 0.056 0.155 0.477

A 75 (0 346) (0.560)-(0.699) (0.911) (0.989) A 75 (0.328) (0.382)- (0.412) (0.495) (0.638)

N 3.033 0.037 0.062 0.081 0.244 N 0.024 0.032 0.054 0.117 0.418

100 (0.350) (0.538) (0.697) (0.838) (0.973) 100 (0.328) (0.368) (0.400) (0.475) (0.612)

C C
0.031 0.044 0.045 0.058 0.195 0.035 0.048 0.043 0.095 0.281

E 150 (0.312) (0.482) (0.644) (0.813) (0.950) E 150 (0.341) (0.341)1(0.368) (0.436) (0.535)

0.029 0.033 0.048 0.074 0.162 0.037 0.025 0.041 0.080 0.208

200 (0.333) (0.471) (0.594) (0.765)(0.913) 200 (0.340) (0.339) (0.374) (0.406) (0.530)

Table 5 Table 6

UNIFORM DISTRIBUTION (k=3,n=30) DOUBLE EXPONENTIAL (k=3,n=30)
FACTOR FACTOR

0 1 2 4 8 0 1 2 4 8

0.026 0.109 0.388 0.969 1.000 0.025 0.146 0.460 0.742 0.951

10 (0.337) (0.978) (0.998) (1.000) (1.000) 10 (0.335) (0.426) (0.546) (0.739) (0.950)
V - - - - -V- - - - -

v 0.026 0.058 0.166 0.639 0.998 0.033 0.066 0.244 0.592 0.828

A 25 (0.337) (0.885) (0.982) (0.999) (1.000) A 25 (0.300) (0.376) (0.484) (0.609) (0.825)

R 0.038 0.046 0.104 0.323 0.924 R 0.025 0.050 0.132 0.388 0.737

50 (0.325) (0.821) 0.945) (0.997) (1.000) 50 (0.335) (0.365) (0.429) (0.502) (0.733)
I -0.0-5-0I0-7-.

0.026 0.030 0.068 0.231 0.748 0.033 0.035 0.097 0.294 0.629

A 75 (0.337) (0.771) (0.908) (0.991) (1.000) A 75 (0.300) (0.343) (0.432) (0.474) (0.641)

N 0.038 0.039 0.062 0.171 0.619 N 0.025 0.037 0.074 0.228 0.610

100 (u-325) (5.735) (0.884) (0.983) (1.000) 100 (0.335) (0.354) (0.400) (0.453) (0.632)

0.026 0.025 0.057 0.136 0.412 0.033 0.030 0.056 0.172 0.464

E 150 (0.337) (0.696) (0.820) (0.966) (0.999) E 150 (0.300) (0.337) (0.405) (0.427) (0.547)

0.038 0.036 0.050 0.092 0.315 0.025 0.034 0.043 0.132 0.416

200 (0.325) (0.638) (0.820) (0.941) (0.999) 200 (0.335) (0.342) (0.382) (0.408) (0. 543)

-- - - - -

Figure 3 Figure 2

F (x)

x x
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SIMULATED POWER COMPARISONS OF MRPP RANK TESTS AND SOME STANDARD SCORE TESTS

Derrick S. Tracy and Khushnood A. Khan, University of Windsor

Abstract sample sizes by Tracy and Tajuddin (1986). For
v#2, Brockwell, Mielke and Robinson (1982) show

Two MRPP rank tests and two standard score that ' has a non-normal non-invariant
tests - median and Fisher, are compared with distribution, and that its asymptotic distribu-
respect to their empirical powers, computed from tion depends on the underlying population.
extensive simulations from normal, Cauchy and In this paper, we compare the power perfor-
Laplace underlying populations. This is done for mance of 6, and 62 for N, N2 unequal and equai
several combinations of sample sizes - unequal
and equal. with N=80 when the underlying distributions are

normal, Cauchy and Laplace. Based on a simula-

In applying classical linear rank tests to tion study, 5000 samples are generated using IMSL
meteorological data, Mielke, Berry and Medina subroutines. The first N observations are

(1982) posed the problem that in most cases the shifted by ko, where k proceeds from 0 to 1.0, at

analysis space associated with these tests is steps of 0.2. To obtain empirical powers, the

non-metric, and hence the p-values may not be number of rejections is Lvi- c for a 
= 

.001, .01,

interpreted correctly. An alternative inference .05 and .10. The appropriate approximations for
the distributions of 6. and 6 are Pearson Type

technique known as multiresponse permutation t TOe erson pe

procedure (MRPP) is proposed, of which a VI and Type I respectively. Teaempirical powers

generalized version is discussed in Mielke (1984). of two standard score tests - median and Fisher,

Let w = Wl..,wN } be a finite population of are also studied for comparison purposes. The
results are presented in Tables I - 3, and some

N objects, each of which has r responses, and typical graphs are also drawn. On interchanging

the responses have the same range via a rank the roles of N1 and N2 , the powers of the test

order transformation. We let K = Z N. of these statistics remain more or less the same for
1 1 symmetric underlying populations. Hence we only

be classified into g mutually exclusive subgroups present the case of N 1 >N for N,=70,60,50,40.
according to some a priori classification scheme.
The excess N-K observations are in the (g+l)th If we were to use only the first three momznts

subgroup. Then the MRPP test statistic is of 61, 62' the appropriate approximation to their

d , distribution is Pearson Type III, see Mielke,defined as 6 = Z C i i  where C >0 , Ci=l,

I i 1 Berry, Brockwell and Williams (1981). For
N. -1 N a = .001, the powers of 6 under Pearson Type III

i = (2') I Alj Si(W )S (w ), S (w) being an approximation are higher than those under Type VI
i 2 lJi I i J, i I gr a hs ne yeV

I<J approximation for all shifts and sample sizes.

indicator function, and A the symmetric However, for a = .01, .05 and .10, the powers of

distance function r X J J p~l, v. 6, under Type VI approximation are slightly

k -
,  higher than those under Type III approximation

(When r=l, p is irrelevant.) The analysis space for all sample sizes except (NI,N 2 )=(70,10),

is non-metric for v>l and metric for v<l. The (10,70). Powers of 62 under Type I approximation

majority of the permutation tests usedin practice are slightly lower than those under Type Ill

are based on v=2. The choice of p=2 and v=l is approximation for a 
= 

.01, .05 and .10, but the

recommended. situation is the other way round for a = .001.

Under H classification is random, equal For N. = N2 and a = .01, both approximations
0 give e same value.probabilities are assigned to the N 

=
-!gIN!

1 a For normal underlying populations, powers of

possible allocations of the N objects into the 6 are higher than those for 6 . For a = .001,
subgroups. H is rejected when 6 is small. The t power of Fisher test is lower than that of

0 6 but generally higher than that Of 6 For
number M of possible allocations is very large, 2 br

even for moderate N, making it difficult to a .01 and for lower shifts the power of the

obtain the exact distribution. This is overcome Fisher test is lower, but for higher shifts and

by taking the approximate distribution, using for all other a's, the powers of Fisher test are

the first four moments of 6, see Tracy and higher.

Tajuddin (1985). An efficient choice of C. when For heavy-tailed distributions (Cauchy and
Laplace), the powers of 6 are higher than those

the Ni's are not equal is Ni/K, as suggested by of 62. Powers of Fisher est are lower than

Mielke (1984, p.817). Mielke, Berry, Brockwell those of 61, 62 and median test.

and Williams (1981) considered a special case In most cases the empirical levels of signifi-
of AIj when r=I and measurements are replaced by cance for the median test are not within 2

their ranks R(w ) in the combined sample. Then standard deviation limits, and hence should not
be compared. However, where comparable, the

A = IR(wI)-R(wj)IV, v>O. For v-1,2, they median test has slightly high power than the

denoted the test statistic by 61, 62" Using the other tests, but for underlying normal population
it gains the least powers.

Pearson criterion, appropriate Pearson Type

curves are suggested by Tracy and Tajuddin
(1985), and power performance studied for equal
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Performance of Several One Sample Procedures

David L. Turner and YuYu Wang, Utah State University

Abstract
Since the null hypothesis was in fact

Empirical p-values and powers for the true, the p-values should have followed
usual t test, the signed rank test, a a uniform distribution. Figure I plots
trimmed t test, a jackknife and a the empirical cdf of the p-values
bootstrap procedure were compared using against the cdf for a un i form
repeated samples of size 30 from normal, distribution for samples from each of
double exponential, Cauchy, negative the distributions when n = 30. A 450
exponential and uniform distributions line for these plots was regraded as the
for normal power values ranging from standard, indicatiry,_ no departure from
0.05 through 0.95. The Bootstrap the underlying model.
performed as well as the usual t test. p-values for the Cauchy distribution
The trimmed t, signed rank test and the tend to clump or cluster in the middle a
usual t-test performed about the same. little more than they should for the t
The jackknife performed worst among and the trimmed t. The negative
these tests. The signed rank test did exponential also has "light tails" for
best for the Cauchy distribution, the signed rank test. The bootstrap

comes surprisingly close to the optimal
1. Introduction. 450 line, indicating that the p-values

for a true null hypothesis are close to
'The Jackknife and Bootstrap uniformly distributed. The p-values for

procedures as described by Efron(1982) the Jackk-'f2 shows a completly different
seem to place an inordinate amount of story however. It appears to be very
emphasis on the sample and how well it difficult to get a jackknifed Y more
approximates the true underlying extreme than the original as Indicated
cumulative distribution function (cdf). by the fact that far more small p-values
To investigate the performance of these were obs4.',!d than expected.
two techniques relative to some more
standard or usual tests, a monte carlo
study was run. Table I lists the 5 3. p-value Analysis for H.: P = P0 false.
different test statistics and methods
used to compute p-values for each test. The next step in the analysis
Samples were generated from a standard involved specifying values for the Ptrue
normal, a double exponential, negative to make the power of the t-test take on

exponential, uniform and Cauchy the values 0.05, .10, .25, .50, .75, .90
distributions. Each started wi th and .95 for n = 10 . Figures 2 and 3
uniform deviates generated by the plot the average p-values for 100
portable congruential random number repetitions of each Ptrue value for each
generator given by Wichmann and distribution. Figure 2 shows how poorly
Hill(1987). Each distribution was the jackknife does across the 5
scaled to have mean 0 and variance 1. distributions considered here. It is
The Cauchy was scaled to have zero surprising to see how little fluctuation
median and the same interquartile range there is among the tests for samples
as the standard normal. from all but the Cauchy distribution.

100 trials were run for each Each of the tests except the Jackknife
combination of P rue' distribution and seems to be fairly robust to departures
sample size. After some preliminary from normality. The signed rank test is
runs, 100 bootstrap samples were deemed the clear winner for the Cauchy
adequate for the demonstration purposes distribution, having a curve more like

of this paper. those for sampling from the normal
distribution. Figure 3 plots the same
values but with a different arrangement.
Each test seems to do poorly for the

2. p-value Analysis for HO: Y = Po true Cauchy distribution except the signed

The first analyis focused on the case rank test.

when the null hypothesis was true, i.e. 4. Empirical power analysis
when P was indeed equal to P .
Initially the t distribution was used %o The null hypothesis for this stuldy
calculate p-values for the jackknife and was rejected for any particular run if
bootstrap procedures. This consistently the empirical p-value was less than a =
gave average p-values slightly larger 0.05. Figures 4 and 5 plot the
than 0.5. A more "nonparametric" p- empirical power values for the 5 testb,
value was then implemented for these 2 against the 5 distributions plotted
procedures which defined p as 2[min(#W's against the 7 different P vloues.

0o'#,?'s > Po ) ] . Figure 4 shows very close agreement
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among all tests but the jackknife for References
all but the Cauchy distribution. For
the Cauchy, the signed rank test comes Efron, Bradley (1982): The Ja.I.&Kife-
closest to providing an 'ideal" power the Bootstrap a Otr Res Li
curve. The bootstrap shows a slight PIaajSociety for Industrial and
improvement over the t test, but does Applied Mathematics, Philadelphia,
not do as well as the trimmed t. The Pennsylvania.
jackknife almost always rejects, and
seems to differ but little as the value Wichnmann, B.A. and I.D. Hill (1987):

04 I changes. Figure 5 shows that "Building a Random-Number Generator,-
all bu the signed rank test provide B Volume 12, Number 3, pp 127-128
very low power for the Cauchy
distribution.

5. Summary and Conclusion

For the 5 distributions considered
here, the bootstrap did surprisingly
well as did the signed rank test .
Equally surprising or comforting was how
well the t test did. For these 5
distributions, the usual t appears to be
robust enough. The present formulation
of the jackknife is not useful, being
far too liberal and rejecting far more
often than it should.

Further research in this area could
include extreme value distributions and
perhaps a mixture distribution such as
0.9N(0,1) + O.IN(0,100), or more "L'
shaped distributions. More complex
procedures could also be tried.

Table 1. One sample rocedures compared.

Procedure Test Statistic p-value calculation

t statistic c? - Po)/(S/.Jn) t distribution

Trimmed t t for trimmed data t distribution
(de' ring lower 5%
and upper 5%)

Signed Rank t t for signed ranks of t distribution
(Yi - PO)

Jackknife ?i's computed by 2(min(#S"s < Po,#Ss > 110) )
deleting each Y,

Bootstrap ?i's computed from 2[min(#?'s < 90 ,#y's > 110 ))
random samples with
replacement from the
data
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COUITATIONAL ASPECT OF RARMONIC SIGNAL DETECTION

Keh-Shin Lii, University of California, Riverside and Tai-Houn Tsou, University of California, Riverside

1. INTRODUCTION fz(A) (02/2n)IZ a exp(-iux )12

We consider a model of the form u

Xt = Yt 
+ 

Zt (1) and its periodogram has the following relationship
with the periodogram of E

with Yt a periodic function given by t

KE a exp(-iuX)i N + No)
Yt E kAkexp(-it k -A k~~c°S(wkt+okl (2)

t k= k wtk) () where RN(X) O(W/N) uniformly in X, [Priestley

where Rk, wk' and 
0
k are the amplitude, frequency (1981) p.4241. From this, it is clear that

and phase of the harmonic process Yt, Zt is an ad- asympototically

ditive noise process which is independent of Yt. ( jI()) (5)

When Zt is white, Schuster (1898), Fisher (1929), E au exp(-iuX) 
2  

N

Whittle (1952), and Siegel (1980) discussed how to

detect the harmonic signal Yt In many applica- if 1Z auexp(-iux
) 1

*
O 

for all X. The asymptotic

tions of engneering, meteorology and ecology prob- distribution of 1'(X) is known from the previous

lems, the background noise may not be white, or it discussion. This observation motivated various

can be represented as a linear process, such as methods which attempt to estimate the spectrum of

Z = E au (3) the noise process Zt which is proportional to

u u t-u IE a u exp(-iuX)1
2 

under the null hypothesis H0 .
where e s are independent, identically distri- We will first review some conventional methods

boted and a,,'s are constants. Usually we assume which include Whittle's test, Bartlett's test and

ta as mn z2 Whittle Priestley's P(A) test.
that ct has mean zero with variance a .(I) Whittle's test - Whittle (1952, 1954)

(1954), Bartlett (1957), and Priestley (1962 a,b) The basic idea of this approach is to use the

dealt with the testing and estimation problems, asymptotic relationship between the periodogram of
when the noise process is assumed to be colored, the general linear process {Zt) and that of the

To motivate our procedure, we first consider residual process {rt . Following Fisher's tests
the Fisher's test. This is the case when the t

noise process Zt is assumed to be zero mean in equation (4), Whittle proposed the test stat-

2 istic
Gaussian white noise with variance a . The null Max ix x )/21f7(X
hypothesis can be stated as (w) N_ _

H0 : the harmonic signal Yt is zero in (1). G _ (6)
jnE (I (Xj)/2,,fz(Xj

Under H0, the periodogram of the process Xt, jl I

IXA (1)E Kexp(-itx it where J=1,...,n, n=[.i/21.N I I G( w )

A -2wJ/N has a Chi-square distribution with 2 Under H, is asymptotically distributed

degrees of freedom, if it is divided by a * G
)
. The problem is, the actual spectral density

Furthermore, I(Xj) and l(Xkk) are independent function fz(X) of 1Z is usually unknown. The

if j~k with Am=21vm/N for j,k=1,2,...,N/2j. remedy for this is to use the estimated powerm spectrum of {Zt} assa substitute for fz(Xj1.

This result also holds asymptotically when the Gpe iodsa te fBr (157)

noise process Z is independent, identically (i) Grouped periodogram test - Bartlett (1957)t This method divides the periodogram ordinates

distributed, but not necessarily Gaussian into r = [N/2k] sets, each set containing k ordi-
[Brillinger (1975) p.941. Based upon the previous nates. When k is relatively small compared with

result, Fisher (1929) derived the exact distri- N, the spectral density function in this region is
bution for the test of the largest peak of the almost flat. Thus, on the frequency domain, if we
periodogram, i.e. choose the bandwidth of the smoothing kernel small

max x(lN enough, the estimated power spectrum of 1ZtI will

j(f) I 8J<[N/21 N be almost constant for these k ordinates, except
G (4) the harmonic terms in the frequency w. Let

I N (A (g Max 1xQ)N 7 ix~ ) (7)
lkj<(N/21 (r-l)k+l<J<rk N j j=(r-I)k+l

When the noise process is linear which has the

form given in (3) with the conditions that Eunder H G has approximately the same distri-

< -, and IIl ul <-, then the power spectrum of bution as Fisher's test with k degrees of freedom.
(III) P(A) test - Priestley (1962 a,b)

Zt Is The idea behind this test is to use properties
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of the autocovariance function (ACF) of Y and Zt. I M(,0) = 0(0/'1)

It is assumed that the ACF of the general linear IY(X,0,0) = (3R'/16)[6N(W-X)
process Zt will die out as lag u + -, and the ACF N N

of the harmonic process Yt will persist even for + 6 N(W+A)]6 N
2
(w). (10)

large u. Let N-1 Now consider the noise process 1Z t. When JZtN-i (K(1)(ut

P() = (I/2w) Z (K (u) is non-Gaussian linear process with 3rd (4th)
u=-N+! n order cumulants 'Y3 (%4 of et exist, then the bi-

- K (
2
)(u))C(u)exp(-ixu) fX(A) - fX(A), spectrum and the trispectrum can be represented as

m n m fZfAl, 2 ) = (y3/(2s)
2
)r(ilrr(A2 )F*(Xi+2 )

where C(u) is the sample autocovariance function

and K
1
)(u), K(2)(u) are two symmetric sequences fZ(XlX 2 ,X3 ) = 4

n m
of weight function such that both decrease as lul r*(xl+X2+X3)

increases and m/n 0, n/N+0, as m+-, n- and N-. with r(X) = auexp(-iuX).
To detect the harmonic process, we plot P(A)

vs. X and test the significance of the large When the noise process Zt is given in (3) such

peaks. The standardized cumulative sums can be that the third order cumulant of Et is nonzero,
defined as the bispectrum of the process Xt, on the submani-

,N/(mA n,m)jiP(2iTj/m) fold (N1,X2) = (0,0), can be represented as
Jq = 

1
/
2  (8) fx(X,0) = fz(X, 0 ) = (2r)-2 y3r(0)I rM 12.

Hence, when P(0) * 0,

where q = 0,1,..., [m/2], and G(r) is estimated by rf(X) 1
2 

= D1 fx(X,0)

G*(r) 
= 

(1/
4
)Eu-mm C

2
(u). Detail of this dis- with DI = (21T)

2
/ (3r(0)). From these discussions

cussion can be found in Priestley's (1981). the following test statistics, from (5), is pro-
All these methods are based on the second order posed

moments of the time series. When the noise pro-
cess is Gaussian then moments up to second order max lfx j)/Rfx(Xj,0)

give all the information. If the noise process is G(b) IN N(<N/2] N= N 1,2....N/2
non-Gaussian then cumulants of order greater than I lx(X )/RfxX X,0)
two might provide extra information in addition to I<J<[N/2] (11)
those of less than or equal to second order mo-
ments. In next section we will present a method where Rfl(X,0) is a consistent estimator of the
which will take advantage of third and fourth N

order cumulants to improve the efficiency of de- real part of the bispectrum fX),) at fre-

tecting the existence of the periodic function Yt quency (X,0), and the unknown constant D1 is

under the assumption that the noise process is cancelled out.

non-Gaussian. When Et is symmetric distributed or Y3 = 0

2. TEST STATISTICS with nonzero 4th order cumulant Y 4, equation (9)
For simplicity, we will study processes, Yt and implies

Zt separately. Assuming Xt is stationary up to D2 fX(X, 0 ,0) = D2fY(X,0,0) + lF(X)12

order eight, and all cumulants are summable up to 3 2
the eight order. The bispectrum and the trispec- where D2 = (2s) /T412(0). According to (10), the
trum is the Fourier transformation of third and bias around the harmonic frequency using

fourth order cumulant function, i.e. D2 f4(X,0,0) is generally smaller than using

fx(Al,X2 ) - (27r)-2 x 2/O2fp(x) due to smoothing. Thus, the tri-
,A ,,CX(U,V)exP(-iuAl-iVX2) ENspectrum of Xt provide an estimate of tr() 2

. fY(Al,A 2 ) + fz(Xl,) 2 ) which has smaller bias than the methods using the
power spectrum. The following statistics are used

ffA1X-2,X3) - (2r)
- 3  

Z Cx(u,v,s)exp(-iuX,
-  

to detect the harmonic component
I<J<S[N/2a l(W )/Rfx(Xj ,0,0)max

ivX2-isX3) - fY(X 1 ,A2,X3) + fz(Aj,A2,X 3 ). (9) G (t). 1j[N21

Assume that the harmonic process {YtI contains F I x(W )/Rfx(XjOO)

only one harmonic component, i.e. 1.J<l 2 . N.. (12)
J-1,2...,!n/21

Yt - Rcos(wt+0) 0 - U(-it,r). where Rfx( J,0,0) is the estimated real part of

Let 
6
N(

0
) - sin((N+(1/2))8)/2irsin(8/2) be the the trispectrum at (y0,0.

Dirichlet kernel. Then, on the particular 3. ESTIMATION AND OOKPUTATION OF NEW STATISTICS
submanifold (A,O) and (X,0,0), we have Since the bispectrum and trispectrum are
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defined as (9), their natural estimates are N-1

N-I fx(X1 ,X 2J (2,,)
- 2  =  

KM,(u,v)CX(u,v) (13)
IX (Xl,X2) - 1/(21T)

2  
7 =[~

N( u,v --N+l exp(-iukl-iv 2 )

CX(u,v)exp( -ik u-iX2 v) , N-I
N-I fx)

I
1 2

'
X 3) = (2-)-3 E KM (u,v,s)

1'(A X2 A3) _'(7Y 3 NF 1N(X ,X2 X3)u,v,s=-N+l 
2

U ,v,s=-N+l CX(u,v,s)exp(-iuXI-ivX2-isX3)

Cx(u,v,s)exp(-ilu,-iA2v-i3s) (14)

respectively, where where Kl(u,v) - Ku/Mi,v/Mi) and KM2(UVS)-

CX(u,v) = mX(uv), K(u/M 2 ,v/M2 ,s/M2 ) are 2- and 3- dimensional lag

N-max(u,v,O) window with sequence of constants {M1 } and fM21 ,

mX(u,v) = (I/T) Z Xt X t+uXt+ v  which tends to infinity ad N + -, and MI2 /N

t=-min(uvO)+l 0 M23 /N + 0. A easy way to create the 2- and 3-

with - N+l<u,v<N-1, dimensional lag window is taking the product of

one dimensional lag window. Based on equation
TI = N - max(u,v,O) + min(u,v,0) and (13) and some assumptions, Rosenblatt and Van Ness

CX(u,v,s) = mX(u,v,s) - mx(u)mX(v-s) (1965), actually derived the mean and variance of

bispectrum estimate which are given as theorem 4

- mX(v)mX(u-s) - mX(s)m(uv), and theorem 5 in their paper. More general
results including trispectrum are given by Lii and

N-max(u,v,s,O) Rosenblatt (1988). From these discussions and
mX(k-h) = (I/T2 ) E Xt+hXt+ k  equations (13) and (14), we have consistent

t=-min(u,v,s,O)+ estimates of power spectrum, up to a constant,

from the estimate of the bispectrum
u,v,s) =(IT 2 )N-max(uv, s,O) X f x (X,0) and the estimate of the trispectrum

fy(X,0,0). These consistent estimates are used in

- N+1(u,v,s,(N-1, N

the test statistics G(b) and G(t) given in equa-
where T2 = N - max(u,v,s,0) + min(u,v,s,O) and tions (11) and (12).

(h,k) is any two elements partition of the set 4. SIMULATION RESULT

(O,u,v,s). To demonstrate the effectiveness of the G(b)

Noticed that the third and fourth order period- and G(t) test in equation (11) and (12), we will
ogram are not consistent estimator of bispectrum now study two simulation series which have mixed
and trispectrum. Rosenblatt and Van Ness (1965), spectra. Consider the simulated series from
Billinger and Rosenblatt (1967), mentioned two equation (1) with k-l for harmonic process Yt and
different approaches to estimate the bispectrum and linear process Zt defined as follow
and trispectrum consistently. One way by Fourier
transform the smoothed 3rd and 4th cumulant Y . Reos(wt)
function, the other by smoothing the 3rd and 4th t
order periodogram function. Z +1.2Z +O.6Z =

The advantages for the later approach are re- t t4 t-2 t

ducing the computational time and saving the com- where the coefficient of AR(2) process Z are
puter storage. Once the Fourier transformation of
the random process is given, the rest of calcula- Oi=1.2, 02=0.6, and ct are independent expon-
tions for 3rd and 4th order periodogram is just entially distributed random deviates with mean one
the multiplication on different frequencies. The generated from the GGEXN subroutine in the IMSL.
disadvantage is that it fails to provide the bi- The number of observations generated for each
spectrum and trispectrum on the submanifolds. For series is N=256. Different values for R and w are
the submanifolds, Billinger and Rosenblatt (1967) used to compare the power of the methods under
suggested averaging values in a neighborhood of a different conditions. We choose R - 0.5, w/2v-1/4
submanifold to approximate the exact calculation, in series 1 and R - 1.0, w/2?r - 27/64 in series 2.
In contrast, the former approach requires larger The process of Xt, and its periodogram are shown
computer memory and longer computational time to
calculate the 3rd and 4th order periodogram but it in Figure I and Figure 2.
provides direct estimates of bispectrum and tri- Results for different testing methods are pre-
spectrum for all frequencies including those of sented in the followings
the subm-nifold. (i) Whittle's test

Since we are only interested in the bispectrum Here we select the Bartlett window to be the
and trispectrum on certain submanifolds, we then smoothing function of Zt with truncation parameter
focus on the time domain smoothing method only. M-25 based on the autocovariance function. Since
The estimate of bispectrum and trispectrum can be
obtained by P(G(W) - 1-(1-exp(-nz) n-iN/21-1,
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thus, if we choose the significant level a - .1, and determining whether J crosses the boundary'I q
.05, and .01 from za = -1n(l-(1-a)I/n)/n, we have za where z. can be derived from the usual two-

z .0559, z 5 = .0615, and z = .0743 re- sided percentage points of a standard normal.
ei r 3 pThus, if a = 0.1, 0.05 and 0.01, we get z. =

IN j,/fN j) 1.645, z.05= 1.96, and z .1=2.58. The results

plot vs. frequency which shows a number of sus- are summerized in Table 4 which show that p()

pected large peaks. These peaks are used to test tescmpred it Tle t s more poef
the xisenc ofharmniccomonets.test compared with Whittle's test is more powerfulthe existence of harmonic components.ismxdwtpek

The final result is presented in Table 1, where when the mass spectrum fY(w k)i

** and *** indicate that the Whittle's G (W) of the spectral density function fz(xj), but is

statistics are significant at a level .1, .05, and not as reliable when the harmonic component is
.01 respectively. From Table 1, we find that separated from the peaks of the spectral density
Whittle's test has difficulties in detecting the function of the noise.
harmonic components when the mass spectrum of the (iV) G (b) test process

harmonic signal fY(wk) is mixed with the large Tb)kTo use the C~ ' test, we first need to estimate

spectrum of the noise fZ(Aj), such as the series x at thethe real part of the bispectrum f (xj,O t h

2.() Bartlett's test frequency (X,0) by properly selecting the trun-

Since the grouping parameter k is selected cated lag and the two-dimensional smoothing
arbitariliy, for comparison purposes, we use the window. Here we select the two-dimensional
test with (a) k=4 (b) k=8 (c) k=12. The critical Bartlett window to be the smoothing function with

value z for G(g) can be calculated by approxi- M - 15.K
Since, under H0 , C (b) has the same asymptotic

mating Fisher's G f ) with k degrees of freedom,

thus, we have z -=-(a/n)1/ (k- 1)  Table 2 shows distribution as C M we get z. = .0559,

zo value for different grouping parameter. Table z.0 5 = .0615, z 01 = .0743. Figure 5 shows

3 summarizes the results in which one can see that the results of l( j)/Rf X,0) vs. frequency.
Bartlett's test is similar as Whittle's test, it N N

detects the periodicity in series I but fails to The results are summarized in Table 5, which show

detect the harmonic component in series 2. that G(b) test actually detects the harmonic pro-
(Iii) P(>) test cesses at the right frequency in both cases.

This is a double window smoothing method, in (t)
which we choose a Bartlett window with n = 128, ( C test

and a truncated periodogram window with m - 25. Since the linear process 1Zti is generated from

The P() test statistic Jq is given in equation an exponential distribution, its fourth order

(8), and cumulant certainly exists. We choose the 3-
2 dimensional Bartlett window with lag M=10. Figure

n,m  2n/3-2m+2m2/n 6 shows the plot of IN(X )/RPN(X 0,0) vs. ire-

Figure 4 plots P*(X) vs. frequency where p*(X) (
p(X)/C*(O). Since J is a cumulative function of quency. Table 6 presents the Gct) value for

q
asymptotically normal distribution, the signifi- suspect peaks. The results show that the Gt)

cant test can be constructed by plotting J vs. q test detects the harmonic component at the right
q frequency in both cases also.

_ _ 1

7 '

Figure I, "lime, surics plot for X
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SERIES # G W SERIES # P* 0 (
IfxN(X) ifxN(X) I G#()

** 1 1.5708 0.1246 0.2317
1 118.1291 1.5708 7.1551 0.0606 **2 2.6507 0.6364 2.0162
2 115.1999 2.6507 5.2138 0.0453

____________________________________Table 4 Priestley P ( X) test

Table 1 Whittle's test

(X level 4 8 12

0.1 .9077 .6398 .4778

0.05 .9267 .6737 .5037 SERIES # 1 N N G (b)

0.01 .9571 .7407 .5764 I fxN(, 0) I IfxN(, 0) I

Table 2 significant level for grouped 1 853.3934 1.5708 123.2088 .1444
periodogram test

2 708.4138 2.6507 63.4764 .0896

Table 5 G (b) test

SERIES # K

4 0.9631

1 8 0.8019
12 0.8431 SERIES #Z N N

IfXN(X , 0,0) I IfX0( , 0,0O) 1

4 0.7710

2 8 0.5382 1 6193.372 1.5708 1458.640 .2355

12 0.3344 2 4414.245 2.6507 498.3887 .1129

Table 3 grouped periodogram test Table 6 G(t) test
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The Existing form of TSA

TSA Release I (Henstridge, 1980, 1982) was a
program consisting of approximately 14000 lines of
highly portable Fortran 66. It had its own command

TIME SERIES IN A language similar to some structured structured

MICROCOMPUTER dialects of BASIC, specially adapted to time series
data. The series data type was different from vectors

ENVIRONMENT in many other packages in that a series had both a

length and a starting time. Operations which would
not make sense with vectors (such as adding

John D. Henstridge together two vectors of different length) were
Perth, Western Australia properly defined for series in TSA. In addition

Fourier transforms could be manipulated, with the
TRANSFORM command could convert between

ABSTRACT series and transforms.
The task of transfering a moderately large statistical
package onto a microcomputer is described. It is shown Some of the flavour of TSA can be gained from the
that substantial consideration has to be given to the following examples of TSA input which
limitations of the microcomputer architecture but once demonstrate two different methods of estimating the
this has been done the package can be made surprisingly demtrat o dferen etodso estat t
efficient. The user interface also requires major spectrum of a series X. The first approach is to fit a
adaptation so that it is more compatible with parametric model and then display the theoretical
statistical microcomputer software. This leads to the gain function of this:
necessity for interactive graphics and screen based QAIC 20 X %X
operations. Fit an autoregressive model to X, using the Akaike

criterion and store this as the filter %X
Keywords: microcomputers, statistical computing, time GAIN SQUARED %X
series. Display the square of the gain function of this filter.

The second approach is to form the Fourier

Introduction transform and thus obtain the smoothed
periodogram:

TSA was first released in 1982 as a specialist time TRANSFORM X
series package. It was was desiged with mainframe t orm the Fourier transform and names it ^X
computers in mind and its strength lay in its ability SPECTRUM ^X
to manipulate time series data. It was equally at Display the spectrum by smoothing the periodogram
home in both the time and frequency domains and formedfrom ^X
used as its basic data types series,filters and Fourier The flexibility of TSA derived from the fact that the
transforms. data objects %X and ^X in the examples could be

manipulated in themselves. For example the
Early in 1987 it was decided to review the future of transform ^X could have arithmetic operations
TSA both in terms of its statistical facilities and its performed on it by the CALCULATE command or
implementation on various machines. A market the filter %X could be used in the FILTER command
analysis and feedback from users indicated that TSA to define new filters or to filter series.
needed strengthening in time domain model fitting
(and forecasting) and that a personal computer The time domain model fitting facilities in TSA
(PC) version was needed to complement the Release I emphasised univariate Box-Jenkins or
mainframe versions. After a feasibility study it was ARIMA type models. The PRELIMINARY
decided to update TSA and have the PC version as command would obtain preliminary estimates and
the primary version. It was thought that the the ARIMA command would then obtain least
constraints of the PC were the greatest that were squares estimates. Separate commands such as
likely to be encountered and hence a PC version QAIC above allowed for the quick fitting of
could be ported to a mainframe more readily than the autoregressive models, using automatic order
reverse, selection if desired. The implementation of these

commands used the NAG Library extensively. Its
This paper describes what this involves and can be flexibility came from the way that models were
considered as a case study for the problem of stored as filters and could be operated on by all the
transfering statistical software to the PC. filter commands in TSA.
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Time Series Model Fitting (i) The operating system is relatively crude and
is supported by few good utilities. It cannot

Time series modeling has a number of unique even be assumed that a user has access to a
features which in combination distinguish it from screen editor let alone a good graphics

other statistical model selection and fitting problems. program. Hence a statistical program has to

These include supply many features provided by the
operating system on other computers. As a

(i) The parameters are constrained to lie within a secondary issue for the software developer,
not readily described region. until recently the Fortran compilers for the

(ii) The estimation procedure itself is non-linear PC have been of doubtfull quality. Even now,
and frequently has problems of local PC Fortran compilers are not totally reliable.
multicolinearity. (ii) The disk drives are relatively slow compared

with mainframes, due partly to the operating(tiit)The structured index set (time itself) means system using only primitive algorithms to
that it is rarely possible to exclude parts of thesytmuigolpriivagrthsodata or to model subsets of the data optimise the use of the disks. Today the speed
deaaorto. mof the disks tends to be a greater constraint
separately. than the CPU speed. This imposes serious

(iv) There are many different possible diagnostic constraints on overlaying a program -
methods which could be used in model basically all overlay changes within a loop or
selection, iteration must be avoided.

(iii)The typical PC user has come to expect
Methods are available which can automatically software which makes use of the wide
select models (Akaike, 1969 and many subsequent communications bandwidth between the CPU
papers). These methods tend to be computationally and the screen. Windows, screen graphics,
very demanding and the theoretical results are prompts and on-screen editing are all part of
almost exclusively asymptotic, with the small this. This is a good influence in the long term
sample situation not being well understood except in but it does create extra work for the software
the case of simple autoregressions. Consequently it developer.
is more common for a statistician to select a model (iv) The typical PC user is not paper oriented.
by examining summary statistics such as the This is partly due to many users never
autocorrelation function followed by fitting several knowing a batch environment where printed
models and obtaining diagnostic statistics for these. output was the only feedback from the

computer but it is also related to the screen
There are a variety of summary and diagnostic presentation being more dynamic than a
statistics in common use. The most commonly used printed page can ever be. It does mean that a
are the autocorrelation function and the partial statistical package must enable the user to
autocorrelation function, but use can also be made of display virtually any information at any time
spectra and various residual plots, rather than assuming that the user has a

printed copy of past output.

Implementation
Needs of a Personal Computer Implementation

The initial feasibility study for the PC version
involved a direct port of the 32-bit mainframeIt is commonly thought that a program has to e version onto a PC. This was not a particularly

cut down to fit onto a PC, but it is easy to foreget difficult task since TSA had originally been written
that the memory available on a PC is comparable to with highly centralised input and output modules
that available to the average interactive user on and portability was a major design consideration.
many mainframes only six or seven years ago. The The initial PC version had about 360 Kbytcs of code
PC is small compared with other machines today but but was overlayed to run in less than 200 Kbytes. It
any interactive statistical program which ran on a made no use of special PC features and it has to be
mainframe several years ago should be able to fit said that it ran slowly. The code size was surprising
onto a PC today. since it was somewhat larger than the code size on

other computers (especially the VAX and a 680M)
Instead the main constraints on the PC are based Unix computer). The compiler being used
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(Microsoft) was generally thought to produce scaled graphical displays readily accessable while
efficient code so the causes for this were examined not reducing the flexibility available to the user who
before proceding further. needs it.

Study of the code produced by the compiler made it In addition a screen interface was developed. This
clear that iL was no use piitending that the PC is a 32 uses a status line to divided the screen into an input
bit machine. The 8086 microprocessor has 16 bit window and an output window. Previous lines of
registers and although it can address up to 1 Mbyte input can be viewed and edited, while previous
of memory, it is only efficient when the code and output can be scrolled back for viewing. The design
data are locally restricted to 64Kbyte segments. In of this screen interface was dictated by statistical
addition the microprocessor has relatively few considerations outlined below.
registers and most have various constraints on their
use. These produced a substatial overheads on The final version consists of about 30000 lines of
accessing large arrays and in parameter passing in code, of which 97% is portable Fortran 77, 2% is
subroutine calls. It became clear that major savings Fortran specific to the PC and 1% is assembly
in code size were attainable by using 16 bit integers, language. On the PC it compiles into about 360
modifying the addressing of COMMON blocks, Kbytes and runs in about 370Kbytes of RAM. The
reducing subroutine parameter lists and transfering program is overlayed only to a limited extent;
the text of error messages to a separate file. The overlay changes are sufficiently infrequent that it is
result was a 40% reduction in code size, and the feasible to run on a PC without a hard disk.
program running several times faster. These changes
in themselves required remarkably little change to
the source code of TSA. Special Facilities for Model Selection and Fitting

Program Enhancements Most of the statistical additions to TSA were
designed to aid in the selection and fitting of time

The savings in code size permitted a large number of domain models. They include transfer function
enhancements to be made to the original version of modelling with options of least squares, maximum
TSA. In addition to a number of statistical additions likelihood and marginal likelihood criteria (again
detailed below these included extended graphics using the NAG Library routines), the display of
with output to the screen, printer or plotter, fuller impulse response functions and a DECOMPOSE
control of input and output and an on-line help command which can use a variety of methods to
system. decompose series into trend, seasonal and irregular

components. These affect model fitting as follows:
The language of the package itself was extended in a (i) Selection is aided by the new DECOMPOSE
number of ways to emphasise the time series command which can separate the seasonal,
application. Time leads and lags can now be applied trend and irregular components. This is seen
to series in any situation using a postfix notation, and primarily as an aid to identification of
commands have been extended so that most models.
common operations now require fewer commands.
As an example of what this allows, the instruction (ii) Details of all models fitted to a series are

GRAPH X ON X( -1) automatically stored. These details include
plots the values of the series X against the values for the structure of the model, the parameter
the previous time point. Many of these language estimates, goodness of fit measure and the
changes did not involve increases in code size at all; method of fitting (preliminary, least squares,instead they involved moving existing code from maximum likelihood or marginal likelihood).individual commands into the parser where they It is possible to display these at any stage. The
could be used by all commands fact that the display of more than one model

might not fit on the screen at one time was the

The new graphics module extends the earlier major reason for the scrolling facility on the
concept of a graphical layout which is a TSA data output window (since as outlined above, the
structure giving all the parameters for a graphical user has probably not got a pnnted record).
display. All commands have a default layout, but (iii) A brief comparative display of all models
this can be modified by the user and if required fitted is also available. Together these two
stored as a user defined layout. The guiding principle features provide the user with a means of
here has been to make appropriately labelled and managing a number of competing models.
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(iv) Residual and fitted value series are program could be maintained while giving a true PC
automatically extracted for any model implementation which makes use of the unique
properly fitted. In addition the individual features of the PC. Experience has shown that a
components of a model can be extracted as conversion to a different machine is less than a days
filters. These series and filters are then work and it has been possible to automate most of
immediately available for diagnostic analysis this conversion process.
by a number of TSA commands as shown in
Figure 1. Most of the lessons learnt from this would apply to

(v) In the selection process it is common to fit other statistical packages which are command
models which are modifications on oriented.

previously fitted models. Rather than
implement a special command to edit an
existing model, the input window editor was Akuowledgement
developed so that the input line where the The author wishes to thank NAG Ltd., Oxford for
previous model was specified could be edited the use of its facilities and access to the NAG

and then entered as new input. This was Library for this work.

considered to be visually easier and it gives a
facility which can be used in other situations
as well. In addition the filters which are
extracted from previous models can be used AKAIKEH. (1969), Fitting autoregressions for
to define components of a new model. predictions, Annals of the Institute of Statistical

Mathematics, Tokyo, 21,243-247.

Summary HENSTRIDGE, J. D., (1980), TSA - a package for

time series analysis, COMPSTAT-80, ed. M.M. Barriu and
The final result of this work was a new version of D Wishart, Physica Verlag, Wien.
TSA which had greatly improved functionality while
still fitting on a standard PC. The most striking result HENSTRIDGE, J. D. (1982), TSA - an interactive
was that the original portability of the program of the package for time series analysis, NAG, Oxford.
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MOVING WINDOW DETECTION FOR 0-1 MARKOV TRIALS

Joseph Glaz, Philip C. Hormel and Bruce McK. Johnson*
University of Connecticut and CIBA-GEIGY Corporation

Abstract. Let X,X 2 .... be a sequence of transformed into a random sequence of 0 and 1.
0-1 Markov trials. The random variable X. The k-out-of-m moving window detector generates

i a pulse whenever k or more l's were observed
represents the number of signals that were within a consecutive string of m elements. The
detected at the end of the ith discrete-time moving window detection procedure has been dis-
interval. The k-out-of-m moving window detector cussed extensively in the literature ([1], [3],
generates a pulse whenever k or more signals are [5], [6], [14], [18], [25]). Dinneen and Reed
detected within m consecutive discrete-time [3] discuss signal detection and location by
intervals. Define Mk,m to be the waiting time various digital methods. They conclude that
for detection using a k-out-of-m moving window "the moving window detector satisfies the detec-
detector. In this article we derive Bonferroni- tion and beam sr'itting criteria and at the same
type inequalities and product-type approxima- time is logicalty the simplest." Moreover, one
tions for the distribution of M which in can obtain a good estimate of the target center

t,m' by employing the center of the window where at

turn yield approximations for E(M k,m ) and least k signals were observed. Bogush [1],
Var(Mk,m). These quantities play an important Galati and Studer [5], Lefferts [14], Nelson [18]

an ipand Todd [25] study the moving window detection

role in the design and analysis of the k-out-of- procedure under the assumption that the observed
m moving window detection procedure. Applica- sequence of 0 and 1 is generated by a simple
tions to the theory of radar detection and Markov process. The random variable Mk, m is the
quality control (zone tests) are discussed. waiting time between the times that the k-out-of-

1. Introduction. Let X1 .... Xn... be a m moving window detector generates a pulse. The
n quantities P(Mkm > n), E(Mk,m) and Var(Mk,m)

sequence of 0-1 valued random variables. The
random variable X. represents the number of play an important role in the design of the mov-

i ing window detector.

signals that were detected at the end of the ith The evaluation of the quantities P(Mkm > n),
discrete-time interval. The k-out-of-m moving
window detector generates a pulse whenever k or E(Mk,m) and Var(Mk,m ) is a formidable task. Even
more signals are detected within m consecutive in the simpler situation, when the sequence of 0
discrete-time intervals. Define Mk,m to be the and 1 are i.i.d. Bernoulli trials, these quanti-
waiting time for detection using a k-out-of-m ties can be evaluated only for limited values of
moving window detector. Then E(Mk ) and k and m ([9], [12], [16] and [23]). Moreover,

km the methods developed for evaluating the quanti-
Var(M k,m ) are the mean and the variance of ties mentioned above in the i.i.d. Bernoulli case

recurrence time, respectively, for at least k cannot be extended for tne Markov model. Naus

events in a moving window of size m. The wait- [17] and Samuel-Cahn [22] developed accurate

ing time, the mean and the variance of recur- approximations for the i.i.d. Bernoulli case,
rence for detection using a k-out-of-m moving that too cannot be easily extended to the Markov
window detection procedure play an important model. For the Markov model, Glaz [6, Section

role in a variety of applications. We describe I1] derived a product-type lower bound for

below applications to quality control and radar P(Mk,m > n) and E(M k,m). Since in many instances

detection. this lower bound is quite conservative (see
In quality control, the sequence of I's Tables I-I1 in Section 3), there is a need for

correspond to defective items. Greenberg [9], more accurate approximations.
Roberts [20], and Saperstein [23] study the In Section 2 we derive a product-type approxi-
properties of the zone tests. They define the mation for P(Mk,m - n) that is far more accurate
process to be "out of control" if a moving
aindow of size m contains at least k observa- than the lower bound that was derived in [5].

tions outside a specified zone (say, the three This in turn yields accurate approximations for

sigma limits about the mean). The random vari- E(Mk,m) and Var(Mk,m). Recently, Hoover [11]

able Mk, m is the waiting time between times at derived Bonferroni-type upper (lower) bounds for

which the process is declared to be "out of a union (intersection) of a given sequence of

control" and I/E(M m) is the probability of events. For the problem at hand we evaluate in
km Section 2 the Bonferroni-type lower bounds for

type I error for testing the hypothesis that P(Mk  > n).
the process is "in control." For k = m the zone k,mis based on the run statistic, which is a In Section 3, Tables I-lI, we present the
isp base o the moving window statistics, results of a simulation study for evaluating
special case of the mvnwidwsastcP(M 'nEM )adVrM ) hswas introduced by Mosteller [15]. k,m n), E(Mkm) and Var(Mk,m. These

Consider a radar sweep where a dichotomous results are used to compare the product-type and
quantizer transmits to the detector the digit I Bonferroni-type approximations in Tables I-II. A
if the signal-plus-noise waveform exceeds a discussion of the approximations is presented at
predetermined threshold, and the digit 0 other- the end of Section 3.
wise. Thus the data from a radar sweep is
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2. Product-type and Bonferroni-type approxi- Proof. To derive equation (2.5), we use the

mations. Suppose that the observations X 1,X2 ... following results from Helgert [10]:

form a 0-I sequence of Markov trials. Assume n
that P( i XiJ Xl=l) = S(j-l,n-l)+(pO-P )S(j-l,n-2)

p P(X1 = ) and

and n
=P(X= IXj-I= i). ... i = 0,; = 2,3,. P(i= lXiJXI=0) = S(jn-1)+(p0-pl)S(j-ln-2).

1i i i-] i I

We assume that the correlation coefficient of two Therefore,
successive observations is positive and

P(X ), . > 1. Therefore X,X,... is a n n
p =_ 1(j2 ... P( x. k)

two-state stationary homogeneous Markov chain l,n il

and all the conditional probabilities can be
derived from p and pi, i = 0,1. Moreover, it k-l

follows that pO < p 
< pl. The waiting time for j=0

the detection using a k-out-of-m window detector
satisfies +(l-p)[S(jn-l)+(Po-Pl)S(j-ln-2)]:"

n
Mk,m = inf{n > 1; X. > k}, (2.1) Simplifying the expression given above results in

kmi=max(l,n-m+l) 1 equation (2.5).To evaluate '2,m4l' note that

which we will abbreviate to M. For n > m > 2

we define f2m+l = 'lm - P(A),n-m+l m+j-l 2ml '~

,n h ( X < k)}, (2.2) m
n-m+ln j=l i=j where A = (X =0, X i=k-l,X m+l=1). The event A

min(jn-j) i 2

Si=n) n-i)(J)pji( I o n-J-i involves m transitions from the initial state 0

iSO j 1 0 to the final state 1. Denote by j I j2 the

transition from state J to state j2 ' Jl'J2
(2.3) 0,1. Let i be the number of I - 1 transitions.

and Then, max(O,2k-m-l) < i < k-l. Since we have a

k total of k visits to state 1, we must have k-i

Sk(n ) = S(j,n), (2.4) 0- I transitions. As the initial state is 0 and
k 0 the final state is 1, the number of 1 - 0 tran-

sitions is equal to k - i - I (the number of
in terms of which we have the following results. 0 1 I transitions minus one). Therefore, the

Theorem 2.1. Let M be the waiting time for remaining m + 1 + i - 2k transitions are of the

detection, then for k - n - m+2 type 0 , 0. Since there are ( k-1 ways of
P(M n) rniax(l,n-m+l),n arranging the k - i - 1 0 - 1 transitions be-

where tween the first and the last 1 and (k i1l) ways

1I Sk-l(n-l)+(po-pl)Sk-2 (n
-2) of arranging the k - i - 1 1 . 0 transitions be-

,n tween the first and the last 0, we get that

- pS(k-l,n-l), k - n •m, (2.5) k-Ik-I P(A) = (1-p) :(k-i-l )

'2,m+ I ",m - (l- p ) rn i=max(0,2k-m-Il' i-ilax(O,2k-m-l ti-k ,k-i i, po i+l- -k ) - -
"(k i-l o P £ I  P

r-l -kk , I - O P I

[(k.i.l)(k-. i-1 0 P Equation (2.6) follows.
iii 1-2k+i , (To evaluate '3,m+l' define the events(l-Po) ~-2~ (1-Pl)k-i-l], (2.6)

and k-2 A1 (X1=OX 2=O011Xi=k-IX 4+=0.Xrl+ 2=l),

'3 ,n1+2 2 ,m + l -P i= ax ( ,2k-i 2)

k-2 I I k k i- i A2 (XI= X= 0 i X i= k- 2, ' 
XIn+ l1 'X 112 =l) ,

I- kH -P10 P
1  

i=r3

.(]p 0 ) "+2-2k+i(l_Pl)k-i-2 ] A]3 (X1= l'X2 =0,.M Xi Ik-2,Xj+l Xm+2= .

.[Poi-_2k)+ +-2kii+3
k-iI -2 Pl . (2.7) Then it follows that
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3 where= - z P(A.).

Y3,m+2 = '12,m+l E P( Y*2 j=l YL = YL,m+L-l/YL-I,m+L-2

Using a similar enumeration technique for evalu- and yj,m+j-l is defined in equation (2.2). The
ating P(A) above, one obtains:

atg Pfollowing result supports the approximation
k-2 k-2 (2.10).P(A1 ) :0(-p) L7 (kki-2)(21)

i=max(O,2k-m-2) -i-2 Theorem 2.2. Let M be the waiting time for
detection given by equation (2.1). Then there

.- k k- ii p0)m+2-2k+i exists a real number 0 < y < I such that"k-i-I )P0 Pl -p

k-i-l lim P(M > n+l1M > n) =

k-2

2= (l-p) " k-2 Proof. Let S be the set of all possible
P(A 2) binary sequences of length m. Then the cardin-

i=max(O,2k-m-2) k-i-2 ality of S is 2m
. Out of all binary sequences

m-k k-i-l i+l Pm+3-2k+i with the property that their sum is greater or"(k-i-2)Po Pl -p equal to k we create a single absorbing state.
Let S* be the set containing the absorbing

.(-_p 1 )k-i-2, state and the remaining elements of the set S.

and Then {Xj + ... + X m+jl}j=1 is a finite Markov
k-2 (kk-2 chain with a single absorbing state and one setP(A3 ) = p i-2 of communicating transient states. It now

i=max(0,2k-m-2) -- follows from Darroch and Seneta [2,54] that there

m-k , k-i-l i+l ( m+ 2k+i exists a constant 0 < - < 1 such that"k-i-2 P0 Pl -10

,k-i-l lim P(M > n+lIM > n)
•(1-Pl )  

n-.
Sipifigth xpeson 3o P(. ilsThis concludes the proof of Theorem 2.2.Simplifying the expressions for :iP(Aj yields

j=l It follows from Theorem 2.2 that the sequence
equation (2.7). This concludes the proof of of conditional probabilities j . / .
Theorem 2.1. become stationary as j increases. Therefore, it

We now proceed to derive an approximation for seems plausible to replace the terms
j+m-l f j,m+j-lyj-l,m+j-2 for j > L+l in equation

P(M n). Let E. denote the event X < k, (2.8; with y*= .+, Llm+, 2. This sub-
i3j gL,miL-venL-,, L-2

j 1,2,.... Then for 1 _ L - n - m stitution results in approximation 7L given by

n-m+l equation (2.10). In Section 3, Table I, we pre-
P(M - n) ( Ej) sent numerical results for this approximation, in

j=l the case of L = 3.
We now turn to the problem of deriving

L n-m+l j-1 Bonferroni-type lower bounds for P(M > n).
P(n E.) P(Eili (E i) Recently Hoover (1987) has derived a sequence of

j=l j=L+l i Bonferroni-type upper bounds of order L,
n-m+l 1 < L - n-l:

,m+L-I j=L+l 'j,+j-l 'j-l, j-2 n L

(2.8) P, 1Ai I P{ i)l

We propose to employ the following (L-l)th order n L
j-1 + PA n E n (U Ai )c, (2.11)

"Markov-like" approximation for P(EjinEi): i=L+l i ,S i j=l j
i=l 1 =L, iS

j-1 j-I I-ii <.... iL n

P(E. i'\Ei) n * P(Ej. n Ei), i .- L+l. (2.9) where Al, ...An is a sLquence of events, c denotes
i=l i=j-L+ 1...

the complement of an event, and Si is a subset of
Substitute the right-hand side of equation (2.9) 1. i-l of size L-l. For L = 1 and L = 2 the
into equation (2.8) and 'se the stationarity of right-hand side in (2.11) reduces to the usual
the events E., to get the desired product-type Bonferroni upper bound and Hunter Bonferroni-type

approximation: upper bound (Hoover, 1987). In the case that
approximation: A... An are naturally ordered in such a way

P(M n) n-L (2.10 that P( n Ai ) is maximized for ij -i j-l 
= 1,

j=l
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2 < j < m < n-l, the natural ordering with Si

= {i-I,....i-L} is recommended. In this case the Var(M) = 2 z nP(M > n) + E(M)[I - E(M)].

upper bound in equation (2.11) reduces to: n=l

n n n-l Note that for n < k-i, P(M > n) = 1. Therefore,

P(U A.) s < P(Ai) - P A i+ )  n+L-1
i=l i=l i E(M) = (k-i) + k ymax(l,n-m+l),n

L-i n-j j-i 1
E T, P{A nfl Ac ), A. I + n--

j=2 i=li t=l I ~ ~ 'Ynmln(2.16)
n=m+L

If the events A1 ,. A n are stationary, a and

further simplification of (2.11) is obtained: Var(M) =(k-i)k + 2 ), nP(M > n)
n n=k

P( U A.) <nP(Al) - (n-l)P(Aj1 A 2)i=2 i + 2 n=nynm+l,n (2.17)
L-I j-1 n=m+L
z (n-j )P{ f 0 /1)Ac )/-) A .

j=2 1 l +l Substitute in equations (2.16) and (2.17) for

(2.12) s in-m+ln its product type approximation

The foiiowing resuit gives the Bonferroni- (y m-~ . Then evaluate the respec-
type lower bounds for P(M , n). Lm+L1 L

tive geometric series to get:
Theorem 2.3. Let M be the waiting time for m+L-l

detection given by equation (2.1). Then for E(M) (k-i) + z y

L n n=k mxlnml,

P(M > n l)> (n-m+2-L) ( I
"- + (2.n3) m+l- 1  (2.18)

(n flLL. m+L. 2  (2.13 Var(M) k(k-l) + 2 Y n-ymax(11..m+l)n

where Lm-2 1, and for L > 1 YLm+L-1 are n=k

defined in equation (2.2). Moreover, for L > 1 + 2' ~ * .. Y(m+L)(1--,)+ ~

' -e = (n-j-)({l(liy)A~}

C +1- L = nmIL L-1,m+L-2 - L,m+L-l ,0l * 2 + E [1- ]
+ ' L+1,m+L)- (2.14) YL L L L'

Proof. It follows from equation (2.8) and
(2.13) that for L > 1 where Y ts are defined in equation (2.2) and

P(M >n) > 1 - (n-m+l)P(EC) - (n-m)P(E'ClEc) YL = YL,m+L-I/YL-i,m+L-2- In Section 3, Table
L-i j- II, we evaluate the approximations E Lhand SDL

- .(n-m+1-s)P{E'n(n E ) cl L)L
j=21 i~l )(VL+ ,' for L = 3.

(2.15) Remark. The Bonferroni-type inequalities for
"jtm-1 P(M gnare not suitable for evaluating E(M)

where E . . k). It is routine to and Var(M) (for large n 0 for n > n
i- i= i 1'

verify that the right-hand side of equation 3. Numerical Examples. We now evaluate for
(2.15) simplifies to L' given by the right-handsectdvlsofm kpp 1 adnhebus

side of equation (2.13). Equation(2.14) follows and the approximations for P(M > n), E(M) and
immediately from the definition of iU This
completes the proof of Theorem 2.3. SD(M) =JVar(M , that have been derived in

In Section 3, Table I, we evaluate the per- Section 2. These results are compared in Tables
formance of the lower bound for = 3. 1-11 with the approximations that have been

We now proceed to derive approximations for derived in Glaz (1983).

E(M) and Var(M), the mean and the variance of For the simulated values of P(M > n), E(M) and

recurrence time, respectively, for at least k SO(M) (denoted in the tables below by SIM)
events in a moving window of size m. It is well- 10,000 replicates of N 12 x S 3 M) pseudo-
known, 14, 264-266], that random numbers uniformly distributed on the

interval (0,1) were generated, using IMSL

E(M ) P(M > n) routine GGUBS. Each of the uniform pseudo-

n=L random numbers were converted to an observation
from a desired 0-1 Markov process. The reason

and for having to generate a sequence of Markov
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TABLE I

APPROXIMATIONS FOR THE PROBABILITY OF THE WAITING TIME FOR
DETECTION: TWO-STATE MARKOV CHAIN

m k p P1  n LB iI LB 8 3  7 3 SIM

10 3 .05 .10 20 .9148 .9474 .9479 .9503
50 .5467 .8405 .8497 .8549

.50 20 .8542 .8641 .8661 .8642
50 .5985 .6482 .6858 .6819

.10 .20 20 .6740 .7562 .7652 .7719
50 .1407 .2992 .4567 .4715

.80 20 .7270 .7266 .7324 .7373
50 .4543 .3725 .4773 .4745

10 5 .05 .10 20 .9972 .9989 .9989 .9982
50 .9897 .9962 .9962 .9974

.50 20 .9558 .9645 .9647 .9634
50 .8114 .8997 .9031 .9010

.10 .20 20 .9558 .9787 .9788 .9780
50 .8114 .9313 .9331 .9341

.80 20 .8248 .8321 .8346 .8368
50 .5855 .5872 .6361 .6341

25 3 .05 .10 35 .7416 .7539 .7679 .7700
50 .5467 .6146 .6441 .6603

.50 35 .7244 .7299 .7328 .7312
50 .5985 .6080 .6291 .6268

.10 .20 35 .3362 .3430 .3691 .3755
50 .1407 .0368 .2040 .2262

.80 35 .5767 .5756 .5806 .5680
50 .4543 .4287 .4646 .4567

25 5 .05 .10 35 .9632 .9746 .9747 .9766
50 .8858 .9532 .9538 .9593

.50 35 .8915 .8993 .8998 .9038
50 .8114 .8435 .8475 .8547

10 .20 35 .7184 .7689 .7737 .7847
50 .4497 .6040 .6390 .6687

.80 35 .6991 .7042 .7069 .7065
50 .5855 .5874 .6075 .6070

TABLE II

APPROXIMATIONS FOR THE EXPECTED AND STANDARD DEVIATION OF THE WAITING
TIME FOR DETECTION: TWO-STATE MARKOV CHAIN

m k p P1  LB Ei(M) E3 (M) SIM E(M) SD3(M) SIM SD(M)

10 3 .05 .10 68.46 280.16 299.10 274.36 294.37
.25 65.06 184.80 188.11 180.65 185.03
.50 77.10 130.56 130.19 128.53 128.91

.10 .20 31.12 63.06 66.06 58.17 62.91
.50 37.20 55.59 56.27 53.26 53.77
.80 61.50 68.88 68.46 69.94 69.61

5 .05 .10 3987.28 11232.33 11381.59 11224.67 11463.61
.25 458.40 1894.20 1921.95 1887.91 1932.93
.50 117.10 458.80 464.60 454.64 473.99

.10 .20 194.30 634.17 654.03 627.10 656.02
.50 57.20 176.54 175.87 172.03 172.50
.80 81.50 111.07 109.93 110.35 108.88

25 3 .05 .10 61.06 98.08 108.88 85.48 98.19
.25 65.06 97.96 104.29 88.36 95.93
.50 77.10 103.12 105.93 98.47 102.34

.10 .20 31.12 35.11 36.71 25.81 28.82
.50 37.20 42.44 42.95 37.40 38.53
.80 61.50 66.36 64.64 67.13 65.82

5 .05 .10 114.78 708.03 826.66 690.23 791.41
.25 105.06 413.94 464.56 399.21 456.29
.50 117.10 259.18 272.58 250.21 267.06

.10 .20 51.12 93.70 109.45 78.56 97.14
.50 57.20 87.16 93.99 77.41 85.57
.80 81.50 100.18 100.04 98.80 98.57
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trials of length N ' 12 x SD3(M) is that the dis- 8. Glaz, J. & Johnson, B. McK. (1984). Probabil-
tribution of M has a very heavy right tail. The ity inequalities for multivariate distribu-
quantity N R 12 x 2D3(M) has been adopted after tions with dependence structures. J. Amer.
some numerical experimentation with evaluating Stat. Assoc. 79: 436-41.
E(M) via a simulation. 9. Greenberg, 1. (1970). The first occurrence of

From the numerical results in Tables I-II, we n successes in N trials. Technometrics 21:
can conclude that the new product-type approxima- 627-34.
tions for P(M > n) and E(M), given by 73 and 10. Helgert, H.J. (1970). On sums of random vari-
E3(M), respectively, significantly improve the ables defined on a two-state Markov chain.
approximations il and El(M) for these quantities J. Appl. Prob. 7: 761-65.

11. Hoover, D.R. (1987). Component complement
that have been studied in Glaz (1983). lhe new addition upper bounds--an improved inclusion/
approximations for SD(M), SD3 (M) are also much exclusion method. ASA 1987 Proc. Stat. Comput.
more accurate than the approximation D(M). Section (in press).
Moreover, the product-type approximation 73 is 12. Huntington, R.J. (1976). Mean recurrence
more accurate than the Bonferroni-type lower times for k successes within m trials. J.

Appl. Prob. 13: 604-07.
bound a3. In some cases the improvement of 713 13. Karlin, S. A Ost, F. (1987). Counts of long

over 53 is remarkable. For example, if m = 25, alligned word matches among random letter
k = 3, p = .10, Pl = .20 and n = 50, then B3 sequences. Adv. Appl. Prob. 19: 293-351.

.0368, 713 = .2040 and the simulated value of 14. Lefferts, R.E. (1981). Adaptive false alarm
regulation in double threshold radar detec-

P(M > 50) = .2262. Another deficiency of the tion. IEEE Trans. Aerosp. Electron. Syst. 17:
Bonferroni-type lower bounds for P(M > n) is that 666-75.
for n > no , it has a negative value. For this 15. Mosteller, F. (1941). Note on application of
reason we have not evaluated the Bonferroni-type runs to quality control charts. Ann. Math.
lower bound for E(M) and the related approxima- Stat. 12: 228-32.
tion for SD(M). 16. Naus, J.I. (1974). Probabilities for a gener-

Although the new approximations provide us alized birthday problem. J. Amer. Stat. Assoc.
with quite accurate results in most cases, there 69: 810-15.
is still room for improvement. For example, if 17. Naus, J.I. (1982). Approximations for the
m = 25, k = 5, p = .05 and pi = .10, the simula- distributions of scan statistics. J. Amer.
ter values for E(M) and SD(M) are 826.66 and Stat. Assoc. 77: 177-83.
791.41, respectively, while E3(M) = 708.03 and 18. Nelson, J.B. (1978). Minimal order models for
SD3(M) = 690.23. This amounts to a relative false alarm calculations on sliding windows.

error of 14% in approximating E(M) and 13% in IEEE Trans. Aerosp. Electron. Syst. 15:352-6a
approximating SO(M). To improve these approxima- 19. Philippou, A.N. & Makri, F.S. (1986). Suc-
tions one can try to evaluate the approximations cesses, runs and longest runs. Stat. & Prob.

Lett. 4: 211-15.
7L' EL(M) and SDLCM) for L > 3. We will report 20. Roberts, S.W. (1957). Properties of control
these results in a subsequent article, chart zone tests. Bell Syst. Tech. J. 37: 83-

105.
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Abstract: This research has been motivated by the 2. The Exoonential Time Series
need to study meteorological radar signals. The
power received by a meteorological radar is the Let x t - U t + iVt' t e(0, ± 1 . ....) be
energy backscattered from an ensemble of t t m
meteorological targets. The time variation of the i-variate zero mean complex-valued stationary
this power can be modelled as a time series with Gaussian series. If we restrict our attention to
exponential marginal distribution. Moreover the the case when (Ut) and IVt} are uncorrelated
signals are observed at two polarization states of sequences, then we can construct the exponential
the transmitted wave and are correlated. This - U2 V2 where
paper deals with the inference problem associated series as itt} where Pt - + Vtwhre
with the above described radar signals. We V and P are the jth components of the real and
discuss two different schemes, one based on second lt jt
order moments and the other using the distribution imaginary parts. Ut' Vt of the multivariate

functions. The simulation study of these two Gaussian series xt* Properties of this series
schemes show that they have similar performance
and hence the simpler moment technique can be used and the relationship with the complex Gaussian

with real time radar applications, series have been studied by Chandrasekar et al
(1987), and we refer to that paper for details.

I. Introduction In this paper we deal with constructing the

The time series under consideration in this likelihood functions for the exponential series.

paper is collected by a meteorological radar which Let xt be an n-dimensional complex vector with
receives the signals backscattered from an mean vector c and positive definite covariance
ensemble of hydrometeors (particles like matrix R. That is
raindrops, hail, ice, etc.). These particles also
have a size distribution and orientation E(x) - c and (1)
distribution associated with them. Thus we have
an ensemble of particles that are randomly
positioned, randomly distributed in size shape and E(x - c)(x - c)' - R where
orientation and move randomly. Fluctuation of the
received power is related to all the above
distributions. The marginal distribution of the (x - c)' indicates the transpose of complex
received power is exponential in nature. The conjugate. The quadratic form (x - C)' R-

I 
(X-C)

medium when observed at different polarizations is real. Then we can write the density function
give different mean powers due to the anisotropy f(x) as
of the medium, but they still are correlated since
the observations come from the same set of f(x) - n exp [-(z-c)' R (z-c)] (2)
targets. Statistical properties of these dual ndet R
polarized signals have been studied by Bringi, et
al. , 1983. Simultaneous observation of the where f(x) is a real-valued scalar function of
targets at two polarizations is difficult to the complex vector x, see Miller, (1974). From
achieve technologically, and as a result the the above density function we can get the density
observation is made at two polarizations switching of P by integrating over the phases of the full
between them very fast. This creates an inherent complex vector.
property of missing observation.

The above model of the exponential series
Thus we have a class of multivariate obtained from complex Gaussian fits the radar data

exponential time series describing the very well. The power received by radar comes from
backscattered power received by a meteorological the square of in-phase and quadrature component of
radar. This paper deals with inference problem the received signal that behaves complex Gaussian.
associated with this exponential time series and
the paper is organized as follows: Section 2 The spectra of radar signals are
deals with the description of the exponential approximately Gaussian in nature. This implies
series in terms of complex Gaussian time series, that the autocorrelation function is also
Section 3 analyzes the one step predictors namely Gaussian. These autocorrelation functions can be
moment method and conditional expectation. In section written in terms of a spectrum width av ,
4 we obtain the corresponding two step predictors sampling time of the radar T and wavelength of
and Section 5 presents the conclusions with a s
summary of key results of this paper, the signals X. The autocorrelation function of

the complex signal at lag m, (p(m)) can be written
in terms of the above parameters as
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No • m T 4x v m T amplitude and phase of the complex signal X. Let

p(m) - exp [-8( V s)2 1e - S (3) S be the inverse of the covariance matrix with
A A its terms defined as

It can be shown that p p(m), the autocorrelation - S S121

function at lag 'im' of the power signals is
related to p(m) as [S12 $22f

pp(m) - Ip(m)1 2  (4) where sll, s22 are positive real and s12 is

complex. The complex density function now becomes
3. Two Step Predictor rlr 2 det s

Let r be amplitude vector that corresponds f'(rlr 2 '01 '02) r 2 exp (-x' s x) (10)
2

to the power vector P where P. - r 2 We can
t jt jt* We can obtain the joint distribution of amplitudes

either predict in amplitude domain or power by integrating over the phases as
domain. The amplitude time series can easily be
constructed as the term by term square root of the 2 2
power series. We consider only univariate f(rl,r 2) - r rr2(det s) exp [-(s 11 rI + s22 r2)]
stationary time series for the sake of inference
analysis and these results can be extended easily 1l(2 s1 2 rl r2 ) (11)
to multivariate cases with the introduction of
appropriate cross correlation functions. We
consider two predictors here for comparison, based 1' 2 -
on the second order moments and the density
function as follows: - 0 elsewhere

Predictor I: This predictor based on inner where 1 is the modified Bessel function of the
products is constructed as follows (Brockwell and 0Davis. 1987): first kind and order zero, see Miller (1974).

^9 Similarly it can be shown that the marginal
Pi+l - ao + a Pi (5) distribution g(r) is given by

where aO and a are evaluated based on the 2r - 2 (12)g(r) - =exp () (12)criteria that Pi+l is a projection of P i+l on the P p

space P. with the constraint that E(Pi+l where p is the mean power of the signal. Using

E(P i+) to obtain an unbiased estimator. Under equations (11) and (12) we can write the

conditional distribution g(r2 IrI ) asthis condition we get Pi+l as

2 2 2

1+ - ?iP) +pf 2 (P) (6) g(r2Irl) - r2 det (S) exp [-(sllr I -rI + s22 r2
2 o(2 1s121rlr 2) (13)

where p is the lag I auto-correlation of the

power time series, see Chandrasekar et al. (1987). Integrating equation (11) over the range of r2 (0
The above result is valid for unit mean and to -) we can obtain predictor 2.
variance and for realistic signals can be scaled
accordingly. The conditional density function for radar

signals can be obtained from the autocorrelation
Predictor II: This predictor is obtained description of Section 2 and (13) as

taking the conditional expectation of ri+ 1

conditioned on ri, .1P2r2 2r2g~rl-i1)
2

- expi -2 pi2 exp

ri+ 1  - E ri+ 1lri] (7) g(r2 /r l exp - •1

computation of the above result requires knowledge -r2 2 2
of the joint density function or the conditional 2• 2 rl r 2) (14)expectation and is obtained as follows: Let 1- 1 - IpI

1I-r exp (191) and
(8) The conditional density given by (13) can be

x2 - r2 exp (i02) integrated multiplying by r2 to get the value of

predictor I.

where rj, aj are defined as rj - IxjI and 8j

the corresponding argument of xJ. This

transformation enables us to work in the domain of
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Example 1: The conditional density g(r21rl) 'P - b + b P + b P (15)

integrated over the entire range of r2 (0 to -) to i + 2 o

compute the conditional expectation and is where b, b I and b2 are evaluated based on the
calculated numerically. It would be useful to
make some comments on this numerical computation. c
The typical measurements made by radars give a criteria that Pi + 2 is a projection of Pi + 2 on

value of 1pI2 very close to unity and the term the space containing Pi and Pi + 1 with the

I - lpf2 has to be handled carefully when it
an,-ar in deromenitars. Next the value of 1 constraint that E(Pi) = E(P+) to obtain

for large arguments increase exponentially and )ur unbiased estimator. Under these conaoiions ";e

they have to be cancelled explicitly with other get b. j - 0,1,2 as

terms to make the expectation stable.

We use typical radar parameters to compute bo -
the predictor II and they are as follows 0 + 2p(1)J

2

- 10 cm (Microwave radar at S band) 2 4
Ts  I millisecond. b i(2)1 - 1(1)4 (16)

Mean power of signal is unity. 
1 1 - Ip(1)4

Figure la shows the one step predictor, i+l b2 - 11 - (2
2

(predictor II) as a function of the signal pi [1 - )p(1)I

with the spectrum width av as parameter. The The above result is valid for unit mean of

various curve markings x, +, , ... 0 indicate the power signal and for non unit means the

values of av - 1, 2,...6 respectively. We can predictor can be scaled accordingly.

see that for large values of spectrum width the Predictor II: This predictor is obtained

predictor is nearly unperturbed by the value of similar to the one step predictor as

Pi but for narrow spectra the predictor increases

nearly linearly with pi. This gives a suggestion r i+2 E(r i+2 Jri,ri+lI (17)

that a linear predictor may do almost as good as
predictor 2. Figure lb shows predictor 1 for Let x - r. exp (i e.) j - 1,2,3 (18)
radar parameters identical to those used in J
predictor 2. This is a linear predictor and the
results are only slightly higher for all values of Similar to those discussed in Section 3

pi and all spectrum width. The above phenomena [S 13

can be easily explained based on shape of the l i S12 R'

distributions. Predictor 2 uses the information S - R - S12  22 23
on the distribution of the signals which falls 13 23 $ 33j
exponentially with signal power and hence weighs
it lower than the predictor I which does not make
use of the shape of the distribution. However, Then we can write

the difference between the two estimators is
relatively small. 2r

Several simulated time series were used to f(r1 ,r,r 3 ) 
d et s 

X' S X dOl dO2 dO3 (19)

test these two predictors. Mean square errors

were calculated on the difference between the 0

known signal Pi+l and pi+1 applying the two Equation (19) can be reduced after some algebraic

predictors on simulated series, see Chandrasekar manipulations as, (Miller, 1974)

et al., (1987). The difference between the mean
square errors for the two predictors were small - 8(dets) r r r3  exp [-(r S +
leading us to conclude that the two one step f(rr 2 r3) 1 2 3  1 1

predictors perform similarly. 2 2

4. Two Step Predictor 2 22 + 33

The two step predictor in principle is an m- (2r I )(2rr3S )

extension over the one step predictor but gets
complicated quickly. We again consider two I (2r r o is + 0 + (20)
predictors here similar to section 3 based on m 3  $1 3 1 1)Co m 12 23 31

second order moments and density function.
where #12' #23 and #31 are phases of Sl2,

Predictur I: This predictor is based on S S respectively, cm - I for m - 0 and 2 for
inner products and is constructed as follows: 23' 31

m - 1,2. and I is the modified Bessel
m

function of the first kind and order m.
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We can write predictor 2 as values. In real time applications in a radar,
simplicity of computation is as important as
accuracy as long as we can keep making real-time

f(r1 Er2,r3 ) (21) updates of observational data. Thus based on the
i E[f(r r 3 ) above observations and radar system constraintsri+3

our initial suggestions is that moment based

Equations (20) and (21) indicate the predictor I is suited well for radar applications.
The time series studied here is reversible and

complexity involved in computation of r i+2' The hence all the results discussed here can easily be

integrant in computing the expectation is our extended to other inference problems.

infinite summatio ntaining terms with modified
P-cQq1 function. , is simpler numerically to Acknowledgements

compute the three dimensional integration in Lq.
(19) and then use it in (21) to compute the This research was supported by the Center

expectation. This integration of the complex for Geosciences at Colorado State University
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intensive and more involved than one step 86-K-0175)
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shows the two step predictor Pi+2 as a function Bringi, 1987: Simulation of multivariate

of Pi~l for P. - I and mean power of unity. The exponential time series, 19th Symposium on the
continuous curve shows the results of predictor 2 Interface, Computer Science and Statistics, ASA,

whereas the points indicate predictor 1. We can Washington, D. C.
see from Fig. 2 that, though there is some
diferne betweg the, touh ctor fr sme Miller, K. S., 1974: Complex stochastic processes,difference between the two predictors for small Ad i o - e l y L n o .

values of P i+l' the overall agreement seems good Addison-Wesley, London.
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e) the two predictors perform similarly. This
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computational complexity involved in obtaining 1983: Statistical properties of the dual-

predictor 2. polarization differential reflectivity (ZDR) radar
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Conclusions and Discussion: 215-220.

We have discussed some inference techniques
for a class of exponential time series in the
context of radar signals. The exponential time

series is constructed from complex Gaussian time
series with arbitrary correlation structure.

Two predictors have been considered for
analysis, one based on second order moments
(predictor I) and the second based on conditional
expectation (predictor II). These two predictors
have been derived for one step and two step
prediction. The amount of complexity involved in

higher order predictors for predictor 2 is

exhibited clearly by a comparison of the
corresponding one step and two step predictors.
The moment method predictors are computationally
simple compared to predictor II. The
computational complexity of two step predictor 11
is an order of magnitude more than that of one
Step Predicatur II. Real time applications of

predictor 11 will be possible only through a pre-
calculated look up table system since these are
computationally intensive. The smooth variation
of these predictors as observed in examples I and

2 indicate that we may not need too many entires
in the look up table and can possibly be
interpolated.

We have done a mean square error criteria
evaluation of these two predictors for one step
prediction based on simulation and they both give
nearly equal mean square errors. The example for
two step predictor shows that, over a wide range
on the average,the two predictors give similar
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ALTERNATIVE METHODS FOR COMPUTING THE THEORETICAL AUTOCOVARIANCE FUNCTION

OF MULTIVARIATE ARMA PROCESSES: A COMPARISON

Stefan Mittnik, SUNY at Stony Brook*

Abstract multivariate ARMA processes in terms of the ARMA

parameters, Mittnik (1988b) presents a procedureMatriclal expressions relating the theoretical

aut ' ..u: . Ii lt' ,1grossi which, compared to the previous approaches,

moving average processes to the parameters of the reduces the number of unknowns in the system by a
process are employed to derive a framework which
unifies alternative algorithms for computing factor of about two.

theoretical autocovarlance functions. In this paper we employ the matricial

expressions in Mittnik (1988b) to compare the

1. INTROD)IrTION alternative approaches to computing theoretical

The theoretical autocovariance funetion of autocovariance functions of multivariate ARMA

autoregressive moving average (ARMA) processes processes. While the earlier algorithms require

has to be computed frequently In applied time rather complex indexing schemes to set up the

series analysis. For example, exact maximum coefficient mcatrices (see, for example, Ansley,

likelihood estimation procedures for ARMA models 1980; Kohn and Ansley, 19 2; Pate and Davies,

require the derivation of theoretical autoco- 1988), the results derived here yield closed form

vailancoc in each iteration of the maximization expressions for the coefficient matrices of the

algorithm (see, for example, Nichoils and Hall, respective algorithms.

1979; Gardner et a]., 1980; Shea, 1987; Mlttnik,

1988a). Theoretical autocovariances are also 2. ARMA COEFFICIENTS AND AUTOCOVARIANCES

needed in distributional analyses of estimated Assume the stationary zero mean non-

ARMA parameters (Hannan, 1970) and for correctly deterministic time series (yt), yt'r ,  is

initializing simulations with ARMA models (Ansley generated by the ARMA(p,q) process

and Newbold, 1980; Woodfield, 1988).

The problem of computing the theoretical A(L)yt = B(L)ct, (2.1)

autocovariance function amounts to specifying and

solving a system of linear equations. Algorithms where A(L) is a stable matrix polynomial in the

for univariate ARMA processes have been suggested lag operator L defined by A(L)=I-AIL-A2L2 -...

in NcLeod (1975, 1977) Akaike (1978) and -A Lp, and B(L)=BqB L+...+B Process {ct} is
-Ap 0 n (L=OB1 L..Bq L rcs ct )i

Tunnicliffe Wilson (1979). In the multivariate white noise, i.e. q~c )= and E(c C=6 E Note

case the specification of the system's that without loss of generality either B0 or I

coefficient matrix represents a major difficulty. can be assumed to be an identity matrix. Unless

Nicholls and Hall (1979) present an algorithm stated otherwise we set 1=I.

for the multivariate processes. The algorithm It is well known that given the initial

given in Pate and Davies (1988) is essentially autocovarlances r =E(yt_ ) (T=O,...,p-i) of an

equivalent to the one of Nicholls and Hall. ARMA(p,q) process, higher order autocovariances

Ansley (1980) and Kohn and Ansley (1982) propose can be determined recursively applying the

slightly more efficient algorithms by eliminating modified Yule-Walker equations. From the

some of the unknowns In the equation system. By definition of the autocovariance It follows that

developing a closed form matricial relationship,
I T~

',hich expresses theoretical autocovariances of T = AiT1 +... +Apr p+E(BoCtYt7T+...+BqC tyqt_ )

Department of Economics, SUNY at Stony Brook, (T=O,l .... (2.2)
Stony Brook, NY 11794-4384.
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Replacing y t-T In (2.2) by its moving average B0 BI ... Bq 1 Bq

representation, ytT=A-1(L)B(L)c tT=C(L)ct-,T BIB 2 ... Bq 0

where C(L)=Co+C IL+..., and recalling the unit N = if paq.

variance assumption, we can write 0 ... 0q{

CT =-t, T+1, q 0 m(p-q~xm(q+l)

E( t y T {CT 
,t- t- Note that if EsI, matrix C is defined by

0, otherwise. C =(C0E Z ... C q) T
. Expression (2.3) relates the

5k-TFin r=(r r, r r =(r0  , ... )T, theoretical autocovariances to the autoregressive...~in C=(F0  C1 =.C Cp , ) 1 T .an u I

C=(C 0 CT ... CT)T, C =(C C1 ... Cq) and using coefficients and the coefficients of the pale
0 1 q 0 1* q

I

the fact that r =r. allows us to rewrite moving average representation. A matricial
T-i I-T

(2.2) in matrix terms as (Mittnik, 1988b) expression purely in terms of the ARI'A parameters

can be found in Mittnik (1988b).

r = Krr + Nr + NC (2.3)

3. COMPARISON OF ALGORITHMS
where the m(p+l)xm(p+l) matrices M. artd MT are

defined as Nicholls and Hall's (1979) procedure for

computing the initial p+l theoretical auto-

covariance matrices amounts to vectorizing the

H [T J 0 [transposition of (2.3), yieldingMH 0 0' = T O"

Matrix H denotes the Hankel matrix = (MT0®Im)T + (MHeIM)Wp+lT + 6. (3.1)

AI  A 2  • A A1 Ap where Z=vec(rr), 6=vec(C* N ), and matrix Wp+1=

A2  A . A P Ip+ eW is a 0-1 commutation matrix such that

H vec(r )=W vec(r and vec(rF)=Wvec(rI By
* . 0 p+l I

A P- A pdefining

p Mf - IODm)Wp+l

and T is the lower triangular Toeplitz matrix we obtain the linear eqL. ion system

A1 0 0 MT = 5, (3.2)

A A
T 2 1 whose solution provides the elements of the

0 Initial p+l autocovarlance matrices. The

Ap Ap I- . . . 1 approaches of Nicholls and Hall (1979) and Pate

and Davies (1988) correspond to solving the
finally, the m(p+l)xm(q+l) matrix N Is defined by m2(p+1)_dmensona s

m (~l)dlmnsinalsystem (3.2).

Using the fact that r0  is symmetric and

B0 BI ... Bq-1 Bq extending the univarlate results of McLeod

B B 2  ... B 0 (1975), Ansley (1980) reduces the size of the

N I pq system by eliminating the m(m-I)m/2 redundant

elements In r Letting rI denote the vector
Bp-I Bp obtained by ellminating the redundant elements In
B p Bp+i B q 0 ... 0 Z, we can define the 0-1 matrices S and S2 such

that 1S, 6I=s1 and Y=S 2 Y1 . The equation

system providing the solution for T1 is
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SIMS = 1. (3.3) a system with m 2p-m(m-l)/2 unknowns. Computing

the autocovariances via (3.6) corresponds to the

Expression (3.3), Involving mp+(m+l)m/2 unknowns, algorithm in Kohn and Ansley (1982).

Is equivalent to Ansley's (1980) approach. The Making use of the particular structure of

coefficient matrix, which he constructs with a (2.3), Mittnik (1988b) proposes a more efficient

rather complex Indexing scheme, corresponds to algorithm. Partitioning F such that r=

matrix S MS in (3.3). (F1T r2 ) T, with r =(r .,. r ), F2 = (rT+ . r).
1 2 0 1 p

Observing that where

p-l p-2 if p is even
F= Z A .r. + K (3.4) 2 '

1=0 P-1 P, s =  
p- if p is odd,2'

where
enables us to rewrite (2.3) as

q T{ ZBC If psqlpI -p'F 
1  

Hl 1

K = p (3.5) 1 1  H12I +4 K 3.7)

0, if p>q, 2 2 *2 2

and that FT affects only F in (2.3), Kohn and
p 0 where matrices T H and K denote

Ansley (1982) eliminate F from the equation ij. ij
system. In our framework, P is accomplished conformable submatrices of MT.- MH and NC

syste. Inour rameorkthis scomlhe

by substituting (3.4) for F in the RHS of (2.3). respectively. By defining
T Tp

1T1TI
Defining j=vec(F0 rT .. rp , we can write l=vec(rT 2T )O "'" T1 vcF)=Ws lvec(F ) 6 =vec(K

)

32 =vec(F 2)=W vec(F ) a2=vec(Kp-s2
(T91)d + (%eI)Wp' + Mp V + 6, Tl=r 1lVtH 1 G ei)Ws+l

T2=T219 H2= (H21 INp-s

- 2 =T 01 H =(H m)IlWwhere M and 4 are obtained by deleting both the T3T 22 3 12 s+1'

last block row and last block column of MT and
we can write

M H  respectively,

T T T T (I-T 1-H 1)41 = H3 12 + .1 (3.8)

vec(K AT+K K .. K ),p p 0 K1 " p-1
)

with K. denoting the th (block) entry in NC ,(-T 3 )42  (T2+H2 4 1 + 2. (3.9)

S, ihst ituting

M = (A IOmm(p-1 )) 
TE(Ap Ap_ 1  .. . AI) =(I-T - [(T ( +H )? + 6 1 (3.10)

p p3 2 2 1 2

W =I oW, and matrix V is defined such that into (3.8) and eliminating again the redundant
SPT T T I Yveckr U.. F - =Vvec(F 0 r F I Let elements in -X by defining S5 and S6 such thatv e F ' p -I F O . 11 d f i n igea n

)= 5 1
, 

151=S561 and z=s6 1, gives

M = I - MT® I + Me0I + Mp

2MS = 5H( -- l 61. (3.11)

and define 2 as the vector obtained ty deleting S 1 I O S5 H3 (lT 3  2 +

the redundant elements In I. Moreover, define where

2
the 0-1 matrices S3 and S4 such that X = S 3
6 
2
=S3A and 'X=S4. The theoretical autoco- 3 2 2

variances ro ... Fp_ are calculated by solving
O~nce I has boon compuLed, 2can be obtained

2= 62, (3.6) ither recursively (Mlttnik, 1988b) or from
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(3.10). The number of unknowns in system (3.12) theoretical autocovariance function of multi-
is (m2p+m)/2 If p Is odd and (m2(p-1)+m)/2 if p variate ARMA models has been provided The

is even. Thus, for large values of p the number results facilitate the implementation of these

of unknowns in (3.12) is substantially less than algorithms by deriving closed form expressions

for any of the other methods, for their respective coefficient matrices instead

The ratio of the elementary multiplications of of using complex indexing schemes.

the (previously most efficient) algorithm by Kohn

and Ansley (1982) over the ones required in REFERENCES
Mittnik (1988b), reported in Table 1, indicates

the comnutational savings of the latter approach. Akaike, H. (1973), Block Toeplitz Matrix
Inversion, SIAM Journal uf Applied

Note, the fact that the construction of the Mathematics, 24, 234-241.

coefficient matrices In (3.11) are more complex Akalke, H. (1978), Covariance Matrix Computation
of the State Variable of a Stationary

has to be taken into consideration. Using, Gaussian Process, Annals of the Institute of

however, Akaike's (1973) block-Levinson Statistical Mathematics, 30, 499-504.
Ansley, C.F. (1980), Computation of the

algorithm, the inversion of of I-T3 requires only Theoretical Autocovariance Function for a
O(p2 ) operations. Vector ARMA Process, Journal of Statistical

Computation arid Simulation, 12, 15-24.
Table 1: Comparison of Computational Complexity Gardner, C., A.C. Harvey, and G.D.A. Phillips

(1980), An Algorithm for Exact Maximum
Likelihood Estimation of ARMA Models by Means
of the Kalman Filter, Applied Statistics 29,
311-322.

m p Ratio Kohn, R. and C.F. Ansley (1982), A Note on
Obtaining the Theoretical Auto-covariances of
an ARMA Process, Journal of Statistical

1 2 7.0 Computation and Simulation, 15, 273-283.
3 4.2 McLeod, AI. (1975), Derivation of the
4 6.0 Theoretical Autocovariance Function of
6 6.2 Autoregressive-moving Average Processes,

2 2 9.5 Applied Statistics, 24, 255-256.
3 3.5 McLeod, A.I. (1977). Correction, Applied
4 8.4 Statistics, 26, 194.6 8.2 Mittnik, S. (1987), Non-recu.-sive Methods for

Computing the Coefficients of the

3 2 12.7 Autoregressive and the Moving-average
3 3.8 Representation Gf Mixed ARMA Processes,
4 9.7 Economics Letters, 23, 279-284.
6 9.0 Mittnilk, S. (1988a), Exa* Maximum Likelihood

4 2 15.2 Estimation of Multivariate ARMA Models via
3 4.1 Kalman Filtering, Dept. of Economics Working
4 10.5 Paper, No. 304.

6 95 Mittnik, S. t1988b), Computation of Theoretical
Autocovariance Matrices of Multivariate ARMA

5 2 17.0 Time Series, unpublished manuscript.
3 4.2 Nicholls, D. and A.D. Hall (1979), The Exact
4 11.0 Likelihood Function of Multivariate
6 9.8 Autoregressive-moving average Models,

Biometrika, 66, 259-264.
m: nubrit> of variables Pate, M.B. and N. Davies (1988) Computation of
p: autoregressive order Population Correlation Matrices in MARMA(P,Q)
Ratio: ratio of elementary multiplications Time Series, Applied Statistics, 37, 127-155.

KohnLAnsley (1982)/Pittnik (1988b) Shea, B.L. (1987), Estimation of Multivariate

Time Series, Journal of Time Series Analysis,
8, 95-109.

Tunnicliffe Wilson, G., Some Efficient

4. CONCLUSIONS Computational Procedures for High Order ARMA
Models. Journal of Statistical Computation

Making use of a matricial expression relating and Simulation, 8, 301-309.
Woodield, T. (1988), Simulating Stationary

the autocovarlances of an ARMA process to the Gaussiar, ARMA Time Series, this volume.

ARMA parameters, a general framework for

alternative approaches to computing the
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INCREASING RELIABILITY OF MULTIVERSION FAULT-TOLERANT SOFTWARE DESIGN BY MODULATION

Junryo Miyashita,California State University at San Bernardino

Abstract: effect of modularization is that as long
One of the problems of the as any two versions of different modules

multi-version fault-tolerant software is are correct then the two outcomes of
the high cost of development. This paper those modules are assumed to be correct.
addresses that problem . Rather than In other word, the reliability of
working on the common requirement non-modulalized N-version programming is
specification for a whole program, teams that Pr(at least two versions of each
of programmers will work on the common modules's outputs agree for all
specifications for each module in each modules.).
version of a program. One version of a We also note here that we can process
program consists of a set of modules. all the possible permutations (ie.
This will enable the modules in each N-versions,M modules : NM permutaions )
version to be interchangeable. The and add to each module the information
effects on the reliability by such as to which version it is.Then if there
modularization scheme are studied. are agreements in output, we can check
Theoretical reliability of modularized if agreements come from "independent"
N-version Programming and Recovery Block permutations : permutations which do not
are derived in closed forms assumming share any common version at any module
independence among different modules, level.
Numerical results show substantial We shall define following terms.
increase in the reliability in both R(ij) = Reliability of i-th versions of
N-version Programming and Recovery Block j-th module.
schemes. R(i) = Reliability of i-th version

Section One : Introduction. P j~ R(i,j)

Fault-tolerance in software is Rnvp Reliability of N-versionFaul-toerane i sofwar isprogramming without
achieved by introducing redundancy.There modularization.
are three well known designs :
N-version Programmings, Recovery Block, RNVP-M Reliability of N-version
and Consensus Recovery Block. All three Programming with
designs effect reliability by using modularlization.
multiple implementations of a common
requirements specification.One problem Then we have,
with multiversions is the high
development cost.This paper addresses RNVP = Pr( At least two versions

the problem. agree(correct) )
Reliability is increased without the N

increase in costs by delaying the 1 - [ + (R(i))
introduction of redundancy untill later i=l
in the development cycle. Redundancy is N
introduced after completion of a modular z (R(i) I(l-R(s)) ]
design which provides a common set of *l
module specificaitons. Multiple versions
of each module are then implemented; as
opposed to multiple versions of an RNVP-M = Pr( At least two versions

entire program. Each version of module are correct at each module

is interchageable with every other level
version. Multiversions of a program are
built by assembling different version of Pr( At least two versions are
the requisite modules. Theoretical j=l
studies provide further confidence in correct at j-th level
the efficacy of this approach. = I1- Pr(O error) - Prl error
Theoretical reliabilities of modularized Ier
,multiversion fault-tolerant software N
are derived in closed form assumming l' I (i,)+
the independence among modules. The j=i

effects of modularization on reliability (R(ij)* TT (l-R(ij)) (2)
for the multiversion designs are i( ' s<i
calculated. The result show substantial
increases in reliability for each. Part Two: Numerical Result on special

case when reliability of each module are

Section Two : Effect of modularization the same. (i.e. R(i,j) = R for all i

of N-version programming. and j ).
Part One: General Formula.

We shail assume that we ))ive N If R(i,j) = R for all i and j then,

independent versions of a software and RNVP = 1 - [ (I-RM)N-1 * (+(N-I)*RM) I

in each version, there are M independent RNVP-M = [ 1 - (1-R)N-1 * (I+(N-I)*R) ]M

modules. The three table of values of RNVP

In N-version programming, we shall ,RNVP-M and the ratio I-RNyp is given
assume that we have a correct output I-RNvp-9
when two of the output agree. Now the at next paqes (Table 1, ,and 3). The
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last table is for the ratio of errors RRB = - (I-RM)N

where the numerator is the probability and

of failure in N-version programming RRB-M = ( 1 - (I-R)N)M

without modulation and the denominator Again, the table of RRB ,RRB-M, and

is the probability of error with - RpR are given (Table 4,5 and 6).
modulation. The results show the - 1M
substantial increase in reliability. For The tagles show the substantial increase

example, when the reliability of each in the reliability by modularization.
module is constantly .98 and 8 module
with each having 5 versions ,will
increase the reliability 327 times. We
must remember here that we assummed REFERENCES:
independence among modules which may not
likely to be true. (l1 Keith Scott , Data Domain

Modeling of Fault-Tolerant Software

Section Three. Modularization effect on Reliability. Ph.D. Dissertation,
Recvovery Block Model. Dep[artment of Electrical and Computer

Part One: Comments on general case. Engineering , North Carolina State
In Recovery Block Model, We have University , Raleigh, North Carolina,

additional factors to consider, namely 1983.
[2) T. Anderson and P.A. Lee, Fault

1) The reliability of acceptance Tolerance , Prentice/Hall International,
test(s), 1981.

2) Recovery reliability . [3] R. Keith cott, James W Gault and

3) Arbitrary ordering of versions to be David F. McAllister, "Modelling

excecuted. Fault-Tolerant Software Reliability,"
Proceedings of the Third

In this paper, we shall have a simple Svmposium on Reliability in Distributed

assumption that acceptance test has Software and DataBase System. 1983.

perfect reliability as well as recovery. [4] H. Hecht " Fault-Tolerant

Then the ordering of versions does not Software, " IEEE Transactions on

affect the reliability of the entire Reliability , Vol. R-28, No. 3, August

scheme because the probability that at 1979,pp. 227-232.
least one correcct version existing
becomes the reliability of the Recovery [5) Aligirdas Avizienis and Liming

Block scheme. Cheng."On the Implementationof N-version

We shall define following terms. Programming for Software
Fault-Tolerance During Program

RRB = Reliability of Recovery Block Execution," Proceedings of COMPSAC
Model without modularization. 1977, pp 149-155.

RRB-M = Reliability of Recovery Block [6] George J. Schick and Ray W.
Model with modularization. Wolverton,"An Analysis of Cometing

Then we have, Software Reliability Model" IEEE
Transactiona on Software Engineering,

RRB = Pr(At least one version is correct Vol. SE-4, No 2, March 1978.

I I[7] C. V. Ramamoorthy and F.B.

1 - ( 1 - R(i) ) Bastani, "Software Reliability

i Status and Perspectives, " IEEE
Here R(i) =Reliability of one version transactions on Software Engineering.

= i ! o R (i ,j )  Vol. SE-8, No 4, July 1982 , pp 354-371c

RRB-M = Pr( At least one version is
correct for each module )

Pr( At least one version is correct

at j-th module level

(1 - Pr(No correct version at j-thj =1
module level) ).

= (~ - ( ( - R(ij)))j=l i=l

Now if we assume that R(i,j) = R for all
i and j then
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r = reliability of one module in one version
N = number of independent versions
M = number of module per version

r = .94
N\M 1 2 4 5 6 7 8

2 .780749 .6898698 .609569 .5386151 .4759203 .4205232 .371574
3 .9625073 .9236198 .8768662 .8252617 .7711148 .7161698 .661722
4 .9942423 .9830212 .964774 .939675 .9084379 .8720594 .831647
5 .9991676 .9964392 .9904725 .9802682 .9652221 .9451244 .920105

r = .96
N\M 2 3 4 5 6 7 8

2 .8493465 .7827577 .7213896 .6648326 .6127097 .5646732 .520402
3 .9825241 .9632053 .9387492 .9103251 .8789226 .8453752 .810382
4 .9981858 .994404 .9878682 .978312 .9656716 .9500289 .931569
5 .999823 .9991988 .9977348 .9950484 .9907989 .9847116 .976587

r = .98
N\M 2 3 4 5 6 7 8

2 .9223682 .8858424 .8507631 .817073 .784717 .7536421 .723798
3 .9954198 .9900316 .9828557 .9740802 .9638796 .9524142 .939832
4 .9997589 .9992223 .9982375 .9967079 .9945587 .9917337 .988193
5 .9999881 .999943 .9998296 .9996067 .9992284 .9986473 .997815

Table 1: Reliability of non-modulated version
when reliability of each module is r and
n = number of version and m = number of modules

r = .94
N\Mj 2 3 4 5 6 7 8

2 .780749 .6898698 .609569 .5386151 .4759203 .4205232 .3715743
3 .9793715 .9692174 .9591685 .9492238 .9393822 .9296428 .9200042
4 .9983503 .9975265 .9967034 .9958809 .9950591 .9942381 .9934176
5 .9998766 .9998149 .9997532 .9996916 .9996299 .9995682 .9995066

r = .96
N\MI 2 3 4 5 6 7 8

2 .8493465 .7827578 .7213896 .6648326 .6127097 .5646733 .5204029
3 .9906777 .9860492 .9814423 .9768569 .972293 .9677504 .9632291
4 .9995034 .9992552 .9990071 .9987591 .998511 .9982631 .9980152
5 .9999752 .9999628 .9999504 .999938 .9999256 .9999132 .9999008

r = .98
N\Mf 2 3 4 5 6 7 8

2 .9223682 .8858425 .8507631 .817073 .7847169 .7536421 .723798
3 .9976334 .9964522 .9952725 .9940941 .9929172 .9917416 .9905674
4 .9999369 .9999054 .9998739 .9998424 .9998108 .9997793 .9997478
5 .9999983 .9999975 .9999967 .9999958 .999995 .9999942 .9999933

Table 2: The reliabilities of modulated versions.
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r = .94
N\M1 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 1.817518 2.481277 3.015656 3.441344 3.775878 4.034128 4.22868
4 3.490191 6.864355 10.68551 14.64541 18.53157 22.20449 25.5763
5 6.74686 19.23961 38.60991 63.96986 93.95765 127.0928 161.904

r = .96
N\MI 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 1.874644 2.637466 3.300566 3.874808 4.369925 4.794632 5.15672
4 3.653583 7.513806 12.21863 17.47666 23.05496 28.7696 34.4768
5 7.139423 21.54167 45.67789 79.87885 123.6923 176.1648 236.052

r = .98
N\MI 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 1.935422 2.809798 3.626523 4.388822 5.099723 5.762057 6.37866
4 3.822306 8.221173 13.97448 20.88166 28.76182 37.45234 46.8071
5 7.142857 22.76191 51.03572 94.27143 154.1191 231.5714 327.160

Table 3:
This table shows the ratio of probabilities of errors
The denominator is the probability of error when modulation
is introduced and the numerator is when no modulation is
introduced

r = .94
NM 2 3 4 5 6 7 8

2 .986451 .9712982 .951929 .9291929 .9038192 .8764319 .847563
3 .9984229 .9951374 .9894604 .9811585 .9701714 .9565631 .940484
4 .9998164 .9991762 .9976891 .9949864 .9907492 .9847309 .976763
5 .9999787 .9998604 .9994934 .9986659 .9971311 .9946326 .990927

r = .96
N\M I 2 3 4 5 6 7 8

2 .9938534 .9867142 .9773035 .9659127 .9528058 .9382216 .922376
3 .9995181 .9984686 .9965"08 .9937066 .9897474 .9846448 .978373
4 .9999622 .9998234 .9994849 .9988381 .9977727 .9961834 .993974
5 .999997 .9999797 .9999224 .9997854 .9995161 .9990513 .998321

r = .98
N\M I 2 3 4 5 6 7 8

2 .9984318 .9965416 .9939733 .9907688 .9869681 .9826091 .977728

3 .9999379 .9997966 .9995321 .9991131 .9985122 .9977066 .996676
4 .9999975 .999988 .9999636 .9999148 .9998301 .9996976 .999504
5 .9999999 .9999993 .9999971 .9999918 .9999806 .9999601 .999926

Table 4: The reliabilities of non-modulated
Recovery Block
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r= .94
N\MI 2 3 4 5 6 7 8

2 .9928129 .9892388 .9856775 .9821291 .9785934 .9750704 .9715601
3 .9995681 .9993521 .9991362 .9989204 .9987047 .9984889 .9982732
4 .999974 .999961 .999948 .999935 .9999221 .9999091 .9998961
5 .9999983 .9999975 .9999967 .9999958 .999995 .9999942 .9999933

r = .96
N\MI 2 3 4 5 6 7

2 .9968025 .9952076 .9936152 .9920254 .9904382 .9888534 .9872713
3 .999872 .9998079 .9997439 .9996799 .9996159 .9995519 .9994879
4 .9999949 .9999923 .9999898 .9999872 .9999846 .9999821 .9999795
5 .9999998 .9999996 .9999995 .9999994 .9999993 .9999992 .9999991

r = .98
N\MI 2 3 4 5 6 7 8

2 .9992002 .9988004 .9Q8401 .9980016 .9976024 .9972034 .9968046
3 .999984 .9999761 .' 99681 .9999601 .9999521 .9999441 .9999361
4 .9999996 .9999994 .9999993 .9999991 .9999989 .9999988 .9999986
5 1 1 1 1 1 1 1

Table 5: The reliabilities of modulated versions
of Recovery Block.

r = .94
''M 2 3 4 5 6 7 8
-------- --------------------------------------------------------
2 1.885187 2.667154 3.356325 3.962131 4.493034 4.956684 5.3599523 3.651166 7.50506 12.20247 17.45296 23.0278 28.74531 34.4671
4 7.06422 21.13303 44.46101 77.16973 118.656 167.8716 223.5379
5 12.78571 55.76191 151.7857 319.7572 573.0119 918.8776 1359.018

r = .96
N\MI 2 3 4 5 6 7 8
-------- -------------------------------------------------------
2 1.922304 2.772272 3.554809 4.274503 4.935713 5.542383 6.098332
3 3.763967 7.97393 13.35335 19.6622 26.69305 34.27139 42.23467
4 7.372093 22.96124 50.24419 90.66977 144.8372 212.7309 293.8663
5 12.5 56.83333 162.75 360 676.5 1136.857 1760.313

r = .98
N\MI 2 3 4 5 6 7 8
-------- -------------------------------------------------------
2 1.960653 2.883081 3.769002 4.619382 5.435426 6.218457 6.969764
3 3.88806 8.487562 14.64552 22.20896 31.04478 41.02026 52.01866
4 7 22.33334 50.83333 95.33334 158.3333 241.6191 346.75
5 large large large large large large large

Table 6: The ratio of errors : The numerators is the
probabilities of errors for non-modulated
version and the denominators are for modulated
version.
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LINEAR PREDICTION OF FAILURE TIMES OF A REPAIRABLE SYSTEM

M. Ahsanullah, Rider College

1. ABSTRACT (NBU), if F(x+y) > F(x) F(y), for all x, y > 0.
Suppose we consider a repairable system in We will say F belongs to the class cl if F is

which a failed component is replaced immediately
by a component of equal age. On replacement of either NBU or NWU. We will say F belongs to c2 if
the component, the system becomes operational
and the repairing time of the component is r(x) = f(x)(F(x)) - I , 'F(x) > 0, is either monotone
assumed to be negligible. We assume the survival increasing or decreasing.
times of the components are independent and
identically distributed. Some distributional For various life distributions, the distri-
properties of the n-th survival time are butional properties of the n-th survival time
discussed when the survival times have different are discussed. Linear prediction of the s-th
life distributions. Various predictions of the failure time based on the first n (n < s)
s-th failure time Xs  (s > n) based on the failure time is given.
first n failure times are obtained.

2. INTRODUCTION 3. MAIN RESULTS

We consider a repairable system in which a Let r (n)(t) denote the hazard function of Xn,
failed component is replaced immediately by a
component of equal age and the system becomes then
operational. Let us denote by XO, X1 , X2 .... = f (t) r(tR(t) r

the failure times of the system where X0 = 0. r(2 )(t) (t) = R < r(t),

The time between failures Un = Xn - Xn-l n > 1 (2t)

are non negative random variables. Let for all t, t > 0.

F(t) = P(UI < t), for t > 0 and T(t) = 1 - F(t).

We assume that F(t) has a density f(t) with

F(O) = 0 and r(t) = f(t)(F(t))
- 1, for F(t) > O. r(n)(t) 

< r(n-1) t) , n > 2 for all t, t > 0
The function r(t) is called the hazard rate and where r(1 )(t) = r(t).

R(t) =j r(u)du is called the cumulative hazard
0 t) - Pr(X < t) and fblt) = F (t). Let Un = Xn - XnIl n = 1, 2, 3, .. be the timerate. Let F n~t n Prn n-1 n f()

between n-th and (n-l)-th failures. Suppose
Then G n(t) anJ g n(t) be respectively the probability

distribution function and probability density
1 - F (n)(x) = T(x) if n 1 1 function of U n . Then we can write

S'F(x) + F(x) R(x) if n : 2 1 - Gn(t) - fo- u) f ( u)du

and in general

n-1 1 n-1
I - F (n)(x) = r(x) 5_ (R(x))i (i) - 1

. J f(t+u) (R(u})n - du
i=O 0 (n-l)!

I - F (n) (x) can he interpreted as the survival
time to the n-th failure of the system given
that the failed components of the system was If F belongs to c1 , then E(Un) < (>) E(U1 )
replaced by one of equal age and the repair according as F is NBU (NWU).
times were negligible. The probability density
function (pdf) fn (X) of Xn can be written as EU) f (fn)V' (R u))n 1 f(u dudz

f f( R ((x(l n- 1 , n > 1,_,)>-0 n 0 0 F u)

(n)(x x) , n , x 0(u

= 0, otherwise. < C>) 1 (F (n))- l(R(u) )n f(u) F(z) dudz,
O

If F is the distribution function of a non nega-

tive random variable, we will call F is 'newCNBU, i r~~y) T~) ~according as r(z+u) < C>) F~u) r(z). Hence
better than used' (NBU), if F(x+y) <F~x) T(y) E(U) E(U).
for all x,y > 0 and F is 'new worse than used' n
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(a) Uniform Distribution: The best linear unbiased predictor Xs of s is

Suppose the random variable UI  has a two

parameter rectangular distribution with the s + - -- -
is 2= +(--)i+ XI-L

following probability density function 2n 2n

- 2 n-s X- (2 n-s - 1) .

f -ci -(b) Pareto Distribution:

0, otherwise. Suppose the random U1 has the Pareto distri-

It can easily be shown that bution with the following cumulative distribution

I I __ n-1 function F(x)fn x W = (I _Z ) , a < x <

E(X n) = 2-  + (1-2-n), F(x) = I - (e/x)V, 0 < e < x, v > 0.

VkCX ) = (3-n 4-4 n)(B)2 
The pdf fn(X) of Xn can be written as

The joint pdf of Xm, X (m < n) is fnW = Tn n (e) (ln(x/e))n-1

n I i II!

fm, n m n =  T .m •7 B-Xm  = 0, otherwise.

m-2 ( BX n-m-1 v n( -n E(Xn ) (ln(-m ) for v >1i-)In -(X_) )n =_- n
a-Xm B-Xn

nm< xn < tX = -e (k- k v > k

= 0, otherwise.

(X X x = 2m-n + (I - 2
m - n) B Xn i U

n  m= m  m i=

Coy (Xm, Xn) 2,-n Var (Xm) , n > m. where denotes the equality in distribution and

U1, U2 .... Un are independent and identically

The minimum variance unbiased estimates , B of c distributed as Pareto distribution with the fol-
and B based on the observed values x1, x2 .... lows pdf f(x), where
xn ofX X2 .... Xn are

f(x) = V x-(+l) x > 0

a= 2 xI - = 0 , otherwise.

= (3n -I x I 3n-2 The product moments of Xm and Xn (m < n) can be
3(3n-I_1 ) m obtained as follows

in n
r e dr+S U r+s n s)

X 3 X) XrXnS (t ) Ui " Ui
• - " - i=1 i=m+l

and thus

2V(1) = 3n (8-ai ) E(Xmr X s)  r+s ___ m n-m

3 -1 m nv-r-s~ V_

2 3n 1  2 Hence 2 m n-m
9 n 1 - c-) E(Xm Xn) - e2(;__) V

3 1 (Bm) n 2 V )n-

Coy (;a) = - 2 1 -- ci . Cov(Xm,Xn) = 92 - Var(X
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Table 1: Variances and Covariances of Xm, Xn

m n 2.5 3 3.5 4.0 4.5 5.0

1 1 2.2222 .7500 .3733 .2222 .1469 .1042
1 2 3.7037 1.1250 .5227 .2963 .1889 .1303
2 2 17.2840 3.9375 1.6028 .8395 .5074 .3364
1 3 6.1728 1.6875 .7317 .3951 .2429 .1628
2 3 28.8067 5.9063 2.2440 1.1193 .6524 .4205
3 3 103.5665 15.6094 5.1742 2.3813 1.3148 .8149
1 4 10.2881 2.5313 1.0244 .5267 .3123 .2035
2 4 48.0110 8.8594 3.1416 1.4925 .8387 .5256
3 4 172.6109 23.4141 7.2438 3.1751 1.6905 1.0187
4 4 565.5626 55.3711 14.8841 6.0113 3.0304 1.7556

Table 1 gives the variances and covariances of Var(2) m (m-l)

Xm, Xn for v = 2.5, 3, 3.5, 4, 4.5, 5.0 and

1 < m, n < 4 with e = 1. Var( ) 2/(m-1)

(c) Exponential Distribution: Cov(,)= - 2/(m-i)

Suppose the random variable U1 has a two

parameter exponential distribution with the The best linear unbiased lenear predictor Xs of

following pdf f(x) Xs based on the observed failure times xl, x2,
... Xn is

f(x) = exp(- a- 1 (x-w)) , *

for x > , > 0, Xs  = ((s-i) Xm - (s-m) xl)/(m-1)

= 0 , otherwise. E(X) = + s j F(XL(s))

The pdf f (X) of X can be written as follows: 2 2
n n V(X S) = ((m+s 2s)/(m-1)

(x-P. n- 1  L e- -1(x-P) x > 1 REFERENCES

n 1. Ahsanullah, M. and Kabir, A.B.M.L. (1973).

A characterization of the Pareto distri-
E(Xn) = p + n a bution. Can. J. Statist. 1, 109-112.

V(X) = n a 2. Arnold, B. C. (1983). Pareto distribution.
International Publishing Company,
Btirtnnsville, Mpryland.

CcV(Xn, Xm) = m a2, m < n 3. Carlton, A. G. (1946). Estimating the

parameters of a rectangular distribution.
The minimum variance unbiased estimates /, of/4 Annals of Mathematical Statistics, 17,
and 5 are 355-358.

: (mx1 - xm)/(m-I) 4. Goldberger, A. S. (1962). Best linear
unbiased prediction in the generalised

(xm - Xl)/(m-1) linear regression model. J. Amer. Statist.
m Ass. 57, 369-375.
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THE SIMULATI ON OF LIFE TESTS WITH RANDOM CENSORI NG

Joseph C. Hudson. GMI Engineering & Management Institute

Abstract time.
c. The smaller of the two times

This paper considers the simulation of determines the stopping event, failure or
life tests in which n items are placed on censoring. Record the type of event and
test and remain until removed by either the time of occurrance.
failure or random censoring. The Each of these steps will be discussed
censoring mechanism is taken to be below.
independent of the failure mechanism.
Simulation is done under the constraint Choice of Failure Distribution
that the number of items censored is a
Binomial random variable, allowing The distributions available were
simulations to be run specifying the chosen to offer both long and short
expected percentage of censored items. tailed alternatives to the Weibull. The

Details of the implementation are Cauchy and normal distributions are
discussed and a validation study is truncated at 0 to avoid negative failure
presented. The simulation is implemented times. Since step 2 is implemented with
in Pascal. general procedures. the list of available

failure distributions can be expanded.
Introduction

Finding the Mean of the
The development of techniques for Censoring Distribution

reliability data analysis requires data
from known distributions for empirical The censoring time for the ith item on
validation and comparison studies. Such a test. Tc,. follows the exponential
need motivated the work reported in this distribution with density
paper. Randomly censored failure data was
needed from a spectrum of short and long f'Ct) =1e. t ;- 0.
tailed distributions. The algorithm M
presented here simulates data from tests For brevity, the i subscript is
in which n items are placed on test. Each supressed. For given 0j and failure CDF
item remains on test until either failure FfCt). the probability that the it' event
or removal from test by a random is a censoring is
censoring mechanism independent from the
failure mechanism. PC.i = PC Tc < T = IPCTf>t)fcct)dt

Simulations are carried out using J
Weibull. u.ulform. truncated normal and 0

truncated Cauctay failure distributions. O

The censoring distribution is taken to be = .- CI-FfCt))e-tI dt. CI)
exponential. With user-specified failure M1
distribution and probability of censoring 0

PC. the mean of the censoring A representative graph of PCM) is shown
distribution is determined to enforce the in figure 1. PCp.) has a number of useful
constraint that PC Tc < TL 3 = Pc. properties:
where Tc0 and Tj are the censoring and
failure times of the i t h  item. lim PCM.) = I
respectively. In performing the P --* o

simulation, a failure time and a lim PCJ") = 0 C2
censoring time are independently ju -- , o
generated for each item, with the smaller
of these times taken as the time of PCji) is monotonically decreasing in W.

removal from test. Time of and reason for Proof is straightforward These
removal from test are reported for each properties guarantee a unique solution ;c
item. to the equation

Use of the simulation procedure P - . C3)
involves the following steps:

1. Choose a failure distribution from Mc is found using the secant method
the truncated Cauchy, truncated normal. CHornbeck. (1975]) modified as shown in
uniform or Weibull families. figure 2. The modification involves the

2. Choose a probability of censoring behavior of the points C P,,PI) and
and find the mean of the censoring Cu, .p 2 ) used to define the secant line.
distribution. The relationship p, > PC is maintained to

3. Choose the sample size n. Generate keep the point C.i,.p 1) to the left of the
the random sample using the following goal Cm,.pc). This insures that the
procedure for each item: sequence of P, values monotonically

a. Randomly generate a failure time. approaches MC. at the expense of
b. Randomly generate a censoring computation time. The procedure
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terminates when the relative difference where Atan is the inverse tangent
between ji and jaz falls below a specified function and Pw is the probability that
error tolerance, the pretruncation failure random variable

Each iteration of the secant method is negative. This case is processed as
requires evaluation of C1) to find p.. We the Weibull, with the integral in CO)
briwfly discuss the procedure for doing approximated by
this for each of the failure

distributions. "- an r-.E--dt+.x -tanf~) rjxalC0If T t has a uniform distribution on t
(a,b]. a 0, 0

pC = I + Ij b4l - e . C4) where x - a/ satisfies the inequality

Solution of C33 for CiM,p,) proceeds E :5s-7 - Atan rpx. I Cli)
without difficulty. Lb MuJ)

If Tt  has a truncated normal with E the desired error tolerance in the
distribution with Cpre truncation) mean h integral approximation. x is found using
and standard deviation a. the secant method.

PC P3 - I - Generating the Random Samples

[ < Io( -P,3 TOW )] jst- pt- 02/2_Cdtr C) The sampling procedure requires n

o random observations each from the
where PN is the probability that a normal censoring and failure distributions. To
random variable with mean H and standard generate these, the output of a uniform
deviation o (s newjative. CS) may be [0,1) random number generator is shuffled
reduced to using algorithm B of Knuth (1981, pg32]

PC) - I-PCZA)e-/wj+ /C 1 -P) C5) with an auxiliary table of length 117.
The resulting uniform [0,1) random number

where A ,, o7 - -o' and Z is the standard is converted as needed using standard
normal variate. C8) may be readily transformations for the uniform, Weibull
evaluated using an adaption of Naclaurin and Exponential cases CHastings and
series and continued fraction expansions Peacock. 1975]). Normal deviates are
of the error function CHoneiler 119841). generated using a ratio method, algorithm
Hudson IG6] gives details. R of Knuth (1981. pg 125]. Cauchy

It Tf has a three parameter Weibull variates are generated using the ratio of
distribution with minimum life 6, two independent standard normal deviates
characteristic life 8 and shape parameter CHastings and Peacock, (1975. pg 42]).
(, then 9, teMtValidation 

Study

PC 0 e M[ 1.0 - e ~)t]. C) The algorithm is implemented in

o Pascal. To verify the implementation. 100

The integral in C7) may be replaced with samples of 100 items each were generated
an integral with finite limits using the for each of the 24 failure distributions
relationship shown in table 1. The estimated value of

O -InC2E.) Pc generated by the samples and the value
_t - pt/e) of M. found by the algorithm and used in

Jeedt % ee~ dt+E. C8) the sampling procedure are also shown.
er of If the sampling procedure performs as

o o designed, each of the 24 sets of 100
The error of approximation using C8) is samples is a sample of size 100 from a
less than E. so C3) may be solved for p, binomial distribution with n = 100 and p
to the desired error tolerance by the probability of censoring, either .1
assigning a portion of the error or .9. Chi square goodness of fit tests
tolerance to E. The numerical evaluation were carried out to test this hypothesis
of the integral in C8) is carried out against its negation. 11 cells were used
using adaptive Simpson's quadrature with for each test, giving 10 degrees of
Richardson's improvement Carion (1087]). freedom. The resulting X values and
The variant used is shown in figure 3. their P values are shown in table 1.

If Tr has a truncated Cauchy Figures 4 and 5 show the best and worst
distribution with pretruncation median a cases from among the 24.
and scale parameter b. then The 24 observations of Vz should

Atan~a/b) constitute a random sample from the chi
-) 1 Atnsquare distribution with 10 degrees of

m"C-PM) freedom if the algorithm is properly
Go implemented. An additional study of the

I_______Mtt. CO ordered e values did not reveal any
ftp J I: - Igrouping or unusual patterns among these

o 24 val ues.
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Table 1. Summary of the validation study.

Dist Ref PC Sample PC XZ P
No. Est of P, 10df Value

Cauchy Median Shape
1 10,000 2 .1 .1003 94.928 8.51 .579
2 10.000 2 .0 .897 4.342 18.87 .077
3 10.000 10,000 .1 .1000 229.378 5.54 .852
4 10.000 10.000 .9 .8990 3.482 8.31 .599

Normal Mean St Dev
5 10.000 2 .1 .1014 94.912 12.78 .237
a 10.000 2 .9 .8985 4.343 3.13 .078
7 10.000 10.000 .1 .104C 119.748 8.99 .721
8 10.000 10.000 .9 .9022 2.810 8.88 .757

Uniform MinLife MaxLife
9 0 10.000 .1 .1009 48.808 9.1g .514
10 0 10.000 .9 .9089 1.000 17.80 .058
11 0.00 10,000 .1 .1018 04,438 7.78 .52
12 9,900 10,000 .9 .9011 4,321 8.54 .78

Weibull MinLife Slope CharLife - 10.000
13 0 0.5 .1 .0959 149,074 8.50 .580
14 0 0.5 .9 .9018 148 7.38 O81
15 0 1.5 .1 .0981 83.804 2.19 .99M
18 0 1.5 .9 .8948 2.005 8.45 .585
17 0 4.0 .1 .0982 85.8570 4.72 .909
18 0 4.0 .9 .8985 3.538 15.07 .098
19 9.900 0.5 .1 .1005 258.214 8.89 .543
20 9.900 0.5 .9 .9029 8.358 15.21 .125
21 9.900 1.5 .1 .1003 178. 59 3.19 .977
22 9.900 1.5 .9 .9004 7.370 8.83 .741
23 9,00 4.0 .1 .1005 179.821 8.41 .780
24 9,900 4.0 .9 .8975 8.081 8.51 .579

NO -- (OP (20 iu 20
,~~- , ? , ,1 O.(~ .2 inc 8.2]

Figure 1. PC3) for the uniform (490.500] failure distribution.
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Currlnt Is the subinterval
currently being processed.

set conts and sumis to 0 CurrLeft and CurrRight are
got urrlnt to ELLULLI the left and right halves

1;E t_,OCU + -of Currlnt.

apply Simpson's 3 point quad-
rature to Currlnt to got CurrEst

create CurrLeft and CurrRight and apply Simpsons
3 point rule to estimate Integrals over each

use Richardsons JIprovement to get
CurrVal * compute CurrErr and CurrAccErr

CurrVol estimates the Integral over
Currlnt to at least 0(hs). CurrErr

es11stimates the error In this approx-
imation. CurrAccErr Is proportional
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WeibiuiI Failure Distribution

Mu 83604, Pc .1, ML 0, CL 10000, S 1.5
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Figure 4. The best fit from the validation study.

Unif orm Failure Distribution

Mu 1000, Pc .9, Min 0, Max 10000
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b to~
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Figure 5. The worst fit from the validation study.
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An Identifiable Model for Informative Censoring

William A. Link, U.S. Fish and Wildlife Service, Patuxent WiIllife Re.seardi Center

1. WiN''oI)uC'II family of distributions. Estimation of the parameters

corresponding to S( )' of c 1,..Ik ,ad of0cste
accomtplishied by maximum likelihood. Explicit salini of the

T[he usual miodel for censored surevival analysis of a maximitum li kelj.ihood equiationis is not possible; their met hod
-lifetimie" T is that observations are of the form (X,6) where 'requires a great deal of comiputer timne.
x < 'r arid 6 takes (ite %-allies h0 atid 1, depend inig onf whethlier A notlier procedutre for obtaining alt ertiat ive estimators to theii
X < T or X =IT, resptectively. A great deal of attertioii ha KIN1K has itr'ii pirop~osed by Robertsont and Uppiliiri (1 984).
been given to tilie -independent censoring model" in whIi ch it is 'lTheir procedunre is base(] onl a miodificat ion (of the well- know ii
assiiiied that X = niin('1,C), withI C (referred to as the "redistribute to the right" algorithim (Efron, 1967). There do
-centsoriiig variable") assuimed to be statistically inidependent of not appear to be easily constructible models jiistifyiiig miost
lie lifeti me tinder consideration. IThis toodel is appealing redlist ribu tion sceroes.

because ttf its quialit at ive iuiplicify and mrathieiiatical There would appear to be a iieedl for somel simitple models,
tractability. and corresponding sturvivcal function estitiators, appilicabtle when

Under the independent ceiisoriiig model, the Kaplan-Mleier cenisoring carries aii unifavorable prognosis for future survival.
estimtator (KNIE) (Kaplani arid Meier, 195$) is the appropiriate In this paper we propose a model in which censoring can occur
estimator of the survival function S(t) = P(T > t). Fbldes only- in a -high-risk" subpopulatior.. This muodel suggests a
and llejfo (1981) established strong uniform consistency of the muodificationi of Efroit's self-consistency algorithim which leads
KIE arid Gill (1983) provided weak convergetnce results onl the to otir Modified Kaplani-Nleier estimator (NMKME).
entire positive half-line.

A nalyses basedl on thle tistial miodel riay yieldi unreliable
resulIts if the i ndepeiiden t censoring assumiiiton is
iniapplropriate. As a hypothetical texaniple, consider a radio 2. THlE MODEL
telemietry sttidy of file life (expetanicy of a miallard. Censored
observations wonuld occ ur uipicn failuire of the radio transmti tter.
If failure of the tranismtitter were relateid solely to the reliability Suppose that. a lifetime -T" withI survival fuinctiott S(t) is the
of file unit. thle event of rensoring could safely be asstumed to object of investigation, tltat for each lifetime there is a binary
carry tit) iniformrat icon abiotit thle st at us of tlie ir d. 11 owever if covariat e "", withI
failure oif tire uinit weire dIute to predat ion, ceiisorintg would be
equtivalenit to dea th of the bird. Between these two extremes is
a widet ranigi of possible models ini which the event of cerisoritig Q(t) =_1 (1- > t I'=I)=(Smt)tt
earnies arn unfavorable prognosis for fitutre survival. Iii stirh a
cast' t(lie K NIE w ill t(-rill to overest imia te the trite- suirvival
probabilities, for somte Ill> I. It follows that.

1: it fort it niat ely. if the Outly obsaervat ions available are the
piairs ( X.6). tile indtepetndentce alisutiltioii is cotmplletely _5t Qt
iutestable. It las beeni shownt by C'ox (1959) arid 'Isiat is R(t ) QM '

(1(175) thtat "t litre always exist ittlithetidet tenisorinig mode)lsl
cotusustetit withI attv. probtability distniblti tn for thle obiservabile
lia ir (X 6)" 1 Lagakos. 1979). C'onsequent ly, if ( lie where Ii = I') ' 1= ). Sintce -dRt(t)/tlt roust lie tuolt-itegat ive,
iitltetiettce a'sumtion is deettmed iinapplroptriate, analysts filet values of ii arid p are restricted by np5 <I
titust rt-lv ott equially untestable rtitidel assumurptiotis ath Ili t his mrodel, lifetit's with cotariate '( = ) have a hiazardl
(perhaptjs) t hit' otls.'rcat 1 ott(f rtcariates. futuctiori AQ(-.) = cttA( .). where A(-) is thle popuilat ion htazartd

het r#iarler is r#-fi'rrel tt tie, work tf Williarts atilt Iagakus fintitotn. '[hits tile covariatC I tliviules thle pItulatiOti ititO
I 977) arid] Iagattt' arid Williauis ( 1978) as well a., thIat tif -high-risk- anti 'low-risk" sktiltpolti]at ionts.

Itoltirisort aitd I ttuliri NI s I ) fir examtples of stichi iniet hiods. L~et h ,T, ) ( .t~ e it satliplit' f thIest'
i the ftrnuttr, it is ss'.ini-tl ithat ilie hiazardl fuiuctitoi of thle Vs lifet ittes ati t heir cotrrespsondintg cttvaritttes, Fuirthlermtore. let

is r,l1at,tI t IutI ',f heir 1s It '12 -C. It, a samptltlt of "ptenttia l censtorinig tirr's

indr~eiendet tof thep rorrestrittltg l's. Bty this we miear thtat

+1 It
1 sr% at torts are' oft lie fortit

where X, (I F, 4~~ int~ I.t

antI (2.1)

=I +x )I I)/

"hiert I() I, Ohit uiitir fiuwutitti. 'llt i iorinig is tniya
ltvsiugg-It sutroxitiatiuig Pi) v I ,-pttl fii)tiitt taking k tossiltility itt te high riskstl ttitti.

hist iriet valuirs c1 -. c1k 'heir Jirotttttn fttr 1s ittiatii St .) Ise tif thei K NIF 1Kuiter t his modl leadhs to oires iit (if

cioitt' ttf (lit- tutitr andt 1Ittigi ii f use, iitt'nr als andit. Ill "' itiato inIa,-d titi a itotlifitati' iiof I frutIii' srlf t ot)iiIit,%
:t (tIlittoll. sttI-fsvinvI I tliltt S() is at trt ltr (if stttti tatrit t ic Algttrithtt Ahichi is tautrotriatt ir this tide
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3. SURVIVAL FUNCTION ESTIMATOR >tc=- J P(S(X)> t i7 ---)dt

Letting O=x 0 <xl<x2 <...<x n represent the ordered times
of observation and 6 1)" ..'""(n)represent the corresponding = 0 -(I - p)- ( + (4.1)
values of 6, the KME iste unique limit (as K -- oo) of the
sequence of functions obtained by

Given a value of m, the parameter c can be estimated by

I '' >t)+ "f(j) S-(dxj)

Thus the KME satisfies

S~) IS() ~where -y i the value of -f' corresponding to xj and S,(.) is

- I > t) + (i) ) , the MK%E obtained using the given value of m. The
S(xi) par;:..c: p is estimated by p5 = )i 7 n, so that given a value of

c, and using (4.1), an estimate of m can be obtained as
which is to say that the estimated probability of survival
beyond time "t" is the percentage of observations (censored or rh (c) = I 15 - 1.
uncensored) beyond time "t" plus the estimated percentage that 1 - 2c(1 - 15)
would have survived beyond time "t" but were censored before
"t". The KME is said to be "self-consistent" because, in the It is easily verified that there exists uniquely a pair (mo,co)
independent censoring model, for x, < t, satisfying simultaneously (mo) = co and rh(co) = mo. These

can be found by a variety of numerical methods, such as
repeated substitution. Since the model restrictions of §2 require

P(T > t j X = x, ) S(t)  mp 1, we suggest the use of

Under the model discussed in §2, m = I { m o , (f)-1 }
in

P T>tIX xi60) i j as the estimator of the model parameter.

suggesting that the self-consistency algorithm be replaced by 5. SIMULATION RESULTS

,((+, > ,) - 6) (. Rather than consider a specific survival function S(.). we
((s.)) generated pairs (UT,7) where - is a Bernoulli variable with

parameter p, and where UT satisfies
The following facts regarding this sequence of survival function
estimators are proved by Link (1986)

P(I - UT < x [' = ) x
1) For each fixed in, the sequence thus defined

converges. Furthermore, if the original estimator S places rno and - I ) xm
weight on censored observations or beyond the range of P(1 - UT < x j 0)- p
observations, the limit is unique. This will be called the
MKME, and denoted by Sm

0< x< I.
2) For ne1  t 2 , t S,21S (') > S ,,.,(t). Thlirs the The UT's can be thought of as the quantiles of a random

KF (obtained using iil) bounds these estimators front sample from an arhitrary con ntnuors survival function S(.).
aboNve. while the empirical survival function of the X's, Observat ions of t lie form (U.6) were t hen obtained, where
(obtainred using large vahties of m) bounds therr from below.

.ESTIMATION OF MODEL PARAMETEILS = (I u + -7 + ' ' ri 0

and

In this section we shall show that if the covaria, " is
Observab~le. anit estinate of the paranl,.hr I is available.

Fror tie rlfinit ion Of X ('2.1) we find fiat and the 1rot, rtial rensorinrg variable IC  , gererahed

indeprendeitly of 17T and , satisfies "(U'C > x) = xo.
- ~ in )0 < x < 1, where , > 0 is a slw-cifird constart.

-S(X < r In order to investigate the large sample behivior of the
NIKNIE, a sample of size 1(00 was generated nising p = -T.r in
- 2. and o - .625. vieling an expected ceinring rast,

ti, I ,1 . .23 .11. th e resrilts are sri rrarized in Table 1. Hie quantiles
rf .h' K \1 - ohtained fo~r these data are alkro includ d. It is seen

letting c = E (S(X)I-f=)). we havr 1ir t i , n ler r his ,irdl t le K,\ilF serious]n r,.,r-'?irr,' s ru' e
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survival probabilities. If the covariable -y is not observed, a (weak) upper bound on
tIhe range of possible values of ni can be obtained by noting
that

Table 1. Estimates of quantiles of F( 7), m=2, p=.4, n= 1000

t kme mkme t kme inme kin1= 0) P(y 1) >
.05 .0444 .0470 .55 .4758 .5530
.10 .0922 .1001 .60 .5211 .6003
.15 .1362 .1510 .65 .5581 .6377
.20 .1738 .1961 .70 .6155 .6930 and estimating P(6 = 0) in the obvious way.
.25 .2226 .2572 .75 .6762 .7485
.30 .2731 .3177 .80 .7299 .7950 'lie author wishes to thank Christine Blunck, Nancy Coon,
.35 .3127 .3656 .85 .7779 .8348 Paul Geissler, Thomas Mathew, and Kenneth Pollock for their
.40 .3574 .4189 .90 .8612 .9002 careful review and valuable editorial suggestions.
.45 .3834 .4494 .95 .9284 .9498
.50 .4266 .4989 REFERENCES

Cox, 1). R. (1959), "The Analysis of Exponentially Distributed
In addition, a limited Monte Carlo study was carried out to Life-times with Two Types of Failure," Journal of the

investigate the sampling distribution of ih. The estimates Royal Statistical Society, Series B 59, 411-421.
given in Table 2 were obtained by generating 100 samples of Efron, B. (1967), "The Two Sample Problem with Censored
size 100 in the manner descriIed above. It appears that the Data," Proceedings of the 5

Th 
Berkeley Symposium on

sampling distribution of li is skewed to the right and that rih Mathematical Statistics and Probability, Vol. 4, 831-853.
tends to slightly overestimate in. F61des, A. and Rejt6, L. (1981), "Strong Uniform Consistency

of the Product-Limit Estimator under Variable Censoring,
Zeit. Wah., 58, 95-108.

Gill, R. (1983), -Large Sample Behavior of the Product-Limit
Table 2. Estimates of Mean & Standard Deviation of ih. (n= 100) Estimator on the Whole Line," Annals of Statistics, 11, 49-

58.
Kaplan, E. L. and Meier, P. (1958), "Nonparametric

m p Censoring Rate Mean St. Dee. Estimation from Incomplete Observations," Journal of the
1.25 0.50 0.284 1.318 0.182 American Statistical Association, 53, 457-481.
1.50 0.50 0.2,17 1.564 0.204 Lagakos, S. W. (1979), "General Right Censoring and its
1.75 0.50 0.248 1.819 0.235 Impact on the Analysis of Survival Data,' Biometrics, 35,
2.00 0.75 0.117 2.223 0.498 139-156.
2.00 0.50 0.234 2.106 0.306 Lagakos S. W. and Williams J. S. (1978), 'Models for Censored
3.00 0.70 0.116 3.414 0.730 Survival Analysis: A Cone Class of Variable-sum Models,"

Biometrika, 65, 181-189.
Link, W. A. (1986), "Contributions to Reliability Theory and

Survival Analysis," unpublished Ph.D. thesis, University of
Massachusetts at Anherst, Dept. of Mathematics and

6. DISCUSSION Statistic".
Robertson, J. B. and Uppuluri, V. I. I. (1984), "A Generalized

Kaplan-Meier Estimator," Annal of Statistics, 12, 1, 366-
The model considered in this article offers an alternative to 371.

the usual independent censoring rmiodel. Censoring is a Tsiatis, A. (1975), "A Nonidentifiability Aspect of the l'roblem
possibility only in a suhpopilation whose hazard function is I of (ompeting Risks," Procedings of the National
times that of the population at large. The parameter m needs Academy of Science. 72, 20-22.
only to be non-negative; values of In < I describe models in Williams, J. S. and 1,agakos S. W. (1977), "Models for
which the event of censoring carries a favorable prognosis for Censored Survival Analysis: (onstant-sui and Variable-
fu~rther survival. sum Models," Biometrika, 64, 215-224.

727



XVI. APPLICATIONS

Nonparametric Regression and Spatial Data: Some Experiences Collaborating
with Biologists

Douglas Nychka, North Carolina State University

Space Balls! Or Estimating the Diameter Distribution of Monosize Polystyrene
Microspheres

Susannah B. Schiller, National Bureau of Standards

Maximum Queue Size and Hashing with Lazy Deletion
Claire M. Mathieu, Princeton University; Jeffrey Scott Vitter, Brown
University

Classifying Linear Mixtures, with an Application to High Resolution Gas
Chromatography

William S. Rayens, University of Kentucky

Bias of Animal Population Trend Estimates
Paul H. Geissler, William A. Link, U.S. Fish and Wildlife Service

The Elimination of Quantization Bias Using Dither
Douglas M. Dreher, Martin J. Garbo, Hughes Aircraft Company

An Alternate Methodology for Subject Database Planning
Henry D. Crockett, Mark E. Eakin, Craig W. Slinkman, University of
Texas at Arlington

Sensitivity Analysis of the Herfindahl-Hirschman Index
James R. Knaub, Jr., U.S. Department of Energy

Encoding and Processing of Chinese Language-A Statistical Structural Approach
Chaiho C. Wang, U.S. Department of Justice and George Washington
University



NONPARAMETRIC REGRESSION AND SPATIAL DATA:
SOME EXPERIENCES COLLABORATING WITH BIOLOGISTS.

Douglas Nychka, North Carolina State University

I Introduction

The widespread use by scientists of personal computers 01 the data. 1ere are two potential disadvantagcs with
for data collection and analysis gives the statistician more this separation. The statistician may not gain a true
oppurtunity to become closely involved in a research appreciaticn for the data that have been colected while the
project. This paper will describe two projects in which I analysis performed by the statistician may remain slightly
have collaborated with biologists. The main point is a mysterious to the experimenter. An important contribution
simple one. Computer resources can significantly improve a of a statibLician is in the design of experiments and this
collaborative relationship between a statistician and an would imply a link between the statistician and data
experimenter. This can happen in at least two ways: 1) collection. Finally, it also important for the scientist to be
special purpose statistical software can be developed to involved in the analysis of the data. The last diagram has
guide experimenters in analyzing their data 2) the added these two links and completes the possiblites for a
statistician can be involved in the data collection by helping full collaboration. This paper will argue that it is possible to
to develop the software used to collect and store the data. foster these two nonstandard links in the final diagram

This discussion will be organized by considering a throught the use of appropriate software on a personal

simple model ( in the social science sense) that outlines the computer. The following sections give some specific

interaction between the statisitician and the scientist. The examples of how this was accomplished.

next section briefly discusses the components of this model Ia Short Term Consulting
and Sections 3 and 4 give specific examples from two
research projects. The first project concerns the estimation DATA COLLECTION SCIENTIST
of fitness surfaces for a song sparrow population based on
the sparrows ability to survive over the winter. In this case DATA ANALYSIS " STAYISTICIAN
the fitness surface is the probability of a sparrow's survival
as a function of several body measurements. One success in
this project was making some specific nonparametric lb Limited Collaboration
regression software available to the biologist so he could
carry out most of the analysis of his data on his own. The
second project studies the spatial distribution of air plants DATA COLLECTION SCIENTIST
(epiphytes) in the canopy of Costa Rican rain forests. This
analysis depends on constructing a three-dimensional
"map" of the canopy trees and of the locations of epiphytes DATA ANALYSIS STATISTICIAN

using numerous sightings from a transit. I have participted
in the data collection by developing software for a PC that Ic Full Collaboration
estimates the xyz coordinates of points in the canopy from
the raw angular measurements. It is important to be able
to generate these tree maps right after a day of field work DATA COLLECTION SCIENTIST
because they serve as a check on the measurements and will DO
direct further subsarnpling of the trees' branches. Another DATA ANALYSIS 5- < STATISTICIAN
aspect of this project is to involve this botanist directly in
the spatial ..aalysis of the canopy data. One way of Figure 1. Some different roles for a scientist and a
accomplishing this goal is to design a small set of macros statistician in a reasearch project.
and compiled fu'-tions that make it possible to carry out
of the anlaysis witnin the S statistical package. 3.1 The overwinter survival of juvenile song sparrows

Although these two projects are used as examples of This project is based on the research by Dolph Schluter
collaborative work, they both contain novel statistical and James N.M. Smith , Department of Zoology,
applications that are of interest in their own right. A reader University of British Columbia on the song sparrow
who is not particularly interested in collaborative aspects is population of an island off the coast of Britsh Columbia
still encouraged to look at Sections 3 and 4 for their (Schluter and Smith 1986). The interest, in this project was
statistical content. to indentify what characteristics in a song sparrow improve

its chances for surviving over the winter season. Before the
2 Role of the biologist and the statistician winter for the years 1974 - 1979 the juvenile song sparrow

population on Mandarte island was exhaustively sampled

Several different roles of the statistician and the by capturing the birds in mist nets. Six morphologic

biologist are shown hcheniatically in Figure 1. The measurements were made on each bird involving the size of

relationship shown in the first diagram is a model for short the body and beak. The same survey was done after the

term statistical consulting. The scientist both collects and winter and the birds not present oin the island at that time

analyzes his/her data following the advice of a statistician, were recorded as nonsurvivors. One way of quantifying

llere the statistician plays a passive role and becomes survival is by a fitness function. If x are the six

involved in the research project only through the scientist. morphological measurements made on a sparrow l(et p(x)

The next diagram is an improvement and indicates the denote the probability that this individual will survive
roles often filled by these two people in a collaborative through the winter. The functional form for p is not known
effort. The scientist concentrates on data collection while and thus these ecologists feel it is important to be able to
the statistician is mainly involved in the statistical analysis estimate p without having to assume a specific parametric
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model. Note that this problem does not fit into the ordinary linear combination of the original measurements that is
nonparmetric regression setting because the independent similar to the second principle component. This second
variable is a 0 or 1 response and the variance of this principle component can be identified with the relative size
response depends on p(x). Also, there are obvious between the body and bead.

constriants on p: 0<p(x)<1. Projection pursuit estimation especially in the context
of generalized additive models is computationally intensive.When I was first contacted by Dolph Sehluter he The estimate plotted in Figure 3 took approximately one

already had an interest in analyzing these fitness data using half an hour on a VAX 750. edowever it is a mistake to

nonparametric methods. One possible way of estimating retreat from a method that is just beyond the power of a

the fitness function is by a penalized likelihood approach PC. Given the current trend for more powerful personal

and the details of a spline method are described in the next Cmpute t is l re a tr ofe efor ese

subsection. The immediate problem was finding software computers, it is largely a matter of time before these
that would run on his IBM AT. If the fitness function only methods will be feasible. Also, the amount of time it takes

thatwoud rn o hisIBMAT.If he itnes fncton nly to perform a statistical analysis is often evaluated on the
depends on one independent variable then it is possible to

wrong scale. The fitness data described in this section wascompute p using a modest-size FORTRAN program. Dolph accumulated over the course of five years at a remote site.
Schluter was able to use the program that i wrote to Even if a statistical analysis takes several days on a PC this
investigate the effect of the morphologic variables is a modest amount of time compared to the effort spent onseparately. Also, by having thle numerical portion collecting these data.

avaliable, he was able to spend time on a user friendly shell

to call these the numerical routines. The software resulting 3.2 A nonparametric estimate of the fitness curve using a
from our combined efforts was not only statistically sound
but could also be used by other ecologists with minimal smoothing sphine
introduction. The use of these nonparametric methods for First assume that only one morphological measurement
fitness data has been subsequently described in Schluter is taken and let (y k,xk), l<k<n be the observed data
(1988). where Yk= 0  

indicates nonsurvival and Yk=1

r;6ure 2 is an example of this nonparametric method corresponds to survival of the juvenile sparrow. The log
for estimating survival. Plotted are time responses (0,1) for likelihood for these data is porportional to
151 juvenile male song sparrows against the standardized n
second principle component of the morphologic L [ ln(p(xk))Yk+ l(l-p(xk))(lYk)]
measurements. The smooth curves are the estimated k=l
probabiltieg of survival for different amounts of smoothing. Now let 0(u) = eu/(l+eu

) be the logistic link function and
The solid curve in this group is the spline estimate where let f(x)= ln(p(x)/(l-p(x)). With this parametrization
the amount of smoothing was determined objectively from p(x)= 0(f(x)) and has the advantage that the range of f
the data by cross validation. does not have any constraints. The log likelihood now has

Estimating a fitness surface is more complicated mainly the form:
because of the multivariate nature of the problem. One n
possible solution is to approximate the fitness surface using F f(xk)yk+ l (f(xk))
the representation from projection pursuit regression k=I
(Freidman and Steutzle, 1981). The key to this
representation is the identification of linear combinations of with tV'(u)= ln(1/(t+cU)).
the original measurements that give a better explanation of
a song sparrow's survival. This approach is appropriate Now if this expression were maximized over all functions, f,
because it is reasonable to expect survival to depend on a the solution would degenerate to a function where f(xk)=
chararteristic that is a combination of the morphological if k=l and f(xk)= -o when = Cleary this is not a
measurements. Let f(x) -- rInp(x)/( 1-p(x)) be the logit of suitable estimate. One reason that result is not appropriate
p(x). One noriparanietric representation for f is is because one expects some continuity or smoothness

J between values of f ( and p)
(3.1) f( )=Y--g(a ) for similar values of x. This assumption implies that the

j=I survival of a sparrow is a continuous function of the
morphological measurements. One way of incorporating this

where the vectors of coefficients are chosen so that information is to penalize the likelihood when f is rough.
_ IJ . In this model one must not only estilate the For example, ffK(u) 2du is one overall sumiiary of the
ridge functions gj but also the projections, aj. Although this curvature of f and will be large when f is very wiggly and

adds more structure to the statisitical method, there are small as f becomes linear. It this work, the estimiate of f isfotund by iiiaxiriizintg
computational advantages because one only needs to
consider a nonparamoetric estimates of curves rather than " fx
an estimate of a surface. -f xk)Yk+ ,'(f(x k ) ) -A (f k(u)',lu

k=l
Iigure 3 gives some results for the male jitunvenile over all functions where f(tlti < x . Note that

sparrows for two ridge functions ( J=2). The amtount oif although it is the htgit., f, that is liltg estimated directil.
smitoothini used in this estimate is tie saMe as that used for the estimated survival probatilittes are found by the
the solid curve in Figure 2 (ln(A) 2. -4). Plotted are tile transformation hu(x)= o( f(x)).
probability conitours of the fitiness surface as a ftnctior (if Surprisingly this estimate is itl difficult to comptite
the two variables obtained from tie two estiinated and has tire same form as ant ordinary cibic smoothing
projections, aI and a 2 . 'hte shape of this surface is a saddle site. That is, the estitated curve has twi cotitiois
where the first variable has a stabilizing infitencr, ott derivatives aiid can he expressed as a piecewise rii It
survival while the second is dirtuptive. On inter'sting polynomial with join points at {Xkl, l<k<n (see IFithank.
fiatire of this estimate, is that the first pr,.ieiioll yi,is a 1.988 for ai iitrouhiction to this suibjct ). Allho gh t his
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maximum must be found using an iterative procedure, each n 2

iteration is efficient because it only requires the smoothing (3.4) R(a 1 ..... aj)- _

of a set of psuedo-observations using an weighted, cubic -= ( 5(-)00-k

smoothing spline. This algorithm is very simlar to the

iteratively reweighted least squares approach used to The estimates of a,..... are given by those vectors that

estimate the parameters in generalized linear models. that minimize R. An outline of the algorithm used to

The smoothing parameter A controls the relative perform this minimization is:

weight given to the roughness penalty and the log

likelihood. Note that when A is very small the estimate Inititialization: g.=0, aj=0, l<k<J

will fit the data well but may not be very smooth. At the

other extreme when A is very large the estimate will Repeat until convergence:

approach a staight line where the slope and intercept are Do I=1,J

the usual maximum likelihood estimates. The effect of Fix a. for j l and minimize R with respect to a

varying A is shown in Figure 2. (coarse search on sphere refined using the simplex method)

So far the discussion has focused on computing a spline Note that if only one projection is allowed to vary then the

estimate for a fixed value of A. Because the estimated curve

is sensitive to the choice of this parameter, it is important maximization to estimate g is just the one-dimensional

to be able to estimate an appropriate value objectively from spline smoothing problem described in the previous section.

the data. One way to accomplish this is by cross validation. If this algorithm converges then the limit will be a solution

Let P,k denote the spline estimate of p to the maximization/minimization problems stated above.

for a particular value of the smoothing parameter having When this algorithm will converge is still an open question.

omitted the kth observation, (Yk,xk) . If this value for A is In retrospect the penalized likelihood suggests a more

a good one then "on the average" p \,k(k) should be direct method for estimating the projections. Since the
.a k Tpenalized likelihood in (3.3) depends both on the ridge

"close" to the omitted observation, Y" This correspondence functions and the projections it is reasonable to maximize

can be quantified by the cross validation function: this functional jointly over these two components. It is
possible that this unified approach will be better than

n (yk-p ,\k(xk))
2  estimating the projections based on residuals. Ordinarily

V (A) -- the minimization over the projections does not account for

k=1 (1"PAk(xk))PA,k(xk) the smoothness of the implied ridge functions. As the
dimension of x increases it becomes easier to find a

where the denominator in this sum of squares adjusts for projection that fits the data well. The limited experience

the different variances. With this criterion a data-based from this survival data is that the estimated projections

estimate of the smoothing parameter is the value that may yeifd rough, possibly spurious estimates. This may be

minimizes V- ( see Yandell, et al., 1984 for more details). due to the fact that the minimization of R does not make

At first glance it may appear that Vcv will be very any adjustment for projections that give very rough

expensive to compute. However, by considering a linear estimates of the ridge functions but never-the-less fit the

approximation based on the estimate of p for the full data data well. By considering the projections that maximize the

set and some efficient routines for cubic splines (Hutchinson penalized likelihood, the roughness penalty may help to

and Dehoog 1985) this cross validation function can be control this effect.
computed easily on an IBM PC.

4.1 Spatial distribution of epiphytes in the tropical canopy

3.3 Projection Pursuit Estimation One important difference between tropical and

In the the same manner as the univariate spline temperate forests is where nutrients are stored. Although in

estimate, the projection pursuit estimate of the fitness a temperate forest most of the nutrients are found in the

surface will be defined as the maximizer of a penalized soil in a tropical rain forest a significant portion of the

likelihood. Recall that from (3.1) f(4) will depend on nutrients are stored as biomass. One important component

pairs of univariate functions and projections. For a fixed of this biomass are the epiphtyes and (lead organic matter

set of projections and for some A>O the estimates of g. are in the tree canopy. Nalini Nadkarni at the Biology

taken to be the functions that minimize: e Department at the University of California, Santa Barbara
is interested in studying the role that the canopy plays in

n J f(u)'du nutrient cycling. This research has practical implications
(3.3) E jfl J because as rain forest is cleared for agricultural use the

canopy is destroyed and thus the normal nutrient cycle is

such that /(gYj(u)
2 du<oo, l<j<J. interrupted.

A first phase of this project is to quantify the

In this way any set of projections will determine an architecture of trees that make up the canopy and to

estimate for the surface. In ordinary projection pursuit determine how different epiphytes are distributed

regression, one chooses a set of projection vectors by throughout this region of the forest. Until recently because

miinliizing the residual sum of squares. In this case, it is of its height, the canopy was inaccessible to researchers.

natural to consider a weighted sum of squared residuals However, by using mountain climbing equipment it is now

(which will also he close to the deviance). Let p(x) denote possible to reach the canopy by ropes move safely within it.

the probability surface corresponding to the estimated logit The observational data can be thought of as a three-
function for a fixed set of projections. Weighting reshhjals dimensional map giving the spatial locations of branches

anf r other features within the canopy. With this type of

by the estimated standard deviation of Yk, data one can then tok for patterns in the epihipytic

distribution and test for preferential sites or for conpetition

aniong different species. At a more fuindamental level one
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can study how nutrients percolate down from the top of the 4.2 Tree mapping.
canopy to the forest floor. In this section a derivation is given for estimating the

My collaboration in this project started with designing coordinates of a target from the direction cosines measured
a method to collect canopy data. The problem is to at two vantage points. To simplify this discussion it will be
determine the three dimensional coordinates of features in a assumed that the origin is at the center of the first transit
tree without having to climb to each location of interest. while the ccdiuates of the second transit are d=(D,0,h).
Also once a method has been developed, it is important to (D is the horizontal distance between transits while h is the
quantify its error. Our final solution was to use the parallax difference in elevation.) The horizontal and vertical angles
veiw provided by a transit at two locations. Figure 4 is a measured by the transit are taken to have the same sense
diagram of the geometry. (The mathematical details are as 0 and 0 in a spherical coordinate system. Thus, if 0 and
given in the next section.) To find the coordinates of some 0 are the pair of angles measured from the transit to the
target in a tree, a transit is used to find the horizontal and target then a unit vector, e, in this direction has
azimuthal angles from two vantage points that are separted components:
by a short distance (approximately three meters). The (cos(0)sin(o), sin(0)sin(O), cos(6)).
target's position is estimated by the midpoint of the Let a and b denote the directions to a particular target
shortest line segment that connects the lines of sight from from the two vantage points of a transit. The rays

the two transits. An estimate of error is the length of this respresenting the line of sights can be parametrized by a

segment (see Figure 4). Transforming the angular and d + f3b . One estimate of the target position is the

measurements at two vantage points int, the xyz midpoint of the shortest line segment joining these two
coordinates is too complicated to do by hand but makes for rays. To find this point let & and f be the values that
a short program on a PC. Figure 5 is a draftsman's view of
a tree mapped by this procedure including the locations of minimize:

two kinds of epiphytes.

Bsides working out the geometry, part of my role was (4.1) - ( + )
2

to provide the field assistant with software to compute the
tree map coordinates at the end of a day of taking Setting first partial derivatives equal to zero yeilds the
sightings. In effe't I have some participation in how these system of equations
data are collected since these programs can incorporate
logic to spot inconsistencies or flag estimated locations that a - = u1
have large estimated errors. The most frustrating situation
is when a bad observation is identified only after returning -aY + )3= -u 2
from Costa Rica! One use for these tree maps is to aid in
subsampling a tree crown for the detailed investigation of where -y= (a)T (b), u I = (a) (d) and u2= (h)T(d).
specific branches. This is another area in which I can be
involved in data collection. PC-based software can be used Thus
to guide the choice of subsamples in a manner to insure a &= (Ul_2,u 2 )/(l_'r2), 3=
good experimental design.

Another aspect of our collaboration is having Dr. and the estimated target position is:

Nadkariii (and her research assistants) particiapte in the
spatial analysis of the epiphyte locations. Unlike the project +l_+ L_ - (m_ +
in the previous section little new software is needed. Rather
one needs to integrate a few special purpose functions into The squared length of the line segment is found by

an existing statistical package. For example, the substituting & and ) into (4.1).
draftsman's view of a tree iu Figure 5 was drawn using a
specially written macro in S. The advantage is that most of As a final note, care should be taken in interpreting the
the scientist's effort will be spent learning a standard line segment length as an absolute measure of the estimated
package. This is better than having to deal with a special position's accuracy. It is a biased estimate of distance
(aid perhaps idiosyncratic) program that only performs a between the estimated position and the actual one.

specific analysis of the data. Besides exploratory graphics, Sirnluations indicate that in the situations encountered in
testing hypotheses about the spatial distributions of mapping tree positions the median segment length is
epiphytes can also be based in S. To do this one needs an typically about 2/3 the actual distance.
additional S function that simulates the distribution of References
epiphytes on the tree network according to sortie null
hypothesis. For example, suppose one wanted to test Eubank,R. (1988). Spline smoothing and nonparametric
whether the epiphytes were uniformly distributed on the regression. Marcel Dekker. New York.
branches of a tree. One selects a test statistic that
measures uniformity and calculates the value of this Friedman J. i. and Stuetzle, W. (1981) Projection pursuit
statistic using the coordinates of the observed data. In regression. J. Amer. Statist. Assoc. 76 817-823.
order to calculate the reference distribution for this statistic
one simulates samples whose coordinates are uniformly llastie, T. and Tibishirani, 1t. (1986). (;eneralized additive
distributed on the tree network and for each of these models. Statistical Science 1 297-318.
simluated samples the same test statistic is computed. By
generating a a large number of samples ( several hundred) IHutchinson, M.I. and de Ilh)g, F.ht.(1985). Smoothiig
one can estimate the distribution of the test statistic undr noisey data with spline functions. Numerische Mathematika
the hypothesis that the epiphyte positions are uniformly 47. 107-.112.
distributed. To do a hypothesis test, one compares the
Vu,-i 1.d value of the test statistic with the distribution
determined fromn these simulations.
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SPACE BALLS!
OR

ESTIMATING THE DIAMETER DISTRIBUTION OF MONOSIZE POLYSTYRENE
MICROSPHERES

Susannah B. Schiller, National Bureau of Standards

Introduction. was known that the diameters followed a normal
Polystyrene microspheres, with nominal diameters in distribution, and that the standard deviations were roughly

the range of 0.3 to 30 microns, have been certified by the 1% of the mean diameter. To simulate this, arrays of circles
National Bureau of Standards as Standard Reference whose diameters came from the normal distribution
Materials. Some of them were manufactured in space on N(I'D, 0 2 ) were generated. These were "packed" by
the shuttle Challenger because the beads are more uniform minimizing the sum of squared distances between centers
in size and shape when made in zero gravity. They provide of neighboring circles subject to the following constraint: if
an important tool for calibrating instruments that are used packing caused a pair to touch, they were forced to overlap
to examine very small particles, such as blood cells, by exactly 0.1% of the average of the two diameters
bacteria, or airborne dust. In order to be useful for involved. Otherwise, an air gap was left whenever the
calibration, their diameters must be well-characterized, centers were more than the average of the two diameters

To certify these SRMs, the beads were put into a apart.
suspension which, when dried, caused the beads to form Multiple simulations were performed for each of the
chains on a microscope slide. Parallel light, projected up following combinations of N, ltlD and a, where N is the
through the slide, marked the center of each sphere in the number of circles in an array:
common back-focal plane on which the microscope was
focused. Because the "chained" spheres touched, the N = 81 I1D = 1 a = 0.009 to 0.015 by 0.001
distance between sphere centers on photomicrographs N = 64 P'D = 1 Y = 0.008 to 0.015 by 0.001
gave a good estimate of sphere diameter [1]. In order to N = 64 R.D= 1.5 a = 0 .0 0 8I'D to 0 .0 15 1'D by 0 .0 0 111D
get the desired accuracy for certification, the scientists had N =64 ItD = 2 a = 0.00 91D to 0.0121.tD by 0 .0 0 19'D
to make careful and tedious measurements on thousands of
pairs of spheres. For the users of these SRMs, who only Each array was laid out in a "square" fashion, with N-N-= K
want to verify that their mean measurements fall within the columns and K circles per column (Figure 1).
certified bounds of uncertainty, a quicker approach is
desirable. Figure I

The proposed technique uses closely packed hexagonal Figure 1
arrays of the microspheres instead of chains. Row lengths Simulated Hexagonal Array
are measured between the centers of the end spheres. The N 81. / = 1, ( = 001
obvious diameter estimate is the average center-to-center
distance, found by dividing the row length by the number of "

spheres in the row minus one. However, because the .
diameters are not identical, there are always air gaps in
these arrays which inflate the diameter estimates. These a
air gaps cannot be measured via the center distance finding 7

technique, nor have they been modelled mathematically.
Additionally, there is the problem of the "scrunching factor," 6
or Van der Waals' attractions. When two objects touch,
they flatten by some factor which, in the case of -

polystyrene microspheres of the size under consideration 4
here, is about 0.1% . This factor was easily taken into
account for the pairwise measurements of microspheres
arranged in chains, where it was known that every pair of 2

spheres touched. However, in an array where many pairs
of spheres do not touch, the analysis is much more difficult, 1

Simulation.
The approach taken to this estimation problem was to !

simulate packed arrays of spheres and determine the -1z 5 1 2 3 4 5 6 7 8
behavior of the air gaps. From the chain measurements, it

737



The arrays were packed by minimizing the sum (over the divided by the total number of neighboring pairs. For the
entire array) of the squared gaps between neighboring case of the "square" array, this is:
circles, subject to not allowing the circles to overlap, using (K-2) 2

the routine E04VCF in NAG. Larger arrays caused this Pm - (K- 1) (3K 1)
routine to fail, and smaller arrays were deemed too small to This means that the minimum percent of gaps for the
be useful. Results were output in the form of center simulated arrays should be:
coordinates and a diameter for each circle in the array. The K Percent Gaps

distance between each neighboring pair of circles was 8 22.36%

found, and row lengths R (between the centers of the outer The conjecture serves as a useful guide. For all relative

circles of each row) were measured in all three possible Tanar sev s as ide . or al rete

directions. Only rows with a fixed number of circles, K, standard deviations considered, an air gap existed between

were considered for either the row lengths or pairwise a pair of circles about 25% of the time in the simulated

distances. Average center-to-center distances were arrays. It might be noted, however, that this minimum

computed from the row lengths: proportion can be greater than 25% for larger arrays. For

R example, a 14 x 14 array should have gaps between
C = K-I neighboring circles at least 27% of the time, based on the

and were averaged for each array. conjecture.
The gaps appear to follow a gamma distribution.

Gap Frequency and Size Distribution. Histograms of the gaps were overlaid with plots of gamma
A colleague has conjectured that, assuming the probability density functions having the same mean and

variability among diameters is "small," the minimum variance, and the fit was remarkably good (Figure 2). To
proportion of gaps possible in an array of circles is the date, no theoretical reason has been determined for this
number of interior circles occurrence.

Figure 2

Fit of Gamma Pdf to Histogram of Gaps

o = 0.009 a 001

0.25 0.25

0.2- 0.2-
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0.1 Ti 0.1
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-0.05 0 0.05 0.1 -. 05 0 0.05 0.1
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The mean and standard deviation of the gaps depend Models for Center-to-Center Distance Mean and
upon the standard deviations of the circle diameters, but Variance.
these statistics are quite variable between simulated Using information about the average frequency with
arrays. This is to be expected, because gap sizes depend which gaps occur and their size distribution, functional
on the overall layout of the array, not just on the two relationships between the diameter mean and standard
diameters on either side. For example, if the same N balls deviation and the array center-to-center distance mean and
were arranged differently in the square array, the standard deviation can be found.
optimization would produce a totally different set of gaps. A full model for the average center-to-center distance,
Bearing in mind this variability, we found empirically that C, for a row of K balls, is:
both the gap average and standard deviation can be
approximated as multiples of the diameter standard C= 1 Di+Di+l Di+Di+l
deviation (Figures 3 and 4): C 1 -"(--' 2 ()

G= 1.3443 SD (2)
SG  1.1277 SD (3) where:

Figure 3 D2 N (l-D, 02) the circle diameters

Average Gap = 1.3443 * Diameter Standard Deviation Gi - F(cpj) the gaps (AG = a3, O 2 = a3 2 )

0.040 Zi - B(l,p) a binomial random variable
oenoting whether or not a gap
occurs

0.035-• This leads to a very messy computation for the
. *variance, especially if all of the possible covariances

0.030- * between random variables are considered. There is some
N correlation between the Di and Gi and Zi , respectively, but

S• it is small and will be disregarded. A further simplification
0.025 " ia

"is to ignore the fact that the Zi are random variables, and
* ~ replace the Zi in the formula by their expectation, p:>0.020- , ' °• °- A 

t
000DiDi+Dil i+Di+l..- +, p i_ -o.001(l+"", F (5)

0.015- .. ,
* This gives

0.010- E[C] = (0.999 + 0.001p)l.tD + PPG

and
0.005 , 1 • (2K-3)(0.999 + 0.001p) 2 2

0.005 0.010 0.015 0.020 0.025 0.030 Var (C) T I-, { 2(K-) +
Diameter Standard Deviation From this model, the natural estimators are:

Figure 4 A
C = (0.999 + 0.001p)D + pG (6)

Gap Std= 1.1277 * Diameter Standard Deviation and
A 1 (2K-3)(0.999 + O.001p) 2 2

Var(C)= 2(K-1 SD + p

• (7)
0.035- Applying equations (2) and (3) to equations (6) and (7)

' ,yields:
0.030- •

o C = (0.999 + 0.001p)D + 1.3443p SD (8)
andS0.025- ."" ° ad

S (2K-3)(0.999 + 0.Olp) 2

, . ° *. * * V ar(C ) = (( 2(K - )
S0.020- + I.I27p)

.. • , .: + (l.1277p)2 )SD} (9)

0. V. ':A A

0.015- ,.. , * We can also estimate C and Var (C) by

0.010 - * *

% *"and

0.005 .

0.005 0.010 0.015 0.020 0.025 0.030 L.
Diameter Standard Deviation S
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where M rows have been measured and divided by K-I to Estimators SD and SC from the simulation data were used

produce the Cj. for aY and -V-ar(C) when fitting this model Using all of the
data from the described simulations, the parameter

A A
Predicted Diameter Standard Deviation. estimates from this fit are a = 0.4282, A = 0.5061 and c =

Of course, the real interest is in finding estimates of 9D -2.3913. To find a 95% prediction interval for c we first

and a in terms of C and SC . Eq. 9 suggests that a model propagate the errors in C, SC , and the parameter estimates

for a should look like: a, A and 8 to estimate the variance in ln(6) due to

Y = a [(K-I )Var(C) uncertainty in the model.

However, we assume that the logarithm of c is more nearl3  Variance Due to Model =

normally distributed than a itself, so this fit is better done A S a A2

on the log scale: MSE (x; (X'X)Ix*) + P + a2(M-l)

In () = a ln(-(K-1)Var(C) ) + b 
MC 2

and experimentation showed that a much better fit is found where X is the design matrix, MSE is the mean square
when ln(C) is included in the model.: error from the fit of the linear model, and

In (a) = a ln(4-(-1--l)Var(C) ) + b In (C) + c (10)
Figure 5 x = ( In(1(K-1)SC ) In (C) 1).

Predicting Diameter Standard Deviation The total variance of ln(6) is:
0.024 A A A S6 A2

oVar(In(a)) = M -+ 2(M-1)
MC72"> 0.020" M2

M 0.020 Assuming that enough measurements (M) were made so
0.016 that two standard deviations is the appropriate width, the

S, *. * • 95% prediction interval for !n(a) is given by

CA 0.012 "1 - • " In(Y) ± 2 Var(ln(a))
. %-and the 95% prediction interval for a is:

0.08 - ~(exp(n a- Var(ln(o)) )

0.004 - exp(In(a) + 2N Var(ln(a)) ))
0.002 0.006 0.010 0.014 0.018 Figure 5 shows the fitted data and prediction limits (all

on original scale) plotted against -r-]K-)SC. The plot has
been broken into three sections for the three nominal

0.032 - -" -values of 'D that were used to generate the simulation
data.

0.026
, °Predicted Diameter Mean.

A
The estimator for C suggests a fit for ItD . Equating

0020 ,,- • Eq. 8 to C gives a function for D in terms of C, SD , and p:

.0.014 - - C I'3443pSD
0.999+0.001p 0.999+0.001p

0.008 Applying the fitted Eq. 10 gives an estimator for RD in

0.006 0.012 0.018 0.024 terms of C, p, and K',K-ISC:

A C
0.040 D 0.999+0.001 p

1.3443p (0.0015 0.5 (7  ISC) 0 4 ) (I I
0.999+0.( P

o When a function of this forn was fit to the simulation
0030 - • data directly, it was found that the power to which C was

- - *. raised went to 0. Thus, a function of the form:
a'C b'p ( -E ISC)c '

0.020 " ;" : 19= p
-'0.999+0.0(1 p) (0.9 99 +0.001 p)

is reasonable, However, the residual sum of squares was
.- virtually the same for this fit as for the simpler linear model:
C 0.010 ,

0.006 0.012 0.018 0.024 ( - a'n) C b'p V C 1 SC
Standard Deviation of C D = (0999+0.001 P) p 0, +0.001P) 12

so the latter model was applied.
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Unfortunately, p cannot be estimated from Thus, the total variance, V, for 1 is:
photomicrographs, so its lower bound, determined by the S A , 2p2(K- 1)S
number of circles in each row measured (Eq. 1), is used. MSE(x,(X'X)-lx, +1) + -m--(1-a'p) + 2(M-I)
The parameter estimates from fitting Eq. 12 with the (0.999+0.00lp) 2

simulation data are = 0.0091 and 1 = 0.9736.To find a Assuming that enough measurements (M) were made so
95% prediction interval for PLD we again propagate the that two standard deviations is the appropriate width, the
errors in 7, SC, and the parameter estimates and 0 to 95% prediction interval for g is given by
estimate the variance in 4D due to uncertainty in the 2 24Wmodel: + 2-,-

Variance Due to Model =Figure 6 shows the fitted data and prediction limits
S6 Due to Mode plotted against C. It is broken into three sections for the

1 - a b'2 p2 (K- 1 )S+ three nominal values of 9'D that were used to generate the
MSE~kx*;X')-x*)+M - p1~ + 2(M- 1) simulation data. A curious artifact of the data, which has

(0.999+0.001p) 2  not been explained to date, is that the slope of the
where X .s the design matrix, MSE is the mean square regression line for the entire data set is different than the
error from the fit of the linear model, and slope for any of the three subsets.

x.( C K-SC ) Empirical Results.
Figure 6 The estimates for aD and 6 were tested on a small

Predicting Mean Diameter amount of real data from arrays of (nominally) 3 micron
1.010 polystyrene microspheres. The diameters of these

rmicrospheres have a certified mean of 2.978 microns and a
certified standard deviation of 0.025 microns. The results

1.005 from three packed arrays, after corrections were made for
random and systematic error due to the photographic and

1.0m .measurement processes, are (in microns):

A A
0.995 f SC K G 11DArray 1 2.9826 0.0068 14 0.033 2.971

Array 2 2.9812 0.0058 11 0.029 2.972
0.990 .. Array 3 2.9835 0.0096 17 0.040 2.967

0.998 1.002 1 006 1.010

1.510 95% Prediction 95% Prediction
Limits for o Limits for 11D

Array 1 0.023 0047 2.962 2.980
, 1.505 'e- Array 2 0.020 0.042 2.963 2.980

Array 3 0.027 0.()57 2.958 2.977
.150 W"; I l

. The predictions 0I) are consistently lower than the
certified value. suggesting that the simulation is not

1.495 A t packing the circles as tightly as the spheres are packed in
" reality. I lowcver, the 95" prediction intervals do cover or

nearly cover the certified value. Also, the prediction1 ..19o}, -149 .52 1intervals for a are narrow enough that they \kill he usetul.
.498 1.502 1.50(, 1.51(0

, ] Previous Stud ' y of Ilex'agonal Arrays.
2.1W8 /Thc idea of measuring row lengths in hexagonal ;lrras\,

it) glca informlation aoutm the nican diarnetcr is not ne"
t.. " [lhe re-.tive size of the bias introduced hw air gaps was

,. 000udiet eid pimall, b\ Kuh,tschek in 1061 [21, using arraxs
of MO %ka'Jief5. C'esulis here suuget that his estimate of

1 90 hias is tow lite t(ir his pi Naill be sho00" ,

.l g 1/2 , K ut~lictk Ii itri. that
1 V X" 1) - (1 :6 SI)

(Note t i1S) i, i.t l ible th he nt er (tiNtin1cC
I ')8 2 002 2. 0W06 2.111) matio> l e !;,I

. erHi (cCenwr-to ('enter )ii ;stit
ni I we ill II" ' Wi . " l 5 t ai kes plce
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when two polystyrene microspheres touch, C is divided by Conclusion.
(0.9 9 9 +0.001p) for the present application, giving: Standard Reference Materials of polystyrene

- microspheres are used for calibrating optical microscopes.
(0.999 + 0 D001p) + 0.46 SD. Packing the spheres into hexagonal arrays instead of

From the model forming chains with them on a microscope slide gives a
i_; 6relatively quicK measurement technique for doing this.

D C . - However, the raw estimates of diameter mean and
0.999 + 0.O01p 0.999 + w.001p standard deviation are biased because of air gaps between

some pairs of spheres. So far, simulation has proven to be

1.344 3PSD the only way to examine this bias and develop a correction
D- 0.999 + 0.00p 0.999 + 0.001p (14) for it.

This suggests doing a direct fit of
- Acknowledgements:

9 1 D + apSD (15) 1 would like to gratefully acknowledge A.W. Hartman of
0.999 + 0.001p- A 

+
the Precision Engineering Division of NBS for presenting

using the lower bound for p (ai = 1.4889). Both Eq. 14 and the problem, supplying measurement data with which to
Eq. 15 give much smaller estimates of the coefficient of SD compare the results, and providing helpful discussions on
than Kubitschek gave: the physics of the particle sizing process.

I would also like to acknowledge K. R. Eberhardt of the
Coefficient of SD Statistical Engineering Division of NBS for his insight and

Method N =04 N=1 discussions about modelling the simulation data.
Model (Eq 14) 0.30 ki.32
Direct Fit (Eq. 15) 0.33 0.35 Finally, I would like to acknowledge Christoph Witzgall

and Jim Lawrence for their conjecture on the minimum
Perhaps Kubitschek's overestimate can be explained by number of gaps possible in an array of circles whose

the fact that the majority of his data is from washer diameters differ only slightly.
distributions with just two or three distinct sizes. It is
interesting to note that, applying Kubitschek's equation to References:
the empirical data, we would get more dramatic [1 A.W. Hartman, Powder Technology, 46 (1986) 109.

underestimates of the certified valur than we do using the 12] H.E. Kubitschek, Nature, 192 (1961) 48.

results from the simulation.
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Maximum Queue Size and Hashing with Lazy Deletion
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H = I distribution of miaxt{J Uqei t ) iin equilib~riumn for A0 = At . A and jlsk kp. For the \I/NI/I miode'l.
the MI/M/x) model was recently developed inl [Norn- we write Ak ==,= . A anld Pi = i = ' = I/.

son. Shepp. and Van Wyk. 19871. They call be uised to Inl both cases. the arrival process is Poisson. and for tit,,

get iiiiiierical data. Both (list ri bti(itis are nearly' ideniti- I//xcase thel lifespans are exponentiailly (listribltt' .
Ca). because when H = 1 we lave' itaxt>p J Nerd (t) I = Thel reader c-an conisult [Klei ir ck . 19751 for ftiith'r batk-
miaxl>f. f U.4c( t I } where t* is tile itirtlititie (of the first gro ittl.
it emi to( enter thle (tilt to afteor timint = 0. Ilt Sectiont.s 2. 1 2.5i. we jt-ivy exact f riittla' 1o t it

Ill this paper we at tail all array of results alabout thel itaxinlit itl qt 1ii i size' list hg a var nt v o f algI'I 'ia ai al t ail

miaxiilnii (1 00tie size usinig two inidepenidenit approaches. lyt ical t echiqu ttes. Tite first three sectitons haillt. thei

(Due to space limi tatitonus. doetails aro deferred to the (If geneiaral hoilio toii i ant I tat ana ryvI br t h a h - It at
ft ill pape'r. ) lii thle first appro ach. tlescribI at iii the t text procet 'vt ill eqtilibriumn at ( t. t'e foit ,tt di st t.

section . we dhevelop several fotrmtulas fo ti l, (list ribt i i t H -L D unid et the \1I/NI / x tmol itt eqttil I ti tit at t =0

of niiax, {Need It ) foir genieral I i rthi- and -death Iiprocelsst' atitd tit( las l sv t dea ~littS dvt t io-ttinrY ii t-tte'.

(which includes t'e NIf/NI/ x process) anid for thel dis-
tribtition (If miax, JU,e 0 1 iii thel general H > I case of

HwLD. We' also hatndle a non-statittlary model described 2.1. Applications of Stack Histories
itt Vitt,'r anid Van Wyk. 1986]. The formttlas provide ex- A Dyck path is a walk itl Z2 above the n-axis iic t at
act littinterical dat a (on t hie (list ribi it ioits. atid iii somue cases 'ach* st'p is of the type (a, b) - I . h ± 1 t. Its lve
leadl to asymiptotitcs as, thel time iteorval Krows. There is a is the ttaxitital y-coorditiate reached. Dyck plaths are a

C011i1101 minnderlying t riituIttre ili the foirmiutlas for- the tlif- ptilcs tfil'l 5(rest r'1ttlttlittio

6 rt 'li tconecu:the r oi rio go n rs a ch ynmas. istli' tf stacks [Flajolot. Franioni. and V'ifilheinit. 19801 . (File

u-atittf ' Iisetitiv clssial tr li tgtial tt lvtt Hnias .lut t tiv ' will lit' disctussed fuirthetr it Sect iont 2.3. Let
lii Iditl tcotid appro~achI. (lt'sctibt'( inl St'ttiton 3. wev Ito' -i D *t'k path gltitg fnttit lt'vtel to ltvt' I t i Itelp,.

protxt'. tillt' abtove t'tttjct't'lit' fttt thit getitral NI/GCt Molltt with hetight cttisraita'd tol beK A-. Fotr t'at' nctli :
mtodel. whichl ittltidt'' NI/_NI/ ;ta a s'ttcial case wv~ we fitit' , To to Itt' til t.prttbahltitv that ijo riittit ,
obtaiti olttittial big-ttlt biltlills tot thet t'xptt't'tt'ltia\- 0. Tj tlie stzcct'essive diffe'ret' State, of thtt lflIo't's No%, d-f

115- pel.1 iv )N I'll ll ~lclil 11vo o ('Ih cortt'MIp l exawl.t o lv : giveti thlat Nfo10 -1.

tnia, Nf,t-t/i antd titaN, f ITtfit ltv 115tf disvit'r't Lenuna 2.1. 111, ha's'

tIilit es til t'h to5 NI/NI/Ic llY -~a iltll'o i 1a of(

Aalt t'xaml (i ottir netho d. let Its t 'ttt it l tll

NImN/ito dol withI paramieters A and p. TIill t 'q iiliiml it

2. Formulas for Maximum Queue Size p~roblabilities art' given by Pr{ Need = , j = I\1p )it I - \pi

It i, tttrveltt,'nt (to txtt'nd the range (If time to it. T! for It retins to t'alctilatt' thel pi T) terms. wiv chalt bt' tx-

aititrar% T: the rt'sutih c-al lit' trattsiatedl back t. T = Ipresse'd as a multiplt' ittegral. Ilt fatt. p. Ti olt, nt

I a ttl h Ii thIe ft tlttwinog t t is wt t It'iv et' xac t ft tnittilas depn l ttttilt at t he actut al shalw oIf '. bt t tily tip athlt'

fitth ilit ibit onofil,-maitiinytvic zeil seea ii unb'r (if timies the path hits thel x -Axis. VUsitp that

it ttft Is ( )ir fotrimula. art amenabli e o t ilt tt 'rical 'ale tla give tsIs p, T) ill simtple' snitiatioto f Iriti. Lem tI ita 2. 1

flt ti alit I ield asymltp1toti vt xpi nt's it. till ii s oit' cases,. catl li isw 16t aipplied tot yieldt alt texat'tt vxprtnt'si l ftor

Tit. 'troblet' ItAs11(4 Itte il~i tt'I prt'Vittill 'V itl Nlttrri Pu ta, j{Ncud~ tj - 41
tit. Slit, ppl. (ild \-tt W yk. I T,- ft it it." --'s' otf

NI. NI /-% utitt tfltt, H I (ast o vI.D. Httwevt'r. 0 itlsvi., 2.2. Orthogonal Polynomials

H maox,f ~ l t pwas ttt' v kotttt't t hall iittxt I't anttd \;tit \\)k. 19,7 foru thel \ NI N!xItlttlel tot'-t'

upi j~tit' (of I ,tit'ktt I ;it ti o f ttit mat x t I No dI f

A- Itinthi atnt dcatih ptlt'ss- a; Nlutkttx lyioc"" ll '
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get another system. from which we fnd that iikto histories of s,.mbiol tables, inl which the inuniber of pm
s)' (s)is a rational fraction: its poles arte roo~ts of sihilities for insertion, deletion. and query at level k ;it-(

.,k aiid vield ',,k(t) ando thtis Prinaxoj<t<-{Nerdl )j < equal to k- + 1. 1. and V- respectively [Flajolet. Franpn,)i.
k'). Moreover, when Need(t) is a birth-and-death process. and Vulilleinlin. 1980). We let H.k t ) be the ordinatN P en-
comput ing thle roo~ts of A'k is anl easier task because J,.:, erating function of ilhe inixiher oif ynibol table lust, iiil

is a failyh of orthog~onal polvnoiuiials. and when T goes to going fromi level j to k. and we define H<'( j i iiihiixIy
ifmi t v Prjniax 1 <1 <ji-{Nced( t ) K A-1 -~ KfCU. with K a except "-it the( histories coilsirajiletd to ay height 1'

conistanlt and( oI a root of w;k With 11aximlal mlodiluis. Let us consider !he bounided process A,) \ = -- =
Karlin and McGregor [1958) introduce the( famnily of \- = A. Ah = 0,. pit = A'p. whose height c-an never exceedl

polyinmials tQ,, x )j with thle prop~erties that Qox =_r level h (this process c-an be denoted .11.f /:c/1 1. IN. ,
and -rQ = .4Q. where A4 is thle infinitesimial igenerator definle .-S( t ito be thet associated1 denisitv filcthiil fo iltl
ruatrix defined so that *

4k. is equtal to A4 if j =A- +- 1. first passage timze to level A'. If we call f7 . h -II) thet Laplac-
\- pk if = k. pj- if i = k' 1. and 0 otherwise. It transformn of t~( then rr5 sistesltino h

turns out that Q,,( x ) = ;',( -. r -This expression gives stn
anl ext reinely simiple tool for linking birth-and-death pro-
i'se.s to classical families of orthogonal polynoinial1s: ,~

Theorem 2.1. For thet .X/M/1 prolcess. we have

p~r I T~i 1', :. fori 1 - . which call lie plt ntaturally into, the fin 4f 1
'a , lxi=TI:i- T7 ronit i..,ll fiati , < t -1 + I Iilals lp/ h p

wh-r el /p. i -ir - it - I 1Fi7 and j T,(i iii is

tite fanmily (if CheI wshei- ort hi g in aIj povi aniia)'.- Fo- t I,- ______

proies.. wc' hav-. 
2 -

I I/ ii Ii iyiiuIs - F a . yjll 'dal nj,, - 0 of U * 'or but 1,-a, 1,,2 ~ -

bothWi j~-i''.it, thlt fo#Iiof \A= 'IA- + . /it -A- -i. All file histories seen so fai- have their heivht hiouilr
Q, i .r 'an In- .'xpi--'.d litnii m, f' -Ithor Lairi'rr pdyK abi'vv or below IV -onlie conlstant This Is, dii, t,, oAI

I~allal, o Mvixv-1. "I.I.joillals (, til.iconenitrating oni t .tlies (If first passaget through'l ii state
Gene1ral bir-tl-amid-'leatli priii'-s' can alsoi In' re which iinlies that level I mnust he' a harrier foi the Is-

lot-il to orthogKonal Imlviotiilials. usinpg the framnework toiirls they- lut not be allowed ito go thlmugl statc' I.

if file histories iliscuissed il Fl ajolet . Frainonz. an~d But if we now rentove tfle coristraint of first passage atilt
Vimillelimiii. 19801. conlsidler P,it) =Pr{Nftdm = I .V iIf0i = A')-. inl

In' sailue way we noIw get tt'k ,j.- the Laplace- t raiis6irti of

2.3. ContinuedL Frcin P1  i Taking thi rs Laplace trailsfortiu will finall\
2.3 CotinedFratiosyield ',.00 ailot Pjki t-

File, historiesc, "
1

' the cv'itioii (If seveiral iclassiical
Tyliv-' of lviaiiiic ilata striivtiirqs: stacks IS. prio)rity
ifii

t l'ls I PQ . Iilnear lists LL p. yinhol tables ISTi. arll 2.4. Hashing with Lazy Deletion
ulictiouari,'. D). The# <ilat;% triictitrs are, trvateif as conil- Tev~tH =Iilwihteei lh.1il!ild;
k iii ol rial obl ject s the'itr pe rfrin in ce ch aract erist ics. arc ~ gIl~li hot- deli-t io strategy is iised I\%-;%. ai jab /ei II ii -. i
iI.'teiimu Iy tilt relative 4i6. iilr ftie eietiit, siv con risomi. Shepp. and V*anl IvVk. 19861 Wc c~an 1kg.-'rIii/
Taah. no't I)\ thet actual v-ahviie of the, velmenlts. Thnls. we

I.vta tIi-- A )--1w~' f tisr1iganwienn 1hi theii ntltllioi to H I I. h 'iiih'tu h'ilii~

a hitinay f i~ -. '.ni,'thre a,-A- I~1gp Ia--t~ ati- ciiiiihtiioial pnuiluahiliti.'s Let it f4. slitnlhiIt'i ... Ii

tuiw ve-le.it ianl fit lin. relativ- to the,- A- *'em a'iuts theih iilt.e twi' i Iiuket c'am, ff 2) Fu1 Ihiw'k,-t . \\.
Umf-n. Iu f, I aih N,,dI f p Inl the-, uIhi[, 'is o-;t andl -1,

llpi't - Tite iyoluttii of the', data sti-ur-is fi'pl-,'se'nt-.l (lue- Ia- -,, I '' f I Nc--d, II t Wt,- havv- '~ U -
as apath ill Z2 

I the' . rioriiiatc ,' int, thc inuiulai if opf No #od1 t I I Nfc-d. f WqI i t i , "afet 21 t W c-
i-ai .whiether tlt.-v kc- insertinsl. deletins) o lr en'. jl!-te i- asg-tm'dniisusn L~li i i

A11tuil te yj r(meriiiatc c'intts tilti/o )-. when- .'acu ivpIi f"1itis and lrob)leIilit\ tec'Iimlei'. whicii ll~mit t is

of thv- typt' I/. b) -, I 'I- 1. ) 1 1~ 1,Insertion or deletionl ci'iite- thilt ietti,. it amld inam 4f tlliix_
,.I i 1u. 11to Lb) 'positiv.- lit negative'(11,I Iur ' Di,'tussioeti will he fief,'rre'. to, ti,- fuill pallet
.. Ih ste-p we a~-.eit-a i-i-rI ai iiiicl- aill')lg th o'IsI

,lilt es c h '.ial l likvly hP 'Oitii ill ploit If.\y iltl

hil, . il,-lv'tioii coil be' pqI'rfititi-'I 'thll fin tIe- tillliililt '-1 2.5. Hermite Polynomnials
, III.-lit ,,s i tln- ii' mu1 el i f, a '0 -ilit ivs 6 it a fileetitoll i

F'i piiip41s-s ief bwr--vit. -lt it, i,i--- it (ioii'ek, hI( tlu.- XI-,, tsl't d tioti .tattfat? A i.
1

- n,,h t.. i

NI NI Ie h Illii whi-h I/ lliu' 1i- s eat-l k ;,],I \it 1,-] - I91%; . li I h ic Ill, ?, 1-11 ih 1 j, .. (.
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dea tlt ilies oif thet i) itemis are inde'pen dent urxifori ran - a di scr-e'~ auia ig. Nwhie-l We call timl hias iinig. Tilt- pal
(lin variables froii tilte unit interval. Tilte,t itIe i s t icda r foins (if tini' hashing we use fi il tio ca, ;uS "

hornl at tunei nin{illi. to ) a111( (lies at Tinle ilax{.". to, qite different. Butl they~ shar'e the coinin Iii(1)it\' duil
The average queueit size E(Nei'd I - 201( 1 - 0attains tilt, earlY Stages of thel timeif hashilig rapt ire~ mon 4~ i what
its IllaxI iuni lt/2 at t = 1/2. Thet qu est e in of interest is ging onl inl the (jt reueing pro cess: ill tit l('Iat er t apc

is to dI(etermn e thIe (list ri art ion o1(f thle rairdeoil vitriid le thle ire11111e of slo t. ill the hrash t al ii Ia coli- ' 
11 . 'ltI aiid

inax0 < t< Nce'd (0 W e shall svq' that it is thle saine as smaller (alnd e'ach slo t cove"rs a Ia rgi rsp a 1 (if tillitI and

hie height of a priorityv ije wue tile historym as discussed inl the co( t niittit c eorlles less 511(1 less.
Vila j( let Fraiioe in, anl \'ui leinn 19811

By st udying inivolutionls with nio fixpeiints. we (all..M xm m Sz o / /-- uu
sie 1w that our p~roblleml is equlivalent to dletermlinling tile .. M xm m Sz fM/G/- uu
list rihutt i(n oif thet inaxi nullI size (if a ranrdcil prior'- This sectio i (it-evoted to theii prooif of Tiieerelni 3. 1. Tii

ty queue'. WAe denlote by H;'' the iiurrihi'e of prior' Il I- H of biickets inl the 1-l.D inlviillntatioin diow-~

ity'(I luetic histoiries of Ie'nigt 1 2o and height < b. an d niot affect tilte, valuec of Need inl all\- wayV. so we liiall a 'sunwla

We let H~l' f b its ceorri'sp n Ii ng genera tiing f ut ion.u inl this sect io n t hat H = 1. Tilt- disti 11t ion of Nf -iit' I,

W\e have Pr { IlnaXo< < I Nt d( t, b H /(11 3 - PoiNS01n With 111(511\'Jl

(21, . FlAct i8h shows that H12,(- Lemma 3.1. For the' MX/G/x_ ilelilel. we hale
(21- If /lQh( -. Wher' )'"'Qhf 1/- is the't, l I st or-
lii g ins I Herlli i jii lvijeonl S. whose54 rooits arIi rieal a ild

dlist inct . This Shows (15i to ivt it "iipIci exait e'xpre'ssion Pij~Nto1 t = t -

for Prj 111aX11< ,<j lNeedi) -} < 1 aid a11 aslllititii' all-

hiri~llllatii ll as, ii-"e Thle priulif of Theoreixi 3.1 relies on tili' fIdlowixLg tcil

ti'e'~r paranmete'r to he spie c ified( lateir . WCe hiall i Isidfhr

3. Optimal Bounds all ait(lls that ale' alive'i at sol1114 tIlli' (itlrilit 0. 11. Staa''c

Ill hissectollwe povefor ilt tatollr~y -,ctiloc A = 0. 1. 2..K of tine' liasiiig ari'( deiinid as follow-:

that til ex'i'tied iillailwfo ile tilav l G (ta is ll(' For (0 K A' < K. aill iteiis. 1 iltervals) that hiavi' life'spall

i'X~ii'E'i lll~il~l~l MG/X jtl'tf'SIe' 011 ll' ~x 1 e''t'd ill tile range' t I Ik and~ that are bilrl ill eitiher ill

iiijaxinlullI s.torage' useid ill e'xci'ss of thlat ainolinit ari' withli uiit lilte(r\'al A. 1 or oleof tie ild intervals ( 2'. I aiil

co'iltallt factors. re'sipi'ctively. of tile e'xpi'cte'd storlage' 7 !2 k ale' pult iiito stage A-: ill li(Iditiil. for A-' 01.

nlii'(i'i 1(111 waste'd atn' ;il ivi .lc it it aei till llfe'spall rei'cure'ment is wea kened so thlIt till'-I ifes~pa II

a p'r pi""'- with itifI'it\ \. Ill tile 'peiall 'case lillist bi' ill tli' rang' jIJ. 1 ]. EachI stage consl1ists if ,a liali

f th \h/,' x Iloell. tli'lifepansSri ~~V'llhr tle' talei oif [pj2 -' + 1 slots. The', jtii silot. for 0I < j < p

'N101V~ta (ls ht olwt Ilal1 . Il l e'pre'sents tilt interval eif tulle 10, li - )2 .')kl.Ai t

Nl l/xiolel tilt- life"'cmx di~tiihiitioii is ariitra'x' withl ill stage k is pl~aced into tihe slot c'erri'spoiiillig tei its iitii-

111511 I/p - Tilt' following it'o tili(ili'lll a11' till' njilil Ii' l1 eas I-ii IeiA tK 4 , oi I-:S;I

'u 5  fSei'iir 3collsists ( if all iterst. born inl 10. 11 with life'span > 1"'
,titofSecio 3tIie' relllailling [p2 '~+~ slots, are left e'lip~tN 1A

Theoremi 3. 1. 11' havv Wie le'hlke N'k(j to Ib' tile lllllllier oif stage k- itemls

ill slot j. Tie followinlg finidallleltal re'lation (II iind11(1
a.i( Ned00 ) 'N~ -. ' -( -hr i t ofe 111 ite e'xeet'd 11xlill

lll'z tile' 'onditionl 1)1t p1 -= ( A/ leeg A, Iill (te \'\/ Slot i ccilpall'ies Ill tlIl' ilaslilng:

aseSli V = 01 A/ ieig2, A )ill tile' general .\I/G/x cit'. Lemma 3.2. W~e ha'e

Theorem 3.2. Let 0 be any% constant Theni if tile "IiSX{ jNed(t) '> 2 IlliSX I\ N 1

tlhini'r H (if fmliki'ts Ill Hw-LD i" P!( doeg A if )We have I,~ AL I A1~P ~'
E ( naxj 1.4fil nix jNeri ti IThe M/M/-x Case. First we shiall hanle tile- M'M'

it<lX (< e I leli 1 { I ed Iiiase'. ill whlichi tire' lifetimres are e'xplie'ntitll\ 4iitruiilte'i

- (E V-,J' Nee'd 1) Of H ~. with iie'ar 11p. Tile' restrictionl il p ill Thii'u 3A 1
sligh t ly weaker ill thIis c'as' t han ill li'he I i 'ra l, N

Tilt' re'stric'tionls onl t mlid H ill tilt' tiieeiis at' x Case. Ill tis 'ilhisectjein We as~sillne that we are lililillt

revc ' * 'i- weak: til hey are' t , yp'alv itet ill go incletric'al ape With lle li' /MI/ lileidel anid that p1 - Of \,/ ioe \ VI

jiates.feir i'xa.1iuhie' )~'all Wiyk anl \'itter. 19861. Ili define tie' Itage' paralietert A toi he'- 1 g i p

fc.it i;Al il siieihwn thiat Tileoril 3.1 Is noet trite if p Lemuma 3.3. The'- e'xpie'ite'(lliii'l of 11111- Ili

I, t.o, lauge': the 'e'strie'tioili" 1 Hill" iiatlh' illlll'li' tIl tile't.tII

((11 3 2 Ii Sectionl 3.2. ()orlit ap~w ill fi'll thi toIl at) Lemmta 3.4. Fg 1 'F 0 ' - I'll ?,i bv t'0I
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the, itilb'r Of slo.ts ill t' tit,'i ha.hig table of stage V 3.2. Optimal Bounds on Waste in HwLD
Theti the number .ku) ,,f items in slot j of stage 3 is

Poisson distributed with mean a = il /. where To prove Thlierei 3.2, we derive all upj-r iound ftj

A 2 k1iIA. < . . E(uiax,{ Wa.ster)}). where Wa.,f , M= U. I(fI- NdIdt
if 1 < is the 111111a)r of dead items that are still in tlt, HwLD

= -data structure at time t. This therefore ni al ip

- -2 - if A i. bornd on E(iax { U.e(t)} - Iax, Nt,',d( t)}). It is in

portanit to note that the formner quantity is usually laz ,,r,
Lemma 3.5. The expted nuaximunj ot'-upan'.v of the. than lthe lat ter. because U.e( t) and Noedf I utall I

.slots ill stagv A. 0 < A- < K. is. not attain their inaxilna at the saine tiun t.

E( max . ) ) To bound tht expected maxinii ii waste'. WC Als t

1))< [,,2-11 qtililt hashing of a different nature, than in S,'t'tin 3.1. Pic

The proo<)f o)f Lena 3.5 makes, Ilse' Of the f()lhxing S tag(s' are ll ,'rtd A- = 0' 1 ..... K + 1. aid ach (if ti
Theproofofeiiiiiia 3ndcorollary .hey nii.s upef b d ft ll H lttl'kt'ts has its own set of stagt's. Tit' hash tablh fi

h'rnina and ci irt diary. Tiitv. ;i vt' us an iii tpt'r I it ,undit I ill ,ach btutcket for stagy A- has F 2 -,Ai I siots. Th ,ith 1Ot.

an easy way ftor t lit' t 'xpt't't 'd ma xii mliii sht ti ,t'i' ta .i fo) (0 K j _ 0.)-, i <) 1. represlit, tiht' tillit ilitt'n-va

hashing. The lt'niia is phras'd for ge'n,'ral "lit' tilt'a . 1 2'+ Thi first halfof ta slot ailid
,'i' , 1  that art, not ass.mi .t.d to itt' indl (l(dent: whtnlt t " ' t t I Til ' st half is 'aI'h t I'- )'jlh',i

AWC11palicies ~ ~ ~ ~ ~ ~ ~ ~ ~~~ d, ar needn r,.if etil rpr ' h Iath z,,,e, anld t he seconld half is ,called thq. t 'ilig ht
I t't'ilpai('ts art' intl''l'nt t tr ,,atisfy a ct,'ri ai i l tr t (rv.it It

Ti t •~ld i l t l o l l a - s o t i l tl z o lnp '. F o r (c a (h ta g c . o )at(, e t r~ y is p li ! it ol it, i bh 1,w

ftr t'vt'rv tdath ill thel death zole of its .itl slt. With the

Lemma 3.6. For raido variatd,h's.A .. ... X,,,. if extra requirenent that there ar' lit) birth. in tilt twilight

PrI.' > h} "- / 1i ). fur all 1 < I < l. wh'rt zone ttf the jth slt: if there is a birth ill tit' twilight zon,'.

X, = E 1 , , ). then wt. ha',' n'o ,,ntrie's art' placed into the lth slot.

I In addition. stages 0 atld K + I are i plt'n'liitt( d as

Ei max . }) < b + E( max { .IIl} max 1  > A) follows: li stage' 0. an etry is put intt tht' jIth slot fttr

i'vtVry deathI in tlt' death zona. regardle'ss tf whetlh'r Owit'rt

Corollary 3.1. If in addit ti ttt' at s ti. timpi r' quir'd havt' lien no births in the twilight zo.til. In stag,, K - ,

fti" Lt mm ia 3.6 wt' also havt' wt' ilt tvt' all t lit' tiltries into slot 0 frotln thl' other slot,.

max A, II Ilax jX, .> h) - F lax .X ', W' let '.kl ) deiioto the slot occilpalicy for the .tlh

I ' ,,, <J Itt ' Itt slot ill the time' hashing table for bIicket h ill the A'tli Ia.

rh,.n We, tle'fine 1'k(j ) et b the total inu ler of 'ntric's in th

b ' ah shI ts ot f thi hash tables for hIuickt' 1. 2. H :

TIh ret Of thl prof tf Thtrt'i 3.1 for the NI/M/ I<h fi

,a.' consists of takiizi t'xv,'rt'ations il th t'xpressiot tf

L'iiia 3.? and uilsititutitg tilt' btndts froui Lnnias 3.3 \e 'et the stage parameter K to b, A = rlgi( A/H 11.

and 3.5. whiclh givt's a t'(nvt'rptlt gt'tin tri " srit's. For c iniplt tntss. we should n nti n t hi at titI is a
total of four insiaiu't'- ,f time hashing. not jii-t lit' tit,

The M/G/-x_ Case. Iti th.is til).s'iou wt, a. suiii' that lhfini'd abtov'. Th, s'cn(io instance' of tiit' hashin is
p 0( /A I log- A ,. F)r tli' ,a.-,s, (f t he \ I/G / -N i nitdt'l, dt'ined inl all identical way. except that tht 6nit' inter

tilt distrihition of lifetin's is allIwed to ibet all aritrary vals of tlte slots are oiffset ,'A fi'oii tht' tii' intervals
,,n with mean I/p. Sit in part i'llar the alproach we used of the instansc' defined aio've. In addition t t he'st' tot,

above for \I / %/ x (naui'ly. .lnnla 3.5) will not work: for instances, we consider two "e'verse" inst alces. ill whit'h

e'avi given vahue ,f . stagt' A- could ctontribulte ws much a., tinit' is viewed backwards: we start at tie f = I aiidl

1 .\/A ) to iliax,. 1'i , 1 {.I, (/) i). Instead we use the end at time t = 0. and we l)rtcess 'ach death as a tir th

fllwiKng i ,ipt)rtat it Cot'rt' qi it'Iin,' l wi twle t avti rage at d vice' -v, -.. W ithout loss of genleraliiv we, shall disciis

"t t 'cpul ' it's and E( Necd t: )inly tlt' first instance of tittie )tashiiig. a.s t tfii td il tilit.

Lemma 3.7. Let oj - E(\NAlt0)) he tli avt'ragtmumb er previtols paraKraphs. ald illtrttdlI'' all ('xtra faCtr of 4

,f /t',ms i sltt o t f stagt' V Tht'i into our boiinds, where approllriate.

A A key obhservation for the d 'eri'atiotn is that th , ,lhl,

2 "" .k ratt ill the' M /G/--. tilde.I is a P i',,Ol tpt',vss ilth ,

Il ', At I sall,' int'nsity as tit, hirth rat. This folltow- h,.''au,,, th,,

lit' -, tillit' hashiii a It'ftrt'. lilt with thi' tav' pa M /(;/ -x ttdtl is syii initric-and t;tionary. antd t ho" al,
rallv~v - t to A " lg l, -'li-rc ;it - 2 -k " +,I it 1 21," I lly 1979 1 T he f,lh,w m v hlvi nn i -th, ' ,, I

,ltt. in stago' . for ai'h ) ' "_ A 1". Al i'asy al)l)li' fft ,,im protf (if Th'or'tm 3.2:

tun tif ('troiiary 31 ives us tlt- fttllowing k'y l mma. Lemma 3.9. It'. hait'

which is th. tasts for tlte jtrtf (if 'hior'nii 3.1 for th,'

M/M/. ,t'. unix 144 iiiax 11' 1i)
I " ' A ' .I ti2
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We shall prove Theorem 3.2 by bounding the sumi in the optimial amiount are within Siiall conStant facto rs. it'-

Lemma 3.9 by O(E( Waste)) =O(H). A big difference spectivelv. of the average space needed and w&s;tvd at anl 'y

between this application of timie hashing and the ones we given timle. Our techniques also appear to be applicable

uised inl Sect ion 3.1 is that the randomi variables 0
'A &(j ) to the NI/NI/1i model, which introduceis s'vial itrri nv,

and hience also Wjlj )) are almost always 0 as A- grows. niew facets to the probleni

NNVe have PrItiihk( j) = 0}1 - 2 This causes the Current work is aimledl at rt'em\ivui tilie theV C1)ixidit i1xI

mlaXimumlll slot OCCulpaliCy tuI behaVi wildly. LuI fact, to4 ge't H = P1 log A\) fronti Theaoreii 3.2. TIilt- pi if tvclii ijui.

0our hounld, it is not enlough ton bintid E(Iiiax, j iih k(y } ) though. hias to be differenit. because it I, a., y i "li It,\

and theni iltiply by H. because thet result will be too for H =1 that iiiax,ictfi I{ Wi.,bt ) has iinhoutill w.,

large: the load factor inl the anlalys. is of niiax j { ih k-i. 0 } latation. Another problemi linig worked )it is to det.'-

is too smuall, anld the ratio betw.eeii the ave'rage mlax]- inle thet conistait factors inilerenit inl thop lug-ohli tnd

no mxiii slont iiccutpamic % anid the a verage slo t )cct Jpaiic v is P re liniiniary results suggtst that tile ioh;.t;IIJts Ill Tilt-,

~iio loniger 0( 1 ). The soldut ion is toi conisider the H hick - rein., 3. 1 amnd 3.2 ame- asviptotii'ally I imiIer .'-ficral com

et.s Ii toton andh to bohu)tnd E (niax 1 lVk( I I}) dirt ctl lv. We ( lit ioaus.
hi that by ci mnutinjg thle ioniem t generati iiig ftiiict iil Acnwiemns Ai( uhr vil iet)titi

of iaxIIK<, [W k{ I(j )anid then apptlyiig ('orol- cnwegmns h uhr ol iet lai
larv .1 : Cheruoffs 11Fraio~ois Baccelli. Guy Fai ille. Philippe Flajilet . ati~l

using tounin.Claulde Putechi fo r interesting disctissi is . Sim a irt fora t lie
Lemma 3.10. Thet expeti'ei- intumbr 4 f et-ries inl first atuthior wits proividled inl ptart by a Pri pier Fellhip.sli
s;tagi' K + 1 is Su pport for thie seciond atithair was poii ltd ill part hN

E1j+j 0))= E( Max jW1, + I ) j O(H). NSF research grant DCR 84 03613. by anl NSF Pi-esidmi-
ii< < f I tial Young Investigator Award with iliati'hixg funlds, fri it

Lemma 3.1 1. Tile .'xpiti'td nijaxzhlnim octplc of anl IBM Faculty Developmient Award atud anl AT&T ,

tile slots Ii staize A- 0 - A- - K. is Seal-en grant. andiby a Guggenhiin ii .~up

max Il &ti')) U (j 1  )References
if Ii = 12 (v A~ i~11 P. Flajilet - Analyse ihalgiiritlitiiw.' d ihe ianipuilatiii

Tliit-cn 3.2 hylii. (iibiiiitia. 1-iiia 3.9. 3.11. iVl-ihiti el (it tIhilr. Cahiers (lit Bii.;im n run
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CLASSIFYING LINEAR MIXTURES,
WITH AN APPLICATION TO HIGH RESOLUTION GAS CHROMATOGRAPHY

William S. Rayens, University of Kentucky

1. INTRODUCTION furnishes the details concerning the chemical and detec-
1.1 Overview tion methods that ultimately led to the training set Y.

Consider g groups, each of which can be character- 2. DEVELOPMENT OF THE MODEL
ized in terms of p particular variables. Suppose a test 2.1 Assumptions

observation y is a "linear mixture" in the sense that each Suppose a random vector y I-ER is p-variable normal,

of the p variables associated with y can be characterized

as a convex combination of the corresponding variables in Np(y,(7),S), where Y(,)= I ' =(I ..... 7g) is the
these component groups. The weights defining this convex i-1 9
combination will be called "mixing proportions". The test vector of mixing proportions, so j'r =1, and "', 0 for

observation is "classified" when the mixture constituents all i; 2 is assumed to be positive definite, and p eR" for
are identified and the mixing proportions are estimated. a 1,.E.,sg.sur obe ito esimte a jt I P mo

In this paper we propose a model which seeks to clas- assumptions cang beO u bjected to crti m t i the finl
sifvlinar ixtues.Secion cotais th moivaion assumptions can be subjected to criticism but in the final

sify linear mixtures. Section 2 contains the motivation analysis the assessment of the methodology will he made
for, and an outline of the model development. Section 3 not on the validity of the model assumptions, but on how
contains the details and results of the application of the well the procedures work on real data.
model to the problem of identifying the constituents in In the PCB context "tj interprets as the concentration
polychlorinated biphenyl samples. Finally, section 4 con- of the jtLh Aroclor in the mixture. Likewise the vector Jj
tains a statement of our conclusions, and section . bricfly represents the pure chromatogram corrcsponding to the
mentions the computer routine used to implement the ph Aroclor and E is the covariance matrix of the chroma-
methodology. tograms. In developing our model we will first consider

1.2 Application Context the covariance matrix and the pure chromatograms to be
Polychlorinated biphenyls (PCBs) occurring in the known.

environment of the United States originate from one ormoe2.2 Classification with YE and/, p .  p.., known.
more of nine industrial products: .Aroclors (registered When v and ,1 . .I are known, we can use max-
trademark of the Monsanto Corporat on). Each of these
nine can be characterized by a parti,,ular set of consti- imum likelihood to estimate The likelihood function

tuents and their relative concentrations which are deter- associated with p(t) is:
mined by gas chromatography.2 These constituents differ 1/((27r)P/ 2det(E))
by the location of chlorine atoms along the carbon chain
associated with a biphenyl tmolecule. Theoretically, there exp[-(l/2)(-(')i v-i( -Pi3-))]

are 209 distinguishable arrangements; far fewer are gen-
erally available in practice. Further, an environmenta or As a function of -y the maximum of this expressionm is
biological specimen can be characterized as a weighted achieved where (U-t(nQ))i-'(y -p(h)) (the \lahalanobis

average of the constituent concentrations present in the distamce from y to p('x')) is minimized. Define

com onent Aroclors. in which the weights are the mixing 9
proportions. That is, the chromatogram associated with a Q - I R (^ ... .. ., )' I , 0 V
miixture is essentially a weighted average of the chroniat--
grams associated with the component Aroclors present in
the mist ire. The restrictions p(a)n >l,?ij.d E (2 constrain p(-i) to

\Ve had access to a training set, V' consisting of six i-i

runs for each of the nitine pure Aroclors. itnique, a smplex having l .  . as vertices [lcnce. a mox-

identifiable peaks in the chrornatogramfs led to tie num likelihood estimate of -1, say -i, is found by locating

development of 93 concentration variates that correspond t he point on t his siniplex, pl z ). t halt is closest to y InI t-

to relative concentrations of individual '('lls or conjoint l'.se of Msahlanobs distance in Kr

I'( Bs that coelutf. :.  Hlence, I' contains Ar'5 o iserva- .ililisi L span{ -2"t/..l(/i -p )},., ano I? :- iv

tions (rows) and p =93 variables (ciltmiins) Ilows I-i of niatri\ nv i trix whose collitiins forfmi :in trlibolirlnl -l,

I' correspond to the runs )n Aroclor I; rows 7-12 are the for L. The following thecoren shows that the tran l,,rin-

runs on Aroclor 2. etc. The aforementionied rfirenee tpm Fntl1 
-i /l: - g€-t r ilnces fth pr, li h i 4 liltdirog
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y in terms of Mahalanobis distance in RP to an identical It follows that B(B1B)-1B(u,*)=IBt(w*) ="orthogonal
problem involving Euclidean distance in R" - . projection of w* onto L"=w*.

Notation: Note 2: if w* EL and wE RP, then

SP = (g-1)--simplex having vertex set Ilwu,-u,I1 = Ilu,-BB1I w112 +l113B1 u,-w* II2

B'E-(1/2)( i)} p = {v}A maximum likelihood estimator is calculated as follows:

mini [(y--y,), V-(y-y,)]z B-( E-(1/2) /"Q

i point on SP closest to z mm miQy- -( i (/ Yi)37e Q

01= (i. g)E Q , the barycentric =m [( dI/y-i/y i(iin-l _-(/',y

coordinates ofi; relative to SP .= miii, +),-U.*+wI) ( +ui)--(w*+UI]
-f Q

Note: B(B'B)-B'l E'I
2)(i) BBY,-l1 /)(pi) =B(i). =m [(w-w*)(w-w*)

Hence, the (g-1) components of vi represent the 1E Q

coordinates (with respect to the basis B) of the
orthogonal projection of E-(/

2
)(ai) onto L. -I Q

Theorem 1: min [lu,-BB' l,1 2 +lBB' w-w'lr1- (Note 2).
3 is a maximum likelihood estimate of ly, sub- JQ

ject to yE Q. That is, . Since ilw-BB'w H2 is independent of y, the calculation of a
Proof: We need to introduce some more notation and maximum likelihood estimator reduces to finding:
make two observations. mi 1I10 ! _IV*l1

2

Additional Notation: Q

= g (~= min llBBiw-BBiw*l12 (Note 1)

= Min IIB( -zl)-B(z,,z-. )112

:rQ
,1 -- £-i/2)ys-W mman(ztz tIB-ll

-7, Q

Ileuce z ni= in (fl-he be eottzha-tirQ

lii, rs length of the vector in, in terms of
Mi mlIZ I-z,,tll

2

tile usimal l%'clidean inner product. It Q

Not 1: 1,* 1- 12)Hence, nit ust be chosen to be the point oin SP hat is
!'V leI : W* -{l2)~ st-U I closest I,) - That is, Z ,=-i, and "7 3 as Claimed

,-2 This result makes it chear howk -i (,in be estimalvd,

= I->,Z:-i/2 ,-11,)] E ,L and, hnce, what our modl. will be (when all the paraie-
t-2 et"rs yo,, aid . are known) First, we f'rni the simplex SP'

750



Next, given a pxl vector y as the test observation, we cal- The following theorems, proved in reference 4, establish

culate the (g-l)xl "score" z E-BZ(t/
2)y and identify z the connection.

with the closest point on SP, say i. Finally we calculate Theorem 2:
the barycentric coordinates of i with respect to S.P and Nit =BiE-WI/ 2 , and B'B = l (fiJ)WO-_)

use these as estimates of the unknown mixing proportions.
Theorem 3:

2.4 Classification with pl, . . ., t and E unknown B =L
In practical situations such as the PCB application

the group population means (pure chromatograms), as well These results point out that the columns of B are an

as E (the covariance matrix), will usually be unknown. orthonormal basis for L; also, the transformation resulting

However, we can still reach corclusions similar to those in from a linear discriminant analysis has the form

the previous section. That is, suppose 'Np denotes the AP =B'E - /2 ). Hence, we arrive at the following pro-

training set mentioned above, representing N total obser- cedure for estimating the unknown mixing proportions:

vations, ni from the ith group, iIIl =N. The existence ofi-i Step 1 -- form the simplex SF, defined by the ver-

this training set permits the estimation of :2 and all the tex set {(i},jg_, where z, is the sample

gui . For instance, Suppose pi is estimated by Y, the sample mean of the ith group of discriminant

mean of the ith group; and 2 is estimated by scores.

S- [1/(n-g)]E, where E is the within-groups sums-of- Step 2- given y is a test observation (mixture),

squares and cross-products matrix associated with Y. If admitting liscriminant score z=vty,

we view the likelihood function A as a function of -1 alone, find the p .nt, say i, on SI' which is

we cali replace E by S and jui by j in the above notation closest to

and immediately reach the conclusion in Theorem 1. Step 3- use the barycentric coordinates of i, given
There is an important question left to be answered. by ,.=(1l, .3), to estimate the unk-

In the practical setting, where does one find a R matrix " " " o n

satisfying the above requirements? By answering this

question, we will establish a strong connecticje between the 2.4 Location of the closest point

above ideas and linear discriminant analysis. Consider the We have shown that the vector of mixing proportions

following notation: can Ie rigorously estimated provided we can find the ; ' int

Sgrand mean =(I/N)>_ n a given simplex in 0 - " that is ( losest to a fixed point
-c Z(9-1) We can adapt a fairly conini nonlinear pro-

I, span{E-1l/2)(y-y)} graming scheme (a "gradient projection" technique) to

solve this problem. So that our general direction is iot

tt , Y--)(Y, -- ) lost, we direct the reader to reference .1 for details. The

fact is, the desired closest point cati iw fo und in a rdla-
13 (b, f i - I) ,9 matrix whose t icily easy) it'rative fashion.

columns are the g-1 eigenvectors

corresponding to the (9-1-nonzero 3. RESULTS OF PCB APPLICATION

eiget,valies of E-I")I E--i)2) The training set 1'54.93 is not appropriate for a

* s,an b discriminant analysis as it stands, because the column

dimension is too large. \Ve therefore used a principal com-
M=matrix whose columruns are the 9 I portent analysis as a preliminary step to reduce the

eigenvectors corresponding to the column dimension. Then, we performed a linear discrim-
(g-I -nonzero eigenvalues of E-I11. inait analysis to obtain a matrix of discritiinant scores

That is, At is the matrix which results Z, ,.,. From this we formed the 9 vertex vectors of the

from a standard linear discriminant simplex S' in I8 by calculating group means.

analysis. For use in testing the effectiveness of our model, we

ZN Itmatrix of discriminanl scores= M htad access to a niatrix consisting of several runs on the

sanme t hrve-cotnpoieit mixture si fig met hods of
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contamination may be responsible for the poorer

graimetric measuring, pure samples of Aroclors 1, 6 and 7 performance on these runs.

were weighed in the relative proportions of 2.5:2:1 (respec-

tively), and then mixed. That is, the mixture theoretically Among the first 31 cases shown in the table, the

consisted of 45.5% Aroclor 1, 36.3% Aroclor 6, and 18.2%

Aroclor 7. Using methods of high resolution gas chroma- summarized in Table 2.

tography, 38 runs were made on this mixture, and the Despite the consistency of the estimates evi-

same 93 variates as in the training set were isolated, denced in Table 2, it is clear that there is a

These pseudo-unknowns were treated as test observa- discrepancy of about eight percentage points

tions and the 38 corresponding discriminant scores were between the estimates of Aroclor I ard the gra-

obtained. These 38 points in R8 were then identified with vitnetric weight. The Aroclor 7 estimates admit

the corresponding 38 closest points on SP. The barycen- a similar discrepancy. The source of the bias is

tric coordinates of these latter points were calculated with not clear, but the consistency of the estimates is

respect to SP and used as estimates of the mixing propor- encouraging. It suggests that accurate results

tions. The classification results from our model are shown may be obtainable by adjusting for the bias.

in Table 1. Further study is needed to resolve this matter

The following comments highlight the important

features of these results:2  4. CONCLUSIONS
The results presented in section 3 clearly support the

-(The Aroclors actually present in the mixture potential worth of our model. Classical discriminant tech-

(numbers 1, 6, and 7) were identified correctly niques are principally concerned with the classification of

(i.e., had a positive barycentric coordinate) in a test observation into one group. Many recent

everyn case except one (run number 5). iethods-eg. SIMCAi aid "classification trees " '  are

- Exactly these three Aroclors were identified in also directed to this purpose. In these methods statements

12 of the 38 runs. Of the remaining 26 cases, are available concerning the probability of membership in

the estimated contributions from Aroclors other a certain class. lowever, it is unclear how to translate

than 1, 6, or 7 totaled less than 1 percent in 9 this uncertainty into a statement concerning mixing pro-

cases. (Except for run number 14, these small portions. The model we have developed is more focused

contributions were always associated with a sin- and presents easily interpreted results.

gle Aroclor-namely, Aroclor 8.) Thus, in 32 of Well-known constrained least-squares techniques are

the 38 cases, the contributions of Aroclors 1, 6, certaitily applicable to the problem we have addressed In

and 7 are estimated to exceed 95 percent of the fact, we are essentially performing a least-squares analysis

complete mixture, once the discriminant scores are ,btained Ilowever. the

Exarmination of the pattern of the ESS mcasolmc usc of discriminant analysis to initially "best separate

reveals that the first 31 cases (i.e., rows in the the groups is found to be a useful and intuitive step

table) are all relatively similar in terms of the 5. COMPUTER ROUTINE

accuracy ac hieved; the last 7 cases exhibit s,- Our miodel etiploved coiipuler routiines prograninid

stantially higher values of tle ],KSS. This sug- fit ...AS arid executed under .S.AS lbeease S2 1 at Triani e

gests that tie concentration data for these 7 tiv .isitics ( cmiputation teimr (ItCC). lesearch Tri-

runs differs in some significant respect froni the iih'c]lark. NC. The routies are ext rmily thexibl can,

other runs. The variabilitv of the classiliaionai

resu lts amn o ng th ese 7 ru ns (last seve n ro w s) sug- , i a, ijt all ica ly p r foium t cit r ic lui ig th ed inscri n1in 2

gests that several different types of allanolis . principal n n inihysts if rv
anIc~srd a picalcorniitili i ->.a

may be present i thiese runs, as opposed to a oi d,-iircd. Fi"rthcr, several rtfiniemenis and tu.1 h,,dl,,gi

single type Five of thi'si rasts correspmd it ilt not mtnitio d itil ti> artiche are aailahl,

runs made late inim lie stud ' y. as idenlit ied hy the

run rim icr. It fact, live (if tle last six tripar-

tite runs fall into its griump of seven (rins 33. ACKNOWLEDG.MENTS

31. 3 . 37. 3X). This suggests that sonic typv(s) 'l!l \%,,rk was luillorteld tii part v a vrt frin r ml i'

if inst rumin.it dhgr;mdat ioi anii/ir
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TABLE 1 - Classification Results for 38 Runs on the

Three Component Mixture

Aroclo," Nutnber

16 I 2 :3 1 5 G5 S 55

- 50,7 . 37,0 1(0 22 315

27 523 37.6 102 112 1

15 52.S 36 5 (53 (. 1 116 3

2,1, 52.7 372 10 i 11 5

265 526 -•537, 1l0l) () I II:6

35 51.7 . • 36 S .1 2 1 1207

25 5:3.1 350 106 1217

I0 520 . . 36 7 55 1 123 7

9 5,3.5 1 .. 36, 1 (1.1 135')

11 52.7 .. . . . 37 .5 • 1 1:32 0

23 538 .36,A 1(12 . 133 5

22 53.8 35 5 10 2 1 1 133 6

7 .502 .. • ,0 83 3J5 J35 5

21 53.6 - •;5 5 7 0.1 (3.S

3 53.3 • I I S.9 2.3 138 9

6 52 3 -3 7 SS 2 1 139 .1

1N , 53,8 3 58 3.8 0 6i 1.11) t

1 516 . . 3.1 6 10.8 . .. .11 2
21 5.18 - (.13 1554 05 152.1

13 55.1 . . 33 155.8 0 :1 151 2

20 5.1 9 35(0 101O2 15-1

2 51. 6 . . 35 . 2 .. 160 -1

1s 5-1.7 . .. 17 9 5 I 1 1G1S
1 5.5 •. 33 S 105T\ 02 1(5 5

8 53.7 3 83 SO 175I. t

:11 56.:3 •31 5 122 177

32 56 1 -11 . 1;11 G 1 :3 0

251 5 1 .. ;I I S 2 2 5 I', 9)

:;() 551.8 ;I 1 ( 1 2 1 5:5 :I

17 552 ; xl( x.5 1 7 19117

12 5(.3 55 5 : 3 Ii 262S

1.1 50 I I 29,2 7 9 552 05 7 2,, 55

:31 20.5 :57 552 168 11 2 11 I W111

365 25 9 '1 S P) I 1 (7 .1 6.5 7 .1

:11: 25 1 ,1 8 2 I I 8 32 !5 1: .9 552 W I5
5 .15 b 2 'I 1 1 I 112")9

.17 1.1 9 7 7 (1 :15 Y) :1 12 ) (3T 7 311 7

,1, 12 0 .1 ,, 7'q 1:1 70i 1 (3 0.5 172.5 2

TABILE 2 Summary of Consistency Among the

First 31 Runs Listed in Tahle I

NI, P Ii ' 3)(2 31 l 1 S 0 5

.M .d , F' t I',5 5:17 ;6ss Ii 1 ()

\a'x 1':t Pet 5118 3S8.1 522 57
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BIAS OF ANIMAL POPULATION TREND ESTIMATES

Paul H. Geissler and William A. Link, U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center

Surveys of animal calls or signs are often used to monitor N,
population levels (Seber 1982, Ralph and Scott 1981). For 1
example, the Mourning Dove Call-Count Survey (Dolton 1977) No -
is a stratified random survey with more than 1000 routes. Each E Epi
spring biologists count the number of doves they hear calling I

under standardized conditions at 20 stops along each route. no n,
The routes are used each year without drawing a new sample. E A, c,(+,) / n, Z A, Y Z j / D,

Biologists want to know if the animal population is Thus n o r . (5)
increasing or decreasing over some period. Annual mean counts E A, ~ - / n, E A, E 0, / no
per route cannot be used because changes in routes and
observers affect the counts. Instead, the slope of a regression
line is used to estimate the average trend on each route over the The back transformed adjusted counts cy from (3) and (4) are
period of interest and to predict counts in years 5+1 and .. weighted by the strata areas A., where A, = a N,. They may
These trends are used to estimate the ratio of the populations also be weighted by the inverse of the relati'. variance w,,i to
in those years (Geissler 1984). increase the precision of the trend estimate, giving more weight

The call-counts on a route can be modeled as to routes that have the smallest relative variance.

Csrsy = 0"i ro" (,. (1)

where cY = observed call-count, s = stratum, r = route, " c,_,,____ w___ _- , (6)
i = observer, y = year, 0,,, = observer effect, T,r = the trend, , ':0 w , ' , w (
and c,,iy = error term. Taking logarithms, (1) becomes a
linear regression.

lere the weight w,, = i'(4Y 5 ) / £,(, -). The weights for the
Co, - 07" i + r", y + , ,i+ (2) mid year are used for both the numerator and denominator.

Note that the weight depends only on known values (route.
where c,, 5 = ln(c,,ir+0.5). Quantities on the logarithmic year, and observer) and not on the variance that is estimated
scale are indicated by a double prime to distinguish them from poorly.
the corresponding quantities on the arithmetic scale. Because The route is the only randomly selected element in the
the logarithm of zero is not defined, an arbitrary positive sampling design. Counts are repeatedly made on the same
constant is added to cs_,v (0.5 is halfway between zero and the routes without selecting a new sample. Therefore variances
lowest observable count), should be calculated among routes rather than among years.

The adjusted predicted count in year y is Bootstrap confident.v intervals (Efron 1982) are estimated for
the trend estimates (6). -t+H' -,, and w,,- are estimated

Z" _Y = 0"" + i'"" y (3) for each route. A large number, B, of bootstrap samples each
with n, routes are selected with replacement from the n, routes

where 0,. is the mean of the estimated observer effects on the in each stratum and B bootstrap replicate estimates are made
route r (see Searle 1971 Ch. 5, Searle, et al. 1980). Ordinary for a state or management unit using the parameter estimates
linear regression provides the best linear unbiased estimate of for the selected routes. The state or management unit trend is

" ,y from (3). Suppose that 0" is an estimable linear estimated as i" and the 100 o percent confidence intervals is
combination of tie regression parameters on the logarithmic estimated ,s - ± 6 to&n.L, where I- and & are the mean and
scale. Under the assumption that (s,, is normally distributed standard deviation of the bootstrap samples, and where t =
(counts are lognormally distributed), Bradu and Nundlak tabulated t value, n = E n, is the total number of routes, and
(1970) have shown that the uniformly minimum variance L is the number of strata. The bootstrap trend estimate i is
unbiased estimate (UMVUE) of 0 = exp(6") is reported to reduce the bias of a ratio from order n-

1 to order
n-2 (Ffron 1982). B=200 bootstrap replications is
recommended to give an adequate approximation.

T( ,) = exp(6,) gf( - 2f v (4) In this paper we examine the accuracy and precision of the
trend estimator. In the first section, we report the results of
simulations which investigate the performance of the estimator

where v = v( "), f error degrees of freedom, and the under a variety of conditions. The second section investigates
function gr is defined by the performance of alternative estimators based on reduced

Mean Squared Error (MSE) estimators. These alternative

C f4 (" + 2p) estimators are investigated because of the inadmissibility of the
g((t) E f f2 .

2 ) p PP Bradu and Mundlak UNVUE (see, for example, Rukhin 1986).=o We thank C. Bunck, J. Iatfield, C. McCulloch, and N. Coon

for reviewing this manuscript.

In particular, , T(Ey).
the pupuatLou trend can now be ctimnated a" the r tio of I. SIMULATION

the total populations in years 5+1 and ' based on a sample of
n, out of the N, sampling units in stratum s. Assuming that A factorial simulation experiment was performed to examine
the predicted count 6ry is proportional to the local population the bias and precision of alternate estimators using the GAUSS
Pori = a k ZV,, where a is the area of the sampling unit and k programming language (Edlefsen and Jones 1986). The factors
is a proportionality constant, (levels) were dist rinut ions (3 lognornals, Poisson, negative
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binomial), trends (0.95, 1.00, 1.05), yearb (3, 5, 10), routes (10, freedom to obtain a stable variance estimate for tile Bradu and
100), observers in model (yes, no), trend definitions Mundlak (1970) backtransformation. Otherwise, the biases
[P(9+1sIP9' P(q+o. 5)/p(q-o. 5)1l and bias adjustment (no seem to be acceptably small. The same recommendations apply
adjuctment, mean of bootstrap replicates, median of bootstrap to the Poisson distribution with the addition that 3 years may
replicates). The estimators were developed using the lognormal result in unacceptable biases. Ten year trends and 5 year
model, but this distribution gives continuous counts without trends without observer effects have acceptable biases. The
any zeros. Poisson and negative binomial counts test the trend negative binomial distribution represents an extreme situation
estimation with more realistic discrete data with zero counts, with a mean count of 0.3 birds per route. Biases for that
The trends represent a stable, an increasing and a decreasing distribution are unacceptable. Adding 0.5 to data sets with
population of birds. Trends are estimated over several periods numerous zeros biases the trends towards 1.0.
of time, ranging from 2 to 25 years. Two year trends are not The standard errors of the trend estimates are given in Table
included because a variance for the back transformation cannot 3. Increasing thre variance of the counts of course increasedl thre
be estimated. Varying the number of routes checks to see if standard error of the estimate. Increasing thle number of years
bias is reduced with increased sample size. Observer effects or routes reduced the standard errors of the estimrates as did not
may be very important, but including observers in the model fitting observer effect which irrcrea- *d thle effective number of
may result in overparameterization. The trend r is defined as years.
the population it1 year ('+ I) (divided by the popurlationi in vear

[p(. 9 V1 ,.P-1 . Alternatvelv it coUld L lt:51, usia Ls ill' I. RlEDUCED) MhE ES iIMA 'hjN OFc
population in year ( +0.5) divided by the population in year
U~-0-5) [P( 9+0 E)/P(9 -05)]. 'rhe alternate definition is Considerable attention has focused on the inadmrissibility of
centered on the periodl of interest but introdluces another Bra(Iu and Mundlak's (1970) estimator ('leeketis arid] loerts
parameter int-o the denominator of the ratio ( ~.and 1972. Evans and Shiahan 19741, Rukhiir 1986). Inadmissibility
c ,(P-0.5) = . 0.5 *~.The effectiveness of thle bootstrap results fromntre psilty htexv)g(.swic

bias adjustment is evaluated. The mean of the bootstrap estimiates a iroinegat ise quantity, calln 3 egatise. It is
replicates reduces the lbias fromt order n' to order :1-2. if tile therefore possible to const ruct estimators which, through Ibiased,
bootstrap empirical (list ribiution function forniecl by thre have smaller meani squared errors (NISF) than Bradri arid
replicates is asymrretrical, tire median may Ire a bcetter Mnirirlak's UNIVUE.
estimator. 'leekerrs arid Koerts (1972) (demonist rated t hat for any given

For the lognrormral sirnilat ions, log corunts were sampled frorin ti there exist negative valuies of t for which gni(t) is rregative.
a normal d istribiution w'ith It rear C of 3.0 anri st andmardl As an illurst ration of thIis, cornsirder thre case ni =lI. whIichr arises
deviations s" of 0.1, 0.5, aid 1 .0. Mornrinrg dlove calI-roilrit~s inr the problem niirder cnrsiderat ion w'herr trends are beinrg
have a mean of about 20 buirds per route (lin(20) z3) alltI thre est irmated for a three year period. It is easily verified by
log transformed residuials have a standard deviat ion uof ahoiut corsiderat inn o' tle 'i'cs ;,r sec irs for thIe concre. t rat fir t< 0,
0.5. Poisson counuts withI a loran of 2 birdls tier routte arid g 1 (t) =Cos(?) Thu is
negative binomial runits awithI a r ican of 0.3 hi rds tier ru
and shape paranreter k=0.5 were also utsed(. We have fouirnd
that Amrerican woodcock couints iii low derisity are-as are p(extu(y).gj(..5s 2 ) < 0 p) Coes (s 4') < o)
approximianely dijst ribuiit ed accordintg to t hat riegat ive lit iotii ial
d ist ribu toin arid replresenit air ext retire sintia tori. A constanit
(01.5) was added to thre Pois.son antI negative binomiial counts si) - l(( I~) !1 < < (.4j+3) soni (01,,
that, zero coilnt s coulr 6- hlorg t rarnsformred (zero countis cannotit 2jlsnc (,12 . r

occur with lognrmal counts).
Thew specified] irrear cirtrit C correspiondis to ft-, inen sear Y.

Years were cordedh so thrat y =0I. 'The mrearns fir cuther years y SO t hat , sire S2 /a 2 has a cli-S(tiare (list rillii inun wsi th Iioe
were rl where r is tire t rerir (0.95, I t0l, oir 1.015). Each ye'ar dereolreorlnIcirria erirrhrt ianerted isthere was a 0.2 probrability that thre obiserver chuarnged onl thle 't l'we furld thrat thre probability of a rnn'gnrt S estioaei
ronte, thloiugh all shirrrlatedr oilservr'r effects were irderntical.
These effects were iticliner tot asess the, corrsrqrnr-ree of I .27

iii practice. lIn tIre- analysis, bias adjustmrient (uine, rmreanr, I2'
miediarn) are repteate'd rriasires becaurse thley resuilt frir thle
satre sirirrilat,'i data. With 10 rouites. 2,0010 re'plications we~re
rim for each case, hut withI 1001 mutir's, 5001 retplicationis per cawsr Somei vaits of thIis are given in tii', followiing tabile. For stiall
were itself. saties oif T thre problabrility of a tiegat se est imnate' is not too

Tlhe restilts of an analysis nif variance of tflit, factorrial targe', liut as r irncreaises. thre timolalrilir v atctiroacnis 1/2.
sitirratiori eXpemrietl~trl Mrany signrificnt ittractionis. Only
the, ias adjustmttent andI est irrat r effects are uinnder tItl, rutrut
of tire investigatoir. Tlhe )l'Y+U /P q I estimratior was iinifrmirily rnP( rug P ')reg1
less hissed thani tre 'X+O,5)/I (9-0 5)] e-stirriatr antd will Ire W1. 50 0tIIttt .51.20112
adopted. lot Ii bias arljistm titits hll simall tleets; tirit icr wvas 0.75 0I.01 2.001 0.26)5S
consistently sirlucrrior. Merani biase's acre 0.0031ti with Iitic 1.001 0.026)3 2. 2r 0.320 1
mrediati adIjisttietit , 0t.005h'16 with th Ie icnljris rriu~'it , andril 125 01.015 1 12.50 0.3666l'

0.00586 withiotit adljustmtett . eraiise thercse dliffemrnces wer' 1.5(1 0. 13S6 2. 75 0. 1039
smnall arid itcotrsist,'rr t ile commotini practice cif risiing fit le rcarr
adjulst ftieti t a-ill Ihe adopcttedl. lecaisr' of tli, ticicittintl cf titgat is' estitiates of t rend for

hiecaurse of tire sivriificAlcuifc~cii - 1. ............ , ;. ! ,!, ~ . . .. I, r !. ,rrrriir'i ne ,1, a t'.'
ar...yzedi separately, ('raclcs I rand 2). lticLses focr thIe lrcgrriiral t'st irrat ir's bcias mighrt Ihe alt I iblciae tic large i .ariacilit si t, heidistirtt ki withl s" =11.l were niegligibcle. Witlli s' =0.5 %fith 1.0, de'tnotmitnatr. we' conisidecred'cl untrnat is e est imratorswic
fitting observer effc'cts with :1 icr 5 'years is nutf arlskacle itili',ec reiducedi NISK ,'st iuuitrrs fi tplace ocf thle UI' VUE'l.
becauise of tire large luitsr's. 'There tray lhe itc fe'w rlcgrecrs rcf



Let X and Y be independent random variables, X- M(Pw
2 ). *With Poisson (t=2 birds) counts, it is not advisable to fit

We consider estimators of the form trends with less than 5 annual observations.

*Negative binomial (Z=0.3 birds, k=0.5) counts represent an
T(X,Y) = Y eX (8) extreme situation where trend estimates are not advised.

*Otherwise, the bias of estimated trends seems to be acceptably
for the parameter 0 = e . Evans and Shaban (1976) express small in the situations considered.
the MSE of estimators of this form by *Adding a constant to the Poisson and negative binomial

counts biased the trend estimates towards one but is
necessary because the logarithm of zero is not defined.

MSE( T(XY) E( Y eX - 0 )2 .The reduced MSE backtransformation is not recommended
because the bias does not decrease with an increase in

E ) E (E( X )2 sample size,

E( e2 X) (REFERENCES
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not decrease with increased itiniber of routes or years; in fact.
it appears to increase. While the standard deviation of the
second trend estimator was generally smaller (not included in
the table), the decrease in size could not offset the sizable bias. Table 1. Significance levels (l') for effects in separate analyses
For these reasons we do not recommend the reduced NISi. of v,,i,,me.% o f hia.cs in iiimlation ex'teriiuient for eatil (ouit
estimator. (list ribut ion. Values of 1'<0.05 and ['<0.01 are flagged by +

and *, respectively.
IL. CONCLUSIONS

;ffect l~nor 0.1 lnor 0.5 luor 1.0 I'oissou N.Iinou.
*The P 0 )/ 1' trend estirnator shuild be s1,ld intead of ITrend 0.0123 + 0.0825 0.02,10 + 0.9721 0.0001 *

the "(+ 51i/(-o /p estiiiator ecauis, it is less bia.ed, Yea rs 0.0702 0.851 3 0.2371 0.0007. 0.0001 *
al though it has the disadvantage if iot in tg cetteredl iIoutes 0.6i291 0.7192 0..1201 0.3691 0.1558
the interval . Obs. 0.1591 (0.2708 0.11172 4- 0.1:129 0.0003 *

*The effect of bootstrap bias atdjustientt wiL siuall and not TI x Y 0.0433 + 0.0356 + 0.0218 + 11.1482 0.0103 +
consistent. T x I 0.4001 (1.9588 0.9731 t 95r? 0.9600

*The bias increased with an increase in fhu- variance of a T X 0 f.0836 0.0257 + 0.0341 + 0.0031 * 0.0131 +
., - Y x It 0.7876 0.8926 0.6181 0.6206 0.9005

*With lognormal [e"=3 (r z21 birds), s">0.51 and l'oisson Y x 0 0.4985 0.9695 0.2257 0.2520 0.0252 +
(e=2 birds) counts, fitting observer effects with less than 5 1t x 0 0.6291 0.6573 0.5101 0.7214 0.3791
annual obserVations is not recominded icause of the
bias. If observer effects are believed to be important,
trends should not be estiiated.



Table 2. Mean biases of trend estimates from simulation Table 3. Standard Errors of trend estimates from simulation
experiment. Effects of the number of routes are not included in experiment.
this table because they were not significant (Table 1).

Lognormal Lognormal
log mean=3.0 (-20 birds), log standard deviation = 0.1 log mean=3.0 (20 birds), log standard deviation = 0.1

years(observer) years(observer)

trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n) trend 3(y) 3(n) 5(),) 5(n) 10(y) 10(n)

0.95 -0.0010 -0.0005 0.0000 0.0000 0.0000 0.0000 0.95 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000
1.00 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.05 -0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 1.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lognormal Logi;Grnial
log mean=3.0 (20 birds), log standard deviation = 0.5 log mean=3.0 (20 birds), log standard deviation = 0.5

years(observer) years(observer)

trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n) trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n)

0.95 -0.0120 0.0015 0.0085 0.0010 0.0040 0.0000 0.95 0.0020 0.0015 0.0015 0.0000 0.0000 0.000P
1.00 0.0345 0.0000 0.0080 -0.0010 0.0010 0.0000 1.00 0.0005 0.0030 0.0010 0.0000 0.0000 0.0000
1.05 -0.0060 0.0020 0.0000 0.0025 0.0020 0.0000 1.105 0.0000 0.0010 0.0020 0.0015 0.0000 0.0000

Lognormal Lognormal
log mean=3.0 (20 birds), log standard deviation = 1.0 log mean=3.0 (20 birds), log standard deviation 1.0

years(observer) years(observer)

trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n) trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n)

0.95 -0.0010 0.0060 0.0365 -0.0015 0.0115 0.0005 0.95 0.0130 0.0020 0.0015 0.0005 0.0015 0.0005
1.00 0.1920 (1.0095 0.0440 0.0015 0.0020 -0.0005 1.00 0.0460 0.0015 0.0401 0.0015 0.0010 0.0005
1.05 0.0065 0.0025 0.0030 0.0005 0.0105 0.0005 1.05 0.0085 0.000)5 0.0080 0.0015 0.0005 0.0005

Poisson Poisson
mean=2.0 (birds) mean=2.0 (birds)

years(observer) years(observer)

trend 3(y) 3(n) 5(y) 5(n) 1((y) 10(n) trend 3(y) 3(n) 5(Y) 5(n) 10(y) 10(n)

0.95 -0.0380 -0.0090 -0.0225 0.0065 0.0030 0.0060 0.95 0.0030 0.0010 0.0005 0.11005 0.0010 0.0000
1 fn -0.0270 -0.0150 -0.0050 -0.0025 -0.0025 -0.0005 1.00 0.0000 0.0020 0.0010 0.0005 0.0005 0.0005
1.05 0.010 , '0290 -0.0115 -0.0080 -0.0060 -0.0060 1.05 0.00,15 0.0030 0.0005 0.00:0 .,0000 0.0000

Negative Binomial Negative linomial

mean=0.3 (birds) mean=0.3 (birds)

years(o ,---" r) y,, .(~ ,C.)

trend 3(y) 3(n) 5(y) 5(n) 10(y) 10(n) trend 3(y) 3(11) 5(y) 5(n) 10(y) 10(n)

0.95 0.0680 0.0570 0.0440 0.0065 0.0445 0.0370 0.95 0.0040 0.0010 0.0010 0.0005 0.0005 0.0000
1.00 0.0740 0.0285 0.0305 0.0030 -0.0020 0.0005 1.00 0.0020 0.0025 0.0085 0.0000 0.0010 0.0015
1.05 -0.0005 -0.0110 -0.0375 -0.0330 -0.0305 -0.0375 1.05 0.0065 0.0010 0.0005 0.0010 0.0005 0.0005

758



Table 4. Bias of trend estimators using UMVUE and reduced MSE estimators of el.

UMVUE REDUCED MSIE
Years Routes S.D. Bias S(Bia Bias SE(Bis)

3 3 0.75 0.103 0.029 -0.084 0.029
1.25 0.096 0.065 -0.108 0.056
1.75 0.373 0.126 0.215 0.104

5 0.75 0.032 0.018 -0.121 0.119
1.25 0.231 0.057 0.011 0.051
1.75 0.329 0.141 0.344 0.138

7 0.75 0.083 0.017 -0.060 0.017
1.25 0.239 0.050 0.059 0.048
1.75 0.G29 0.215 0.508 0.145

5 3 0.75 0.006 0.010 -0.050 0.010
1.25 0.022 0.021 -0.092 0.020
1.75 0.020 0.029 -0.168 0.029

5 0.75 0.012 0.008 -0.042 0.008

1.25 -0.006 0.016 -0.111 0.015
1.75 0.060 0.028 -0.098 0.030

7 0.75 0.002 0.007 -0.049 0.007
1.25 0.038 0.011 -0.080 0.013
1.75 0.010 0.021 -0.138 0.021

7 3 0.75 -0.003 0.006 -0.023 0.006
1.25 0.004 O.0 1 -0.046 0.011
1.75 0.003 0.015 -0.087 0.014

5 0.75 -0.003 0.005 -0.024 0.005
1.25 0.009 0.008 -0.040 0.008
1.75 0.028 0.013 -0.062 0.013
0.75 -0.005 0.004 -0.026 0.004
1.25 0.015 0.007 -0.035 0.007
1.75 0.019 0.011 -0.069 0.011
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Th'le Eli minat ion of Quattitizat ion Bias using DithIier

Douglas M. Dreher and Martin .1. Garbo, Hughes Aircraft Comnpaxiv

1. Ititroluction x

This paper presents a method for recovering the (7Q ) f JQ( 1)l! (r)- cIt 1Q'(:) (5a)
decimtal precision of q non -oliservable variable that

has Leen quantized. The tvchniqt'e inivolves adding at .5

rand(on va riat C (dit her) from a untiform (list ril)ut ion tolr[~)Ji(b
he variable prior to qulantizat ion. It then shows the f.~ -

conidit ions uinder which the expect atiotn of the dithered

qutantizat ion function equals the value of the variable
in quest ion. Ani expression for thc variance' of the P ( -1 z) (5c)
dithered quantization function is also derived. The

results are generalized to the iuiult iple- quantizat ion
case. Examiples, are ptresent ed which show the The simpldified cxpressions for II,(.) and 7Q z)

a ppldic ation of t Iiis t echunique toi redutc e the tmagtnit udle rzsu It from t he Miiet hod of quan ti~zat ion. In part iculIa r,
o ipsorrcuedb onof (2) getierates equal -size steps s'nirnietric about the

origin as shown ill Fig. 1.

11. Methodiol oigy
Supypose that it is desired to e'stimlate the actutal Q(Z)

valule of a varia'ble. F. wheti it canl be oblservedl only 10 0

after beinig quantized. Specifica lly, if q is the
quatizlat ion initerval. or distance between successive

quantmu in levels. t hen F miay be rep resented as0.

F =nq-*z()________ _______

where ii is ain integer ati( I z<q. If the quantizat ion 1L5 -1.0 -0.5 0.0 005 1.0 1.5z

interval is 1. ilheti z is the fractional part of F. Thus,

he problem canl be redtuced with nito loss of generality -0.5-

to that oif ('st'itlating z given its i1 tialitized value. Q(zJ
4ssiiznc that the( lion -idservaile -ariable -1.0

quiianlized as follows:

Q (-) 1 NTj- s 0.5i (2) Figure 1. Synmmietrtic equal step quanit ization.

where Q(s i, the qtiantized value oif .s- atid VNTY

largest integer <, x. Fig. I illustrates this iltiamtizatilotl i. conceivable that ai variable miighit titidergo
funtctioni. mltile qlatiiations prior tot its utilization. In Such

Ftirthivriiire. define a dithier dleisitv function f Ir cases thle (tic t ion a rises as to thle extent to whitchi

to he a unifortin dvelsi\ fitictiotn such that dither should be appilied. For examiple. a variable
couild lbe quattized to quarter -uniiit l"r'c ioin alit1 then(1

1. tt0.5 <, r < s0. 5 be routndedl via (2) to mnit precision1. This Iroce,s

f (-) 0. lchevI< <t1. (3) results, iii the qutaliti/atioii diagramt oif Fig. 2. It shouldI
0. ilt'wheri'be nloted that this diagrami i- equivalent to that of Fig.

W\hezii rauimi variable r front this density' is I shifted toi the left by 0.125- Thi, shift, o r bias, is

addedl iio pro l""o qltization it then follows that

Ill expectatioon(if Q4.,i(s(. nia lie expre!sed as.

Q(Z)
1.0

pf ( ( u .) I(4a) OS5

f Q (z) ds (b) -1!5 - 1.0 -05 0.0 0'5 1.0 1.S

-0.5-
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caused by thle upward rounding of values inidway OCQ(z/q)
between (juantization intervals: in this case, the(
rounding of 0.125 to 0.25, etc. Applying (3) and (4) to
this quant izat ion function results inl

IjQ(z) = z~-0.125. (6) 0.5-

The 'vn- if (6) is elimni ated by redefining thle dlitther
dlensity funiction a-s

f -) 0.eswhr -1.0 -0.5 0.0 0.5 1.0 Z/q
0. ('15'Wh~rCFigure 3. Quant ization error stand~ardI deviation.

Thtis bias call also be eliminated by applying a dlithler
with tlensitY funct ion

A (lithler with this dlensity function is referred to as
4. z-0-125 <, x < :4-0.125 consolidated dither. With the bias reixioved we now

f (T) 0. elewer - < 1 have anl uniiiased (estinmat or with variance given by
0. esewere(5c) \Nitll q =q,,.

prior to quarter- unit qulant iZat ion andt then applying Depending oit the miet hod of rouil-Iig used,. thle
a dlithler withI dentsitIy fu nc tion altpl icat ion of (litther canl in troducie different ia ses

whitei negative niumibers or numbeitrs close to zero are

f (-) 1. -0.5 <_ < z +01.5 - <<involved. A dlisculssioni of various rounding met hods.
0. elsewhere inIl1tced l 1iases. anit tmetdhod s for avoid ing these

prior tox unit qtllalitat jolt Either iiethodl results it albae sicue ilalapidx

ilt iasdl est imiat ion of s . III. Application
An unb i iiased est iiittor of , will have an Suppilose we hiave two c omio ers A an td B. where

as~ocia~CI tli~crvtv eIrottahtilitv density ftunctioit. For A i generating a series of ntumbters whicht are thIen
-I< :<0 thte discrete valtios will Itt I and 0. For senlt to B. Tile ntumxbers ill the series are floating -

0<.: < I tle valto s will he 0) and 1. Ili either case thte point which. for simplicity. are assumed to be
varialice of thi, function dlepends onl z a., given ill (5c). restricted to the( iinterval 10.11 witht 6 significant digits
Fig. 3 plots Ili(e st and(Iard deviaion o~ i~ftlie deinsity otf' precision. Also, for siimptlic ity. it i.s assuimed t hat
funictiont for q = 1. This plot, which coinsists of htalf- dturiiig the litte oif interest each of the niibers is
circ les svIllnet ne abotut the error axis. shtows thle error etjtalI to a contilialit. This is no~t a requimremlentt for thIe
incereaising froim zero at each qutxiln level tt 0.5 imethodtt tot work. bxitl miakes it easier to grasp IlIt
1i;t Ifwa ty bto l t'tit lti 111 level.. conctepts invo'tlvedl.

The apptilicatiton of dither miay' ltd geinerailizetd to Yi Dtue to the( limlitedl melittrv mid prxc(. -itg spteetd
sticce.-tve';uti/iat iotis withI qutliat it iievl of' comtpuiter B. it caliTixt tiandtle thei series oif numbetitrs

q,. -- . 1,,. If a (litler is aptplied blefore evttt ill it,. original floatinig -pottint formaltt. btut caii haindle
tjttiat izatittit ihenIt t( reitectivv dIithtier density Ounly illtegers.. Thterefore. tomttlctr A rotunits cacti
ftiictioiis atrc ntumber to ile( ntearest integer (0I or 1) hitfore seninlg

it to B. B3 acctmlltilltt the series otf iliiiinltr indtit

I I < ~~~ re~ports thte rxiniiu m .111 f'ttr each. ituiitr is adltltd.
I~~~ q: -; -. iiict tall of the imbilter' il the( seric atre' the saiandut

0t. elewlive 1. it cttlstlat errotr is ititrittttet Thtis pxrtoduces i1

fo r i ! 2. l i. \%tier(, <. <q This givtes atn whtich is accimiiixlt' hy~ 1 anid re'uhi,. ill ;Iti error Ii

imtoaseti v timiatttr itQ (.:) with -itritalice given ttv N (-"t) thet 511111 wtich increaises With tctt ilter adilti.

ta'ttrx- the first tltiatiizatioii if Iio' iintrotutetttlitt[s Cill tijgrtthed oir reptlatcetd, lien onuly iit'gtcr, (tillh ill
Itereiittet trxi tlditti~ittt~witIt t 'tile it tTfrotum A to B. Fttrimitttl. thetrte is at "ay to retiirtv

Itt rnlltxe. tio. Iis quni;tlihtx wit intttitherxfxii * 15 (5.wee :e.tl tre

frxilfie as / h euligIi-i the t i o il l axot i itx I 'l d 111 l il'v jcl( o

U q iq1 ~q,4 q, ;.Fig. .1 shotws thet ttctitt taind trute (no rttiittiiig)
texttititil1atex sumiis for ai cries otf ot'( litiidt-cx

I ~~~tiuiitt,. ctt-l tijud to 0.5 mid rutiteh ilt tt 1. Fig.
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so T-I

Figure 4. Accumulated suin ofoa series of IMX numibers. Figure 6. Accuiniuiit id error of t11c stun of Fig. 5.
each equal to 0.5.

'UT 1 T- ia

C-hd-
* Uh

Fiur 5.A c m ltds mo aeiso.0 u br.Fgue7 cu uae ii %t odte.du l

eac eqa o 05 pls a dte eeae rmdte, n osldtddt rapidt eiso

'a.-.-405.10..m es ec c n itig of05 rounde to,, th

ners utpeo 02.te o e to. the, nares

U .- ~ integer.

Figur ha.l Accmulated wihIwumrt lbt of a eiso 00nmes iurezai of a vuuaedabieiisdwthcn diaer, dulel~
peciequal teeor0. A i aou d humers genethed ferest dithr, /and iosodad aithe pIed tol a seis oft(

~~~~~~~~~~~~~~~~naetmultiple of 0.25.bfr edn hm t .w ihi)dteigtriiu rslsiu rond1Ied o thenearest

whichiig accmulte Fig. n a i s beo The muae error.lte Ah aineaotteetml.Temtoooyi
SUMwr l tl minprvv iit bias; tha' sen he n dithve r is illustatein it o p tr o m ncain ppiain

ddted. Thi paplr devplpe iii alipica -0.25 (i dit2er dihe

nbo re'l r oi ing tte nhearlemulipl by 0.2imi rpenedotirx iil n edc iae uiratcdb
aotherd y cm ilr. .hew m A 0.5 dh Cniuier aple iiiCtiaien Busthb te he n usiing deith to o
beati hond tiber with tw f~gractina dihi ofq in atducig ot ha, whrenli rondin' ao numrs tlale
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AN ALTERNATE METHODOLOGY FOR SUBJECT DATABASE PLANNING

Henry D. Crockett, Mark E. Eakin, and Craig W. Slinkman

ABSTRACT as processes carried out by different

functional areas in the organization. The

An important aspect of data administration functional areas of an organization refer to
is strategic data planning. Strategic data the major areas of activities carried out by
planning is the scheme which an enterprise the organization, such as finance,

uses to ensure that its information systems production, sales, distribution, and

function can support the managerial accounting. Each functional area can then
objectives of the enterprise. An important be divided into the processes which must be

component of strategic data planning is the carried out in order to meet the needs of
determination of the subject databases the organization. The functional areas and
needed. James Martin has suggested a simple processes should be those needed to maintain

ad hoc procedure for performing this the existence of the corporation. An
analysis. An alternative procedure is example would be the functional area of
suggested using SAS to perform a multi- finance which would need to carry out the
variate statistic technique called corres- processes: financial planning, budgeting,
pondence analysis. This technique has the capital acquisition, funds management, and
advantages that it has a strong theoretical banking. This Enterprise Model when
justification, yields a numeric measure of complete should represent a comprehensive

the strength of the subjective database model of the activities carried out by the
clustering, is well understood, and is organization. It should also be an under-
relatively simple to include in CASE standable dnd useful tool in understanding
software, the operation of the organization as a

whole, and it should remain true as long as
INTRODUCTION there is no dramatic fundamental change in

the organization's statement of purpose.
James Martin in his book, Strategic Data- Once the functional areas and processes of
Planning Methodologies, presents an an organization have been established then
organized method by which organizations can the data which is necessary to support them
design their data resources to meet their can be determined by contacting the
long term information needs. A corporation department or group which performs each
determines what processes it must carry out process. However, the identificotion of the
in order to thrive in business, then they functional areas and processes should be
determine what data might be needed in order totally independent of the current structure

to support these processes. The process of the organizational chart.
model that Martin develops, called an

Enterprise Model, is quite similar to IBM's Subject Databases
Stratepic Business Plan. However, IBM's
plan does not provide the detail and the James Martin has coined the term subject
organized method needed to make their plan database to represent the logical view of
fully useful. Martin uses his Enterprise all datp collected about entities in the
Model to determine the data requirements of corporate domain. Many information systems
the organization, and to divide these data have already incorporated this methodology
requirements into subject databases that informally by grouping all records that are

contain all of the information needed about needed presently for one entity into one
specific entities in the corporate database. The difference between the
environment. By this method he hopes to classical method that may contain the
eliminate duplicate information and effort correct information and the subject database
in programming and planning, method is that the classical view collects

all the data needed by the application that
Once the Enterprise Model and subject is presently under construction, while a
databases are determined they must then be subject database would be constructed to
separated into operational subsystems for include all information that will be needed
implementation on a piecemeal basis, in the foreseeable future. These subject
Martin's methodology for accomplishing this databases would be created by the

seems to be inadequate, and open to multiple interaction of the data requirements of the
interpretation and errors. This paper will corporation mapped onto the enterprise model
address these problems and present an of the corporation. In order to accomplish
alternate method for determining these this, data classes of information created by
operationalizable subsystems. examining entities in the organizations

environment would be cross referenced as to
Thp Enterprise Model which data classes are used as input and

output of processes in the Enterprise Model.

The enterprise model is a top down view of By systematically considering data needed by

all activities which need to be performed in the organization, instead of the conventional
order to have a functional organization, manner of merely collecting data for each
All organization activities can be described application as needed, an overview of the
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data needs of the organization as a whole These groupings of 'C's into implementable
can be obtained. Such an overview could be subsystems is done by inspection. The
very profitable for the cotporation in ter&. selection of clustering is judgmental,
of programming effort and timeliness. This however, Martin suggests an affinity
would mean that whenever a new applization is analysis as a follow up step. However, this
created the information necessary should affinity analysis is very rough and does not
have already been included in the database, provide hard quidelines of delineation of
therefore the applications programmer should borderline cases into seperate groupings.
not need to create his own data in order to Even given that the groupings are more or
create a new application. his would less correct, other problems arise from this
greatly decrease the time and effort method. Some of the 'U's fall outside of
required for new applications. Subject the groupings and are therefore considered
databases also reduce the number of as exterior data flows from one subsystem to
databases necessary for operation. However, another. Therefore, even attempting to
most organizations do not deal with a large implement these subsystems in an orderly
number of entities. If files are designed manner may prove very difficult for the new
for specific application, then the number of subsystems will sometimes have to share data
files needed grows almost as fast as the with old systems. This will produce
number of applications. This proliferation incompatibilities and lead to patching of
leads to redundant data, update errors, and data flows and more data redundancy in the
poor design of application programs. s- tem, rather than less. It is precisely

tis sort of complication that will lead to
Grouping Subject Databases Into Easily problems in the attempt to organize the
Implementable Subsystems corporate data into a TYPE III environment.

In order to implement these subject Another major problem can be seen in the
databases, Martin suggests that the subject implementation scheme shown in Figure #2.
databases be grouped into implementable
subsystems. Then the subsystems which This matrix not only shows the problem of
satisfies the immediate needs of the 'U's exterior to the subsystems, there is
corporation should be implemented first, also a 'C' which is incompatible with
hopefully to produce a new application which Martin's arrangement of 'C's on the
is acknowledged to be much needed in the liagonal. The processes Budget Planning and
organization. The approach that James Sales Forecasting both help to create the
Martin uses to divide the databases into subject database Budget and the process are
implementable subsystems is similar to IBM's so far removed krom each other in the life
Business Systems Planning methodology. Both cycle that Budget cannot be arranged in any
approaches rely on manual methods of way that will bring both 'C's onto the
manipulation, and some areas are ill defined diagonal. Martin disregards this
and open to multiple answers depending on inconsistency by not even mentioning it
interpretation of the person organizing the specifically. The only reference made to the
sequence of subject databases, problem of two processes creating one

subject database and thereby potentially
First the processes of the organization are leading to this problem is a short statement
ordered by the life-cycle approach. Most to the fact that these types of databases
service and manufacturing organizationc tend might be candidates to be split up !nto two
to have a four stage life cycle: planning, databases thereby artificially alleviating
acquisition, stewardship, and disposal. The the problems.
databases are then entered as columns and
the intersections of processes and databases Canonical Correlation Analysis
are designated by a 'U' if the process uses
the data in that database, or by a 'C' if Canonical correlation uses linear compounds
the data in that database is created by that to describe the dependencies between two
process. In Martin's example this matrix sets of variables [Morrison, 1976]. Let X
appeared as Figure #1. denote the first set of variables in which

there are r variablei and N observations.
Martin then changes the order of the subject The second set, denoted by X_, contain r2
databases so that the'C's are ordered from variables and N observation. In this paper,
the top left hand corner to the bottom right N is the number of process by subject
hand corner. However, the order of the databases relations which contain either a
processes are not changed. This reordering 'U' or a 'C'. The first set of variables
is done manually and is subject to multiple consist of N observations or rI indicator
interpretations. There is no one correct variables:
way in which to order the columns',
different analyst may agree on the processes 1 if observation i is from row
and the subject data bases and disagree on
the way to order the columns. This disagree- xli j = 0 otherwise.
ment can have far reaching effects since
this ordering of the matrix is then grouped il,2. N j, .. r 1
into subsystems for implementation purposes.

and the second set consists of N
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observations of r, indicator variables: After finding d. and v , the values of X
and X are subs ituted into d and v

if observation is from row j respectively, to obtain the canoni c alscores.
These scores are then ranked from I to r for

X2i j = otherwise, the d. values and ranked from I to c for the

v values, tied scores received the same
i=l,2,..,N j=1,2,...,4 rank. Since there are only r1 unique values

of dl and r_ unique values of v I , these new

The first step in canonical correlation ranks estab ish t, i new row and column
combines XI and X2 into a single matrix with position of each observation. These new

N rows and rl+r columns and :alculates the positions rearrange the rows and columns of
sample variance-covariance matrix S where: the old matrix and establish a new matrix

showing the strongest possible

S = [sf J and diagonalization.

xij = [SX ki*xkj - (Sxki) (Sxkj)/NI/(N-I) The problem with canonical analysis is the
interpretab'lity of the subsystems that are

the variance-covariance matrix is then grouped together. This procedure will
partitioned into four submatrices: maximize correlations between sets, however,

it does not provide a facility for
S = S $12 interpreting the resulting dimensions of the

S I 2 Ssubsystems arranged by correlation. Anothercause for concern might be the sensitivity

where S and S re the variance- of the solution to the inclusion of further
. 11

covariance matr ces of X 1 and X, 'U's and 'C's into the matrix itself at some
respectively, and S contains £ne latter date. This has the possibility of
coveriances of the , variables with the X2  radically changing that solution to the
variables. These variance-covariance correlations. -herefore, the matrix should
matrices are used to calculate the be defined as completely as possible before
descriptive linear compounds. the use of this methodologv. Other

theoretical limitations include outliers,
Canonical correlation describes the multicollinearity and singularity. However,
dependencies of X 1 and X2 by di 

= 
ai'*X I , and The method by which the information matrix

is developed seem to negate the ill effects

v b '*' i=1,2,....m m=rin(r,c). of these problems.

such that dI and vI have the highest Application of Canonical Analysis
correlation arr,ng all pairs of linear

compounds, d2 and v,, have the highest Canonical analysis was performed upon
correlation among all pair of linear Martin's original matrix using the canonical
compounds orthogonal (or uncorrelated) with correlation procedures in SAS. Canonical
tie first two, etc. Each pair of linear row and column scores were obtained using
compounds are uncorrelated with all others. PROC CANCOR and the matrix was then arranged
In the situation being studied, only dl and in ascending, order along both dimensions.
v need to be considered since the purpose The result matrix appears in Figure #3.
i this study was to diagonalize the matrix

by rearranging the rows and columns. The This method appears to provide for a much
linear combinations that show the strongest more regular appearance than merely
correlation also give the best diagonal- rearranging the columns, and is much less
i7ation. open to multiple interpretation. If all

parties agree to the processes and subject
The values of a I and bi can be found by database assignments then this method
solving the two simultaneous equations: provides a statistically ecfensible method

of rearrangement that is reproducible. In

(S12S22S12' - IS 1 1 )a I  = 0 order to group the new arrangement into

operationalizable subsystems the canoniLal
(S 12S S 12 - IS,9 )b1  = 0 variates are clustered using a SAS procedure

12 1called PROC CLUSTER. This produceq
where I is the largest characteristic root differing numbers of cluster and _ ie R-square
or eigenvalue of the following equation: for each number of clusters. These can then

be plotted on two axis and the number of
s , S ' - IS = 0 or clusters determined by observing a bend in12' 212 1 the resulting curve or by deciding how many
S I - ' - IS, = 0 clusters are adequate and defensible. If12 212 22 several possible numbers of clusters meet

Statistical packages are available which all requirements then it way be possible to
will quickly calculate the vectors: a I .nd determine which set divil-, the matrix into
b =1,2. n). The results used In this the most easily implemented subsets of
paper used PROC CANCORR )f SAS, the syqtems. Although this does seem to be
Statistical Analysis System. rather -rbitrary, the procedure PROC CLUSTER

will au~omatically determine which
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observations fall in which sets given a CONCLUSION
chosen number of sets.

The major advantage of this system of

This procedure was performed on the above rearrangement of processes and subject
matrix and the optimal number of clusters databases and clustering of the resulting
was determined to be nine. This produced arrangement is that it can be fully
clusters which contain all of the 'U's and automated. Martin always stresses that any
'C's in the original matrix. Therefore system that is of this size and complexit 7

there is no date being shuffled from one should be automated as much as possible in
subsystem to another. This will reduce the order that more analysis be accomplished.
time and effort spent patching and This methodology could be used in such a way

implementing a new system. The subsystems as to be interactive. Thereby, when an
are self contained with the only Enterprise Model is completed the subsystems
implementation problem being that each sub- could be determined at the press of a
system will not contain all of the 'C's that button. This system of determining the sub-
create the data that is used in its 'U's. systems is also more easily defended, less
The clustering of subsystems produced by judgmental, and more open to reproduction.
PROC CLUSTER appears in Figure #4.
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SENSITIVITY ANALYSIS OF THE HERFINDAHL-HIRSCHMAN INDEX

James R. Knaub, Jr., Energy Information Administration

Introductions domly chosen from the existing frame.The
The Herfindahl-Hirachman Index (HHI), cvs obtained in this case seem an unfair

the sum of the squares of the relative judge of the performance of the HHI,how-
percent of sales made by each company in ever, since such a variety of possible
a market, has been used by the U.S. Gov- sets of hypothetical "loapanles" contain
ernment and industry to measure market perhaps too many scenarios which would
concentration. A small HHI value Indi- not be considered comparable to the origi-
cates low concentration. One paper nal, or observed scenario. "Restricted*
attributed to the U.S. Department of case simulations here are those where only
Justice (1982), suggests a value of i000 replications which resulted in a total
for this index to delineate between "mod- sales volume within five percent of the
erately concentrated" and "unconcentra- observed total volume were considered.
ted" markets. A value of 1000 could be The second approach is to let each
the result of having ten companies, all company's volume of business vary accord-
with equal sales. However, if two of ing to a given distribution around it's
these companies were to merge, an HHI observed volume to see what HHI values
value of 1200 would result. Thus a twen- resulted. This approach may be more mean-
ty percent change in the HHI may be con- ingful in that it is more intuitive. The
sidered to be substantial in this case, same total volume restriction was also
or it could be considered to be a random employed here.
change In a market, not indicative of a Although there is literature to con-
trend. If this index is calculated for sider to determine the number of replica-
different time periods for the same mar- tions needed, here it was very simple to
ket, tl-ire is a question as to when one experiment with numbers of replications
may say that a substantial change has differing by one or more orders of magni-
taken place. If a small change in a frame tude to see what practical changes occur
often results in a large change in the in the results of interest. (Note that
HHI, then a small change in the HHI may this is similar to what was done in Knaub
not mean very much. Conversely, if a (1985b), page 457, although a modifica-
large change in a frame often results in tion of the procedure found in Knaub
a small change in the HHI, then one could (1985a), such as that illustrated in
say a small change in the HH1 may be very Knaub (1986), could be used.)
important. (Note the similarity to Type I
and Type II errors in classical hypothe- Conclusions:
sis testing.) From the table on the next page, it

Two approaches to the analysis of the may be concluded that one should be wary
sensitivity of this index are given in of
this paper. Both analyses are measured in 1) forecasts of change based upon
terms of the coeffIcicnts of variation trend analyses supported only by a
(cv), of simulated resulting HHI values change in the HHI of five percent
when starting with a given market and al- or smaller, and
lowing certain changes to take plane in 2) forecasts of constancy based upon
random fasV ions, trend analyses where the HHI has

changed by fifteen percent or more.
Description of Approaches:

The purpose of this paper is to dis- Addendum:
cuss how one might determine whether a Suppose a national market were to be
change in the HH is substantial. Can we considered by State. Small changes in
describe random changes in a market which HHI may indicate a trend if enough of
are not indicative of a trend? In one ap- the State markets had HHI changes in the
proach, a bootstrap-like procedure was same direction. Confidence intervals or
used to determine the variation in HHI hypothesis testing, considering both
values which could result should there be types of error, could be used to deter-
a replacement of actual data by data ran- mine whether the trend was substantial.
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Tabular Examples of Simulation Results:

A B C D E F

Att. HHI 4021 2193 605 434 374 324
NC 52 81 106 272 392 87

B
U
MEAN HHI 3150 - 599 - 359 319
MED. HHI 2887 - 58? - 360 314
HHI QV 44 - 17 - 20 14

R
MEAN HHI 3968 - 602 - 3&B 320
MED. HHI 4018 - 597 - 367 318
HHI CV 11 - 13 - 18 14

IR COMPANY CVs=5
U
MEAN HHI 4021 2193 607 435 375 325
MED. HHI 4021 2195 607 435 375 324
HHI CV 3.3 4.6 1.7 2.4 2.7 1.9
M
MEAN HHI 4021 2193 607 435 375 325MED. HHI 4020 2194 607 435 375 324

HHI CV 3.2 4.5 1.7 2.4 2.7 1.9

IR COMPANY CVs=10
U
MEAN HHI 4020 2194 611 438 377 327
MED. HHI 4022 2199 6&i 438 377 326
HHI CV 6.6 9.2 3.5 4.9 5.4 3.8

R
MEAN HHI 4027 2195 611 438 377 327
MED HHI 4019 2192 611 438 377 326
HHI CV 5.8 7.7 3.4 4.8 5.4 3.8

"A," *B," "C,* "D," AND "E" represent retail motor gasoline In five States
"F" represents residential distillate in one State
"-" indicates data not collected
"R" represents total volume restricted to + or - 5% of the observed total volume
"U" represents "unrestricted" volume
"B" denotes a "bootstrap-like" simulation
"IR Company CVsux" denotes the second simulation approach where individual replacement

of each company's sales volume occurs using a normal distribution with mean equal to
the observed volume, and CV=x

"Att. HHI" is the attained HHI
"NC" is the number of companies in the frame
"MEAN HHI" is the mean of the simulated HHIs
IMED. HHI" is the median of the simulated HHIs
"HHI CV" is the CV of the simulated HHIs

References: Conference on the Design of Experi-
Knaub, J. H., Jr. (1985a), "Nonpara- ments in Army Research, Development
metric Median Estimation (With Ap- and Testing (Vol.2), Research Triangle
plication to Number of Simulation Park, NC: U.S. Army Research Office,
Replications Needed)," in Proceedings pp. 455-478.
of the Thirtieth Conference on the ------ (1986), "Study of Supplementary
Design of Experiments in Army Research, Sampling of Food Stamp Quality Control
Development and Testing (Vol. 2), Data," Proceedings of the National
Research Triangle Park, NC: U.S. Army Association for Welfare Research and
Research Office. Statistics.

------ (1985b), "On the Lehmann Power U.S. Department of Justice (1982),
Analysis for the Wilcoxon Rank Sum "Merger Guidelines," Issued: June 14,
Test," in Proceedings of the Thirtieth 1982.
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Encoding and Processing of Chinese Language--A Statistical Structural Approach

Chaiho C. Wang*
U. S. Department of Justice and The George Washington University

Introduction

'log* stands for the logarithm of base 2,
The performance of the encoding and and the unit length is called bit per

transmission of language information may message, or bit per character (BPC). If
be measured by the following criteria: a code c of the set C represents more

than one, say t, messages from B, then c
1. Preserving culture identity, is said to be of multiplicity t.
2. Maximizing processing speed,
3. Maximizing transmission accuracy, As an example, the basic elements B of

and minimizing ambiguity, the English language may be taken as the
4. Minimizing human effort, set of 26 characters (plus a few special
5. Minimizing storage requirement. characters necessary to form a grammar),

while V may be a set of words, or a set
On the one hand, the Chinese language of fixed-length character strings. The

has had the time to grow deep cultural usage of these characters, such as in
roots unsurpassed by any other in frequency distributions, redundancy, and
existence. on the other hand, it had storage requirements, can be readily
been developed by, and served the studied (see [1, 6, 9, 11, 12, 14, 151).
relatively few educated scholars. For Hereafter, we let 'English* stand in
centuries, the practicality of teaching general for any alphabetized Western
it to the masses has not been a priority, language.
Today, when rapid data transmission has
become so important in life, the The human effort of encoding English
structure of the Chinese language text normally involves a one step
provides information processors a great phonetic process: whether the typist is
challenge. listening to a dictated message, or

reading from a document, the sound of aThis paper proposes mathematical word, say 'teacher*, is translated into
models in which a balanced 'approach among the correct spelling, t-e-a-c-h-e-r,
the five criteria is considered. Based which is then entered, letter by letter,
on the statistical structure of the on a keyboard.
Chinese language, this procedure
incorporates a user friendly input coding In a straight forward coding of
scheme with a low redundancy internal English langauge, assuming that all
coding method for compressed storage, characters occur with equal frequency,
Both the graphical and pinyin input E = log 26, which is about 5 bits per
options are considered, and special character. On the one hand, a standard
attention is paid to reduce human effort storage cell is either 6-bits or 8-bits
at the data entry stage. With the new in size for a standard main frame
technology of tomorrow in mind, the goal computer, which provides for use of both
of efficiently computerizing Chinese upper and lower case letters, and
language may be within reach, manipulation of information beyond

English text. on the other hand, the useBasic Encoding Methods of compressed storage algorithms (see [2,
= be a language where V 3, 6, 9, 11, 12]), which use numericalLet L = V,B> balaggewreVcoding, language elements coding, or

is a vocabulary, and B is the set of probabilistic coding, allows the

basic symbols (messages). The language reduction of E to below five bits. For

may be composed of elements of V, which r e t he o f i nim .m
are trins o basc smbol ofB. Lt C example, the Huffman [61 minimumare strings of basic symbols of B. Let C redundancy variable-length codes takebe a set of codes which may be used to advantage of the frequency distribution

represent elements of B, and D be a set of the occurrences of elements of B,
of internal codes which represent the reducing E to 4.2. An alternative
elements of C within a computer. The set method, which utilizes fixed-length codesD may be machine dependent, and need not while splitting B into groups (see [12]),
be of concern to the user. In a Shannon can achieve a similar result. Here the
[10] like theory, the average message following formula is used to compute
length (entropy) is defined by entropy:

m G
(1) E = Pi log Pi (2) E = Z Pi (log Pi + log G)

i i
where Pi is the probability of occurrence wher- pi is the proportion of usage for
of the ith message, and m is the number the ith gL,'p ( 2Pi = I). Here within
of elements in B. Since binary coding each of the G gro, -s a fixed length code
digits are customarily used, the symbol is used, and a log G-bit flag is used to

identify the groups.
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For modeling Chinese, as a first rules, and enters the numerical code on
attempt we consider a straight coding the keyboard. The method requires a
method, in which B is the set of all considerable amount of human effort--the
Chinese characters, and C contains enough coder must memorize the codes for the
codes to represent elements of B radicals and the encoding rules. In
one-to-one. Depending on the addition, large work space and storage
application, B can have several thousand space may be required. For example, with
to tens of thousands of elements, the three-corner method [5], three
Although a keyboard containing the entire two-digit fields are required; that is,
set B can be made available, the time 999,999 positions are required to
required to search the keys make data represent, say 10,000 characters.
entry prohibitively difficult. Moreover, unless the numerical code is

unique, an additional auxiliary code must
In order to locate a given character, be used to eliminate multiplicity.

the set B is structured into groups,
according to shapes of "radicals" (. )f If an one-to-one correspondence is
and the elements within a group are established between the set of codes C,
sorted according the number of strokes in and B, then the coding is unambiguous,
a radical or a character. This is the and decoding becomes possible. If
standard dictionary lookup method, which several elements of B share a common
was developed years ago without code, special measures must be taken to
automation in mind. Although a computer assure accuracy and decodibility of
method can be devised to imitate the messages. We shall call the former an
dictionary lookup, it is not practical. one-to-one method, the latter a
This model can be considered as a strict one-to-many method. Neither the
cultural approach, where the meanings and four-corner, nor the three corner method
shapes of the radicals and characters are is one-to-one. To make up for the
recognized. deficiency, an auxiliary code is needed

to represent all messages that belong to
The greater the size of B, the more the same code.

cumbersome the data entry process, but a
large entropy is not necessarily a As a third attempt, we rely on the
consequence. Comparing the storage pinyin method -- the phonic approach
requirements of a document written in common to the majority of Western
Chinese with its English translation languages. Here B is the Latin alphabet.
shows that, generally, less storage space This gives rise to a two step data entry
is needed for the Chinese version than process: the typist observes the
for its English translation. Assume that characters, say " ., translates it into
a six bit unit is used to encode an is phonetic representation, Ishi", then
English alphabet, allowing space for both enters it into the keyboard. Since "shi*
upper and lower case letters, and a 14 also represents many other words
bit unit is used to encode a Chinese (one-to-many), a secondary code is
character. Simple experiment indicates required to single out .
that for coding newspaper information,
the ratio of storage space for the As will be discussed in the next
Chinese text to its English translation section, the pinyin method has several
is two to three. For coding classical attractive features. Comparing pinyin
Chinese (wenyen j.c ), the ratio is one to usage of the alphabet with English there
four. (Source documents for the are several dissimilarities: (1) In
experiment are: 1. China Reconstructs English, the alphabet symbols are codes
Magazine, published both in Chinese and as well as language elements. What you
in English, in Beijing. 2. Yen, L. see is what you code. In pinyin, the
(1976), A reconstructed Lao-Tze with pinyin symbols are codes, not language
English translation, Cheng Wen Publishing elements. A coder must first translate a
Co., Taipei.) character into its pinyin representation,

then enter the code in the keyboard. (2)
To facilitate dictionary lookup, in a Non-standardization of pronunciation of

second attempt, numerical codes were characters give rise to inaccuracy
developed to represent the strokes, problems. (3) There may be many
radicals, and the shape of a character, characters with the same pronunciation,
This approach goes back several decades, therefore, making decoding difficult.
The four corner coding method is an good (4) Each character may have four or five
example. Several such methods have tones, which will contribute to
recently been developed on a computer inaccuracy and identification problems.
(see, for example, [4, 5]). In this
case, the set C contains "structural" Statistical structure
codes, representing the composition of
strokes in a character. In a straight coding of English by

singleton characters, E = log 26. After

During data entry, a typist observes a the letters are arranged according to
character, codes it according a set of their frequency of occurrence, in
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descending order, and the cumulative of the syllables account for eighty five
frequency distribution is tabulated, they percent of the usage. For these three
can be split into two or more groups, profiles, using formula (2), we find r
For example, among the 26 letters, the equal to 10.6, 10.4, and 10.8,
eight most commonly used letters account respectively.
for 60 percent of the usage. We have

E = .6(log 8 + 1) + .4(log 18 + 1) = 4.46
Number of Number of Number of Wordswhich is greater than the Huffman Occurrences Words with their Syllables

entropy, but less than log 26 = 4.7. Number of Syllables

1 2 3 4 56
For a single-character splitting of

Chinese characters, let m be the number 1 2046 315 1571 144 14
2 404 110 358 23 3of characters, and assume that the first 3 216 59 147 9 1

x most frequently used characters account 4 100 24 73 3

for p percent of the usage. Then a split 5 99 39 58 26 66 24 41 1
between the two groups of x characters 7 41 16 25
and the remaining m - x characters 8 25 10 14 1

9 30 13 15 1yields the following entropy 10 20 13 7

11 25 14 11
E = p(log x + I) + (I - p)(log(m - x) + 1) 12 22 15 7

13 10 6 4
14 14 7 7

Assuming that m is sufficiently larger 15 13 5 8
than x, the splitting would keep E 16 10 4 5

17 10 6 4unchanged if 18 6 2 418 6 z 4

19 5 4 1
p(log x + 1) + (1 - p)(log m + 1) = log m 20 5 5

21 4 3 1
22 2 2

It follows that 23 5 4 1
26 3 2 1
28 4 3 1

p = I/(log m - log x). 29 4 1 3
30 6 4 2

If m =8000, and x = 500, then p = 1/4. 32 6 4 2
33 2 1 1

This says that if 500 common characters 34 1 1
account for at least 25 percent of the 35 1 1
usage, then numerically a splitting will 36 1 1

37 1 1
decrease entropy. 38 1 1

41 4 4
432 2In an early Book by Zipf [15], 44 2 1 1

frequency distribution of the usage of 45 3 1 2

Chinese characters is tabulated (see 46 1 1472 2
Table 1). This table is produced based 50 2 2

on a sample of 20000 syllables of speech 52 1 1
in Beijing dialect, which are arranged 55 2 2

57 1 1according to their frequencies of 58 1 1
occurrence. Reading Table 1 from the 60 1 1
left, the first column gives the number 66 2 1 1

68 1 1of occurrences, the second column 72 i 1
presents the number of words assigned to 73 1 1
a given frequency of occurrence, and the 75 1 178 1 1
other columns indicate the number of 81 3 1
words in each frequency group having one 83 1 1
or more syllables. 101 2 2

102-905 12 12
Applying Huffman minimum-redundancy 13,2487 TYn

coding method to Table 1 data, E can be
computed as 9.654 bits per word. Since Table 1. Chinese of Beijing
there are 13,118 words among 20,000 (Adopted from G. Zipf: The Psyco-Biology of Language)

syllables, the Huffman entropy per
syllable would be lower than 9.654. in
Zipf's work, the relationship between a
syllable and a character was not clearly
defined. Therefore, the actual In today's standard classification
(character) entropy cannot be deduced. [8], there are two classes: class one of
From this table, however, we can 3,755 common characters, and class two of
determine that, approximately five 3,008 uncommon characters. If the 6,763
percent of the syllables account for characters are treated equally, the
fifty percent of the usage, ten percent entropy is 12.7. If, similar to Zipf's
of the syllables account for sixty findings, five percent, or 338 characters
percent of the usage, and forty percent account for 50 percent the usage, then
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E = (log 338 + log 6425)/2 + 1 = 11.5, Western languages will be applicable to

which represents more than a fifty pinyin. A closer look reveals two

percent storage reduction over the direct distinctions. First, among the 26
method. If the vocabulary is to be letters, 262 diagrams, 263 trigrams, .

expanded to cover uncommon Chinese only 407 pinyin units, from one to six

characters, in the range of, say, 30,000 letters were actually used! With a few
to 50,000 characters, the splitting exceptions, a pinyin unit is formed by
method will even be more useful. adjoining a leading code and a terminalcode (similar to the use of consonant and

Frequency tables such as Table I can vowels in English). Since there are 23

be created based on the domain of leading elements and 33 terminal

information to be processed. For elements, the maximum possible number of
example, a vocabulary in chemistry would pinyin units is 23x33 = 759.
be different from that for composingchildren's books. Clearly, storage Second, each pinyin unit may represent
compression can be made more effective if between one and 115 distinct characters.
the correct vocabulary is defined. If an auxiliary code is used to handle

the multiple representation we need

Next, we consider the structure of the 407xi15=46805 codes (E=15.5). In order
Chinese symbols, According to to reduce the code size, the 407 pinyinthe standard classification, there are units may be arranged according to the

167 radicals. Conveniently, all multiplicity of each unit, and a variable

characters can be divided into 167 groups size auxiliary code is used to

using the leading radical as an index. differentiate the elements within a

For the moment, let us call the leading group.

radical and the remaining parts of the
character the "head" and the 'body' of a A mathematical model
character, respectively. For the purpose Based on tne statistical properties of
of linguistic studies, radicals are being the Chinese language, we propose a model
"isolated" according to their meanings teCieelnugw rps oe
and historical background. The more for encoding, storage, and transmrission

accurate the classification, the larger of Chinese language data. This model
becomes the collection. For reducing includes (1) an internal 'minimal"
human effort in data processing, however, redundancy code that stores information
the set of codes for radicals should be efficiently. (Not necessarily an absolute
reduced. Because the Chinese vocabulary minimum, but rather a minimum with
has been carefully developed and refined respect to a particular application).
over the centuries, two disjoint radical (2) a user friendly input method which
groups can be merged with little risk of "minimizes' the human effort. The input
ambiguity. For example, the groups with method can be based on either the graphic
leading radicals "wen* (i_), and "fanwen" or the pinyin approach. Finally, (3) an
(k), have 12, and 32 characters, automated dictionary 'lookup' method
respectively; but there is no overlapping which links these two devices together.
among the bodies of the total 44
characters. That is, if we use the same The Internal Code.
leading code for wen and fanwen, a
one-to-one correspondence between the 44 First, a vocabulary of characters,
characters and their designated codes is such as the standard collection of the
preserved; and a computer will have no 6763 characters, is defined. Next, antrouble distinguishing between them. experiment is conducted to determine thefrequencies of occurrence of the

Suppose we throw in another group with characters. Based on the statistics, a
a leading radical similar in shape to user preferred data compression method,
wen, say the 'tongzhitou" (,&,), we add which facilitates the sorting, merging
another ten characters to the list. At and other data processing tasks, is
this point, we finally encounter one developed. Common phrases can sometimes
overlap of a character body: (0). When be coded as single messages to further
this occurs, we can simply create a reduce storage. If the 6763 characters
secondary code to differentiate between were treated equally, the entropy is
seoand code 12.7. This may serve as a guide for

judging the performance of the new coding

If we can regroup and reduce the set scheme. As we have seen earlier, the
of codes for radicals to, say, a total of Zipf data, in which five percent, or 338
64, a pleasant keyboard containing these messages account for 50 percent the
radicals can be developed, and a data usage, yields an entropy of 11.5.
entry method based on graphical coding The Input Mode
becomes feasible.

The pinyin method adopts the 26 Latin The input can be either in a graphical
letters as the basic symbols. At a first coding mode, a pinyin mode, or a mixed
glance, the basic anal,1sis for other mode, such as the method adopted by the

774



Chinese National Bureau of Standards for The phonic method. The
classifying the Chinese characters (see popularity of the pinyin method depends
[8]). on the extent the pronunciations of

speaking Chinese is unified. For users
The Graphical Method. First, the who have acquired the pronunciation

number of radical groups must be reduced, skills, this method is very promising.
as described in the previous section. A Standard pinyin keyboards have been
collection of no more than 64 basic developed and improved (see [7, 13]). A
radicals would be suitable for quick typical pinyin code would have the form
recognition on a keyboard. Next, as the LC I 1
encoding begins, a given character isL J]LC TC MCj
decomposed into a number of basic
radicals, which are linked together by where LC and TC denote the leading and
following the natural sequence of drawing terminal pinyin codes, respectively. MC
the strokes of the character. The code is the auxiliary code required to
is a linked list of radical code (RC) and eliminate multiplicity.

direction code (DC).
In the worst case, a full pinyin code

----1 - F---- would have 23x34xl15 = 89,930 messages,
RClI DC1 RC2 DC2 ... RCn 0 which translates to 16.5 BPC. Since--- ]--- ]- - - L - - there are only some 407 active pinyin

The direction code can be simply units, the total number of messages is
defined as a 2-bit pointer, say, "l" for reduced to 403X115 = 46,345, or 15.5 BPC.
a top-down movement, "2" for a But the auxiliary code can be reduced
left-to-right movement, and "0' as a nil too. Since the degree of multiplicity
pointer indicating the end of the varies among pinyin units, the auxiliary
character code. code can be made into variable lpngth.

When the basic pinvin unit codes (LC-TC)
For example, the character (31) will are sorted according to the values of the

have the structure auxiliary code, the units with a large
Iauxiliary lookup table are separated from

the rest. Only when these units are
called for, need one allocate maximum

2% space for processing the auxiliary lookup
table.

0
and the code RC(3)-l-RC(7)-2-RC(4)-0 If a fixed length auxiliary code is

desired, the pinyin unit which has a
Here the code consists of three 6-bit large multiplicity can be divided into

radical codes and three 2-bit direction two or more records in the following
codes, for a total 24 bits. Although form:
some of the characters can have a quite
long code, the average length per F---F-1 F-- . -
character will be around 22 bits. After LC TC AC1 .... LCI TC IAC2....
the complete set of these variable length --- - - - - -......... .

codes are sorted, a look-up table for Since among the 407 pinyin units, only
decoding can be set up. 50 have a multiplicity 32 or higher, a

5-bit auxiliary code would be sufficient.
If fixed length codes are desired, a The unit with the greatest multiplicity

numerical code similar to the four (115), will be divided into four records.
corner, or three corner method can be
developed. A typical code, based on To take full advantage of the fact
regrouping of radicals, will look like that there are only 407 active pinyin

r. .F .codes, a voice activated procedure can be
FPC jRCI RC2 MC1  developed for data input. After the
.... L..... computer is programed to recognize these

where PC is a shape-code describing how 407 sound patterns, a coder, while input
the character is partitioned into a data set, may sound out the characters
radicals, RCl and RC2 are the two radical one by one. Each time, the computer
codes, and MC is an auxiliary would identify the pinyin unit, prompt
multiplicity correcting code pinpointing the coder with a screen full of
the given character within the radical characters belonging to the pinyin unit.
group. The ordinary three corner method To maximize efficiency, for each pinyin
requires a 20-bit (fixed length) code. (group) code, the corresponding auxiliary
With an auxiliary code, the total length set of characters is presorted according
would be raised to about 25 bits. The to their frequency of usages. After the
basic four corner code is only 14 to 15 coder points to the designated character,
bits, but its auxiliary code would be it is automatically coded.
quite large.
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AN ALGORITHM TO IDENTIFY CHANGES IN HORMONE PATTERNS

Morton B. Brown
I , Fred J. Karsch

2 and Benoit Malpaux
2

The University of Michigan, Ann Arbor, MI

amount of hormone. The number of samples is
ABSTRACT limited by the cost or by the amount of blood

Many hormones are secreted into the blood in a that can be removed without causing damage to the
palsatile manner: i.e., in high concentrations at subject (human or animal). Usually, continuous
'random' times. To study hormone production, sampling is not feasible. The number of samples
investigators assay its level in the blood at is determined by the length of time over which
regularly spaced intervals. The statistical samples are required: the greater the length of
problem is to differentiate between changes in time, the greater the spacing between samples.
the level of the hormone and observations influ- When studying hormone levels during an 8 hour
enced by a 'random' pulse ('noise'). Two algo- period, it may be possible to take 2 to 3 samples
rithms are described: One uses regression-like per hour; if the period is only 4 hours, 5 to 6
statistics computed after deleting the most samples per hour may be taken. In contrast, when
'extreme' observation combined with a moving studying an annual rhythm, only two to three
variable-length window to identify rises and samples per week may be possible.
declines in hormone level. The deletion of the Often the samples are assayed by radioimmuno-
most 'extreme' observation and the use of a assay methods to estimate the amount of hormone
variable-length window facilitates the exclusion (Niswender et al 1969). For the purposes of this
of 'noisy' values from the determination of the paper we will assume that the method of estima-
stage of the hormone. The second algorithm uses ting the hormone has been standardized. Since
a least-squares criterion to cluster adjacent high values usually have larger variability than
points after the elimination of 'noisy' values. A small values, a logarithmic transformation is
test statistic for termination of the clustering often applied before any analysis. This trans-
is described. formation will be performed before all analyses

described in this paper.
Keywords: cluster analysis, pattern analysis, The statistical problem is to identify when the

regression, biological rhythms level of hormone is elevated as compared to when

it is at baseline. If the pattern is expected to
consist of cycles of baseline and plateau; each

INTRODUCTION cycle can be characterized by four states: base-
line, a rise, a plateau and a decline, followed

It is believed that hormones regulate many again by baseline, etc. In order to compare thedifferent time-dependent processes such as effects of different interventions, it is desir-
fertility cycles (Bittman et al 1983a,b; Farner able to have an objective method to identify
and Follett, 1979; Robinson and Follett, 1982). these four states and the times at which changes
Some rhythms are annual, others are monthly, and between the states occur.
yet others are daily. Many investigators are
studying the manner by which this time-dependence When this pattern Is expected to repeat itself
is regulated and how the time-dependence can be at regular intervals, approaches to the estima-
disrupted (Nett and Niswender, 1982; Robinson and tion of the frequency of pulses are spectral
Karsch, 1984). For example, many annual rhythms analysis (Koopmans, 1974) or the fitting of ARIMA
are synchronized by the number of hours of day- models (Box and Jenkins, 1976). Two problems
light: maintaining animals in a light-controlled with these approaches are that: (1) because of
environment and modifying the length of the light limitations on the amount of blood drawn, often
period is used to study the effect of disrupting only one cycle is observed in any subject, and
this stimulus. Similarly, many daily rhythms are (2) many experiments are designed to disrupt the
affected by the time of day and are synchronized rhythm so that the series will not be stationary.
by the light/dark cycle. Any sample taken during, or shortly after, the

Although it is anticipated that hormone produc- release of a bolus (a concentrated pulse) will
tion is regulated in some manner (by responding show very high levels of hormone. These boluses
to a stimulus which may be another hormone), it are released at randomly spaced times, more fre-
is not unusual for some amount of the hormone to quently when production of the hormone is rapid
be present in the blood stream even when produc- and less frequently when the production of the
tion of the hormone is in a reduced state. It is hormone is at a nadir. However, if the blood
now recognized that some hormones are released in sample is taken near the time of a pulse (whether
a pulsatile manner from the gland in which they at the peak or nadir of the cycle), a high level
are produced. That is, a high concentration of of hormone will be found in the blood. At the
hormone (a pulse) is released into the blood over nadir of the cycle, it is less likely that the
a relatively short interval. The hormone is then values of several successive samples will all be
extracted from the blood as it passes through an elevated.
organ, such as the liver, or mixes rapidly with Therefore, a statistical model for the hormone
the blood during the next few passes through the would include the four phases (baseline, rise,
circulatory system. plateaiu, and decline). The error term would be

Experiments to understand the time pattern of composed of two parts, one conventional kdue to
hormone production involve repeated sampling of random biological and technical variation) and a
the blood; the samples are then assayed for the second probabilistic to reflect the possibility
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of sampling at or near the time of a bolus even Yt-g,Yt-g+l...,Yt-lYt'Yt+l....Yt+g-l,Yt+g"
when the overall level of hormone may be low. For each t and a set of g's (g1 < g < g2 ),

In this paper we will first describe an empiri- estimate the regression statistics:
cal algorithm to identify the four phases of the
cycle. The core of the algorithm is to identify the mean of y: y
the four phases by using regression statistics the variance of y: y
that are computed about each time point using the covariance of y and t: Syy
limited sets of continguous data values. A draw- yt
back to this algorithm is the difficulty in the variance of t: stt
specifying a statistical criterion or test for the slope of y on t: b - Syt/Stt
the presence of a cycle. the correlation of y and t: r -Syt/(Sy..Stt) h

Therefore, a second algorithm is also described y
which clusters contiguous points using a least The above statistics were then corrected to elim-

squares algorithm. A conservative t-like statis- inate the most discrepant observation in the

tic is proposed as a criterion to terminate the wiidow. (Initially, this criterion was used to

clustering process. eliminate the maximal value only but examination
Although more work is needed on the development of the signal indicated that at the time that

of these algorithms, the use of an algorithm pulsing slowed, single isolated low values may
(even one that is not optimal) provides results occur in the signal. Therefore, the criterion
that can be compared across interventions and is was modified to be symmetric.) This adjustment

preferable to the subjective evaluations of is applied to all windows in a uniform manner so

cycles and phases that are currently used, that statistics across windows are comparable.
There is no unique width of window that is

ALGORITHM 1: USING REGRESSION STATISTICS optimal. A single width is not desirable, since
it reduces the flexibility of the algorithm to

The model assumed for the data Is that there smooth across data values and fulfil a criterion

are four phases: for identifying a baseline or plateau. The use of
a variable length window (i.e., windows of length

baseline Y- c + e 7, 9 and Ii were used simultaneously) allows
rise yt - a + bt + et  b > 0 greater smoothing across data values and
plateau yt - c + et  therefore less very short cycles are identified.

decline yt - a - bt + et  b > 0 (Very short cycles are not believed to be of

where a, b and c are constants that differ be- physiological interest.)
We have chosen to use empirical critical valuestween phases and between cycles and b Is strictly to determine the phases, where the values are

positive. Each model holds only for a single estimated by percentiles of the empirical
phase which is represented by a restricted inter- distribution. For each of the aoove statistics,
val in time (t); amplitudes of the baselines and the median and the quartiles are estimates. Two
of the plateaus, and the slopes of the rises and exceptions should be noted. Since the baseline
declines will differ at different cycles (time in some hormones may be below the threshhold of
intervals). That is, no regularity of the signal the assay and therefore s yy may be zero for many
is assumed. evaluations, the quartile s for s are computed

The error et is composed of two parts: from nonthreshhold (minimum) valuey. For slope,
et - Et + h(t-t0 ) the upper and lover quartiles correspond to the

where Et is an error term with mean zero and medians of the positive and negative slopes
constant variance and h(t-to) is a function that respectively.
represents the height of the signal due to a The criteria for determination of possible
bolus released at time to but assayed at time t. phase at a time point are:
The function h(t-t O ) is positive, but may be zero
when the sample is taken sufficiently far (in baseline: (min r2 < Q25
time) from the last bolus so that the net effect OR min syy < median)
of the bolus is negligible (part of the baseline AND y < Q75
or plateau). Note that the effect of h on the
error term is asymmetric, rise: max r+2 > Q7

The first attempt at developing the algorithm + >

was to fit line segments to the data using a OR max slope+ > Q75
fixed window (i.e., using the same number of OR (syy > Q75
contiguous points each time) and centering the AND max slope+ > Imax slope f)
window at each time point in the data sequence.
Not surprisingly, single high values (caused by plateau: (min r2 < Q25
sampling near a bolus) produced estimates of OR min s < median)
slopes that were positive when approaching the yy
point and negative after the point. That is, AND y >
values caused by a bolus were highly influential 2
in determining the estimates of the coefficients decline: max r_ >
and therefore in determining the phase. Hence, OR max slope < Q25
the following approach was used. OR (syy > Q75

Let t represent the c nter of a window (set of AND max slope+ < Imax slopel
contiguous points) and g the number of data
points in the window to each side of t. That is, where min and max are the minimum and maximum,
the data points in the window are respectively, of the statistic over all the win-
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dows for which the statistic is computed. Q2 5 is time points which do not fulfill the requirements
the lower quartile and Q75 is the upper quartile of any of the phases are set equal to a
for all values of the statistic (as computed with neighboring phase.
the exceptions described above). The + or - sign
used as a subscript indicates that those statis- Discus-,ion of the Regression Approach
tics that are computed only when the slope is Several aspects of this algorithm need further
positive or negative, respectively; i.e., those explanation:
appropriate to identify a rise or a decline, res- When using a short window, a high correlation
pectively. AND and OR are the logical operators: may occur even when only one p~int differs from
both sides of an AND must be fulfilled for the all the other points; e.g., the correlation of
condition to be accepted, but only one (or both) time to a sequence of k values that are constant
side(s) of an OR needs to be fulfilled, except for one endpoint w\ich is unequal to the

Based on the above definitions of phases, many other values is (3/(k+l)) ; i.e., when k is 9,
time points can be assigned to more than one the correlation is 0.55. Therefore, high
phase. Therefore, the final phase for each time correlations can occur in the presence of low
point is chosen using the philosophy that the variation. By assigning all cases to the
method of allocation should favor a point being baseline or plateau when there is low variation,
set to a baseline or plateau when the set of high correlations by themselves do not cause
neighboring points have low variablility (or low these times to be classified into a Lise or
correlation with time). Only when there is decline.
sufficient variability within a contiguous set of We have already described the problem of high
time points should the phase be set to a rise or values near the time of release of a bolus.
decline (depending on the sign of the coeffi- Since it is not possible to predict when these
cient). This is implemented in the following will occur, the algorithm must be relatively
manner: (Lower case letters indicate that the insensitive to large spikes. The blood will
criteria ,or the phase are fulfilled and capital usually complete several full circulations
letters indicate that the phase has been assigned through the body between two successive samples;
to the rime point.) therefore, the high level of hormone released by

a bolus should primarily affect the value of a
Pass 1: single observation. (Under very rapid sampling it

IF (baselin AND NOT plateau) THEN BASELINE is possible that more thar one consecutive sample

IF (plateau AND NOT baseline) THEN PLATEAU will elevated by a single bolus.) The
IF (ONLY rise) THEN RISE elimination of the maximal value in each window

reduces the effect of a possible spike. We do notIF (ONLY decline) THEN DECLINE suggest testing for a spike prior to eliminating

Pass 2: a point since the distribution of the elevated
value is a continuum and the observed valueIn this and the next passes, contiguous point depends on the timing of the sample relative to

that are as yet unallocated to phases but have the actual release of the bolus.

the same set of [ ssible phases are t'eated as a Empirical values are used to determine the
single time point in terms of determining the Eprclvle r sdt eemn h
srecdinge time poi ing tes. oassignment of time points to phases. The evalu-
preceding and following phases. ations of the statistics reuse the same data many

IF (baseline OR plateau AND: times: both for different windows centered at the

continguous to point set to BASELINE) same time point and also for windows centered at
THEN BASELINE continguous or nearby time points. Therefore.

continguous to point bet to PLATEAU) the set of statistics generated in the first
conti to pU ephase of the algorithm are highly correlated.THEN PLATEAU

For this reason it would be difficult to develop
follows a point set to DECLINE) exact tests of significance. For example, for

THEN BASELINE each window we also computed the F-statistic that

follows a point set to RISE) tests whether the slope (or co? -elation) is zero.
THEN PLATEAU Since definite cycles exist in the data that we

precedes a point set to RISE) have analyzed, the F-statistics corresponding to
THEN BASELINE the quartiles are highly significant.

The criteria for rise and decline use quar-
precedes a point set to DECLINE) tiles. The crit. ia for baseline and plateau use

THEN PLTAU the median. This is again a definite bias in the

allocation scheme to set time points to a 'flat'
Pass 3: phase, rather than a 'changing' phase. Our exper-

All unallocated points are set to a phase that ience has shown that setting more restrictive
is most c.nsistent with the phases of the criteria for the baseline and plateau c-:ises many
neighboring time points. short cycles to be identified within a plateau or

All as yet unallocated time points t ave a a baseline. These new cycles are very short and
permissible phase equal to a contigu,,.- point do not correspond to our understanding of the
which has already been assigned its phase are set underlying physiology of the rhythm under study.
to the phase of the neighboring point. The algorithm is designed to choose among the
Otherwise, if a permissible phase is consistent possible phases and to select that phase that
with a phase that should follow the phase of the enhances the cycling. Therefore, the clean
preceding point or to a phase that should precede appearance of the result is .ot a proof cf the
that of the following point (if valid), then that cycling. As indicated above, we assume that
phase is selected for this time point. Those other more standard methods have been used to
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test for changes in the height of the signal, the distance between the two outermost clusters
which corresponds to testing for the presence of (t3) is larger than a criterion (discussed below)
at least two different levels of activity. This and the mean value of the intermediate cluster is
algorithm is intended to identify the location of intermediate to the means of the two adjoining
the cycles, clusters. The rationale for these three excep-

tions are:

ALGORITHM 2: CLUSTERING NEIGHBORS 1) When two clusters have similar means but are
separated by a single point that has not been

Using the same model as above, it is possible amalgamated into either cluster, the single point
to view the time sequence of data points as may represent a noisy signal that should be eli-
divided into clusters of time points with similar minated from the clustering process. An excep-
values: a cluster with a low mean value is a tion to this argument is when the clusters are
baseline and one with a high mean is a plateLu. being initially formed; at which point random
Between these two clusters may be one or more variation is likely to create this type of pat-
clusters with intermediate values corresponding tern. Therefore, criterion (1) is applied only
to a rise of decline. if the combined cluster would have at least ten

The algorithm for clustering adjacent points observations and there are at least two obser-
consists of the following steps: vations in each of the original clusters.

2) Since the clustering algorithm is a stepwise

Step 1: procedure, it need not be optimal in its choice

Compute the minimum, maximum, range and of clusters. Therefore, each time two clusters
standard deviation (SD) of the sequence. are merged, it is desirable to check that the
Identify as an outlier any point that differs by cluster was formed from the optimal split into
one-half the range from the mean of its four two clusters (as if the clustering algorithm was
neighbors (two time points on either side) and is running in the reverse direction). When the
the minimum or maximum of these five points, combined cluster can be divided into two adjacent
Outliers are then eliminated from calculations in clusters at a different cutpoint for which the
the remainder of the algorithm, within cluster sum of squares is less than the

within cluster sum of squares of the original two

Step 2: clusters, the two clusters are realigned by
choosing a new boundary that corresponds tu the

Set each time point to be a cluster. Combine minimum within cluster sum of squares.
adjoining time points if they differ by less than 3) When two nonadjoining clusters (separated by
1% of the range. (This eliminates the need to a single cluster) differ greatly in their mear
combine similar observations by repetitive steps values (t3 > 1.414 * criterion described below),
in the algorithm described below.) the intermediate cluster may represent a rise or

Step 3: decline. When the mean of the intermediate

Compute the distances between adjoining cluster is approximately midway (40-60t) between
clusters and clusters separated by a single the means of the two neighboring clusters, then
intermediate cluster where the measure of the cluster is not included when computing the
distance is a t-like statistic defined by: min t2 criterion for stopping the clustering

,et algorithm. However, if the stopping criterion is

t - d / SD not fulfilled, then the cluster will be combined
with its neighbor if t2 for the cluster is less

whe-e 2 2 than min t2; i.e., these two clusters are identi-
d - nln 2 (x1 - / (01 + n2) fied as the two to be combined.

and xl,x 2 are the means of the two clusters and
nIn 2 are their sample sizes. Then t is distri- Step 5:
bute as a t-statlstlc when there are no clusters If the criterion for stopping (discussed below)

in the series and will be bounded above by the is fulfilled, then print out the current

distribution of a t-statistlc when there are clusters. Otherwise, return to step 3.

clusters (since the within cluster pooled
standard deviation must be less or equal to the Stopping criterion:

SD from the entire series). When the usual two-sample t-test is used to
Let t2  represent the measure of distance test for the equality of levels between clusters,

between two adjacent clusters and t3 that between the method of 'dentifylng clusters will over-
two clusters that are separated by a single identify the number of clusters because the
cluster. Min t and min t will represent the clusters are chosen to maximize the t-statistic
minimum values oi these statistics across all the (by combining at each step clusters that minimize
clusters, the t-like statistic). Therefore, a conservative

criterion for cluster identification is desired.
Step 4: The statistic t2 - d/SD, where SD is the

Combine the two adjoining clusters with min standard deviation of the original sequence, is
unless: (1) two clusters with similar mean values less than a t-statistic based on the within

are separated by a single point (t3 < min t2 ), or cluster variance. Therefore, tests based on this

(2) the cluster formed by combining the two statistic will reject the null hypothesis less

clusters with min t2 could be redfvided Into two than tests based on the within cluster variance.

clusters with a smaller within cluster sum of An approximate relationship between the two

squares, or (3) the two clusters are part of a statistics (based on only two clusters in the

sequence of three consecutive clusters such that entire sequence) Is:
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In each figure there are two sets of lines.
t2 2 The uppermost set of lines are the clusters (as

1 + t 11)/(n+n-1) il/2 identified by the clustering algorithm) plotted1 2 at the mean level of hormone for the cluster.
where t is the statistic proposed here and t is The raw data values (on a log scale) are scat-
the poofed two-sample t-statistic. Therefore, t2  tered about the cluster lines. In several sec-
is less than t whenever t is greater than 1. For tions there appear to be more than one cluster
small sample sizes the disparity may be large; (see arrows); the more detailed cluster structure
for large sample sizes the disparity will be (smaller cluster groups) were obtained using a
large only when t is also large (but then t2 will critical values for t2 of 1.96 and the longer
also be significant. lines were obtained using a critical value of

In our analyses critical values corresponding 2.576.
to 0.05, 0.01 and 0.001 were used. The inter- The lower schematic in each figure presents the
mediate value was sufficient to eliminate many results of the regression-like algorithm. Values
small clusters.Thell criterin fare graphed on four levels, the lowest is the

The criterion for d3 was set at 1.414 times baseline and highest is the plateau. A cycle
that for d2 in order to adjust for the number of would contain both a baseline and a plateau and a
comparisons (searching across three adjacent return to a baseline. As may be nuted, there are
clusters instead of two). many cases of a plateau followed by a rise or

To stop the clustering algorithm, either each decline followed by another plateau (and similar-
t must be greater than the criticsl value or the ly for baselines). This suggests a change in
ciuster must be contained within a set of three level of the plateau, but not a full cycle.
clusters for which t3 is greater than 1.414 times Although there are relatively good agreements
the critical value. The first and last cluster between the (extended) baselines and plateaus and
of the entire sequence do not have to fulfil the clusters, the patterns identified by the
these criteria in order for stepping to terminate regression algorithm appear to be noisier than
since the sequence may have began or ended during those identified by the clustering algorithm.
a rise or decline. However, the clustering algorithm may not identi-

EXAMPLES fy rises and declines. Also, since the cluster-
ing algorithm assumes homogeneous variance on the
transformed scale for the entire series, it is

In Figures 1 and 2 we present the logarithms of lessflikel to fy le whsenadir to
thevaue oflueiizng oron (H) n vai- less likely to identify cycles whose nadir to

the values of luteinizing hormone (LH) in ovari- peak amplitude is relatively small compared to
ectomized ewes that were sampled twice per week the overall SD.
for more than four years. The first ewe (Figure The experiment was designed to study whether
1) was kept outdoors and therefore subject to an the annual rhythm is disrupted by removing the
annual photoperiodic stimulus and the second ewe photoperiodic stimulus. Note the regularity of
(Figure 2) was kept in a controlled light envi- the clusters for the control animal (Figure 1)
ronment (eight hours light per day) to study the but the change in pattern of the cycles over
effect of the disruption of the photoperiodic years under constant light conditions (Figure 2).
stimulus.

. clusters

•. : ....

-- - -" --- " - - - phases

0 100 200 300 400 50C

Samphl Number

Figure 1. Luteininzlng hormone (UH) levels of an ovariectomized ewe (#1006) maintained
outdoors. The data points represent levels of Li in blood samples taken twice per
week starting on May 24, 1983 and ending on Jo- 22, 1988.

a) Data points (on log scale).
b) There is a lower threshhold to the sensitivity of the radioimmunoassay for LI.

Therefore, samples at the threshhold appear to f-r'- straight lines -imliar to
clusters.

c) Clusters are represented by straight lines at the average level of LH in the cluster.
Critical values of 1.96 or of 2.576 were used. Arrows indicate where the solutions
differ. The shorter lines are clusters formed by using 1.96. The average level of
the two smaller clusters when combined together is equal to the average level of the
combined cluster.

d) Phases due to the regression algorithm. The four levels (starting from the top)
correspond to the phases: plateau, decline, rise and baseline.
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Figure 2. Luteininzing hormone (LH) levels of an ovariectomized ewe (#2021) maintained in
a controlled light environment (eight hours of light per day). The data points
represent levels of LH in blood samples taken twice per week starting on March 18,
1983 and ending on Jan 22, 1988. See the legend of Figure 1 for explanation of
symbols.
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OPTIMIZATION IN THE DESIGN OF SEQUENTIAL CLINICAL TRIALS

Richard Simon, National Cancer Institute

1. Introduction
the sample size for different values of the response probability.

I use the word -optimization' in the title with some hesitation. I (Simon 1987) have published designs with 2 stages based on
'Optimum' clinical trials are those that address an important minimizing the expected sample size when P=Po The designs
medical question, obtain a reliable and timely answer and are were limited to two stages because that is often a practical
reported responsibly in the medical literature. I will use the term constraint. It m.ay be necessary to stop entering new patients onto
.optimization' here in a more limited and technical sense to refer a phase 11 trial at the end of a stage until one determines whether
to efficiency in the conduct of a clinical trial. I will describe several the conditions for continuation have been achieved. Because of the
applications of optimization to the design of simple sequential delay in evaluating response, this may require suspension of accrual
clinical trials, for weeks or months. Such suspension is an inconvenience to

physicians who are deciding how to treat patients and may not be
2. Phase II Clinical Trials tolerated more than once in the course of a study. I used w(po)=I

A phase II study of a cancer treatme,.t is an uncontrolled trial and w(p)=0 for all other values of p as a simple way of
for obtaining an initial estimate -f the degree of anti-tumor effect representing the importance of minimizing the number of patients
of the treatment. The proportion of patients whose tumors shrink given an ineffective drug. With this formulation it was not
by at least 50% is called the response rate and is the statistic of necessary to specify the prior distribution f. Obviou.ly, more
primary intcrnt. The purpose of a phase II trial is to determine general specifications are possible. For many phase II clinical
whether the drug has sufficient activity against a specific type of trials, there is no strong desire to terminate early if the treatment
tumor to warrant its further development, appears effective because there are secondary endpoints of interest.

The designs described here are based on testing a null If the treatment is inactive, however, the trial should terminate as
hypothesis Hop!<po that the true response probability is less than early as possible. Consequently, I set ui=ni+n 2 and optimized
some uninteresting level po- If the null hypothesis is true then we with regard to the parameters n1 ,n 2 ,l and 12.

require the probability should be less than a of aucepting the drug For specified values of Po, Pi, ,c and P optimal designs were
for further study in other clinical trials. We also require that if a determined by enumeration using exact binomial probabilities.
specified alternative hypothesis Hl:p2pi that the true response For each value of total sample size n=n1+n2 and each value of nI
probability is at least some desirable target level p, is true then in the range (l,n-1) the integer values of 11 and 12 were
the probability of rejecting the drug for further study should be determined which satisfied the two constraints and minimized the
less than 8. expected sample size when p=po. This was found by searching

It is rarely practical to utilize a sequential design that requires downward over the range t1 e(0 , Ifl; l* is the largest integer for
re-analysis of the data after treatment of each patient. Response which B(17 ; p,, n1) !- 6 where B denotes the cumulative
assesment may take weeks or months and so the most popular binomial distribution function. For each value of 1l we determined
approach to sequential analysis is the 'group-sequential approach whether there was a value of 12 such that the design (n,ni ,l 1 2)
in which interim analyses are performed after groups of patients satisfied both type 1 and type 2 error constraints. If not, then we
are treated and evaluated. Let ni denote the number of patients continued our downward search on 11. If the design satisfied the
treated in the i'th stage of a phase II trial and let Si denote 0-- constraints, then it was optimal for those values of n and ni.
total number of responses observed through the end of the ith Keeping n fixed, we searched over the range of ni to frind the
stage. A decision rule or sequential decision boundary may be optimal two-stage design for that maximum sample size n. The
specified by a set of pairs (li,ui) where we reject the treatment search over n ranged from a lower value of about
after the i'th stage if S,_ l, and we stop the trial and accept the - z 1 0 +Z- 12
treatment if Si>u. Otherwise, the trial proceeds to the i+1'st (1-p) I-+ o
stage. If we specify the maximum number of stages I and the error IPPo
limits a and 0 for the hypotheses based on po and pl then one may where F=(po+pl)/2 and the z values are percentiles of the
consider the optimization problem of finding the sample sizes (ni) standard normal distribution. We checked below this starting
and the sequential boundaies (li,u,) for i=l.I which satisfy the point to ensure that we had determined the smallest sample size n
error probability constraints and minimize for which there was a nontrivial (ni,n 2>0) two-stage design which

satisfied the error probability constraints. The enumeration
f E[N I p] w(p) df(p)- procedure searched upwards from this minimum value of n until it

N denotes the number of patients treated in the trial before was clear that the optimum had been determined. The minimum
termination. N is a random variable with maximum value expected sample size for fixed n is not a unimodal function of n
n1 +...+n. E(N I p] denotes the expected value of N when the because of discreteness of the underlying binomial distribution.
true response probability is p. The function to be minimized is the Nevertheless, eventually the local minima increased and a global
expected sample size averaged with regard to a prior distribution f minimum was identified. Calculations were carried out in APL on
for the unknown response probability p. The average is also a Microvax II computer. Table 1 shows some optimal designs for
weighted by a function w which specifies the relative importance of the case o=#=0,10. In Table 1 N,,,= n1 +n 2 , Eo(N) is the

expected sample size when the null hypothesis is true, and PETo is
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the 'probability of early termination* (after the first stage) when generally good performance under both the null and alternative
the null hypothesis is true. Designs for large values of Po are not hypotheses. Performance under the alternative hypothesis could
usually appropriate for the testing of new drugs but can be useful be improved by permitting rejection of the null hypothesis after
for pilot studies of combinations of drugs known to be active, the first stage. Thall et. al. (1988a) show how this can be

accomplished by superimposing an early rejection rule of the
3. Phase IT/ffU (-"nic-- Tr.*Ls C'1,uiw-Fleming (!97C, type.

In cancer therapeutics it is conventional to obtain 'promising' The optimization problem was solved on a DEC-10 computer

data for a new treatment in an uncontrolled phase II study before using MLAB, an interactive mathematical modeling program with

initiating a randomized comparison to an established regimen. An built-in integration and curve fitting capabilities (Knott 1979).

alternative approach, however, woald employ a randomized design For each selected pair (n I, n2), we determined values of y I and Y2

from the outset with early termination if preliminary results are by solving nonlinear equations representing the error constraints.

not promising for the experimental treatment. Such an approach Zeros of the two equations were determined by solving a non-linesi

avoids the difficulties of interpreting results arising from an regression problem. We used normal approximations to the

uncontrolled study. binomial distribution and performed numerical integration using a

Thall, Simon, Ellenberg and Shrager(1988a) developed two- variable step Adams-Moulton predictor-corrector method. We

stage designs of this type for clinical trials where the endpoint is determined the optimum design by a systematic search of an

binary, response or no response. These designs test a null integer grid of (nl,n2) values.

hypothesis H 0 : A = 0 against a one-sided alternative H, : A > 0 Table 2 shows some of the resulting optimal designs for a=0.05

where A=p,-p. and p, , p, denote the response probabilities for and 8=0.20. The column labled Nfid represents the size of a

the experimental and control treatments respectively. At the first single stage design with the same error probabilities for the null

stage n, patients are randomly assigned to receive each of the two and specified alternative hypotheses. The large reduction in

treatments. Let ril denote the observed number of responses with expected sample size under the null hypothesis is obtained with

treatment i in the first stage and let very little increase in maximum sample size compared to the fixed

A = (r,-r,)/n i, P= (r-,+r 1 /2n I and 4.1 = 1 - P.1. If sample design. The column labled PETo represents the
probability of early termination after the first stage when the null

>Y hypothesis is true.
(2p.14., /n VP/ > y

then continue to the second stage; otherwise terminate the trial 4. Two-Siage Selctio and Testing Designs

and accept Ho. In clinical research there are often several experimental
In the second stage n 2 patients are randomly assigned to treatments of interest but too few patients available to thoroughly

receive each of the two treatments. Let & and g.. be defined evaluate each relative to a control therapy. A common approach
similarly to the related quantities above but based on all data from in such circumstances is to first select the experimental treatment
the two stages. At the end of the second stage, if which appears most promising based on uncontrolled pilot studies

and then compare the selected treatment to the control in a large
.

/
randomized clinical trial. When such pilot studies are performed

(2p. /(n i+n 2 ))i/2 >at different institutions, treatment effects typically are confounded

then reject Ho; otherwise accept Ho. The constants with other factors and the selection of a most promising regimen is

ni, n 2 , Y1, Y2 are chosen to minimize an average expected sample problematic. Thall, Simon and Ellenberg (1988b) proposed a new

size subject to error probability constraints. The probability of approach to the problem of identifying the best of several

rejecting H o should be no greater than a specified a whenever the experimental treatments and determining whether it is superior to

null hypothesis is true, regardless of what the common value of the a control. We developed a two-stage design for use with binary

response probability is. The probability of rejecting the null endpoints.

hypothesis should be at least I - 0 for a specified alternative During the first stage ni patients are randomly assigned to

0=(p,,pJ). We minimized the expected sample size averaged each of the K experimental treatment groups and n, patients are
equally over H0 and over 0. Minimization of EJ(N) alone produces randomly assigned to the control group. At the end of the first
designs with low probability of stopping at the end of the first stage the largest observed response rate for the experimental
stage and hence relatively poor performance when the null treatments is compared to the observed response rate for the
syta esis and hre. reliiatiy po Er one wuen thesnl control group. If the standardized normal Z value for that
hypothesis is true. Minimization of E uN) alone produces designs comparison does not exceed a critical value yi , then the clinical
with high probabily of early termination under Ho but large trial is terminated and no experimental treatment is claimed to be
maximum sample sizes, and consequently poor performance under better than the control. Otherwise, a second stage is conducted in

the alternative. Although we could have minimized relative to a which an additional n2 patients are assigned to the control

prior and weight function on the space of (p,pj), the simple wrean andito th prientareame th the gr s

approach that we used resulted in non-extreme designs with treatment and to the experimental treatment with the greatest
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response rate in the first stage. Thus, at most one experimental squares algorithm of Shrager(1970). Regarded as a function of y,

treatment is carried over to the second stage. The treatment for fixed ni , the average expected sample size had two distinct

carried into the second stage is called the 'selected' treatment. At local minima in all cases. A finer grid search in the neighborhoods

the end of the second stage the selected experimental treatment is of these local minima was carried out to obtain the minimum giver

compared to the control based on all data for those two treatments n1. As a function of nI, this minimum is unimodal, thus yeilding
obtained in either stage. If the standardized normal Z value for the global optimum.
that comparison exceeds a critical value Y2 , then the global null Table 3 shows some of the optimum designs determined for
hypothesis of equivalence o dl the treatmenLs is rej.c'..d aid the a - C.5 , f = 0.25. The probabiliLic. of ear!) trr, L,,ti- -. uz.cr
selected experimental treatment is 'chosen' as more effective than the null hypothesis are generally in excess of 0.50 and the

the control. Otherwise, the global null hypothesis of the maximum sample sizes are less than single stage trials with similar
equivalence of all K+1 treatments is not rejected. design objectives, such as those of Dunnett(1984).

As for the phase If/Ill design described above, our intent was
to determine the parameters n, , n2, Y1, Y2 to minimize an 5. Conclusion
average expected sample size subject to constraints on the type 1 1 have presented some of the research that I and my colleagues
and type 2 errors. The type I error constraint is straightforward, have presnted s the esearch th and my olleagues
the probability of rejecting the global null hypothesis when it is have conducted in the pat few years in the area of optimized
true should not exceed a specified a, whatever the value of the sequential designs for clinical trials. I have not attempted to
common response probability. The nature of the type 2 error, or present a review of related work by others although this topic is
power, constraint was much more complicated, however, because of one of increasing interest on the part of biostatisticians. Although
the great, variety of alternative hypotheses possible with K+1 there is a great literature on sequential designs for clinical trials, it
treatments. We specified a generalized power constraint in the is only recently that these methods have seen broad application.

following way. An experimental treatment whose response Clinical trials are complex endeavors and the simplest designs are

probability exceeded that of the control by at least a pre-specified often the most practical. For this reason we have focused on two-

quantity 62 is called 'effective'. An experimental treatment whose stage designs. Even with such simple designs it is possible to
response probability exceeded that of the control by more than 81 achieve substantial reductions in required sample size compared to

but by less than 62 is called "marginally effective'. We require single stage designs. Such reductions translate into reduced

that if there is at least one effective treatment and no marginally exposure of patients to ineffective treatments and increased

effective treatments then the probability of choosing an effective efficiency in the process of discovering effective ones.

treatment as better than the control must be at least 1 - P. If
there are marginally effective treatments that are almost as good as
the effective treatments, then there will be a substantial Knott GD (1979). MLAB: A mathematical modeling tool.
probability that one of them will be selected and chosen instead of Computer Programs in Biomedicine 10:271-280.
an effective treatment, but the difference is of little consequence. Dunnett CW (1984). Selection of the best treatment in comparison
If there are marginally effective treatments that are much worse to a control with application to a medical trial. In Design of
than the effective treatments, they will have little influence on the Experiments: Ranking and Selection. Santner TJ and
probability of choosing an effective treatment. The least favorable Tamhane AC eds, 47-66, New York: Marcel Dekker.
configuration for this constraint is that with one experimental O'Brien PC, Fleming TR (1979). A multiple testino proc.dure for
treatment having response probability exactly 62 greater than the clinical trials. Biometrics 35:549 Sb.
control and the remaining K-1 experimental treatments having Shrager RI (1970). Nonlinear regression with linear constraints: an
response probabilities exactly 61 greater than the control, extension of the magnified diagonal method. Journal of the

We determined the values of the design parameters to minimize Association for Computing Machinery 17:446-452.
the average expected sample size, weighted equally between the Simon R (1987). How large should a phase II trial of a new drug

null hypothesis and the least favorable alternative configuration, be? Cancer Treatment Reports 71:1079-1085.
subject to the type 1 error constraint and the generalized power Thall P, Simon R, Ellenberg SS, Shrager R (1988a). Optimal two-
constraint. The optimization algorithm was based on a grid search stage designs for clinical trials wit.h binary response. Statistics
over n I and yr. An integer grid was used for the former and a grid in Medicine 7:571-579.
width of 0.025 for the latter. For specified values of n, and y, , Thall P, Simon R, Ellenberg SS (1988b). Two-stage selection and
the nonlinear equations for type 1 error and generalized power testing designs for comparative clinical trials. Biometrika (in
were solved for the parameters Y2 and 7r'n l /(n I+n2). Those press).
equations were solved to an accuracy of ±10 using the least

787



TABLE I. Phase II Designs for a = 6 = 0.10

Reject Drug If
Response Rate

Po PI 51 1/n I -1Z/N - Eo(N) PET,
0.10 0.30 1/12 5/35 19.8 0.65
0.20 0.40 3/17 10/37 26.0 0.55
0.30 0.50 7/22 17/46 29.9 0.67
0.40 0.60 7/18 22/46 30.2 0.56
0.50 0.70 11/21 26/45 29.0 0.67
0.60 0.80 6/11 26/38 25.4 0.47
0.70 0.90 6/9 22/28 178 0.54

TABLE 2. Two-stage phase I/II designs for a = 0.05 0 = 0.20

P0  P nl n2 yl Y2 Eo(N) PETo  N, N.d
0.20 0.40 28 40 0.32 1.59 86.0 0.63 136 128
0.30 0.50 33 45 0.36 1.58 98.5 0.64 156 148
0.40 0.60 33 49 0.34 1.58 102.0 0.63 164 154
0.50 0.70 33 45 0.36 1.58 98.5 0.64 156 148
0.60 0.80 28 40 0.32 1.59 86.0 0.63 136 128
0.70 0.90 1 21 31 0.35 1.58 64.4 0.64 104 98

TABLE S. Two-stage selection and testing designs for a = 0.05 B 0.25

K p, n, n2  y I Y2 E,(N) PET, N_.,,
2 0.20 36 44 0.73 1.82 139.7 0.64 196
2 0.40 40 58 0.59 1.81 169.3 0.57 236
2 0.60 31 50 0.54 1.80 134.6 0.58 193
3 0.20 38 59 0.71 1.92 205.3 0.55 270
3 0.40 47 63 0.55 1.94 254.9 0.47 314
3 0.60 37 55 0.51 1,94 204.1 0.49 258
4 0.20 44 62 0.87 1.98 271.7 0.58 344
4 0.40 49 77 0.55 2.00 336.8 0.40 399
4 0.60 42 61 0.72 2.00 268.6 0.52 332
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BAYES ESTIMATION OF CEREBRAL METABOLIC RATE

OF GLUCOSE IN STROKE PATIENTS

P. David Wilson, University of South florida College of Public Health
Sung-Cheng Huang and Randall A. Hawkins, UCLA School of Medicine

Local cerebral metabolic rate of glucose (LCMRG) ic defined as a nonlinear
function of the rate .onstants in a three-compartment model. Data for
estimating LCMRG in the human brain is obtained by PET scanner following
injection of F-18 labeled fluorodeoxyglucose. Optimal analysis would be based
on scans repeated up to three hours, but this is not practical. Nuclear
medicine scientists have therefore developed three single scan (SS) methods
requiring only a single ten minute scan taken at about one hour post-injection.
These SS methods use prior information in the form of mean rate constants from
the normal (healthy) population, but are not Bayes methods. We have developed
a Bayes method which can be used with a single scan. For brains of stroke
patients (which contain mostly normal tissue and some ischemic tissue), the
Bayes method uses a highest posterior density criterion to choose between prior
densities from normal and ischemic tissue populations. Computer simulation
studies show that the Bayes SS method is superior to the non-Bayes SS methods.

KEY WORDS: Bayes Estimation, Compartmental models, Glucose metabolic rate.

1. INTRODUCTION LGMRG = (PG/LC)klk3 /(k 2 + k 3 ) (1)

The current method for measurement of where PG is the capillary plasma concen-
local cerebral metabolic rate of glucose tration of glucose (req ired to be in
(LCMRG) utilizes positron emission steady state) and LC is a "lumped con-
tomography (PET) images of the stant". For our purposes LC may be taken
concentration of F-18 (a positron- to be a known constant which accounts for
emitting isotope of fluorine) in a local the use of FDG rate constants instead of
region of brain tissue, obtained after glucose rate constants.
intravenous injection of F-18 labeled
fluorodeoxyglucose (FDG), and while LCMRG 2. MATHEMATICAL MODEL
is in steady-state.

Analysis of PET data is based on the With respect to the compartmental
three-compartment model for FDG kinetics model, measurements of P(t) are obtained
shown in Figure 1. FDG is injected into by repeated sampling of a peripheral
the plasma compartment, from which it vessel. The PET scanner provides a noisy
communicates with the brain tissue version of C(t), the total F-18 concen-
compartments. Once in the tissue, FDG tration in the brain, defined as C(t) =
can undergo phosphorylation, the first Cl(t) + C2 (t) in the compartmental model.
step in glucose metabolism. From the As an approximation, the contribution to
plasma compartment, FDG is also lost to the PET data from the FDG in the brain
urine and other tissues (not shown in capillaries is usually ignored. (However
Figure 1). a more general formulation including this

contribution can be found in Hawkins,
P(t) Cl(t) C2 (t) Phelps, and Huang, 1986.)
concen- k concen- k oncen- From a linear systems viewpoint, P(t)
tration of --- tration of tration of can be viewed as the input function to a
f FDG in k2  free FDG k4 FDG-6-PO4 linear system with output function C(t)
apillary - in brain in brain and impulse response h(t;k), described
plasma tissue tissue below, where k is the set of rate

constants. The differential equations
Figure 1. Compartmental Model for FDG implied by the compartmental model are
Kinetics. ki, ... ,k4 are the FDG rate
constants. C(t) a Cl(t) + C2 (t). dCl(t)/dt = kiP(t) + k4C2 (t)-(k 2+k3 )Cl(t)

Unlike glucose, FDG does not proceed dC2 (t)/dt = k3Cl(t) - k4C2 (t) (2)
further down the metabolic path. This
allows sufficient accumulation of FDG in where P(t) is treated as a known
brain tissue to provide relatively (measured) function. To conveniently
precise positron emission count stat- express the solution of equations (2) we
istics. It also prevents recirculation define "macroparameters", a = (a1 , a2 ,
of any metabolic products containing F- a3 , a4 ) as follows:
18, which would contaminate the plasma
compartment. LCMRG is defined as the net a4 ,a2 = [k2+k3+k4±{(k 2+k3+k4 )2-4k 2k4 1]/2
rate of phosphorylation of glucose.
However the rate constants for glucose a1 = kl(k3+k4-a2)/(a4-a2 )

are not the same as those for FDG, and it
has been shown that a3 = kl(a 4 -k3-k4 )/(a4-a2 ). (3)
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Then noise-free. However if smoothiig is
required, a nonparametric smoothing

Cl(t) algorithm such as found in Wilson (1988)
[kl/(aA-a 2 )][(k 4 -a2 )exp(-a 2t) + can be used to smooth from the peak to

the end of the study. Samples of P(t)
(a4 -k4 )exp(-a 4t)]eP(t) are generally sufficiently closely-spaced

so as to allow a rather accurate
C2 (t) numerical representation of P(t) by

[klk 3/(a4 -a2 )][exp(-a 2t)-exp(a4 t) ]P(t) simple linear interpolation between
sampling times. Convolution of P(t) with

C(t) = Cl(t) + C2 (t) = exp(-at) can then be performed by
[alexp(-a 2t) + a3exp(-a 4t)]eP(t) (4) analytically convolving the straight line

segments with the exponential function.
where 0 denotes convolution from 0 to t. Convolution is required up to each brain
The impulse response expressed earlier as sampling time.
h(t;k) can be defined in terms of a as The direct method is recognized to

provide accurate estimates of LCMRG,
h(t;a) = alexp(-a 2t) + a3exp(-a 4t) (5) conditional on the given value of the

lumped constant, LC, and is the method of
so that the output function is choice for research. For routine

clinical studies, however, the direct
C(t) = h(t;a)6P(t). (6) method is impractical because of the

three-hour scanning requirement. Demand
Equation (6) is the mathematical model for scanner time dictates shorter
for the expected value of the PET duration studies. Furthermore the
observations, difficulties of keeping the patient's

head immobilized in the scanner for three
3. EXISTING ESTIMATION PROCEDURES hours cannot generally be overcome in a

routine clinical setting. For these
3.1 Direct Method reasons nuclear medicine scientists have

developed several methods which require
For research purposes, usual nonlinear only a single PET scan of duration no

regression methods are used to estimate greater than 10 minutes. These are
the rate constants, k, or the macro- discussed next.
parameters, a. If the macroparameters
are estimated, inversion of equations (3) 3.2 Non-Bayes Single-Scan Methods
yields estimates of the rate constants.
Then equation (1) is used to estimate The three single scan (SS) methods
LCMRG. described in this section all use prior

The PET scan data collection scheme information but are not Bayes procedures.
usually consists of ten 2-minute scans They are distinguished from the Bayes SS
followed by ten 5-minute scans followed method which we developed, and which is
by ten or eleven 10-minute scans, for a described in the next section. All four
total scan time of approximately three SS methods require only a single PET
hours. The rapid scans at first are scan, of duration usually 10 minutes and
requireO to record the rapidly changing centered at time t = T, which is usually
brain concentration of F-18 immediately 40 to 60 minutes post-injection. All of
after injection. Later, as the brain the SS methods make use of estimates of
concentration changes more slowly, longer the mean values of the rate constants or
duration scans are used to compensate for macroparameters in the normal population.
loss of precision due to decay of F-18, These estimates are available from
which has a physical half-life of studies employing the direct method.
approximately two hours. The long total (See Huang and Phelps, et al, 1980.)
scan time is required because a2 is Let R = (Il, R2, k3 , k4 ) be the
usually on the order of 10- 3 . estimates of the normal population mean

Measurements of P(t) are taken from a rate constants. Let LCMRG(k) be LCMRG of
peripheral vessel beginning immediately equation (1), evaluated at k. Let
after injection. P(t) rises extremely C(T;k), CI(T;R), and C2 (T;k) -be C(t),
rapidly to reach a sharp peak, usually Cl(t), and C2 (t) of equations (4)
within the first minute, and then falls evaluated at t = T and k = k, and with
rapidly at first before beginning a more use of P(t) from the subject under
gradual decline after about ten minutes. measurement.
Samples are usually taken at 5 to 10 Let y(T) be the PET scan measurement
second intervals for the first 3 minutes of the subject at t = T: y(T) = C(T) +
and then at progressively lengthening noise. The first non-Bayes SS method for
intervals for the remainder of the 3 hour estimating LCMRG is due to Sokoloff,
study. The samples are counted Phelps, and Huang, and the estimator is
externally in a well counter to determine denoted herein as LCMRG(SPH):
F-18 activity and are calibrated relative
to the PET observations. LCMRG(SPH) =

The P(t) data are generally quite LCMRG(k)[y(T)-Cl(T;)I/C 2 (T;). (7)
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Note that if y(T) were replaced with regions and use prior information from

C(T;k) in equation 7, LCMRG(SPH) would the normal or ischemic tissue population
simply be LCMRG(k). in studying the LCMRG of a given region,

according to the perfusion status found
All of the foregoing development in for that region. We defined the non-

sections 1, 2, and 3 can be found in Bayes SS methods as using prior
greater detail for the biomedical reader information from the normal population
in Phelps and Huang et al (1979), and because that is the way they are usually
Huang and Phelps et al (1980). used clinically. The preliminary

Let & = (al, a2, a3 , a4 ) denote the perfusion scan is usually avoided because
estimates of the normal population mean of the additional scanner time, the
macroparameters, (obtained from the same additional radiation dose to the patient,
source as k). The second non-Bayes SS the additional effort required in
method is due to Brooks (1982), and the evaluating the scan, and the delay this

estimator is denoted herein as LCMRG(B): causes in estimating the LCMRG.
We have developed a Bayes procedure

LCMRG(B) = LCMRG(k)[y(T)-g3exp(-A4T) which can be used as a SS procedure, and
-[xwhich can choose between estimates of

0P(T)]/[alexp(-i 2T)6P(T)] (8) LCMRG based on prior information from two
sources (normal and ischemic tissue

where P(t) is from the patient under populations in our case) using a highest
measurement. Note, again, that if y(T) posterior density criterion unavailable
were replaced with C(T;&), LCMRG(B) would to the non-Bayes methods. The Bayes
simply be LCMRG(k). procedure is described next.

The third SS method for estimating
LCMRG is due to Hutchins and Holden et al 4. BAYES ESTIMATION
(1984), and the estimator is

Although, formally, the Bayes
LCMRG(H) - estimates of a should be converted to

LCMRG(k)y(T)/[CI(T;k) + C2 (T;k)]. (9) rate constant estimates (using the
inverse of equations (3)), and these

As before, if y(T) were replaced with estimates then used in equation (1), we
C(T;k), then LCMRG(H) = LCMRG(R). found empirically that this procedure has
Hutchins and Holden et al point out that some negative bias which can be partly
this estimator is independent of k, since eliminated by the estimator
LCMRG(R), _CI(T;k), and C2 (T;R) are all
linear in kl, and the term cancels in LCMRG(Bayes) = (PG/LC)al (10)
their estimator. They argue that this
should be of value in studying ischemic where &l is the Bayes estimator of macro-
tissue of stroke patients since k, will parameter a1 . The justification for this
be diminished in such tissue. choice is as follows: Brooks (1984)

For our purposes it is important to pointed out that a1  = OR, where R =
point out that Hawkins, Phelps, Huang, klk 3/(k2 + k3 ), and 41 as k440. In the
and Kuhl (1981) studied the behavior of data base used to provide estimates k and

LCMRG(SPH) in normal tissue and the ; for prior information (Huang and Phelps
ischemic tissue of stroke patients. They et al), we found that 0 = 1.05 with very
found that while LCMRG(SPH) behaved little variation among individuals. Thus
reasonably well in normal tissue, it had using al as the estimator of R
a negative bias of about 50% in ischemic compensates for some of the negative bias
tissue. This finding was confirmed in which would otherwise occur.
simulation studies by Wilson, Huang, and Let the set of mid-scan times be ti,
Links (1984), who also studied LCMRG(B) i=l,...,n. Although we emphasize the use
by simulation, and found it to have a of Bayes Estimation as a SS procedure, we
negative bias of about 35 to 40% in describe the general procedure. Re-
ischemic tissue. Those authors also express C(ti) of equation (4) as C(ti;a)
showed, by simulation, that if k or X and shorten it to Ci(a). Let yi be the
from an ischemic tissue population is PET scan observation at time ti so that
used by LCMRG(SPH) and LCMRG(B) when E(yi ) Ci(a). Let y = (Y1 , Y,' .  Yn) '

studying ischemic tissue, these SS (where prime denotes transposition), and
estimators behave quite well. define a = (a1 , a2 , a3 , a4 )' to be the

The non-Bayes SS methods must use column vector of the macroparameters.
prior information, k or 5, from a Let 8 8(ay) denote the true sum of
specified population. Although a portion squared errors: 9 = =[yiCi(a)I2 . Let
of the brain of a stroke patient is the variance of yi be v, assumed here to
ischemic, perfusion in most of the brain be constant over i. Let T = 1/v be the
is normal. In studying such a brain with "precision". (It is more convenient to
a non-Bayes SS method there are two use a prior density for T than for v).
choices: (1) use prior information from The density of the data is assumed to be
the normal population, or (2) perform Gaussian:
preliminary perfusion scans to determine
the perfusion status of the various fy(YI ,t) t zn 2exp(-t9/2). (11)
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The prior density of a is assumed to be moments for empirical Bayes analyses of
Gaussian with mean vector ao, covariance actual human data, they can nevertheless
matrix Q, and independent of x: form the bases for "simulation

populations" for comparing the behavior
of the four SS estimators described
above.

exp{-(a-ao)'- 1 (a-a )/2). (12) To allow for some modeling error in
the prior distribution of a, and at the

The prior density of i is assumed to be same time rule out any negative elements
Gamma with parameters 5 and LL so that of a in the simulation population, we
E(T) = 6/ti and var(4) = 8/42 : assumed the elements of a to be

distributed joint lognormal in the
fT(T16,4) - r 1exp(-4r), for T, L,8 > 0. simulation population. Let L and S be

(13) the mean and covariance matrix,
respectively, of the logs of the elements

(See pp 3-5 of Broemeling, 1985, and pp of a in the simulation population. These
77-82 of Vinod and Ullah, 1981. In the moments were taken to be the values
treatment of those authors, Q in equation computed from the logs of the elements of
(12) is replaced with Q/r. This is of no the a-estimates in the data base. To
use here because our empirically obtain the a for a simulated subject, we
estimated prior moments are ao and Q, generated a pseudo-random realization of
whereas T is unknown.) a four-variate Gaussian random vector

The joint posterior density of a and T with moments L and S, and then
is proportional to the prcduct of the exponentiated the elements. The
right hand sides of equations (11), (12), macroparameters for all simulated
and (13). After integrating T out of subjects were generated from the ischemic
this joint posterior density, one obtains simulation population.
the marginal posterior density of a: After generating the macroparameters,

a, for a simulated subject, the impulse
p(aly,ao,,, ) - response, h(t;a) in equation (5), was

generated. A plasma curve, P(t), for the
fa(aaoQ)[2U+9]-(8+n/2 ). (14) individual was then generated as a

combination of 5 exponentials with
We defined our Bayes estimator of a in coefficients randomly selected from

terms of maximum posterior density (MPD) ranges seen in practice, and constrained
estimation for computational simplicity so that C(t) = h(t;a)OP(t) rises over the
rather than using minimum-Bayes-risk first hour to match clinical experience.
estimation (Bard, 1974, pp 61-75). To The single scan time chosen was T=l hour.
maximize the posterior density in The PET data, y(T), was then created as
equation (14), one must solve, for k y(T) = C(T) + 6, where E was a pseudo-
1,2,3,4, random realization of a zero-mean

Gaussian variate with standard deviation
E= i [Cki(a)(yi-Ci(a)}]-[(8+

2 )/(n+26)] 0.05 C(T). The multiple 0.05 was chosen
[E4  because in the ischemic data base, in
j[i (aj-aoj)Ukj+(ak-aok)ukk]/2 = 0 (15) which every a-estimate was accompanied by

its associated mean-squared-error (MSE)
where Cki(a)= bC.(a)/aak, ui is defined of fit, the average root MSE was
by 0-1 = U-= (ui, -and aok, 1,...,4, approximately 5% of the fitted value of
are the elements of ao. C(T). The data, {y(T), P(t)) were then

analyzed by each of the four SS methods.
The solution of equations (15) is The factor PG/LC was not used in
obtained twice: once using the prior estimating LCMRG because all results were
moments ao and Q from the normal tissue recorded as percent error, and PG/LC is a
population and once using these prior common multiplier in both the true LCMRG
moments from the ischemic tissue popula- and all four estimators.
tion. The solution producing the highest Prior moments (ao,Q) were available
posterior density in equation (14) is from both the normal and the ischemic
chosen as the Bayes estimate of a. simulation populations for use in MPD

Bayes estimation. The prior mean from
5. COMPUTER SIMULATION STUDIES the normal population was used in the
COMPARING BAYES AND NON-BAYES SS three non-Bayes SS methods. The values

METHODS IN ISCHEMIC TISSUE of 4 and 8 used in the Bayes estimation
were obtained as follows: Letting m and

Small data bases of rate constants d be, respectively, the mean and variance
estimated by the direct method have been of the reciprocal MSE values in the data
published by Huang and Phelps et al base, we solved the equations m = 8/)1 and
(1980) for normal tissue, and by Hawkins, d = 6/4 2 for 4 and 6.
Phelps, Huang, and Kuhl (1981) for The simulation studies were designed
ischemic tissue. we consider only gray to show certain characteristics of the
matter tissue here. While these data distribution of percent errors of the
bases are too small to provide prior four estimators as a function of the true
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Broemiling LD (1985). Bayesian Analysis
value of R = klk 3/(k2+k3 ). We simulated for Linear Models. Marcel Dekker, New
100 sets of data in each of 8 intervals York.
in R from 0.01 to 0.03 with interval
width 0.0025. In generating the data for Brooks RA (1982). Alternative formula
a particular interval in R, macro- for glucose utilization using labeled
parameters with associated value of R not deoxyglucose. J. Nuc. Med. 23:538-539.
in the interval were discarded, and
generation continued until 100 sets of Hawkins RA, Phelps ME, Huang SC, Kuhl DE
macroparameters with R in the specified (1981). Effect of ischemia on
interval were obtained, quantification of local cerebral glucose

Results of the simulation studies are metabolic rate in man. J.Cereb. Blood
shown in Figures 2, 3, and 4. Figure 2 Flow Metab., vol 1, #1,pp 37-51.
shows the root-mean-square of the distri-
bution of percent errors in the 100 Hawkins RA, Phelps ME, and Huang SC
analyses by each of the four estimators (1986). Effects of Temporal Sampling,
in each of the 8 intervals in R. Values Glucose Metabolic Rates, and Disruptions
of R in the last two intervals on the of the Blood-Brain Barrier on the FDG
right are in the low normal range (even Model With and Without a Vascular
though all macroparameters were generated Compartment: Studies in Human Brain
from the ischemic simulation population). Tumors With PET. J. Cereb. Flow Metab.,
Because the Bayes and Hutchins-Holden vol 6, #2, pp 170-183.
procedures are distinctly superior to the
other two estimators, Figures 3 and 4 Huang SC, Phelps ME, Hoffman EJ, Kuhl DE
display behavior of only these two (1981) Error sensitivity of fluoro-
superior estimators. deoxygluxose method for measurement of

Figure 3 shows the mean of the distri- cerebral metabolic rate of glucose. J.
bution of percent errors of the same 100 Cereb. Blood Flow Metab., vol 1, #4 pp
analyses by the Bayes and Hutchins-Holden 391-401.
methods in each interval of R. This
figure shows that most of the inferior Huang SC, Phelps ME, Hoffman EJ, Sideris
behavior of the Hutchins-Holden estimator K, Seliln CJ, Kuhl DE (1980). Non-
is due to a negative bias of about 12% on invasive determination of local cerebral
average. metabolic rate of glucose in man. Am. J.

Figure 4 shows the range in the Physiol. 238:E69-E82.
distribution of percent errors. In the
range 0.0125 ! R 5 0.0275, the largest Hutchins GD, Holden JE, Koeppe RA, Halama
absolute percent errors were smallest for JR, Gately SJ, Nickles RJ (1984).
the Bayes procedure. Alternative Approach to Single Scan

These results indicate, as expected, Estimation of Cerebral Glucose Metabolic
that the Bayes SS procedure should out- Rate Using Glucose Analogs, With
perform the three non-Bayes SS procedures Particular Attention to Ischemia. J.
in analysis of actual human data, once a Cereb. Blood Flow Metab., vol 4, #1, pp
sufficiently large data base becomes 35-40.
available so that it can serve as the
basis for empirical prior moments. It is Phelps ME, Huang SC, Hoffman EJ, Selin
a tribute to the Hutchins-Holden C., Sokoloff L, Kuhl JDE (1979).
procedure that it performs as well as it Tomographic measurement of local cerebral
does. Because it is computationally much glucose metabolic rate in humans with (F-
less burdensome than the Bayes procedure, 18) 2-fluoro-2-deoxy-D-glucose: Valida-
LCMRG(H) presents a challenge to tion of the method. Ann. Neu-ol. 6:371-
statisticians to develop a simpler 388.
procedure which can outperform it.

A report of this work for biomedical Sokoloff L, Reivich M, Kennedy C, Des
readers can be found in Wilson, Huang, Rosires MH, Patlak CS, Pettigrew KD,
and Hawkins (1988). Saekurada M, Shinohara M (1977). The (C-

14) deoxyglucose method for measurement
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ESTIMATIJN OF DEATH DENSITY USING GROUPED
CENSUS AND VITAL STATISTICS DATA

John J. Hsieh,Universlty of Toronto

1. INTRODUCTION refined life tables from abridged life tables but

This article develops a precise method for also expands the utility of the life table so

describing the distribution of the lifetime using

census population and vital statistics data in cross- Section 2 describes the requisite data and
sectional studies. The description of the lifetime calculation of death rates which are used in
distribution will be made through estimation of estimation of the lifetime distribution in Section 3.
survival function p(x). conditional mortali+y Methods for estimating the various functions
probability function q. - I - p(x~l)/p(x). death density depicting the lifetime distribution are described in
function f(x), hazard function h(x) = f(x)/p(x) and life Sections 3.1 through 3.6. Finally, an example

expectancy (mean residual life function) e(x) -Jp(dy/p(x). illustrating the estimation of the five functions
Z f(x). h(x). q.. p(x) and e(x) using Canadian data

To reduce random as well as systematic errors in is given in Section 4.
the raw data employed in the estimation, population
and death data are grouped according to the
convention of abridged life tables in which the
agespan [0.w) is partitioned into n = 19 intervals OF DEATH RATES
[x1 .x1 +i). i-O. I. 18, with division points at x, = I,

- 5. x. = 10.X1 7 = 80 and % = 85. so that te The following data are required for thex2  5,x3  l .... w =80andxl8= 8. o tat he estimation of the above lifetime distribution
lengths of the age intervals are all five years function or tothe form ofsconvetion

except for the first two intervals which are one and functions according to the format of conventional

four years. respectively, and for the last interval abridged life tables using the proposed procedures:

which is infinite. (For countries with high quality (1). Annual number of births for each calendar

data the last division point may be taken to be year j of the 3-year base perod plus one year preceding
x19 = 90 so that there are n=20 age intervals all told.) To the base period. (2). deaths d in the last month of the

estimate the functions for the lifetime distribution first year of life for each calendar year j in the base
in a cross-sectional study we have to choose a base period. (3). mid-year populations Pi, and deaths D,, for the
period and assume that the observed mortality ith age group (i-O. I. .... 18) and jth calendar year
schedule in the base period remains unchanged over (J=l. 2. 3), i.e., for the first year of life (i=0)
time. To increase the reliability of the estimates, and by 5-year age groups up to age 85 as well as
we shall use a base perio of three calendoar years. those aged 85*. for each of the three calendar years

in the base period, plus infant deaths for the year
Accuracy of estimation is achieved in each step preceding the base period (Doo). These data are

by appropriate use of mathematical approximations, available from atnual reports of vital statistics and
numerical quadrature and, in particular. spline mid-year population estimates or censuses published
interpolation, differentiation and integration. The by most member nations of the United Nations and are
available mortality data for the subdivisions of the also reoorded in U.N. Denographic Yearbooks.
first year of life and properties of the life time In order to estimate the I:etime distribution
distribution allow an accurate determination of the by the proposed procedures one has first to calculate
two end conditions for the spline function. The use the age-specific deatn rates M, from the death and
of spline methods serves to further smooth out errors population data (Dij,P,,). The death rate Mi for the ith
arising from incomplete reporting and other sourc-es p o upain t bae p erio s de a the ththatstil rnai inthe ata aftr ae ~age group in the base period is defined as the total
that still remain in the data after ag;e grouping, deaths in the ith age group over the base period A

The present method does more than just provide a divided by the total observed person-years of eyposure
new way of calculating the conventional life table during the bawe period A for that age group. In
functions (as in the construction of abridged life symbols,
tables), it has several important features: (I). It Di
allows one to calculate fundamental and useful M, = .p......... ......... ()
functions of the lifetime distribution such as the jpj(tL
death density function and the hazard function that A

are not available in a conventional life table. (2). 3
it provides more accurate estimation of the where D, = D D is the number of deaths observed during
conventional life table functions as well as other J=
functions not found in published life tables than the 3-year base period for the ith age group and
existing life table methods o. and, most Pi(t) .Z the population at time t for the ith age
importantly. (3). it allows one to compute these group. From formula (1) it is seen that the problem
functions at any age point and for any age interval. of calculating the death rate M, reduces to the
in contrast to the traditioral life table method problem of numerically integrating out the person-

year integral in the denominator of (I) in terms ofwhich gives life table functioi,s only at the age the available mid-year population data. To this end.
division points and for age intervals of a fixed mesh we take P1 (t) to be a collocation polynomial (such
corresponding to the age grouping of the population as represented by Newton's forward formula) of order
and death data. (See Reed and Merrell 1939, Chiang 1968. three interpolating to the three prescribed
Keyfitz and Frauenthal 1975.) Thus the present method not population data in the base period and perform the
only allows the construction of complete as well as more indicated integration to obtain:
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M1 -D/Y 1 . ................. (2) f is the separation factor. normally taken to be JJ. 1 O =3 2

where 1
hr - 3(3Po1+2Pi 2*3P:P8J is the infant deaths in the base period. Do, . _°

J~l J=O
is the estimated person-years of exposure for the ith is the infant deaths in the 3 calendar years starting from3
ae group using the numerical quadrature described the year jxeding the base period. B - YBj is the totalabove. P

2Other methods of numerical quadrature could be births in the base perod and B' - _B is the total birthsused but the results would only differ insignificantly
from that given by (3) (see Hsieh. 1978). In fact in the 3 calendar Years starting from the year preceding
formula (3) is already considerably more accurate the base period. Formulas (4) and (5) are derived
than the traditional method of calculating the death from probability arguments. Alternatively. q0 may be
rate by dividing the average number of deaths in the f
base period by the mid-period population. The errors obtained from construction of infant lfe tables (see
that still remain in the population data will be Hsieh. 1985

further smoothed by slime methods. 2. For the central age intervals (i-.l 2 .... 17)

InO-q )  - -hjCH i A Bi/Yt ),  .................... (6)
3. ESTIMATION OF THE LIFETIME

where h, , xj~j-x and M, and Y1 are given by equations
DISTRIBUTION (2) and (3), respectively, and

In this section we shall show how the data and (al fr i-L
death rates described in section 2 are used to A, (725YI-418Y2-162Y/12825"
estimate various noint and set functions representing
the distribution of the lifetime. The procedures for B," (-1120M+444M-324M 3 )/855: ............ (7)
the first year of life (i=0) and the last age (b). for i-2.15.
interval (i-18) differ from those for the remaining
age intervals. These two extreme age intervals A, - (9Y_ 1 -3Y _5Y y +i192"
require special treatments because mortality is a I
extremely high and declines very sharply during the Bt" (-3M-3Mj 7Mj+1-Mi+2)/8: ............ (8)
first year of life and because in the last open-ended
age interval, the data tend to be thin and not of (c). for i-16 and r7.
good quality. Ai . CYtZ 2Yi-l-3Y)/48.

The method starts with the estimation of
conditional mortality probability qi for the age B1 - C41 -24M 1 +3M1)/2; ............ (9)
intervals of the given mesh described in Section i.
using mathematical and numerical methods of approxim- The derivation of formulas (6) - (9). which employs
ations. This is followed by direct estimation and solution of an integral equation using Taylor
spline interpolation of the survival function at any expansion and Newton's formulas, is given in Hsieh
age for the age segment [1.85). Estimates of the 09881
death density and hazard functions are obtained by
spline differentiation and life expectancy by spline 3. Fr the last age interval (6-18)
integration of the survival function. For ages beyond
85. we employ the Gompertz law of mortality to derive qt - I. nce everybody has to die eventually.
the estimate of these functions. Once the survival
function at any age point is determined from spline Estimation of conditioal mortality probablity for any
(for xs85) or from Gompertz curve (for x>85), it age intervals other than [x.xi4. i-0. L .... 18. is given in
becomes a trivial matter to compute the conditional section 3.6.
mortality probability and mean resdence time for any
age intervals. 32 EsUnmtion of Survival Functim

Unlike the conditional mortality probability
3A1 Estimation of 9od"_,a q1 discussed in Section 3.1 and the conditional

mean residence time and mortality probability to be
Mortality Probability q discussed in Section 3.6 which are set functions,the

remaining four functions to be studied in Section
The conditional mortality probability qi is the 32-3.5 are all pit fuctionu

probability of death in [x1 .xi+,) given survival to age x,. The survival function p(x) is the probability of
i-0. I .... 18. They are estimated as follows: surviving to age X. The survival function p(x) at
i. Fr the first a interval (i-0) the division points x1 is obtained directly fromthe conditional mortality probabilities qI as follows.

% -l -b) ....................... (4) For iK 2 .... 18.

a - 0-M)o/B. a-I
b - -0-f '.................. (5) P( x) - fO-q. ........... O)J=O J



The proof of (10) is straight forward. Clearly. at or X-X+ I. equation CG) -rai to sp(X,) - p or sp(xj+
the two ends of the agean. p(O). and p(o)-O. = pi+' respectively.

To estimate the survival function at ages other For the last open-ended age interval (i.e. for
than the division points. i.e.. at xxi. i-. 2. ages beyond xm = 85). we discard the data in

18. different procedures are required for each this age group for lack of reliability and adopt the
of the three main age segments. For ages under one Gompertz law of mortality. By fitting the Gompertz
year. the estimation method is given in Hsieh 0985. survival curve to the three prescribed survival
For ages from I to 85 years the method of spline functions at ages xe-75, xl7'8O. and xs-85. namely. p,.
interpolation will be used. To this end, we pass an
interpolating spline sP(x) through the prescribed P 17a we obtain for t-x-xl0.
pC',) values i-. 2. ... 18. and take this spine function as
an estimate of the survival function p(x). for all xeD.851 t -. C . .
From our knowledge of the pattern of the survival p(x) - Pie 9(C ... ...... 05)
curve for the human lifetime and the availability of
the mortality data in cross-sectional studies, the r lr(ple/p,) . . . . . (6
compldete interpolating cubic spine would be the best choice where c-L iipIl .J ................. 06)

among all polynomial spline functions possessing
optimum ap rouim ti o ................... 7M

An interpolating cubic spline can be represented cs - I

mathematically in a number of ways (see. e.g.. and and p,, are given by 01
Ahlberg. Nilson and Walsh 1967. de Boor 1978 and P16" P17
Schumaker 1981). We shall choose the following
representation for the cubic spline interpolating to 3.3 Estiatnior of Death Density Function
the Prescribe data P = P(x) K 2 ..... 18 For xEIxx,+). The death density function f(x) is the

probability per unit time of dying in the instant
immediately following age x. For the age segment

sp -) (xi*l-X)2fx-x,) (x-x ,xmj-) (1,851, the death density function at a division
hi2 1  hi 2 point x . i-4. 2. 18 is simply the negative of the slope of

the survival function at that point. The spine

+ P ..... Ox estimate of the death demity at ages other than the
hi3  hi " division points are obtained by differentiating the

Far a given x in x. i-K. 2..... . a quanspline estimate of the survival function (11) to

are known exqcpt the slopes mi , - s'p(xj) at the division

points. These parameters are determined by solving the - p(x)
folowing system f 16 linear equatiors. _hi_3(h(x +l -x2xl+xj~l_3x~m j

"-h Jx-xi2xi x-3x)mi3[*_ 2Qh,.,) h
h1  ,-,1_Y .... ................. 02) X,-XX-XX .,-p, . 08)

for i-2. 3 .... 17. with the two boundary onditions: Finally the spline parameters mi obtained in
(a) the first endsope Section 3.2 are substituted into (18) to determine

m- -- 365/30pd/WB-Do-d) .................. 03) the estimate s,(x) of the death density function
3 f(x) Note that when xwx i . equation 08) reduces to

whe d - Id s,(x,) - mi ...................... 09 )
J=I

(b) the last adslope as pointed out at the begOning of this subeectcn.

mm - -p , /M .. ............................ 04)

Equation 02) is derived from equation (10 by For ages beyond x,-85. the death density

differentiating twice with respect to x and using the is estimated by differentiating (15) with respect to
continuity constraints of cubic splines at the t to get for t-x-xl0.
interior division points. The two end (boundary)
conditions (13) and (14). which estimate the slopes fOx) - - pln g)On c)ctrlg*C - l)c .  .................. (20)
of the survival function at the two boundaries, are
accurately determined from properties of the lifetime where c and a are give by (1). 06) and 07)
distribution. The tridiagonal form of the coefficient w rpan
matrices of (12) allows the linear systems to be respectively.
easily solved using a computer by Gaussian
elimination with partial pivoting. Furthermore. the Far e und aw y the estimation method is
diagonal dominance and symmetric characteristic of given in Hisl 0985
the matrix guarantees stable results with minimum
accumulation of rounding error. Once the parameters 3.4 Esitb o l- rd u
m, are solved for from (12) with boundary conditions
(13) and (14). the survival function at any no x can The hazard function h(x) is the conditional
be calculated from (0. Note that, as expected. when x-x;
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probability per unit time of dying in the instant For x in tx,.,, i-I. 2 .... 17. we tihve the person-years
immediately following age x given survival to age x. lied beyond age X:
Once the death density function and survival function
are determined as described in Sections 3.2 and 3.3 T(x) - i0p(ott -iK's.p(tdt+ fl%(tdt - f p(t)dt

above, the hazard function is taken as their ratio. X 2 11+t tM
For x in 0.85). we divide (18) by (11) to get a spline 17

estimate of the hazard functiont -1(1) X LjTxm) (27)Jaitl

Shbl). SAOc)S01............. (20)
where

Note that when x-x. eqmUon (21) reduces to Li - Iw= wet

sh(Xi) . - M i i ....................... (22) Zi
(  h (p i. p1 . 1) / 2 + h j ,2 (nm -m ,. / l2. . .. . .. ...... (2 8 ).

in view of (19) and the coments at the end of the
paragraph followingS equation 04). is obtained by integrating (0) from x, to x,+, and

For ages beyond xna 8 5 , we divide (20) by 100 =f j1 SpV dt

05) to get, for t-x-x g?. Z

... 29)
h(x)- - n g)Onc t001........... (23) with p( r)x~-)hp'(x - p"(x Xx1*,-x)/h,

where c and g are given by 06) and 07). respectively. -p'&x,Xx1-x)/h ............ (30)
and

For ages under one year the estimation method is p,(xi) - -2hj- (2mj 4m1 jI)hj3(p-p*,) ........... 31
given in Hsieh 0985).

Since differentiation of a spline results in a p"N -2) - 2h|-2( 2mj~dhj3(p,Pi+l) .............. (32)

spline (of one lower order) which still possesses
optimum approximation properties, the use of spline Note that for i-. 2 .... 17. I(x 1 ) Li and I(xi+,)-0 so that
method of differentiation, unlike other numerical at the division points.
differentiation procedures. greatly enhance the I?

accuracy of the estimates of both death density and T(x1 ) = X L T(xs) ................... (33)
hazard functions. Before the advent of spline J~i
functions. the difficulty with numerical differentiation has
burn the main reason why conventiomal life tables do and that

not include death density and force of mortality. 17
T(O)- 2 Lj T(x ) ................... (34)

J=O
3.5 Estimation of Life Expectancy With tail person-year integral T(x) computed as

The life expectancy at age x. e(x). is the above, the life expectancy (mean residual life
average remaining lifetime for a person alive at age function) is estimated by
x. While estimation of density and hazard functions
requires differentiating the survival function, e(x) - T(x)/p(x) ......................... (35)
estimation of life expectancy requires integrating
the survival function. (Note that both integration where for xe[L85), p(x)sp(x) and T(x) are given by 01) and
and differentiation of splines result in splines.) (27). respectively, and for xa85. p(x) and T(x) are
For the first year of life, we use the mean value given by (15) nd (25). respectively. Note that at the
theorem of integral calculus to obtain an estimate of d x-, (35) reduces to
the ason-year integral

1 17

L fp(x)dx -0-f)qo ..... ..................... (24) e(x,) - (Z L1 * T(x o))/p ..................... )

where f is the separation factor defined in (5). For
ages beyond x,, - 85, we integrate 05) from x Cxi,) to

3.6 Estimation of Conditional Mortality Probablity
and Conditional Mean Redece Time (General)

T(x) a i p(t)dt For Oxy<z'oi, the conditional probability

- 20 x-1Ei( -X n g)/In c. ...................... (25) of death in [yz] given survival to age x. denoted by
pIs c qx;y,z]. is the ratio of the difference between the

where the exponential integral Ei(k)- J(e-u/u)du survival function at y and the survival function at

k z to the survival function at x. If x,y,ze[I,85).
d n then this conditional mortality probability is-y-In k - Z(-AnK0 (with -/ - 0.5772156649... beetiitegb

-l n estimated by
Eules oonstant4. When x = x. (25) womes qx.yl - [sp(y)-sp(z)l/s(x), ................. (37)

T(xi#) a / p(tdt where the spline survival functions sp(.) are

is obtained from (1). If either z alone, or y and z, or

" p g-CWE(-cll g)/ln c ........................... (26) x.y and z are greater than 85. then the corresponding
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spline survival functions s (.) in (37) are to be values so computed. Table I shows the final results

replaced by the Gompertz survival functions p(.) for these five functions at x-O. I. 2 .... 101. 102.

given by (15). When z-x4 and y-x. then (37) reduces Computation of these functions at other age points
to the complete life table function can be done similarly.

q = I - p(x /p(x). .................... (38)
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Extracting Records from New Jersey's Multiple Cause of Death Files

Giles Crane, New Jersey Department of Health

Abstract

A simple microcomputer system has been developed 16. Fatal Accidents Reports
using off-the-shelf components which permits 17. Homicide Reports
local access in an acceptable time frame to 18. Community Mental Health Centers
seven years of New Jersey multiple cause of
death data assembled and distributed by the 2. Multiple Cause of Death Records (1,2)
National Center for Health Statistics. The The distributing part of the path of the
system includes hardware and software, and multiple cause of death information for this
illustrates a trade-off between speed and project was composed of the following steps:
specificity of access to approximately 70,000 (from the top down--there also is a bottom up
records per calender year. Applications to the set of steps)Federal Vital statistics--coding
epidemiology of drowning and sickle cell anaemia PRIME minicomputer or Ed.Comp. Network --
will be discussed with timing information and reblocking. NJ Center for Health Statistics
rules of thumb for similar investigations. The minitape. Micro-computer -- stripping, packing,
numbers of causes per person in New Jersey will compacting, and access.
be summarized in several tables. If time File sizes for the 7 years of Multiple Cause of
permits, the further analysis of abstracts from Death records are:
this data will be illustrated by three short YEAR RECORDS MBYTES
examples: conventional statistial analysis, a 1979 69,969 30.79
computationally intensive method, and an 1980 71,202 31.33
application of artifical intelligence tecnique. 1981 69,557 30.61

1982 69,854 30.74
I. Introduction 1983 71,627 31.53
New Jersey is the fifth smallest state in the 1984 71,743 31.57
Union, with a population of approximately 8 1985 73,520 32.34
million people, approximately 100,000 births Under the present system, the 1986 records may
per year, and about 70,000 deaths per year. As become available sometime in September 1988.
part of national and international public There appears to be scope for improvement by new
health efforts, causes of death are coded in t-cinology, or organization, or both.
the ICD9 (International Classification cf The MCD records were stripped of unnecessary or
Disease Codes) (0) and entered on the death redundant fields, including "record access"
certificate. NJ at present prepares computer fields, and only 10 of a possible 20 "entity:
readable, restricted access tapes of death axis" (original ICD9 codes) were preserved.
certificates which include the "underlying These short MCD records were packed, two
cause" of death", but as yet NJ does not characters (0123456789 Z) per byte, and then
prepare multiple cause of death tapes. subjected to a compacting utility. The records
In the view of some epidemiologists, the sizes are shown below:
multiple cause of death tapes are the single, 440 bytes M.C.D. record (442 with CR,LF)
most important source of epidemiological 129 Short M.C.D. record (no CR,LF)
information for health research. It was viewed 65 Packed, short M.C.D. record (no CR,LF)
as imperative to improve access to these A C program, called GETMCD, written to strip the
requests by medical researchers. Some records, pack them, and also to upack and access
required over 6 months or, in several them by ICD9 codes. Principal access is by
instances, were never completed due to the Multiple Cause of death codes (ICD9CM):
press of operational processing and maintenance Underlying cause code--4 characters e.g. 0460,
requirements at the Department minicomputer 046. Contributing cause entity axis codes-7
unit. character.
There are many other NJ health outcome char I Death Ccrt. Line no. 1..6
databases which offer information for research 2 Sequence No. on line 1..7
and yet which are in need of improved access: 3-6 Cause code: 4 char ICD9CM
I. Birth Tapes 7 1 if nature of cause, 0 otherwise
2. Death Tapes Causes are specified somewhat like MS-DOS file
3. Hospital Discharges names, in which "?" denotes any single character
4. Drug Treatment Discharges and "" is translated into a blank. For
5. Cancer Registry example, sickle-cell disease is called for by
6. Birth Defects Registry "??28260", i.e. any death certificate line, any
7. Medical Claims Tapes code on line, ICD9 code 282.6, and not a nature
8. AIDS Registry of cause code. Lung disease is accessed by
9. Fetal Death Tapes several codes: "??500?0", " ??501?0", "??502?0",
10. Poisoning Reports "'??503?0'"??5040", "??505?0".
11. Cervical Cancer Screening Reports
12. Communicable Diseases 3. Hardware (3)
13. Family Planning The hardware used in this realization of the
14. Hemophilia Financial Assistance access system consisted of a Compaq Deskpro dual
15. Mental Retardation Services speed microcomputer (640K memory, 30 Mbvte hard
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disk, 360K floppy disk, Irwin 10 Mbyte DClOO0 Number of Number of
minicartiridge tape drive). Contributing Causes People Percent

11-14 66 0.09
4. Software (3,4) The average number of contributing causes for
The software consisted of Compaq MD-DOS Version 1984 was 3.14. (It may be noted that the
3.00 as an operating system, the TAPE.EXE Certificate of Death has three lines for
Version 1.05 tape utility, Turbo C compiler, a contributing cause of death.) The average
public domain packing program, a C program for number of causes was calculated by age, race,
selection at high speed, a simple editor, and sex, marital status, and presense of autopsy:
several MS-DOS commland files. Age Race Sex
Detailed processing of the data abstracted from 0 2.97 Other Asian 2.89
the files is done by a range of techniques from 1-4 3.30 lhite 3.14 male 3.11
printing the small file and inspecting the data 5-9 3.44 Black 3.15 female 3.16
to more elaborate database and statistical 10-14 3.30 Am. Indian 3.12
packages favored by individual investigators 15-24 3.49 Chinese 2.93
(LOTUS, DBASE, SPSS-X GLIM3, PRODAS). 25-34 3.22 Japanese 2.86

35-44 3.00 Hawaiian 2.5 (2 only)
5. Problems encountered 45-54 2.91 Fikipino 3.36
Typical tape and file handling problems were 55-64 2.93 All other 2.91
encountered such as a tape with several bad 65-74 3.10
blocks, hardware problem with the reel magnetic 75-84 3.25
tape uit, inadvertant changes in directory names 85+ 3.25
when processing different years, and Marital Status Autopsy
inconsistencies in using CR,LF a, record single 3.14 yes 3.35
terminators, married 3.08 no 3.13

widowed 3.21
6. Tests of the system divorced 3.03
The C program GETMCD was tested in several ways. not stated 2.91
Results of various test requests were checked
against the NCHS Underlying Cause counts and 8. Applications
against control tables in the MCD tpae In the 5 months of operation, this system has
documentation (1). been applied by members of the Office of
The C debugging process also provided further Research, the Divisions of Maternal and Child
assurrance that the program was functioning as Health, the Occupational Health Program,
desired. Narcotic and Drug Abuse, Cardiovascular Disease
The packed files were inspected by an Unit and the AIDS Division, as well as by other
independent software package which displayed the members of the Office of the Commissioner of
packed records in HEX format, a visual unpacking Health.
of the 2 "nibbles: which make up an 8-bit byte.
The entire process was run forward and backward, In an investigation of drowning and near
selecting all records. drownings (5), immersion injuries leading to
Finally, a detailed investigation of the full death in New Jersey were identified and selected
records from 1984 provided additional checks of for 1981-85. These records were matched with
the packing and selecting process. (See next hospital discharge data and further analysis was
section.) done in order to calculate incidence rates and

case fatality ration by age, race, sex, and
7. 1984 Multiple Cause of Death Records county.
The number of causes of death for 1984 in New An investigation of sickle cell disease (6),
Jersey were analysed briefly in order to count records were selected using ICD9CM codes for
the records with over 10 contributing causes of 282.4 (Thalassenias), 282.6 (Sickle cell
death, to provide further checks of the system, anemia), and 282.7 (Other bemoglobinopathies),
and to provide general guidance for other and a short paper was published giving the
researchers. Quite probably, this is the first results and implications.
time these figures have been published. After an initial study of hospital costs (7),
Number of Number of several AIDS related studies are underway which
Contributing Causes People Percent involve data from three other sources in

1 9,487 13 addition to selections from the Multiple Cause
2 17,519 24 of Death Records.
3 19,262 27
4 13,440 19 9. Examples of further analysis methods.
5 6,883 10 The applications discussed were developed using
6 3,028 4 conventional statistical analysis techniques (8)
7 1 ,250 2 including cross tabulations, regression,
8 511 1 histogram and bar charts, and confidence limits.
9 205 0.3 More computationally intensive methods such as
10 92 0.1 the boot st rap and jacknife (0) are being applied
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using short C programs and detailed applications
of elaborate statistical packages (8). general principal which motivates the formation
At this time artificial intelligence techniques of many systems.
(10) are the subject of experiment, and various
strategies for employment of the Al inference 12. References
engine are being considere. One possible (0) The International Classification of
project involving the learning aspect of AI Diseases 9th Revision Clinical Modification,
would be to build a knowledge base of related Second Edition, Sept. 1980. U.S. Department of
diagnoses. Health and Human Services, Public Health

Services, Health Care Financing Administration.
10. Further work (1) Public Use Data Tape Documentation:
The system could be improved by purchase of a Multiple Cause of Death for ICD9-9 1985 Data.
faster seqjential, access device (faster U.S. Department of Health and Human services,
minitape, CD Rom, video cassette), or dedication Public Health service, National Center for
of the hard disk to storage of the files. The C Health Statistics (Hyattsville, Maryland, August
program could be further optimized for speed, 1987).
either applying an optimizing C compiler (for (2) MCD Short Record Documentation. New Jersey
example, Microsoft) or re-writing the C program. State Department of Health Division of Research,
The use of the file compaction program might be Policy, and Planning, Office of Research.
eliminated, or compaction could be made record (Trenton, New Jersey, June 1988).
selection a part of the compaction utility.) (3) COMPAQ Computer Corporation (1983).
Combining the compaction, selection, and tape Houston, Texas 77070.
reading utility into one program would reduce (4) Irwin Magnetics (1983). 2101 Conmonwealth
the passes through the tape from 3 to 1. Blvd., Ann Arbor, Michigan 48105.
Alternate storage orders for the records might (5) Daniel Fife, M.D., Sharon Scipio, and Giles
also be considered, perhaps by ICD9-CM code over Crane (1988). Fatal and Non-Fatal Immersion
all years. The file-by-file rather than record- Injuries Among New Jersey Residents. New Jersey
by-record capability of the current tape drive Dept. of Health.
is a constraint on the problem, which has been (6) E. Rappaport, M.D., Gile Crane, and Daniel
considered many times for record-by-record tape Fife, M.D. (1988) Hospitalizations of
systems. Hemoglobinopathy Patients in New Jersey.
Barriers to improvement are increased cost of (Accepted by the American Public Health
hardware, other users competing for time on the Association Annual Meeting).
microcomputer, manufacturers who do not wish to (7) Statistical computing work for: Molly Joel
release software to directly access minitape Coye, Richard Conviser, Howard S. Berliner,
drives. Christine M. Grant (1988). RESULTS OF A
Arranging the tape files in the best order by STATEWIDE STRATEGY TO CONTAIN HOSPITAL COSTS OF
learning the years most frequently requested did AIDS PATIENTS. Prepared for the First
not increase efficiency here since the minitape International Conference on AIDS, Stockholm,
cartridge rewound automatically after restoring Sweden, June 1988.
a single file. It was decided to place the (8) PRODAS Programming Language. Conceptual
yearly files in seqiential order, 4 to a tape. Software Systems, Houston Texas.
Having the last few years on the last tape will (9) Bradley Efron (982). The Jackknife, the
eliminate some tape changes. A 40 Mbyte tape Bootstrap, and Other Resampling Plans. CBMS-NSF
drive will probably be adequate to hold all MCD Regional Conference series in Applied
data for the life of the system (see below, Mathematics Number 38. Society for Industrial
Further Work). and Applied Mat hema tics (Philadelphia,

Pennsylvania).
II. Suinkary (10) W.D. Burnham and A.R. Hall (1985). Proiog
Before this access system was devised, requests Progrannming and Applications. (John Wtiley &
for abstracts from MCD files from researchers at Sons, New York).
the NJ Dept. of Health could require months or Appendix: Estimate of time and cost to change
were not possible. After the MCD files became birth or death certificate.
locally available, more than 10 different At the presentation of this paper, one
researchers were able to access this data, conference member asked how long and how much it
usually within two days. Studies involving this would cost to correct a birth or death
data have been presented at meetings of the certificate in New Jersey. Corrections to birth
local working group on health data, a national certificates are made at no cost and the
conference, and an international conference, correction from is inserted at the end of the
Pre-prvcessing of the L,,pe intormation queue of certificates on hand. At this date,
(transference to microcomputer, stripping of February birth certificates are being enterea
redundant field, packing, compacting, and so there will he a delay of b months. Also,
transfering to minitape) can be viewed as moving the usual charge will be made for a new
the co fmon part of the time required for certificate. As for correct ions to death
satisfying any request to time required to certificates, o similar policy holds, but a law
prepare the system. This appears to he a state that new death certit icates must be
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available with 60 days. Experience here
indicates that a correction which is passed down
from Federal Vital Statistics and which requires
verification at the office nearest the site of
death may require as long as 6 months.
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A PROBABILISTIC APPROACH TO RANGE DATA SEGMENTATION

EZZET AL-HUJAZI,WAYNE STATE UNIVERSITY
ARUN SOOD,GEORGE MASON UNIVERSITY

ABSTRACT order surface characteristics that possess
In this paper we present a region growing several invariance properties and represent

approach for segmenting range images based on extrinsic and intrinsic surface geometry
the H (Mean Curvature) and K (Gaussian features respectively. The sign of these
Curvature) parameters. Range images are surface curvatures can be used to classify
unique in that they directly approximate the the image surface points into one of eight
physical surfaces of a real world 3-D scene. basic types. Fig.1 shows the corresponding
H and K are defined from the fundamental surfaces labels. These two curvature
theorems of differential geometry, and parameters can be calculated using III
provide visible, invariant pixel labels that

can be used to characterize the scene. The f f - f2
sign of H and K can be used to classify each K= ---- 2 ---
pixel into one of eight possible surface (l+f x+f
types. Due to the sensitivity of these y 2
curvature parameters to noise, the computed f +f +f f

2 
+ f f -2f f f

HK-sign map does not directly identify H- xx yy xx y yy x x y xy

surfaces in the range image. In this paper a (l+f 4x fy
probabilistic approach for the segmentation

of the range image is suggested. The image is
modeled as a Markov Random Field on a finite
lattice. The prior knowledge about the K>O K=O K<0
solution is expressed in the form of a Gibbs ......... ..... .................. .

probability distribution. This approach H<01 Peak I Ridge I Saddle Ridge
allows the integration of the output of a I ..-----------------------------
number of modules in an efficient way. The H=01 --- I Flat I Minimal surfacel
performance of the proposed technique on a I ----------------------------- I
number of range images will be presented. H>01 Pit I Valleyl Saddle Valley I

1. INTRODUCTION
Fig.1 Surface type labels from H1 and K.

The statistical techniques for modeling

and processing image data has seen an Some of the problems with the HK-sign map
increasing interest in computer vision are :a) Preliminary smoothing is necessary to
literature resently. Most of the work has obtain reasonable values for H and K (1].
been directed toward application of Markov However, after filtering the HK-sign surface
Random Field (MRF) models to problems in labels then reflects the geometry of the
texture modeling and classification and smoothed surface data. Hence, the HK-sign map
problems in segmentation and restoration of must be further processed, b) In the presence
noisy and textured images 12,4,5,6,7,91. of noise HK-sign map surface labels tend to

In differential geometry the information connect the labels of neighborhood, but
given by the sign of H and K can be used to distinct, surface regions. c) Global surface
classify a surface point into one V eight properties is lacking.
possible labels. These two surface cuWvatures
are derived from the first and second 3. MRF AND THE GD
fundamental forms. They are sensitive to
noise and the resulting HK-sign map does not The concept of a MRF is a direct extention
correspond directly to surfaces in the image of the concept of a Markov process to higher
and thus it has to be further processed. dimension [81. A discrete MRF on a finite

In this paper an algorithm based on MRF lattice is defined as a collection of random
and edge models is suggested for processing variables, which correspond to the sites of
the HK-sign map. This approach is chosen the lattice.
because it allows an analytical basis for
integrating a number of object features. A Definition of MRF:
variable neighborhood area is used for the Consider an N X N rectangular lattice, and
MRF which gives a good compromise between the r= (i,j) be an index of pixel locations,
speed of processing and the number of pixels where i,j specify pixel row and column
misclassified by the algorithm, location and satisfy 1< i,j < N. Let (x r I

The paper is organized as follows. Section denote a random field, with x r the field at
2 presents a review of relevant differential pixel r, X a vector specifying the field over
geometry results, and Section 3 presents a an entire N X N lattice and having components
review of MRF and the Gibbs Distribution x , and X the field everywhere but at
(GO). Our algorithm will be given in Section pxel r. Thb)x r  is a MRF if
4. Section 5 shows results of processing r

various range images and Section 6 outlines P(XrX (r) )=p(xr xv, v DP)
the conclusions.

2. H AND K CURVATURE PARAMETERS for all r, and P(X=x)>O for all x. D denotes

a neighbor set, 2

H and K are identified as the local second D (v=(lm) such that lIr-vil 5 Np

and Cr)
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Where P is the order of the process, and N P 2 or 3). The use of H and K allows us to
is an increasing function of P. N takes the reduce the number of levels from 256 (the
values 1,2,4,5,8 for ?=1,2,3,4,5, original image) to 3 levels (-,O,+ for H and
respectively (Np is the square of the K).

euclidean distance to the farthest neighbor). The flow chart of our algorithm is shown
in Fig.3. The H and K are calculated in

Definition of cliques: multi-scale fashion. Then the output of the
Given a set of neighborhood on a lattice a multi-scale is combined with the edge
clique c is such that; information and the surface normals. This
a) c consists of a single pixel, or will give us a seed region and edge
b) for r i v , r C c and v e c implies that information which will be entered to the
r and v are neighbors. The collection of all region growing algorithm. H and K are
cliques is denoted by C. The neighborhood processed separately and then combined to
system up to the fifth order and the cliques obtain the HK-sign map. Final surface
associated with the first order system are description of the object can be obtained by
shown in Fig.2. fitting surfaces to the HK-sign map.

E-f' 15141314151
L1J L.J 4121112141 INPUT IMAGE

I I 31311 131

7 7 L 14121112141 FINDHAND FIND HAND FIND THE
1 15141314151 S I: USING -- EDGES

E l

Fig. 2 The neighborhood systems E

and the cliques for the first order. D
IDENTIFY POINTSWITH SA I

Definition of GD: H!P-SIGNINALLSCALES

A random field X=x r) defined on a lattice E
has an associated GD (or equivalently is a
Gibbs Random Field(GRF) with respect to DE
iff its joint distribution is of the form: SUPEMET

P(X=x) =(l/Z)*exp(-U(x)) N

where U(x)=c~cVc(X) is the energy function, FIND THE

V =potential associated with clique c, NORMLINFOTIO

a~d Z=Eexp(-U(x)) is a normalization factor.

Hammersley-Clifford theorem:-Let Dp be a
neighborhood system on a finite lattice . A K H
random field X is a MRF with respect to D
iff its joint distribution is a GD witR EGIDGGPOVING REGIOIGROWING
cliques associated with Dp. l1G MPF AND EDGE USING MPF AND EDGE

MODELS MODELS
4. OUR ALGORITHM

Biological vision systems achieve
efficient, robust and reliable recognition in FINDTHE HIHAP
highly variable environments through the
integration ot many visual sources. For
example the simple task of locating objects
boundaries can be performed far more
effectively by integrating evidence of
discontinuities in image intensity, stereo TH4[E[pT[TIp[
disparity, speed and direction of motion and
texture Information than by using evidence
from a single visual source on its own. The
integration problem is computationally
complex. The integration can be achieved by Ii. Tif: A r>:Ii
associating a MRF on a lattice to each
physical process and another (binary) model 4.1 Finding the Seed Region:
to its discontinuties. The lattice are The seed regions are obtained using a
coupled to each other to reflect the multi-scale approach. This approach is
interdependence of the corresponding process justified because the output from different
in image formation. --milar work using this scales is going to change significantly on
approach can be found in (6,91 among others, the boundary of the object while the points
In general,the latter methods, are well inside the surface will not change. The
computationally expensive and the number of input image is smoothed with a Gaussian
quantization levels must be small (typically filter of different standard deviation and
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for each output the values of H and K are minimized in the local area surrounding the
estimated. The sign of the resulting H and K selected pixel. This Is repeated for all the
values are then used to form a three level points in the array for a number of
image for H and K. The outputs from the iterations (maximum of 30 was used in the
multi-scale are then combined by identifying experimental results).

the points on the different scales (3 in our
expermints) where the value of H and K signs 5. EXPERIMENTAL RESULTS

are identical. The labeling of these points
are assumed to be correct and is used as the The algorithm has a good parallel
seed region for the region growing algorithm, computational structure, since the
The edges are also obtained and superimposed multi-scale, edge detection and the surface
on the the multi-scale output. normal estimation can be computed

In some cases, for example for a roof simultaneously. Also the computation of H and

edge, surface normal information is needed to K are independent and can be computed
segment the planar regions. The surface simultaneously. The algorithm has been tested
normal is estimated by fitting a plane in a an a number of synthetic and real images. The
3X3 mask size. The surface normal information images are 128XI28 with 8 bits/pixel. The H
is also used to segment the background of the and K values are obtained following the
object. procedure suggested be [I]. Experimental

results for different objects are shown in
4.2 Region Growing: Fig.5 through 7. To assess the importance of

The seed region output is entered to the the edge information,images are processed
region growing step. The region points are with and without the edge model. We have used
modeled as a MRF with variable neighborhood a variable neighborhood systems (up to the
size. For the edge points, an additional term fifth order) for the region model.
is used. The energy function integrates these The first object (Fig.5a) is a synthetic
two models : image of a sphere. The output of the seed
U(fe;g)= V(e)+(l-e)*6 V(fr,fvle) region step is shown in Fig.5b for H and in

U eP r Fig.5e for K. The result of the region
where g is the output from the seed region growing step is shown in Fig.5c for H and in
step, e is the edge point (binary), f is the Fig.5d for K. Fig.5f shows the final HK-sign
processed image, Dp is the neighborhood map obtained by combining the output from
system, V(e) is the energy function due to Fig.5c and Fig.5d. As cai be seen the image
the presence of edge. V(e) is computed by is segmented perfectly using this method.
using Fig.4 in which a value is assigned for Fig.6a is a range image of a coke bottle
V(e) based on all the possible local obtained using a laser range finder at the
configurations of the edge point. This model Enviromental Research Institute of Michigen
encourages the formation of continuous edges (ERIM). The content of Fig.6 are similar to
and discourages thick edges. For example if Fig.5. Good segmentation is obtained with the
points B and C are edge points the model exception of a small area at the tip of the
discourage the presence of edge at A. coke bottle.

Fig.7 shows the results for a coffee cup
V(f ,f le) is the energy function due to the obtained from ERIM. Fig.7a shows the image.
pixel Vlabel in the neighborhood area given Fig.7d and Fig.7h show the seed region
the edge points. Only the single pixel clique obtained for H and K respectively. The range
is used in the experimental results. image is then processed in two different

ways. Fig.7e and Fig.7i show the output of
A B C D V(e) the region growing algorithm with the edge

------------------ model. Fig.7b shows the final HK-sign map.
0 0 0 0 0 The segmentation results obtained weLe good
0 0 0 1 i with the exception of the handle of the
0 0 1 0 1 coffee cup, which was not classified. This is
0 0 1 1 0 * * because of the size of this region and the
0 1 0 0 1 C D restriction in the algorithm on the number of
0 1 0 1 0 pixels required for classification. In Fig.7f
0 1 1 0 0 * * and Fig.7g the outputs of the region growing
0 1 1 1 1 A B algorithm without the edge model are shown.
1 0 0 0 1 0 noedge Fig.7c shows the final HK-sign-map. In this
1 0 0 1 0 edge case the handle is classified as planar
1 0 1 0 0 1 edge region, also small regions of the cylindrical
1 0 1 1 1 surfaces of the object are classified as
1 1 0 0 0 planar. A comparative study of Fig.7b and
1 1 1 0 1 Fig.7c illustrates that inclusion of the edge
1 1 1 0 1 model leads to less misclassified points.To

1 1 1 1 0 emphasize Che advantage of using a variable
----------- ------ neighborhood system for the MRF. Fig.8 shows

Fig.4. The Edge Model, the results of processing the coffee cup with
different fixed neighborhood systems. In this

The region growing algorithm proceeds by figure the time required for processing is

collecting the edge points and the pixels compared for five different neighborhood

unclassified by the multi-scale approach in systems. The time required for the variable

an airay. A point is then picked at random. neighboLhood system (up to the fifth order)

The energy function given earlier is then is also shown.
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The other graph in the figure shows the
difference in the classification between the
variable and the fixed neighborhood system
MRF for a fixed number of iterations (30).
Thus the use of the variable neigl,borhood
system gives a good compromise betwe, the
time required for processing and the number
of misclassified pixels.

(a) (bi (e)

M (a) (d)

(Cg)

Fig."7 Resutsof P n range C age A CA ffee -pIn~ls= te. n)he original image.

irTe Kk-aa~p vii edge todel
< ")Sim~uo (0 ib) virhour edgea mdl

) seed region solti-scale cu B
gdg (? -P) e)H region growing ourput ,ih ni ..del.

mil r a, (C) vil hort erge "del
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k)"oour codes gor Fig.7. . 1 (1 ) and f FIg7b a 7c (righ).Fig.' ie t , a h g , Edg. are muperipoed o Fg. b ug

,The iia ag mg

H Iep ieln ilti c" oo'p, (. lar UnrI...ihid) (4) )i)
g ag eeg 1)h i on grYn ,a Au

d)i iii g ping

iiFig

( ) (b) 
(c) 

a

Fdg

I'
awThn .rgr, i rougl Ca ge{ Im

ri... ~. .ir r r. ' jr r i An ag t 
ithm for segmentating range imagesS , regi, ...... , ', .. . ..... i . using a variable neighborhood system MRF andeiV rg.. g.. g '" edge models is presented. This approach

r,, ... " allows us to integrate a nlmbel of St face""ig . ' ' ' "characteristics in an efficient way. lietesults shown ate good with the exception of
the handle of the coffee cup. The use Of I

810



1-i6  Elec. Eng. Comput. Sci., Univ. of Michigan,
1-5 Ann Arbor, Rep. RSD-TR-I0-86, Mar. 1986.

3-[ 121 F. Cohen, and D.B. Cooper, "Simple

(a)2I \ 1-4 (b) Parallel Hierarchical and Relaxation
2-1 1-2 Algorithms for Segmenting Noncausal Markovian

-1. Random Fields," IEEE Trans. Pattern Anal.
I- \ - - -Machine Intell., vol.9, no.2, pp. 195-219,--------------------------- Mar. 1987.

1 2 3 4 5 131 P. Chou,"Multi-Model Segmentation Using
Markov Random Fields," in Proc. Int. Joint

Fig.8 Comparsion between fixed and variable Conf. Artificial Intell., July 1987.
eig.8Comparystem between (iedn), vaferiabe 14 G.R. Cross, and A.K. Jain,"Markov random

neighbohood system a)Time (Min), b)Difference field texture models," IEEE Trans. Pattern
in classification ( 100 Pixels). Anal. Machine Intell., vol.5, no.1, pp.

25-39, Jan. 1983.
and K allow us to work with a small number 151 H. Derin, and H. Elliott,"Modeling and

of levels ( 3 compared with 256) which makes Segmentation of Noisy and Textured Images
the processing faster. The use of variable Using Gibbs Random Fields," IEEE Trans.
neighborhood system MRF reduces the number of Pattern Anal. Machine Intell., vol.9, no.1,
misclassified pixels with a small increase In pp. 39-55, Jan. 1987.
the time required for processing. [6) S. Geman, and D. Geman, "Stochastic

The future work will concentrate on a Relaxation, Gibbs Distribution, and Bayesion
surface fitting step which will be used to Restoration of Images," IEEE Trans. Pattern
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ABSTRACT

The purpose of this paper is to interval. An individual symbol of the
measure the amount of compression that message reduces the size of the interval
can be accomplished by the use of by an amount determined by its frequency
Arithmetic Coding and the coding of occurrence. The more likely symbol
processing time. An IBM-PC based system reduces the range by less than an unlikely
has been developed for both encoding and one, and consequently adds fewer bits to
decoding. The results using adaptive and the coded message. The end of the message
non-adaptive techniques are presented. The is represented by a unique message
test data consisted of a 256 gray level terminator symbol.
image file and seven classes of different
data files. Performance evaluation is Arithmetic coding technique was
discussed in terms of encoding time and introduced in a textbook by Abramson [4].
decoding time. As a compression technique, this method is

not widely known. However, reference [5]
I. Introduction is a good introduction to the subject of

arithmetic coding.
Minimum redundancy codes of a data

system is attractive for two major II. Algorithms and Implementation
reasons: storage saving and performance
improvement. Storage saving is a direct Both the encoder and the decoder know
and obvious benefit, whereas performance (or can generate) the probabilities of
improvement is the direct result from the occurrences of, and the portions of the
fact that less data are moved in the case range occupied by, the various symbols,
of communication. Arithmetic coding and and the initial range is (0,1). With this
Huffman coding are approximately minimum in mind, the decoder can deduce the
redundancy coding techniques where code encoded characters one by one by analyzing
words are of variable-length, which range the interval lies within as

each symbol is revealed. Also, both
Huffman coding is one of the encoder and decoder know a

pioneering works in the construction of uniqueeof symbol that will be used to
minimum redundancy code. It was developed terminate messages.
in 1952 by Huffman [1]. Because of its
simplicity, it has been developed on small
systems with encouraging results [2]. To The encoding and decoding algorithms
code a file using the standard Huffman can be summarized as follows:
method:

1. Determine the frequency of each ENCODE
character. while not eof
2. Construct Huffman coding table by begin
assigning variable length-codes to each read symbol

if eof
character. Generally, this results in the symbol = uniqueeof symbol;
assignment of short codes to characters currentrange = range high - range_low;
that occur most frequently. rangehigh = ranqelow + current_range *
3. Encode the input file. frequencysum[symbol - 1];
4. At any future time, the file can be range low = range_low + current_range *
reconstructed using the stored Huffman frequencysum[symbol];
coding table. end;

Arithmetic coding [3] has been
proposed as being more superior in most
respects than the Huffman scheme. Here,
the input message is represented as an DECODE
interval of real numbers between 0 and 1. while symbol <> uniqueeofsymbol
The longer the message, the smaller the begin
interval needed to represent it, and thus read codevalue;
more bits are needed to describe the symbol = 1;
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while not (frequencysumfsymbol] <= unique_eofsymbol indicator is encoded and
(codevalue - range low) / (range high - the encoding process is complete.
rangelow) < (frequencysum(symbol - 1])

symbol = symbol + 1; To decode, a byte of the encoded file
if symbol = uniqueeofsymbol is read and the first code value is

stop; extracted. the frequency array is then
current-range = range high - range low; scanned to find the symbol corresponding
range high = rangelow + current range * to that code. In the adaptive version the
frequencysum[symbol - 1]; frequency list is then updated to include
rangelow = rangelow + currentrange * the new symbol. The symbol is written and
frequencysum[symbol]; the remaining portion of the byte is
write symbol; processed to extract the next code value.

end; When the byte has been exhausted, the next
byte is read and the process continues

In the above pseudocode, the possible until the uniqueeofsymbol is identified.
symbols are numbered 1, 2 ...... , At this point any extraneous bits are
number of symbols + 1, with the last written and the decoding process is
symbol being the uniqueeofsymbol. The complete.
frequency range of an individual symbol
is:

[frequencysum[symbol]
frequency sum(symbol - 1]) FIGURE 1

In practice, we first generate a list
containing probabilities for each symbol TEST DATA BYTE VALUE FREQUENCIES
that can be encoded. Since each symbol is
a byte, the set pf symbols can be
represented by integers from 0 to 255,
with the uniqueeofsymbol being 256. We
represent this scheme as a 257 position
array. The frequencies can be represented
in one of two ways; a non-adaptive or
fixed representation in which the
frequencies are determined in advance for
a given class of data files to be
compressed (i.e. image files), and an
adaptive method in which the frequencies
are generated based on the symbols
observed during compression or expansion .00
of the file being processed. We will see
that the adaptive model in general
provides more desirable results than the
fixed model. Probabilities are represented
as integers and cumulative counts are
stored in a second array. To prevent
overflow the counts are scaled as
necessary. FIGURE 2

Since all values are represented as TEST DATA BYTE VALUE FREQUENCIES
integers and operations are performed on
only a byte at a time, all data must be
transmitted and received incrementally. To
accomplish this, bits in the low and high
ends of the range are transmitted as they
become the same and the range is rescaled.

To begin the encoding process a byte
is read and is used as an index to the - 3

frequency array. In the non-adaptive or
fixed case the frequency is simply read
from the array. In the adaptive case the
current frequency is used and the the
frequency is updated to include the new
symbol. Next the frequency is applied to 0 ... 300. ...
the range and the next byte is read. A
code buffer is maintained to hold bits to
be transmitted. When the bytelong buffer
is filled, the byte is written then
cleared to accept new data. When
end of file is reached, the

813



FIGURE 3 FIGURE 4

TEST DATA BYTE VALUE FREQUENCIES TEST DATA BYTE VALUE FREQUENCIES

26

0 2.01

III. Results and Discussion IV. References

The results of the experiment are base [I] Huffman, D. A.: A method for the
on the application of both fixed and construction of minimum redundancy
adaptive Arithmetic Coding to eight codes. Proc. Inst. of Elect. Radio
classes of 100,000_byte files. The files Eng. 40, 9 (Sept. 1952), 1098 -
were an executable binary file, a C 1101.
source code file, a Multimate document
file, a 256 gray level image file, an [2] Desoky, A., Gregory, M.:
ascii data file, a dBase III data base Compression of text and binary
file, a text file and a Lotus 123 spread files using adaptive Huffman coding
sheat file. The frequency distributions of techniques. Proc. IEEE Sotheastcon
four of these file are presented in '88 (April 10 - 13, 1988), 660 -
Figures 1 through 4. 663.

The program implementation is in [3] Rubin, F.: Arithmetic stream coding
Microsoft Quick C on an IBM PC XT 286 using fixed precision registers.
running DOS 3.2. Times are in seconds per IEEE Trans. Inf. Theory IT-25, 6
byte of uncompressed data and include all (Nov. 1979), 672 - 675.
I/O and operating system overhead. [4] Abramson, N.: Information theory

Three different distributions were and coding. McGraw-Hill, New York,
used for the non adaptive or fixed 1963, (pp. 61 - 62).
method. The first, a frequency
distribution similar to that of the [5] Langdon, G.G.: An introduction to
English language, the second, a arithmetic coding. IBM J. Res. Dev.
distribution generated by averaging the 28, 2 (Mar. 1984), 135 - 149.
actual frequencies of the eight test
files, and the third a distribution
generated from the image test file (Figure
1). In the adaptive method the frequency
distribution is dynamic, changing as each
symbol is observed. The results of
encoding and decoding of each of the eight
data files are demonstrated in Tables I
through IV.

Not surprisingly, the results in
Tables I through IV reflect that the
English language distribution performed
best for the files containing Englishlike
data and the image distribution performed
best for the image file. The average
distribution performed surprisingly well.
However, the adaptive method consistently
performed better than the other
distributions.
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TABLE I

Fixed Model English Language Distribution
Output Encode time Decode time
(bytes) Total per byte Total per byte

.EXE file 149,793 211.0 0.002110 324.0 0.003240
C source program 86,052 135.0 0.001350 202.0 0.002020
Multimate .DOC file 113,341 193.0 0.001930 208.0 0.002080
EMCS619 .IMG file 126,755 190.0 0.001900 259.0 0.002590
ASCII data file 111,755 187.0 0.001870 226.0 0.002260
dBase III .DBF file 109,781 184.0 0.00134U 225.0 0.002250
Text file 68,737 130.0 0.001300 189.0 0.001890
Lotus 123 .WKS file 143,727 210.0 0.002100 246.0 0.002460

TABLE II

Fixed Model Average Distribution
Output Encode time Decode time
(bytes) Total Per byte Total per byte

.EXE file 106,376 162.0 0.001620 262.0 0.002620
C source program 78,056 128.0 0.001280 194.0 0.001940
Multimate .DOC file 56,258 112.0 0.001120 146.0 0.001460
EMCS619 .IMG file 98,062 172.0 0.001720 237.0 0.002370
ASCII data file 68,846 131.0 0.001310 168.0 0.001680
dBase III .DBF file 67,555 129.0 0.001290 167.0 0.001670
Text file 72,969 138.0 0.001380 199.0 0.001990
Lotus 123 .WKS file 69,450 136.0 0.001360 162.0 0.001620

TABLE III

Fixed Model Image Distribution
Output Encode time Decode time
(bytes) Total per byte Total per byte

.EXE file 131,041 206.0 0.002060 288.0 0.002880
C source program 108,047 164.0 0.001640 234.0 0.002340
Multimate .DOC file 84,206 156.0 0.001560 175.0 0.001750
EMCS619 .IMG file 79,534 145.0 0.001490 216.0 0.002160
ASCII data file 109,571 183.0 0.001830 213.0 0.002130
dBase III .DBF file 107,606 169.0 0.001690 212.0 0.002120
Text file 106,758 164.0 0.001640 236.0 0.002360
Lotus 123 .WKS file 101,103 163.0 0.001630 195.0 0.001950

TABLE IV

Adaptive Model
Output Encode time Decode time
(bytes) Total per byte Total per byte

.EXE file 87,382 152.0 0.001520 183.0 0.001830
C source program 61,510 121.0 0.001210 134.0 0.001340
Multimate .DOC file 42,371 91.0 0.000910 90.0 0.000900
EMCS619 .IMG file 79,522 139.0 0.001390 151.0 0.001510
ASCII data file 52,696 103.0 0.001030 99.0 0.000990
dBase III .DBF file 50,976 100.0 0.001000 97.0 0.000970
Text file 56,209 100.0 0.001000 107.0 0.001070
Lotus 123 .WKS file 50,909 94.0 0.000940 104.0 0.001040
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I14AGE ANALYSIS OF THE MICROVASCULAR SYSTEM IN THE RAT CREMASTER MUSCLE

Carol O'Connor, University of Louisville
Ahmed Desoky, University of Louisville
Cathy Senft, University of Louisville

Patrick Harris, University of Louisville

ABSTRACT
A VAX-based image processing system has been data on microvascular function in humans. These

developed for the digitization and analysis of approaches have not affected the outcome of
the microvascular system in the rat cremaster clinical medicine, with one dramatic exception,
muscle. These are images of blood vessels which which is described to demonstrate the importance
are less than one millimeter in diameter. The of this research for clinical medicine.
purpose of this system is to obtain quantitative In the mid 1960's there was a severe epidemic
morphometric data on the microvascular system of infectious meningitis in China, with a 90%
which cannot be easily obtained by manual mortality rate for children under 2 years of age.
methods. Animal studies have shown that micro- The treatment was a Chinese herbal drug labeled
circulation can be used in the detection of "654," whose toxic level is only slightly higher
certain systemic vascular diseases such as dia- than its effective treatment level. Thus, many
betes mellitus and hypertension. These diseases children treated subsequently died from "b54"
involve major disturuances in the dimensions and toxicity. In 1965, a young Peking clinician,
the distributions of microvessels. A similar Dr. Rui-juan Xiu, put together a simple bedside
phenomenon occurs with the introduction of microscope to assess the "quality" of blood
substances such as hormones into the system. perfusion in the nailfold capillaries of
The developed techniques will be used to deter- children. She used this device to adjust the
mine the blood vessel distributions for a number infusion rates of "654" to maintain an effective
of samples. Statistical testing will then be but non-toxic therapeutic dose in each sick
done on samples of images comprising diseased child. This individualized control of "654"
and nondiseased animals, and on samples of therapy reduced the infant mortality rate in
before and after introduction of compounds, to infectious meningitis to less than 10% within a
determine which image component parameters best three month period.
discriminate diseased and nondiseased samples, The Center emphasizes multidisciplinary
and best describe the effects of the compounds research teams, including researchers from
on the inicrovascular system. clinical medicine, basic health sciences, and

engineering. Collaoorations had been developing
1. INTRODUCTION between many researchers in these fields, and

this strong nucleus aided in the development of
The Center of Applied Microcirculatory the Center at the University of Louisville.

Research has recently been established at the The Center has established six project areas
University of Louisville, with Dr. P. D. Harris initially in which to concentrate its efforts.
as its director. The primary purpose of the Several of these involve image processing and
Center is to develop microcirculation medicine pattern recognition, and are described briefly.
as a new applied discipline. i4icrocirculation Under certain conditions, the venules exhibit a
Mledicine is a new clinical arena with focus on tendency to leak; hormones can cause holes in
the structure, function, pathology, and therapy the venules, or abnormalities of the small veins
of blood vessels less than one millimeter in in tumors can contrioute to this leakage
diameter. Several relevant factors entered into phenomena. Using image analysis of images of
the creation of the Center at the University. the microvascular system under these conditions,

Scientific literature documents that micro- the goals are to measure the amount of leakage,
vessels, at different levels in the same organ, the average rate of leakage, where the leakage
function in different ways for various purposes is occurring, and the effect of dosage on the
Ll,4,lU,lbJ. Microvascular levels respond leakage.
differently to hormones, disease processes, and In the microvessels, white cells are in free
therapeutic agents and procedures Ll,5,6,11,12, flow. However, white cells may stick to the
13,14,161. There has been a tremendous increase vessel walls, roll along the vessel walls, and
in knowledge, techniques, and understanding of way clump to one another. This stickiness is an
microcirculatory mechanisms resulting from animal early sign of leukocyte activation during condi-
studies during the past 2O years, and studies on tions such as infection, tissue transplant
animal models of human diseases have amply shown rejection, and systemic vascular diseases. inage
that microvascular events play an important role analysis will be used to study this stickiness

in the development of some of these disease phenomenon in terms of measuring the tendency of
processes L.10. the white cells to stick, their clumpiny

Secondly, clinical sciences now use little tendency, how rapid the clumps grow, the number
of this expanding microcirculatory knowledge of clumps that pass a certain point over time,

L8,9J. The few approaches investigated, such as and, if they stick to the wall, for how long.
observing the human microcirculation in The general methods developed here can dlso be
specialized tissues such as the conjunctiva of used to study emboli and thrombi.
the eye and the nailfold of the fingers or toes Using nailfold images of the capillary
L2,7,9,15J, have not been able to provide useful system, image analysis will be used to measure
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the velocity in the nailfold loops, based on the image analysis research is completed on the
plasma gaps, determine the nailfold micro- rat cremaster muscle, it can be extended to
circulatory characteristics in various disease humans using the gingival preparation.
categories, and identify image-analysis
sequences for quantification of desired micro-- oPrICAL

vascular parameters in nailfold microcirculation. SYSTEM

2. CURRENT PROJECT
hVideo monitor

are very dynamic in terms of dilating or con-
stricting. This has many causes: hormones,
therapeutic agents, and many systemic vascular Vdo vd.
diseases such as hypertension and diabetes camera L

mellitus. It is this "diameter phenomena" which
is the concern of this project. In general, the ---- Optcaldopplo.
goals of this project are to use image analysis 208 weocimee,

techniques to measure the diameters and lengths peoc° oropon

of the arterioles in a certain region in a

tissue, and determine sequential microvascular
changes in these parameters from various causes.
Systemic vascular diseases involve major
disturbances in mnicrovessels which range from 1
millimeter (the large arterioles) down to O.OU3 Fiber I P
mm (the smallest arterioles). Animal studies optic
have suggested that detectable microvascular @Lousville Hand Surgery 1986

pathology appears very early in the development
of some forms of diabetes mellitus L21, have Figure 1: Optical System for obtaining
shown pathology in the artery wall at an early images of microvascular system in
stage in the development of several experimental the rat cremaster muscle.
forms of hypertension [IU], and that treatment
may reverse these microvascular disturbances at 3. METHODOLOGY
least in the early stages. Thus, animal studies
suggest that observations of microvascular Videotapes are supplied by the basic health
changes in humans can provide very early detec- scientists working with the Center showing the
tion of some forms of systemic vascular disease, microvascular system of the rat cremaster muscle
as well as assessments of the efficacy of early for normal rats, rats bred for systemic diseases
therapeutic interventions, such as hypertension, and for the microvascular

Presently, microcirculation in the nailfold system before and after application of a sub-
has been studied, and provides useful information stance such as a hormone. Images from the
on capillary perfusion [7]. However, this videotapes are obtained using the VAX Vision
system does not visualize the arterioles and System. The hardware component of the VAX
venules which are involved early in systemic Vision System is the ITI-IP-512 digital image
vascular disease. Studies have also examined processing system, whose fundamental components
the microcirculation in the conjunctiva (white are a video digitizer and a frame buffer. The
of the eye). However, this has provided data frame buffer contains 256K bytes of high-speed
only for a sparsely arranged vessel network, random access memory, where 512 x 480 pixel image
with little parallelism between large arterioles frames are stored. Individual pixels are 8 bits
and venules; whereas the general systemic micro- deep, allowing for 25b gray levels. With this
circulation contains parallel and adjacent large system, a standard RS-170 video signal can be
arterioles and venules. Thus, a new method for digitized, stored, and displayed on a video
microvascular observation that is truly repre- monitor in real time. The software of the VAX
sentative of the general microcirculation is Vision System consists of VISION-SUBS, a series
needed in humans to detect and to assess the of subroutines for controlling the ITI vision

treatment of systemic vascular disease. hardware; VAXTIPS, an interactive image manipu-
Currently, this project involves image lation system; and VISCUM, a stand-alone program

analysis of the microvascular system for a which must be run whenever the VMS operating
region of the rat cremaster muscle. This thin system is booted.
muscle tissue allows transmitted light microscopy Using the VAX Vision System, a frame from
and epi-illumination fluorescent microscopy the videotape is grauoed, digitized, and stored
simultaneously. A closed-circuit television for further processing. A typical image is
system, as shown in Figure 1, can be used to shown in Figure 2. The parameters of interest
obtain vi deo images of the microvascular for this project are the arteriole lengths and
system. A new gingival preparation [31 for diameters in this region of the rat cremaster
observation of the micrucirculation in the gum muscle. To obtain the measurements of interest,
and lip area of the mouth is also being
developed for use in humans. The gingival micro- standard thresholding techniques were first
circulation has arterioles, capillaries, and applied to better define the vessels. However,venules which can also De observed by microscopy, problems arose with this approach. The imiage
and this circulation is typical of many other contrast is not very good, and more importantly,andths irclaio i tyicl f mnyoter no automatic procedure could be developed to
body tissues. Thus, it is envisioned that when
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distinguish the arterioles (which are the
vessels being studied) from the venules (which
are not wanted in this project). Currently, the
approach is to use manual cursor movement to
mark points along the edges of tne arterioles of
interest. These points are then connected,
creating an outline of the arterioles. A oinary
image with the arterioles filled in is then
produced, to wnich a thinning algorith, is used
to obtain a skeleton of each arteriole.
Starting with an original image as in Figure 2,
Figures 3 through b demonstrate the output of
each of these stages.

&I Figure 4: Binary image of filled-in vessel

Figure 2: Original image of incrovascular
system in a region of the rat
creinaster muscle.

Figure 5: SKeleton image of vessel after
thinning

Figure 3: Image after marking and connecting
of arteriole wall. In pseudocode, the filling and thinning

algorithms can be summarized as follows:
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FILL (NUMBER OF ROWS, NUMBER OF COLUMNS, OBJECT
COLOR)

begin
repeat for each pixel in IMAGE, row by row
and column by column
if IMAGE(ROW, COLUMN) = white
if surrounding pixels fit corner
pattern (See Fig. 6)

SEED ROW - row of pixel inside corner
SELD COLUMN - column of pixel inside 2

corner
exit repeat loop

else 3
skip to beginning of next row

end if
end if

erd repeat Figure 7: Four neighbors used in CONNECT

call CONNECT (SEED ROW, SEEU COLUMN, LABEL THIN2OBJ (IMAGE, NUMBER OF ROWS, NUMBER OF
TAG, NUMBER OF ROWS, NUMBER COLUMNS)

OF COLUMNS) iset every LABELed pixel to white display image
do while (edge pixels continue to be

end deleted)

repeat for each pixel in IMAGE, row by
CONNECT (ROW, COLUMN, LABEL TAG, NUMBER OF RUWS, row and column uy column

NUMBER OF COLUMNS) if IMAGE(ROW, COLUMN) 0
DIRECTION - 0 (See Fig. 8)

begindowie(ntacoriaearnt
if ROW and COLUMN are within image limits do while (initial coordinates are not
if IMAGE(ROW, COLUMN) = black reached again)

set corresponding pixel on screen to if there are 2 to b white neighbors
white in the 8 neighbors
IMAGE(ROW, COLUMN) - LABEL TAG in the 8 neighborsal CNNC wththe coordinates of if there is exactly one olack to
call CONNECT with the Fi of white transition in the neighbors
the four neighbor (See Fig 7) pixel if pixel is a right or bottom
coordinates (the other parameters stay associated pixel
the same) mark IMAGE(ROW, COLUMN) to be

end if 
deleted

nd eend if
end if

end if

ROW - next edge pixel row
coordinate

EDGE COLUMN - next edge pixel
column coordinate

end do while

exit repeat loop

end if
end repeat

Object repeat for each pixel in IMAGE
Color if IMAGE(ROW, COLUMN) is marked to be

deleted
IMAGE(ROW, COLUMN) - 0 (black)

(3) repeat both above repeats for left and

Initial top associated pixels
display image

end while
Figure 6: Corner patterns in fill algorithm end
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taken every 15 pixels, starting 15 pixels from
the start point and ending 15 pixels from the
end point. If there are not 15 pixels between
the last measurement and the point 15 pixels

2 from the end of the branch, a measurement is

1 still taken at the latter point if there is a
difference of at least 6 pixels along the
skeleton from the last measurement.

t :0 The width measurement is defined as the' -- - 0minimum of the horizontal, vertical, positive

and negative 45 degree, positive and negative
22.5 degree, and positive and negative 67.5

5'7 degree bisectors of the filled image through the
( coordinates of the measuring point. Each

measurement is made by finding the length, in
pixels, of a straight line between the first
background points outside the filled image in
opposite directions along the bisector from the

Figure 8: Direction labels in thinning algorithm skeleton point on the bisector. Each pixel
along the bisector is tested for the background

At the skeleton stage, the segments of the value. The positive and negative 45 degree
arterioles need to be defined. A measuring points are found by moving one pixel
procedure will then find the length and width horizontally and one pixel vertically until a
for each segment (or branch) of the arterioles black background pixel is reached. The positive
of the original image. A segment begins at an and negative 22.5 degree points are approximated
end point and ends at another end point or at a by moving in units of three pixels horizontally,
branching point. An end point is- a pixel with one pixel vertically, two pixels horizontally,
exactly one neighbor. The measure procedure and then one pixel vertically. The resulting
searches the skeleton image from the upper left bisectors are actually at 21.8 and -21.8
corner for the first end point. The skeleton is degrees, but they are the closest approximations
then followed until another end point or a to the listed angles possible using a fairly
branching point is reached. A pixel is small number of pixels. The positive and
considered a branching point if the skeleton negative 67.5 degree bisectors are a similar
forks or changes direction significantly. A approximation, whose units of three pixels
fork is indicated by a white to black vertically, one pixel horizontally, two pixels
transisition for each branch at the fork in the vertically, and one pixel horizontally produce
surrounding neighbor pixels. A direction change bisectors actually at 68.2 and -68.2 degrees.
is considered significant if the difference in All width measurements for an image and the
horizontal or vertical coordinates from one number of ieasurements with a particular width,
pixel to the next changes in sign. For example, regardless of location, are stored in a linked
if the horizontal coordinate of pixels along the list. A graphical routine then uses this list
skeleton's path has been increasing and suddenly to display a plot of the length versus width
starts decreasing, the pixel where the change measurements.
occurs is considered a branching point. This
latter type of branching point check is needed
because a fork branching point only exists when 4. DISCUSSION ANU RESULTS
a single segment branches into two segments; if
the skeleton has only two branches (a V shape), The algorithms described above to obtain
a fork branch does not exist. As a segment is length and diameter measurements of arterioles
followed, the pixels passed through are deleted in the microvascular system of a region of the
from the skeleton image array. Any white rat cremaster muscle have been implemented and
neighbor pixels to a branching point pixel are are working. The graphical procedure has been
also deleted. These deletions are necessary implemented to obtain distributions of the total
since the check for the next segment also starts length of segments categorized by the diameter
from the upper left corner. The deletions at of the segment. While currently this entire
branching points separate the segments procedure has been performed on a few select
originating at forks, insuring an end point at samples, the plan is to repeat this process for
the beginning of each branch. The previously many image samples, including normal rats,
detected branch will not be considered since it certain diseased rats, and for before and after
has been deleted. application of particular substances such as

Once a branch has been defined, hormones. The changes in these distributions
measurements are made on it if it has a length will then be analyzed. For example, one
of more than ten pixels. The length of a conjecture is that for a low dose of a hormone,
segment is given by the number of pixels in the the smaller diameter arterioles alone constrict,
skeleton for that segment. If the length of the and the total length/diameter distribution will
branch is between eleven and twenty pixels, a show a shift at the low diameter range only. As
width (diameter) measurement is taken at the the dosage is increased, the diameters of
midpoint of the branch. The midpoint is the arterioles affected increases. The long range
pixel one half the lenth along the skeleton from goal is to correlate the shift/change in the
the branch start point. All of the branches total length/diameter distribution with an
longer than 2U pixels have width measurements effective dosage level.
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For hypertension, animal studies show Lbi Cryer, H.M., Unger, L.S., Garrison,
pathology in the artery wall at an early stage R.N., Harris, P.D.: Prostaglandin
in the development of several experimental forms inhibition impairs renal
of hypertension L1O1. In hypertension, only microvascular blood flow responses
large arterioles appear to be involved during during hyperdynamic bacteremia.
the very early phase, and smaller arterioles are Circ. Shock 21#4:312, 1987 (#52).
progressively involved at a later stage. Animal
studies have also suggested that detectable L7J Fagrell, B.: Microcirculatory methods
microvascular pathology appears very early in for the clinical assessment of
the development of some, and maybe all, forms of hypertension, hypotension, and
diabetes mellitus [2]. The goal of this project ischemia. Am. Bioined. Engr.
is to use these changes in length/diameter 14:163-173, 1986.
distributions to monitor the progression of
these diseases in humans, as well as to assess LJ Fagrell, B.: The relationship between
the efficacy of early therapeutic interventions, macro- and microcirculation--clinical

In summary, this project uses image aspects. Acta. Pharmacol. Toxicol. 58
analysis techniques to obtain parameters (Supp I): 67-72, 198b.
(lenght, diameter) of the microvascular system
in the rat cremaster muscle, with the goal L91 Fagrell, B., Fronek, A., Intaglietta,
being to correlate the changes in the M.: A microscope television system
length/diameter distributions (which classes of for studying flow velocity in human
arterioles change size, and how much) with the skin capillaries. Am.J. Physiol.
dosage of a particular compound or the 234(2):H318-H321, 1977.
progression of some systemic vascular diseases.
The techniques to obtain the needed parameter LUJ Joshua, I.G., Wiegman, O.L., Harris,
estimates have been developed, and soon various P.O., Miller, F.M.: Progressive
sample distributions will be obtained, analyzed, microvascular alterations with the
and compared. The gingival preparation will development of renovascular
then be used to extend these techniques for hypertension. Hypertension b
humans. #1:bl-b7, 1984.
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AN EMPIRICAL BAYES DECISION RULE OF TWO-CLASS PATTERN RECOGNITION

Tze Fen Li and Dinesh S. Bhoj, Rutgers University at Camden

Abstract function, where u = cl denotes class 1 and w = c2
In the pattern classification problem, it is known denotes class 2. Let 0 be the prior probability of

that the Bayes decision rule, which separates two W = c 1. Let d be a decision rule. A simple loss
classes of patterns gives a minimum probability of function is used such that the loss is 1 when d makes
misclassification. In this study, the conditional den- a wrong decision and the loss is 0 when d makes a
sity functions are known, but the prior probability of right decision. Let R(0,d) denote the risk function
each class is unknown. A set of past observations (or (the probability of misclassification) of d. Let L and U
a training set) of unknown classes is used to estimate be two regions separated at a point z by the decision
the unknown true prior probability and hence is used rule d in the domain of X, i.e., d decides c, when
to construct an empirical Bayes decision rule, which X c L and decides c2 when X E U. Ohen

separates two classes and which can make the prob-
ability of misclassification arbitarily close to that of R(O,d) 'f(z I ct)dx + (1- O)f(z I c2 )dz
the Bayes rule. The results of a Monte Carlo simula- L1
tion study are presented to demonstrate the favorable
prior estimation and the classification performed by Let D be the family of all decision rules which sepa-the empirical Bayes decision rule.LeDbetef iyofaldisnrlswhhspa

rate two classes. For 0 fixed, let minimum paobability

Key words and phrases: classification, empirical Bayes, of misclassififation be denoted by

pattern recognition.

R(0) = inf R(9, d)
JE D

I. Introduction (2)

Essentially, there are two different approaches A decision rule d, which satisfies (2) is called the
to solving classification problems. One approach is to Bayes decision rule with respect to the prior q and
find a Bayes decision rule, which separates two classes given by
based on the present observation X and minimizes the
probability of misclassification [3,7]. This approach d,(z) cl if 0f(X [ C) > (1 - 0)f(X I c 2)
requires sufficient information about the conditional C2 otherwise
density function f(x I w) of X given class w and the
prior probability p(w) of each class, otherwise, the (5)
conditional density and the prior probability have to In the empirical Bayes (ER) decision problem [4],
be estimated through a set of past observations (or a the past observations (w,,, X,), m=1,2,...,n and the
training set of sample patterns with known classes), present observation X are i.i.d.. The ER decision
On the other hand, if very little is known about statis- problem is to establish a decision rule based on the
tical properties of the pattern classes, a discriminant set of past observations X. = (X,..., X,). This can
function D(X,01 ,82,...,6,) can be used. A learning be constructed as using X. to select a decision rule
automation and an algorithm are designed to of the t,(X) which determines whether the present obser-
discriminant function. After learning, this function vation X belongs to c, or c2 . Let p(x, I 0) be the
is used to separate pattern classes [1,2,5,61. For this marginal density of X. with respect to the prior dis-
approach, it is not easy to define the functional form tributions of classes, i.e.,
and its parameters. Moreover, the discriminant func-
tion after learning will not be able to give the min- P(zm 1) c) + - )f(X, 1c).
imum probability of misclassification. In this study,
the first approach is applied to solving two-class pat- We divide the interval [0,1] into k subintervals
tern problem. and a finite discrete distribution <l is placed on

The conditional density functions f(z I w) are 0 c [0, 1j such that l(o = 6,) = , where 0, is the
known, but the prior probability of each class is un- middle point of the i-th subinterval lJ.!, '],t - 1__ k.
known. A set of n past observations of unknown Let h(O, I z) be defined byk
classes is used to estimate the true unknown prior
probability and this is used to construct a decision [[" r 0,)
rule, called an empirical Bayes (ED) rule [4], which h(, I) 14-- 0 I._ k
is used to separate two classes. It will make the prob- I :
ability of misclassification arbitarily close to that of
the Bayes rule. The results of a Monte Carlo simu- (4)
lation study with one-dimensional distributions are which is the conditional probability of 6, given X. -
presented to demonstrate the favorable estimation z,. The conditional expectation EIO r X,, was shown
of the unknown prior probability and the boundary [8] to converge a.s. to a point E U0, 11 with 1 - 1, i
point of two classes made by the ER decision rule. < ' with respect to the true prior probability p'(w

ca) p. Our ER decision rule is obtained by replacing
2. Classification Of Two Classes the unknown 0 in (3) by EO I X,, and is written as

Let X be the present observation which belongs i(X,)(X) c C1 if (X Iel) > EO K ,]' -

to one of two classes c, and c2 . Consider the decision f(v Ic, >

problem consisting of determining whether X belongs
to r, or c2 . Let f(x I w) be the conditional density - therwe (5)
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The EB decision rule (5) is used to separate two Table 2, The boundary points 6f two classes given by
classes and the simulation results will be presented the Bayes rule and the EB rules for normal distributions.
in the next section.

True prior M Bayes rule EB rule
3. Simulation Results

0.3 0.5764 0.5771
In this section, we generate a set of observations

(a training set ) X which are used to estimate 0.5 1.0000 0.9990
the true prior probability p of class 1 and establish
an empirical Bayes rules for each of three cases. 0.7 1.4237 1.4060

Each EB rule will determine a boundary point of
two classes. A normal distribution and a uniform Table 3. The boundary points of two classes given by

distribution are used to be the conditional density the Bayes rule and the BE rules for uniform distributions.

function f(x I w): True prior p Bayes rule EB rule

Class 1: N(O,1) U(0.5) 0.3 0.5000 0.5000

Class 2: N(2,1) U(1.0) 0.5 0.5000 0.5000

The prior distribution is unknown. For the normal 1.0000 -1.0000
distribution, 400,500 and 600 observations are gener-
ated from an IBM-PC microcomputer and the per- 0.7 1.0000 1.0000
centage of observations from class I is 0 = 0.3,0.5 and
0.7. The simulation results are given in Table 1. A Note: 0.5000-1.0000 means that the boundary point can be
set of 600 observations gives a satisfactory estimation anywhere between .5 and I.
E[O I X j of the true prior probability ju, which are
0.3003, 0.4995 and 0.6925 respectvely. The boundary References
points of two classes determined by the Bayes rule
and the EB rule are also given in Table 2. Table 2 [1). A. G. Barto and P. Anandan, "Pattern recog-
shows the boundary points provided by the EB rule nizing stochastic learning automata," IEEE Trans.
which are close to that of the Bayes rule. Syst., Man, Cyber., Vol. SMC-15, PP. 360-375, May

Table I The Estimation of E[6 I X,,j Normal distri- 1985.

bution with means=0 and 2,and equal variance= 1. Uniform [2]. H. Do-Tu and M. Installe, "Learning algorithms
didtribution with meansr0.5 and 1.0. for non-parametric solutions to the minimum error

classifl- cation problem," IEEE Trans. Comput., Vol.
True Prior No. of E[O Xn] C-27, pp. 648-657, July 1978.

observations Normal 11niform 13]. K. Kukunaga, Introduction to statistical pattern

0.3 400 0.3002 0.3001 recognition. New York: Academic Press, 1972.

0.3 500 0.3002 0.3005 [4]. H. Robbins, "An empirical Bayes approach to
statis- tics," Proc. Third Berkeley Symp. Math.

0.3 f0) 0.3003 0.3001 Statist. prob., Vol. 1, University of California Press.
pp. 157-163, 1956.

0.5 400 0.468J 0.4976
[5]. M. A. L. Thathachar and K. R. Ramakrish-

0.5 500 0.4959 0.4993 nan, "A coo- perative game of a pair of learning au-
tomata," Automa- tion, Vol. 20, pp. 797-801, June

0.5 600 0.4995 0.4993 1984.

0.7 400 0.6204 0.6948 [6]. M. A. L. Thathachar and P. S. Sastry, "Learn-
ing optimal discriminant functions through a coop-

0.7 500 0.6V,2 0.6955 erative game of automata," IEEE Trans. Syst., man,

0.7 600 0.6925 0.6962 Cybern., Vol. SMC-17, pp.73-85, Jan. 1987.

[7]. T. Y. Young and T. W. Calvert, Classification,

For the uniform distribution, 400, 500 and 600 observa- Estimation and Pattern Recognittion, New York:
tions are generated for 0 0.3,0.5 and 0.7. The simulation Elsevier, 1974.
results are also given in Table 1. The set of 600 observations
tions gives a satisfactory estimation of the true prior u, which [8]. T. F. Li and D. S. Bhoj, An empirical Bayes sp-
are 0.3001, 0.4993 and 0.6962 respectively. The boundary proach to pattern recognition, Department. of Math-
points of two classes are given in Table 3. Table 3 shows that ematics, Rutgers University, (1987). (submitted for
the boundary point determine(] by the EB rule is the same publication)
as that of the Bayes rule.
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STATISTICAL MODELING OF A PRIORI INFORMATION FOR IMAGE PROCESSING PROBLEMS:

A Mathematical Expression of Images

Z. Liang, Duke University Medical Center

ABSTRACT uniform a priori source probabilistic information are carried out
A general mathematical expression of images is presented for computer generated ideal data and experimental phantom

intended to reflect the intrinsic probabilistic information of imaging data containing the Poion noise. Gouo quality images
image density distribution, in terms of a priori image (or source) are obtained. A filtering criterion function is used to quantita-
probability density functions. It strongly resembles the tively indiate the convergence performance of the iterative
entropy form defined by Kullback and Leibler and has the Bayesian algorithm.
defined contents of a priori source distribution probabilistic A PRIORI INFORMATION FUNCTIONS
information. The expression reduces to the form of Shannon's
entropy if a uniform a priori source probability distribution is The source distribution region is, as usual in digital image
assumed. A Bayesian analysis incorporating the a priori source processing. divided into J source elements (or voxels). Each
probabilistic information is studied in treating observed data voxel has an average value over its volume, (), ),
obeying Poisson statistics. A system of equations determining j =1, 2, , J. In nuclear isotope imaging, 0 , stands for the.9 Gamma photon emission from voxel j per unit time at time-O;
the Bayesian solution is given which maximizes the a posteriori
probability given the observed data. A Bayesian imaging algo- in X-ray imaging, it represents the attenuation density of voxel
rithm approaching to the solution iteratively is derived by j; in optical picture processing, it is the radiance value of
employing an expectation maximization technique. Tests of the voxel j ; in scanning electron microscopes, it is the transmit-
Bayesian algorithm with uniform and non-uniform a priori tance of voxel j ; and in NMR imaging, it reflects the intensity
probabilities are carried out for computer generated ideal data of voxel j in the spectrum space. In the following sections,
and experimental phantom imaging data containing Poisson is referred to generally as the Ftrength or density of voxel
noise. Cod quality images are obtained. Preliminary study of
maximizing the a priori source distribution probabilistic infor- If the source strengths {4,, } are hypothetically quantized
mation is also presented. into strength units (or photon balls"), then 4), represents the

number of the strength units, or the photon balls. If the "otal
INTRODUCTION number of strength units N = E,"0, can be assumed to be

Statistical modeling of image processing prolems of ill- fixed, the source strength distribution can then be characterized
posed in inverse process [1] has been enhanced in recent years as a random process in which the N strength units distribute
by use of the maximum entropy (ME) [2-3] and the maximum randomly over the J voxels. Let pj (0ji) represent the a
likelihood (NL) [4-5] analysis. Although some effort has been priori probability of a strength unit falling into voxel j, the a
made to consider both the source entropy and data likelihood priori source distribution probability is then expressed as [8]
itformation [6-7, statistical modeling of the image processing N ! 1.
problems has not yet been extensively investigated. For that F () = " HI p, ( ), (1)
purpose, a statistical model of a priori source distribution proba- i ,=i
bilistic information has been proposed intended to reflect the The P (V of function (1) is the a priori source probability
intrinsic probabilistic information of source distribution [81 function. It reflects a statistical random process of image den-
The model considers the statistcal behavior of individual source
element and incorporates the a priori source information via information op ( e)i. The underlyin assumptions of func-

maximum entropy analysis. This statistical model has now tion () are very general and function (l) can be applicable in
been developed to consider two general classes of a priori source
probabilistic information in consistent with the random process many image processing problems
of source (or image) density distribution: (a). uniform and (b). By the definition of probability (i.e, with total N density
non-uniform a priori image probability distributions, units, there are 4), units falling into voxel j ).
Mbthematical expressions of the statistical model of images con- 01
taining the uniform and non-uniform a priori probabilistic p, (4) ) = lim -
information are formulated. The image expressions strong lN
resemble the entropy forms defined respectively by Shannon19] it is assumed that the a priori probability may be approximated
and Kullback et al [10] and have the defined content of a priori as
image density probability distribution. These formulas of a
priori source distribution probabilistic information imply a p, ~4) ) - (2)
principle of maximum a priori probability (PMAPP), of which N
the Jaynes' maximum entropy principle (MEP) 11l] may be a where j, represents the a priori mean strength of voiel j.
special case. A Bayesian analysis incorporatng the a priori The larger the value % the higher the information content of
source probabilistic information, where the data likelihood data statistics, and so the closer 4, will approach to 4,,. The
(probability) function is assumed to reflect the Poisson statistics estimdtion of 0, is quite important for the optimal solution of
of photon detection, is studied. Other likelihood functions of {4) given the observed data. This will be discussed later.
uncorrelated and correlated Gaussian data are given in Appen- If a maximum a priori probability principle applies, then
dix A. A system of equations determining the Bayesian solu- maximizing the probability function P (4) is equivalent to
tion is derived which maximizes the a posteriori probability maximizing the obabi nc
given the observed data. A Bayesian imaging algorithm maximizing the log function:
approaching to the solution iteratively is derived bv employing, 11 (4)) = InP (40)) In (N !) + 4, Inp, (6),) - In (4k, !) 1
among many other iterative schemes 112-131, the expectation
maximization (EM) technique (141 As a simple example rather = In (N !) + E[ d , In (4), - ), In (N) - In (0 1) . 3)
than using the EM technique, the steepest descent method (12]
is used for the Bayesian solution as shown in Appendix B.
Preliminary study of maximizing the a priori source probability Using ,he Stirling's formula
using the Lagrange parameter technique [6] and the recursive In (N ) N In (N ) - N
Picard method [15] are given respectively in Appendices C and
i). Tests of the EM Bayesian algorithm and other iterative algo and the contraint of N function (3) becomes:
rithms derived in the Appendices with the uniform and non
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H (0) = - )", In (±0 ). (4) = '
[- ER$ 0, + Y, In (ER,,O)- In (Y,!) ]. (8)

J T I I
Function (8) is a measure of the likelihood of which theFunction (4) is the general mathematical expression of source distribution {Oj ) would have given rise to the observed

images containing the a priori image density distribution proba- data obeying the Poisson statistics.
bilistic information under the principle of maximum a priori
probability. It strongly resembles the entropy form defined by A Bayesian analysis providing the maximum a posteriori
Kullback and Leibler [101 and has the defined contents of image solution is studied in the following section. It considers both
density {4 } and the a priori mean information lip, 1. the likelihood character of data fluctuations (8) and the a priori

source probabilistic information (4). A discussion on consider-If the a priori probability distribution lpj (0j )) is uni- ing the a priori source information (4) and the linear data con-
form. i.e-, = N /J , function (4) reduces to: straints of Eqs.(6) is given in Appendix C, where the Lagrange

H (4') = - _ In (k, ) + N In (N IJ) (5) parameter technique [6] is employed.

BAYESIAN ANALYSIS AND ALGORITHM
Under the PMAPP, function (5) strongly resembles the

entropy form defined by Shannon [9] plus a constant. It has Bayesian analysis provides a maximum a posteriori solu-
the defined contents of image density (, I) and implies the tion 4' which considers both the data statistics and the a priori
assumption of uniform a priori probability distribution. An source distribution probabilistic information. From Bayes' Law:
image information analysis can be carried out in a similar way P (4 I Y) = P (Y 4') P (4) / P (Y), (9)
as Shannon's communication analysis [9]. An m X n image can
be represented by a point in m x n multidimensional space. the Bayesian function is given by:
The mapping from a point of image in the m X n image space g (0) =_ InP (0 1 Y) = lnP (Y 1') + lnP (4) - nP (Y). (10)
to multidimensional data space can be ideally assumed as one to
one mapping. The distortion and noise contamination in the Considering the Poisson nature of data fluctuations (8) and
measurement process blure the point in the data space to be a the a priori probabilistic information of source distribution (4),
small region. The inverse mapping, therefore, produces more the Bayesian function is
than one point (or a region) in the image space. Different objec-
tive criteria impose different constraints on the inverse map- g ( V L (Y I V + H (V - lnP (Y)
ping and on the selection of the corresponding point in the E[ - ER,,Jk + ,In (ER,, )] (0,)
image region of m x n dimensions. Function (1) reflects then I J J
the probability distribution of the images over the image region. - [ , In (, / ) ] + C (Y)
Under the principle of maximum a priori probability, function
(4) can be a measure of the closeness of 10 ) to to ) and
function (5) the measure of the probable distribution where C (Y)=- lnP (Y) - , In (, !) is independent of 4'.
configurations of 10, 1 over the image region in the m x n Since C (Y) does not effect the determination of the Bayesian
dimensional space. The most likely point in the image region of solution V" which maximizes function g (4'), it will be omitted
m X n dimensions is the most likely distribution of the image later.
density 10, ) over the ni x n voxels. In image processing, an A system of equations determining the Bayesian solution
image having density distribution Ia 01 1 may not be distinct ' is derived by maximizing the Bayesian function g (4>),
from the image having density {b 0 J I (where a and b *a
are constants). In this case, the images are said to be degen- g (v
crate. The degeneracy is reflected, in the m X n multidimen-
sional space, as a line passing through the origion of coordinates. i.e.,

As commonly assumed in most imaging applications, the
mapping is linear and can be expressed as [16] ER,, (', / ER,, 0,*) - ER, = In (0') - In ( ,) 4 1 (12)

,= 0RJ +e, , i1,2, - I (6) 1 1 1

Since g (4') is strictly concave, i.e. for any non-vanishing

where {I, I are the data elements and can be represented as a vector Z. there in
point in the I -dimensional data space; e, is the noise com- Z '[ V2g (') ] Z = - [ DY, (ER,, Z, / FR,, 0, F
ponent and R,, the probability of receiving an image density ,
unit from voxel j for measurement point i (or projection ray
V, ). In image restoration application, R is the point spread + E"/ / z I < 0
function (PS:) of the imaging system [161.

the solution V" is uniquely determined by the Eqs.(I2).
Since the noise components ie, ) are unpredictable, the sta-

tistical property of data fluctuation would be considered in A Bayesian algorithm carrying out the calculation of the
terms of probability distribution. If each data element )', solution V" iteratively is derived by employing, among many
oteys Polssn statistics around the mean Z, R,1 0/ and all the other iterative schemes [12-13], the M technique [4,,14,19 '
data elements WV, I are uncorrelated with each other, the data E (', E R,, " )
probabdlity distribution is 14.17-18]: &..) = ___, _ , __,__._ , (13)

r'(YI4') = V exp(- R,, , )( R,, )' /0, 1-. (7)
and

The P (Y I V') of function (7) is the data probability func-
tion. It reflects the Poisson nature and uncorrelated fluctuations , ___11 _) I(14)
of measurements. It is noted that the means of I E, R,, 0, 1 0 ' "
are, of course, correlated with each other, where E I and 8 =- 1, are a.numed for easy

Other probahlity dlistributions of data vector Y have been computatin, and C" is an adjustable sigmoiilal parameter
considered in the previous work [1h] and are. as references, chosen to graduall, impose the effect of the a priori informa
given in Appendix A. tion I/ (4 )

The likelihlbil function of the d.a d suihution is A n"
expre%.ed as [I 7-19 - - _ R (15)!+ n'

L(YIV =' lnP(Y14) with A . B, and r constant.
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l.Nte that % hule the approximation of ,0
-k ") + F 8," ) in Eq.(14) is assumed for easy computa-

tion, other approximations can be used. The gradually increase
of " as a function of iterative index n is quite important for t 2
optimal results but the values of A, B, and 7 can vary
significantly from those used in this paper.

(a). For the uniform a priori probabilistic information (5}

Z, In (0P) + E 81(' ') + 1; (16)

(b). For the non-uniform a priori ,nformation (4

Z = In(0, 1 ")+ E 8 )--In(0, )+ 1. (17) 0 5 1 20 30 . 5

The Bayesian algorithm of Eq.(13) considering the uni- Fig.2 Comparison of the a priori uniform (u, dotted line)
form and non-uniform a priori information (16) and 17) and non-uniform (n, solid line) BIP algorithms after 50 itera-
respectively will be applied to computer generated idea! Liza tions for the noise-free data.
and experimental phantom imaging data containing Poison
noise in the following section. A discussion on maximizing In order to quantitatively evaluate the performance of the
g (4) via the steepest descent technique [12] will be, as a simple a priori uniform and non-uniform BIP algorithms, a test func-
example, given in Appendix B. The discussions on emphasizing tion of root-mean-square criterion is used,
the a priori P () are given in Appendices C and 1) respectively I
by use of the data constraints (6) and (8). ( )S )2 / E(S )2 ]1 (20)

RESULTS I I

The BIP algorithm of Eq.(13) considering (16) and (17) where S is the mean of IS 1 .

respectively is tested in two different imaging situations (a). Fig.3 shows the results of qi/) as a function of iterative
computer generated noise-free data, where one dimensional index n. Since the neighboring voxels around the two point
image restoration and two dimensional image restoration and sources play a dominant role in the results of the test function,
reconstruction are considered; and (b). computer generated and a smoothing weight filtering is applied before using the test
experimental phantom imaging data containing Poisson noise, function. In another words, the test function is modifed as
where the similar tests as in (a) are carried out. To facilitate [13
the calculation of the algorithm and the test function men-
tioned below, only one dimensional results of convergence per- )2= [ 1 - , )1v(,( _ )2 ] (21)
formance of the algorithm are reported. Multidimensional cal- I

culation is straightforward. Preliminary results using the where the weighting process is expressed as
iterative algorithms derived in the Appendices are also reported. s, = 7w,, S, / w,, , i =j -2, j -1, j , j +1, j +2 (22)

W. one dimensional image restoration results I

In the case of noise-free data, the actual source distribu- and
tion {S I consists of two point sources of 57 strength units w, = 0.2 w, 0.5 (23)
each, separated by 8 voxel units, superimposed upon a uniform
background of 3 strength units, as shown in Fig.1 by the solid W,.j = 1.0, wj . = 0.5, w1 jZj = 0.2
line. The ideal data (noise-free) IY, I are calculated from and similarly for 0(' ).
Y, = E, R,1 S , as shown in Fig.l by the dotted line, where The results of tk are shown in Fig.4. The modified test
the functional form of IR,1 I is assumed as function reflects more accurately the performance of conver

R,j = e - t(2) , - P F (18) gence of the iterative algorithms since it considers both the
amplitude and spatial components. As shown later, such

with T =FWIIM /2 = 4.5 voxel units, as shown in Fig.1 by improvement with the modified test function is more
the broken line. It reflects a quite poor spatial resolution imag- significant when the data is noisy.
ing system.

-------------

/

o 
go

C o00 : o s .-,

(solid ine), nois-fig.3 Results using te function (20) for the BiP algorithms

Fig.l Source distribution (solid line), noie-free data (dotted in the case of noise-free data.
line) and point spread function (broken line). In the case of experimental imaging data, a simple one

Fig.2 compares the results of the a priori uniform 1I311 dimensional equivalent phantom is prepared by threading two
algorithm (ul of liqs.(l 3) and (16) (dotted line) and the a priori parallel catheters (separated by about 7 voxel units) containing
non-uniform BIP algorithm (n) of tEqs.(13) and (17) (solid line) a solution G>,"' through a stainles steel screen. Two dimen-
after 50 iterations for the ideal data. The initial estimate V sional data is obtained hy imaging the phantom using a Picker
and the mean values {(, are chosen a: I)yna Camera Nloodel \io.4 without collimator and is arranged as

and 78a 32x 32 matrix, with the two lines of tubing oriented in the
S= V', ,, and € = + (19) colume direction as shown in Fig.13. Row 16 of the data

matrix is indicated i tg.5 by the stars and is used as the one
where 7) >e is a constant. The values of A = I, B = 100, dimensional imaging data (, }. lglecting the effect of the
7 = I and 7) = 5 are chosen, finit len gtl (1 tIC tubing, , I can be viewed as imaging data
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0.900

0,o0

0.90

Fig.4 Results using test function (21) in the noise-free case. Fig.7 Results using test function (20) for the HIP algorithms
from a double element source distribution IS, I (the proif-.ionintecsofxprmnaIphtmiaggniydt.
of the two line sources along the parallel direction superim- 0.90

posed on a uniform backrud in a one dlimensiinal geometry,
where the means are { _, R, S, 1. 0 s0

(R, j is obtained by imaging a point source of Co 57 at the
same depth as the phantom (as shown in Fig. 14) and is formed
as a matrix using the technique [16]. One row of {R, I is 50 '0

shown in Fig-5 by the solid line in which the center value is
normalized to 40.

0.60Fig.6 compares the results of the BIP algorithm with the a
priori uniform (dotted line) and non-uniform (solid line) infor-
mation after 50 iterations for the experimental imaging data 0.90 0 1 5 0 0 9containing Poisson noise.0 10 o 3C 0 s

The convergence performances of the BIP algorithms
using the test function (20) are shown by Fig.7. The results lFig.8 Results using test function (21) in the case of noisyusing the modified test function (21) are shown by Fig.8. data.

10o The result of the a priori non-uniform BIP algorithm for the
noise-free data after 100 iterations is shown in Fig.12.

80 I-or the experimental phantom imaging tests, Figs.13 and
14 show respectively, as mentioned before, the experimental

so1. imaging noisy data WY, ) from a phantom containing two paral-

o o

Fig. Reslts singtestfuncion 21) n th noie-freleae.in. esutuing dtepin ra function ofh th caera

*0 system from which IR, I is formed [16].

S20

0 5 10 iS 20 29 30 35

Fig.5 One dimensional experimental phantom imaging data
(strs) and point spread function (solid line).

oig.9 rwo dimensional source distrbution consisting of twopoepoint sources, superimposed upon a on background.

0

e Comparison of the a priori uniform (u, dotted line)and non-uniform (n. solid line) fll) algorithms after 50 itera-tions for the experimental phantom imaging data containing ,iI) To dimensional nisefree data disribtion. calcPoisson noise. lated from the onvolution of the source distribution of Fig.(/
60. two dimensional image restoration results and a two dimensional PSI of IISlh).

mig. Reesult of the a priori uniform ill algorithm atterIn the case if noie-free data, the actual source disribu- l(K iterations for the noise-free data.
in tion IS 2 is shown by Fig.9. It consists of two point sources of

109 strength units each, 2p1)ared h by 8 voxel units. superim
posed upon a uniform background of I strength unit. A two Iig.15 shows the result of the a priori uniform Ill algisdimensional PS of '418) is a.."ed. Fig.l0 shows the noise ritm after 25 iterations for the phantom imaging data. hefree data distrixition calci LedT froi the convolution of result of the a priori non-uniform 1111)gor algorithm r25 iter

14, R, 5, 1. Vig-lI shows the result using the a priiri uni nuns for the noisy data is shown b r er.6.
form HlP algorithm after iM iterations for the noise-free data.
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fig. 12 f . tions for the noise-free data shown in Fig.l.

Fig.23 compares thc results of the descent algorithm used
for Fig.22 after 50 iterations for the noise-free data.

fig. 18 tig.19

Fig.12 Result of the a priori non-uniform BIP algorithm ' ' 'J 'i
after 100 iterations for the noise-free data. rr
Fig.1 3 Two dimensional experimental phantom imaging data.

fig. 14 fi.i

Fig.18 Result of the a priori uniform BIP algorithm after 10
iterations for noise-free projections.

Fig.19 Result of the a priori nc-uniform BIP algorithm
after 10 iterations for noise-free projections.

f ig. 20.,O, !g.3: fig.211 ,

Fig.14 Two dimensional experimental point spread function. I2TO ,. e4g .21

Fig.15 Result of the a priori uniform IP algorithm after 25
iterations for the experimental phantom imaging data con-
taining Poisson noise. I ,fig. 17 ' ,[i:,"," I

Fig.20 Result of the a priori uniform BIP algorithm after 10
iterations for Poisson randomized projectioni
Fig.21 Result of ihe a priori non-uniform BIP algorithm

after 10 iterations for Poisson randomized projections.
0

Fig.16 Result of the a priori non-uniform BIP algorithm
after 25 iterations for the experimental phantom imaging ..
noisy data.
Fig.17 An elliptical phantom containing four hot spots and a ,

cold spot, superimposed upon a uniform background. / -"

,/ \~~

(iii). two dimensional image reconstruction results
Fig.17 shows the actual source di, tribution IS, I consist- o .......

ing of four hot spots of 4 strength units each and a cold spot of 0 5 10 11 20 25 30 35

2 strength units, superimposed upon a uniform background of 3

strength units. Outside the elliptical region, the density is zero. Fig.22 Comparison of the a priori uniform (u, dotted line)
The rectangular region is divided into 64X 64 voxels (or pixels and non-uniform (n, solid line) descent algorithms after 25
in two dimensions). iterations for the noise-free data shown in Fig.l.

The projection rays are calculated from IE, R,, SJ (i.e, .0 ,- .. ,

noise-free projections) for P parallel beam geometry using 64
equal projection angles in the interval [0, 180] degrees, wheref
R,, is the intersection length of projection ray i and voxel j .

Each projection contains 64 equally spaced pro .tion rays.

Each of the noise-free projection ray, say rayi (.,R,1 S,). is /
input to a Poisson random number generator [20]. The gen-

erated Poismn randomized projection ray Y, then has the mean 10
"2 R, I S . Since those Poisson randomized projection rays
{F, } with zero mean are set to zero, the Poisson randomized /
projection rays with non-vanishing means are in the range
from I to 120 counts. The summation of the noise-free projec- s 10 I 20 25 30 35

tion rays is 350341.94 and the total counts of the IPoiw in ran- -, 30 35

domized prnoectins is 35 epc4i. tig.2
3 Comparison of the a priori uniform (u. dotted line)

Fsigs.18 and 19 show respectively the resulIts of the a and non-uniform (n, solid line) descent algorithms after 50
priori uniform and non-uniform fll)1 algorithms after 10 itera- iterations for the noise-free data.
tions for the noise-free projections. The results obtained by
applying the BIP algorithms to the Poisson randomized proec- In computer implementation of the Lagrange algorithm of
tions after 10 iterations are shown hy Figs.20 and 21 respec Fq-((.7)MC.9). uneven convergence performance is observed.
tively. The dotted lines in Iigs.24 and 25 show the results of the a

Preliminary results of the iterative algorithms derived in priori uniform lagrange algorithm after 12 and 13 iterations
Appendices B, C and I) are shown in the following: respectively for the noise-free data shown in Fig.l. After the

Fig.22 compares the results of the descent algorithm 13th iteration, no improvement is obtained. The solid lines in

(lqs.0(I2), (1.3) and (1.4)) with the a priori uniform (u. dotted Figs.24 and 25 show the results of the a priori non-uniform

line) and non-uniform (n. solid line) information after 25 itera I agrange algorithm of Iiqs.(C.4)-(C.6) after 15 and 25 iterations
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respectively for the noise-free data. Smooth convergence per- ments. Incorporating additional a priori source information into
formance with the a priori non-uniform Lagrange algorithm is the Bayesian image processing (BIP) formalism for a solution of
observed. maximum a posteriori probability has been discussed previously

Fig.26 shows the results of the a priori non-uniform [18,13,8]. as well as the Bayesian algorithm section and Appen-
Picard algorithm of Eq.(D.2) after 10 (dotted line), 25 (broken dix B in this paper. laximizing a priori source probabilistic
line) and 50 (solid line) iterations for the noise-free data shown information in treating data measurements as constraints

implies the principle of maximum a priori probability as men-
in Fig.l. Since the a priori uniform information (5) is tioned in the introductory section of this paper. Preliminary
emphasized in the a priori uniform Picard algorithm of study on the maximum a priori source probability subject to
Eq.(D.3), relative flat solutions are obtained, as expected, in data constraints has been reported in references [21.13]. as well
which the two point sources in Fig.26 are no longer resolved, as the Appendices C and D in this paper.

30 Under the PMAPP, the probabilistic information function
(1) may be defined as a measure of the image information con-
tent if the assumptions are applicable. This can be easely seen
in the following simple examples:

(a). maximizing function (1) under the assumption of
uniform a priori source probability distribution (i.e, func-
tion (5)) without data constraints (or all measurements

0 7 .. are identical) results in a uniform image;
- (b). maximizing function (1) with the non-uniforn a

priori source probability distribution without data con-
ostraints produces a non-uniform image having density dis-0. 1 l-po2 o3 tribution proportional to the a priori mean values {j

Fig.24 Comparison of the a priori uniform (u) Lagrange algo- These examples are in consistence with the assumptions of

rithm after 12 iterations (dotted line) and the non-uniform the statistical image model function (1) and reflect two extreme

(n) Lagrange algorithm after 18 iterations (solid line) for the cases of the minimal and maximal a priori information content.
The examples can be more clearly understood in the mul-noise-free data. tidimensional image space. A m x n dimensional image is

30 represented by a point in a m X n dimensional space. Example
(a)spifies a point on the diagonal line (if images {a , ) are
indistinguishable from image 10) with any constant a, or

00 o -. degeneracy exists) in the multidimensional space. Example (b)
C • produces a point on the line defined by the vector 0. How far

an image point can be brought away from the site on the diago-
g0 10 ' nal line and aproaching to the point { on the line 0

1depends on the data measurements. The distoration and inevit-
/, able noise in data measurements prevent the image point from

reaching the point ({, 1. The distoration can be removed in0 ,- ..... .... , image processing by a suitable algorithm. However, the noise
0 5 10 15 so 25 30 35 effects can not be removed in the image processing. It defines a

.- P out,* disk range in the plane prependicular to the line 0 and passing

Fig.25 Comparison of the a priori uniform (u) Lagrange algo through the point {j }. Niormalization of processed images in
rithm after 13 iterations (dotted line) and the non-uniform an iterative image processing may be helpful for convergence to
(n) Lagrange algorithm after 19 iterations (solid line) for the the disk range. A well-conditioned algorithm considering the
noise-free data. noise property may produce an image point within the disk

range. For that propose of considering both the data statistics
and a priori source information, the BIP formalism [18] has
been developed to consider the pattern source information [22-ao 23]. the source distribution boundary condition [24] and the
image enhancement from estimated a priori information [25

It is noted that the information functions (4) and (5)
10 reflect two extreme cases. Other information content between

o -,them has been investigating [8]. The application of the PMAPP
to the a priori source information [8,18,22-25] is staightforward.

0 . . APPENDIX A. The Likelihood Functions of Gaussian
10 1 a 20 25 30 Data

.o4..-po.)5o0 If each data element Y, obeys Gaussian statistics around

Fig.26 Results using the a priori non-uniform Picard algo- the mean value E, Ri, l, and all the data elements {), } are
rithm after 10 (dotted line), 20 (broken line) and 50 (solid uncorrelated, then the data probability distribution is:
line) iterations for the noise-free data. I

P (Y I )=lI(2ro'2 )exp [-(', -R, )2/(20,2)] (A.)
DISCUSSION '- I

This paper presents a statistical image model intending to and the likelihood function is.
reflect the intrinsic probabilistic information of image density L (Y I 0) = - (Y, - E 'R,, k )F / (20 2) (A.2)
distribution. The image model is formed based on the very gen-
eral assumptions of the discretization of image density units r

and the random distribution process of the image units over the - In (21 2 )].
voxels. Under the assumptions, the intrinsic probabilistic infor-
mation of image density distribution is expressed mathemati- If the data elements {1', are correlated with correlation
cally as function (1). The probabilistic information function parameters IX, ), function (A.0)becomes:
(1) can be treated either as an additional a priori source infor-
mation to supplement the data likelihood solution or as a max- P (Y I ) = lCd (xa ,o-, ,o- ) x (A.3)
imum criterion considering the constraints of data measure- .
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S X,. (Y, - E , ) (W, -FRI, ), Eq.(C.2) gives the solution .

I-T, -1 1 1 )If the uniform a priori probabilistic information (5) is

and (A.2) becomes: considered as a special case, the solution 10j ) of Eqs.(C2), (C-5)
and (C.6) with replacement of 0, by 1.

L (Y Ib) =(Y - ,Rij ) (Y, -ER,, 4).) APPENDIX D. Consideration of Recursive Picard Tech-
S2q a, nique

- InC, (.)]. (A.4) The maximum a posteriori probability solution " is given

Mast regularization techniques [26-29] can be derived by the system of equations (12), or
from the Bayesian analysis considering the data likelihood k' k exp [ ER, (/, /.R,, 4) - 1 )-1] (D.1)
function (A.2) or (A.4) and the generic a priori source informa- '

tion [13,18]. Introducing an adjustable parameter us for the data con-

APPENDDX E. Consideration of Steepest Descent Tech- staints and using the recursive Picard technique [15], an itera-
nique tive Picard scheme can be expressed as:

Maximizing the a posteriori probability P (01 Y) by use of (k n +I) 0 exp ZRi ( Y, /R,,4) - 1)1 ] (D.2)
the steepest descent technique [12] is expressed am I J

g (4) = L (Y 1 0) + H (4) - lnP (Y) (B.1) For the special case of the uniform a priori probability
ER,, 4) + Yj 1. (ER, distribution information (5), Eq.(D.2) reduces to:

4i 01 In +) = exp [ i YRi ( Y,/ R, " -1 )- I] . (D.3)
- ) [ (0 ) /n ) ] + C (Y) = maximum. I J
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